
Action Value Based Reinforcement Learning for POMDPs
Theodore J. Perkins

University of Massachusetts Amherst
Department of Computer Science

Technical Report UM-CS-2001-20

NOTE: This paper is available by anonymous ftp from the site ftp.cs.umass.edu in the directory
pub/techrept/techreport/2001.

Action Value Based Reinforcement Learning for
POMDPs

Theodore J. Perkins
Department of Computer Science

University of Massachusetts
Amherst, MA 01003
perkins@cs.umass.edu

Abstract

We present a new, model-free reinforcement learning algorithm for learning de-
terministic tabular policies for controlling partially observable Markov decision
processes. The class of policies we consider includes a number of special cases
which have been studied by reinforcement learning researchers before, including:
reactive (i.e., memoryless) policies, policies based on a nite history window or
selected parts of the history, and policies incorporating nite-state memories. We
propose a new denition of action-value for this context, and derive a Monte Carlo
learning algorithm based on that denition. We show that locally optimal poli-
cies, and only locally optimal policies, are stable under this learning algorithm.
We conjecture that the algorithm always converges to a locally optimal policy.
This contrasts with many existing action-value based learning algorithms, such as
Q-learning and Sarsa, which may converge to policies that are not locally opti-
mal or may fail to converge at all when applied to partially observable problems.
Experiments examine the convergence properties of the new algorithm.

1 Introduction

Partially observable Markov decision processes (POMDPs) are receiving increased attention from
the reinforcement learning (RL) community, in part because POMDPs can model many RL problems
more realistically than can Markov decision processes, and in part because the complexity of solving
POMDPs exactly makes them an attractive target for approximate methods. However, POMDPs vio-
late one of the fundamental assumptions of many RL methods—the Markov assumption. In general,
the future behavior of a POMDP depends not only on the agent’s current observation and action, but
potentially on all of the previous observations, actions, and rewards as well. Value function-based
RL methods in particular, e.g., Q-Learning, Sarsa(!), TD(!)-control, are known to perform unreli-
ably in POMDP settings [3, 6, 11]. Pendrith and McGarity [11] analyzed the stability of (locally)
optimal reactive policies under various of these algorithms. They showed, by example, that for some
problems these algorithms can converge to policies that are not locally optimal. However, they also
proved an important positive result: when rewards are undiscounted, (locally) optimal policies are
stable under rst-visit Monte Carlo action-value learning.

We extend their results to a more general class of tabular policies, which includes history-dependent
policies and policies with nite-state internal memories. Further, we show that with an appropriate
denition of action value, a new Monte Carlo learning algorithm can be devised which extends their
positive stability result to the case of arbitrarily discounted returns. The key observation is that for
a policy to be stable, it must be greedy with respect to its own action values. Under our new action

value denition, only locally optimal policies have this property, and hence are stable under our
learning algorithm. In contrast, in the Appendices we construct POMDPs on which Q-learning and
Sarsa(!) cannot converge to any policy, because no policy is greedy with respect to its own action
values, as learned by these algorithms.

2 Partially Observable Markov Decision Processes

A POMDP models the interaction of an agent with its environment. We study POMDPs in which
the agent-environment interaction is divided into episodes. At the start of each episode, the en-
vironment’s state is selected randomly according to a xed distribution S 0 over the environment’s
state set S. An episode ends when the environment enters a terminal state. At discrete time steps,
t 0 1 2 the agent receives an observation ot O distributed according to PO st The agent then
chooses an action at A ot . The agent’s immediate reward, rt , and the next state of the environ-
ment, st 1, are then determined according to a joint distribution Pr s st at We will assume that the
probabilities and expectations we use below are well-dened and nite. Subject to that constraint,
we allow S and O to be arbitrary sets and the distributions S0, PO , and Pr s to be appropriately
dened probability measures. We also assume a global upper bound Amax on the number of actions
available to the agent in any state.

Each episode generates a trajectory: a nite sequence of observations, actions, and rewards,
o0 a0 r0 o1 a1 r1 om where the environment enters a terminal state at step m. The dis-

counted return received during the episode is R "m 1
t 0 #t rt where # 0 1 is a discount rate.

A priori, the agent knows only O, A, and #, and must learn to control the environment by interacting
with it. The goal of the agent is to learn how to choose actions such that the expected discounted
return over all trajectories is maximized.

3 Deterministic Tabular Policies

In this section we introduce the class of policies we study and describe how it relates to existing
classes studied in the RL literature. A history is a beginning subsequence of a trajectory of the
form: o0 a0 r0 o1 a1 r1 on where on may or may not correspond to the end of the episode.
In general, acting optimally in a POMDP requires conditioning the choice of action on the entire
history since the beginning of the episode [1], but this is often infeasible. In this paper we are
concerned with learning deterministic tabular policies. We dene such a policy to be a pair f g ,
where f : H 1 k f partitions the set of all histories, H, and g : 1 k f 1 Amax
assigns an action to each partition. Let A h denote the set of actions available to the agent after it has
experienced history h. For a policy to be valid, we require that g f h A h for all histories, and
that A h1 A h2 for any h1 and h2 mapping to the same partition. We assume that the partitioning
function, f , is xed and that the role of learning is to optimize the partition-to-action mapping, g.
Before dening the value of a policy and notions of optimality, we describe some classes of policies
that t this framework.

A common simplication made when searching for a good policy for a POMDP is to allow action
choice to depend only on the k most recent observations, for some xed k [3, 4, 6]. IfO is nite, such
policies are tabular. More generally, McCallum [7] introduced various techniques for determining
which parts of the history are most relevant for decision making. These algorithms result in trees
that condition action choice only on selected portions of history. In our framework, the tree structure
corresponds to f and the assignment of actions to leaves corresponds to g 1 For some problems, the
agent must “remember” something that happened a long time in the past in order to perform well in
the present. One way to achieve this is to augment an agent with an internal nite state memory, and
let action choice be conditioned on the state of the memory as well as the current observation [4, 8].
If, for example, O is nite, then an N-state internal memory can be implemented as a deterministic

1We note that our work and that of McCallum are quite complementary, as his focus was on learning f and
ours is on learning g.

tabular policy by augmenting the agent’s observation space to beO 1 N and asking the agent
to learn a “reactive” policy: g :O 1 N 1 Amax 1 N The rst component of
the action is applied to the POMDP and the second component determines the state of the memory
for the next time step. Deterministic tabular policies allow for many other possibilities as well, such
as: combinations of history dependence and internal memory; aggregation, which is often necessary
when O is large or innite; conditioning on rewards received; and even conditioning on factors that
are not computable by nite machines, such as (to take an unlikely example) whether on not the
observation sequence in the history is a palindrome.

4 Policy Value, Action Value, and Optimality

When searching for a good policy from some restricted class, it is not always possible to simulta-
neously maximize the expected discounted return from every history [1, 3]. Thus there may be no
single policy that strictly dominates all others in that sense. A common recourse is to dene a single
numerical criterion to optimize. Following Bertsekas [1], we dene the value of a deterministic tab-
ular policy to be the discounted return that the agent can expect during one episode, when following
that policy:

V $ E
m 1

"
t 0

#t rt $

where m is a random variable denoting the time at which an episode ends and the r t are random
variables denoting the reward on the t th time step. The conditional expectation notation has been
used to denote the dependence on the policy $ The expectation also depends on S 0, PO, and Pr s, but
since these are xed we suppress them in the notation.

Littman [5] showed that nding a globally optimal reactive policy for a POMDP, even given com-
plete knowledge of the POMDP, is NP-hard. Since reactive policies are a special case of tabular
policies, nding globally optimal tabular policies is intractable. A lesser goal for an RL agent is to
nd a locally optimal policy, which we dene to be a policy $ f g for which V $ V $ for all
$ f g where g differs from g on at most one partition.

To dene action values, we begin by dening V $ % —the value of a partition % with respect to a
given policy $ We say a partition % occurs on the nth step of a trajectory if the history up to the
nth step is mapped to % by f . Let P$% be the probability that % occurs on a trajectory generated by
following $. If P$% 0, we will say V $ % is undened. If P$% 0, then let occ-% denote the event
that % occurs on a trajectory and let t% be a random variable denoting the rst time at which % occurs.
We dene partition value as:

V $ % E
m 1

"
t t%

#t rt $ occ-%

Note that although the summation only begins at t%, this expectation is over the set of complete
trajectories (from initial observation to termination) that contain %. If multiplied by P $

% , V $ %
can be viewed as the portion of V $ following the rst occurrence of % in a trajectory. If we
dene R "m 1

t 0 #t rt , Rpre % "
t% 1
t 0 #t rt , and Rpost % "m 1

t t% #
t rt , then this follows by rewrit-

ing the policy value as: V $ E R $ 1 P$% E R $ occ-% P$%E R $ occ-%
1 P$% E R $ occ-% P$%E Rpre % $ occ-% P$%E Rpost % $ occ-% The last term, the

portion of V $ following the rst occurrence of %, is just P$%V $ %

We now dene the value of a partition-action pair % a as what the value of partition % would be if
g % were a. That is, letting $ % a f g denote the policy that matches $ except (possibly)
that g % a, then partition action values for $ are dened as:

Q$ % a V $ % a % E
m 1

"
t t%

#t rt $ % a occ-%

Algorithm 1 Action Value Based Monte-Carlo Learning
Given initial policy $ and partition-action values Q, initialize & /0 and repeat forever:

1. For all %, if g % argmaxaQ % a then: // Greedifying policy
Set g % to some element of argmaxaQ % a .
Set & /0. // Resetting & if policy changes

2. Choose whether to generate an on-policy or off-policy trajectory. If on-policy:
Generate a trajectory ' by following $ for one episode.
For each % occurring in ', add % to & and Update(Q ' % g %).

Else, if off-policy:
Choose % & and an action a g % valid for %.
Generate a trajectory ' by following $ % a for one episode.
If % occurs in ', Update(Q ' % a).
Add any % occurring before % to &

Update(Q ' % a)
Let t% be the time % rst occurs in '. UpdateQ asQ % a 1 (Q % a ("m 1

t t% #
t rt , where

(is a learning rate parameter, which may vary.

For Markov decision processes, state-action values Q$ s a are dened as the expected discounted
return if the agent starts in state s, takes action a, and follows policy $ afterwards. Our denition
differs in three ways: 1) the notion of starting in state s is replaced by the rst occurrence of partition
%; 2) the agent takes the action a not just on the rst occurrence of % in an episode, but on all
occurrences; 3) rewards are discounted depending on the time from the start of the episode, not from
the time of rst occurrence of %. E.g., if a partition always occurs on time step 2 and is followed by
rewards r2, r3, and r4, then the value of % is #2r2 #3r3 #4r4 and not r2 #r3 #2r4 This denition
of action value relates the values of individual actions to the global measure of value, V $, and is
crucial for the theoretical results derived below.

5 Learning Algorithm and Analysis

Algorithm 1 (see above) is a Monte-Carlo algorithm for learning partition-to-action mappings. It
maintains a table of partition-action values, Q, which is updated based on trajectories from the
POMDP, and a current policy, $, which is updated to be greedy with respect to Q. A naive approach
to updating Q would be to repeatedly choose a partition-action pair % a at random and follow
$ % a for one episode. This which generates one sample of Q $ % a if % occurs in the tra-
jectory. Algorithm 1 uses two methods to make this process more efcient. First, it distinguishes
between “on-policy” trajectories, generated by following $, and “off-policy” trajectories, generated
by following $ % a for some a g % On-policy trajectories are used to update Q $ % g %
for any % occurring in the trajectory. Off-policy trajectories are only used to updateQ % a Second,
the algorithm maintains a list, &, of partitions that have been observed to occur under the current
policy. The algorithm only attempts to learn Q % a for partitions that have occurred before.

The primary theoretical motivation for introducing Algorithm 1 is summarized by the following two
theorems. We use the convention that if action values are undened for partition % under policy $,
because % occurs with probability 0, then argmaxaQ$ % a is just the set of all actions available
from %.

Theorem 1 A deterministic tabular policy $ f g is locally optimal iff it is greedy with respect
to its action values, i.e., iff g % argmaxaQ$ % a for all %.

Proof: Let % and a be arbitrary, and let $ $ % a If P$% 0, then clearly V $ V $ and

+1

!1

Start

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

log10 number of episodes

nu
m

. r
un

s
at

 lo
ca

lly
 o

pt
im

al
 p

ol
ic

y

reactive
1 step history
2 state memory

0 1 2 3 4 5 6 7
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

log10 number of episodes

av
er

ag
e

po
lic

y
va

lu
e

reactive
1 step history
2 state memory

(a) (b) (c)

Figure 1: (a) The Parr and Russell grid world POMDP. (b,c) Learning results.

g % argmaxa Q$ % a . If P$% 0 then:

V $ V $

1 P$% E R $ occ-% P$%E Rpre % $ occ-% P$%E Rpost % $ occ-%
1 P$% E R $ occ-% P$% E Rpre % $ occ-% P$% E Rpost % $ occ-%

Observe that P$% , E R $ occ-% , and E Rpre % $ occ-% cannot depend on the action taken in
partition % hence these terms are the same for $ and $. Thus:

1 P$% E R $ occ-% P$%E Rpre % $ occ-% P$%E Rpost % $ occ-%
1 P$% E R $ occ-% P$%E Rpre % $ occ-% P$%E Rpost % $ occ-%

E Rpost % $ occ-% E Rpost % $ occ-%
Q$ % g % Q$ % a

This completes the proof.

Theorem 2 If Algorithm 1 converges to a policy $ (i.e., if $ is the current greedy policy at some time
and remains the greedy policy forever after) and if standard stochastic approximation conditions
hold (as in, e.g., [1]) then $ is locally optimal with probability 1.

Proof sketch: Once the algorithm settles on a policy $, it is simply learning the partition-action
values for that policy. Under standard stochastic approximation assumptions, its estimates will
converge with probability 1 to the policy’s true partition-action values. Since $ is greedy with
respect to these partition-action values, then by the previous theorem, $ is locally optimal.

In Pendrith’s and McGarity’s terminology [11], the set of locally optimal policies corresponds to the
set of “learning equilibria.” Many action-value based RL algorithms, such as Q-learning, Sarsa(!),
and TD(!) do not satisfy this property an may fail to converge or converge to policies that are not
locally optimal (see [11] and the Appendices). In this sense, our new algorithm is more sound for
learning in POMDPs.

6 Experiments

In this section, we briey report on experiments testing the convergence properties of the algorithm
in Figure 1. This task, modied slightly from Parr and Russell [9], is a small grid-world navigation
task. Figure 1a depicts the agent’s environment. Each of the 11 open squares represents a possible
location of the agent. Each episode starts with the agent in the “Start” square and ends when the
agent enters the 1 or the 1 square, which give terminal rewards of 1 and 1 respectively. All
other transitions receive a reward of 0 04 In each state, the agent may take one of four actions:
Up, Right, Down, or Left, which move the agent in the named direction with probability 0.8, and in

one of the perpendicular directions, each with probability 0.1. If one of these transitions would take
the agent outside the maze or into the black square, the agent stays in place instead. The problem
is partially observable because the agent only observes whether or not there is an open square to the
left and whether or not there is on open square to the right.

We used Algorithm 1 to learn three different types of policies: reactive policies, policies based on
one step of history (i.e., actions are conditioned on the current and previous observations), and poli-
cies based on the immediate observation but with a 2-state internal memory. We ran 100 independent
runs under each condition, using a learning rate (1

n for the nth update of an action value. For step
2 of the algorithm, an episode was chosen to be on-policy with probability 1

& 1 , and otherwise the
policy $ % a was followed, where %was randomly chosen from & and a was a randomly-chosen
off-policy action. The reactive policy runs lasted 10 5 episodes, and the other runs were given 107

episodes. Episodes were terminated if they did not reach a terminal state by time step 1000. Dur-
ing each run, each time the policy changed we computed the value of the policy using an off-line
dynamic programming policy evaluation procedure. Local optimality was checked by evaluating all
neighboring policies as well.

Figure 1b shows how many of the 100 runs were at a locally optimal policy as a function of the
number of episodes. The reactive policy runs converged most quickly. By episode 4,551 the last of
the 100 runs reached a locally optimal policy which it did not leave for the remainder of the run. In
the one-step history case, only at episode 3,608,635 had all the runs settled on a nal, locally optimal
policy. Some of the 2-state memory runs had not settled on a policy even after 10 million episodes.
The runs that were not at locally optimal policies were, however, near to such a policy. A typical
behavior was ip-opping between 2 or 3 adjacent policies of nearly equal value, one of which
was locally optimal. To some extent, these results may simply reect the sizes of the policy spaces
involved. With four base observations and actions, there are 4 4 256 reactive policies. Examining
the task reveals that there is only one possible initial observation and 10 possible pairs of successive
observations. Thus there are 411 4 194 304 1-step history policies. With a two state memory
there are 8 possible partitions and 8 actions, thus 88 16 777 216 possible policies.

Though settling on a policy was somewhat slow, Figure 1c shows that the value of the policies
learned, averaged across runs, approaches an asymptotic level much earlier. For the reactive policy
runs, value was near its nal level by episode 1000, and for the other two conditions, by episode
10,000. Interestingly, all the reactive policy runs settled on the same policy, which had value
0.243253. Of the one-step history runs, 75 settled on a policy with value 0.622275 and the re-
mainder on a policy with value 0.303774. Of the 2-state memory runs that ended at locally optimal
policies, 11 distinct policies were observed, ranging in value from 0.118621 to 0.622275.

Although not all of the 2-state memory runs converged to a single policy, the runs that did not
converge seemed to be near to local optima. And because the curve in Figure 1 has an upward
trend, we do not take this as contradicting our conjecture that Algorithm 1 converges, in general, to
a locally optimal policy. Since the values of the policies learned increases quickly, we believe the
algorithm is a feasible one. Naturally, comparison to other techniques is in order.

7 Conclusion

We have presented a novel denition of action value and a Monte Carlo learning algorithm based
on this denition, which is intended for learning control strategies for POMDPs. This new algo-
rithm learns partition-to-action mappings for deterministic tabular policies—a class which includes
policies conditioning action choice on past events and policies with internal nite-state memories.
The algorithm bears signicant resemblance to Q-learning, Sarsa(!), TD(!)-control, and particu-
larly Monte Carlo control with exploring starts, in that it maintains a table of action values which
are updated from sample trajectories, it continually updates its current policy to be greedy with re-
spect to the action values, and it occasionally explores actions not estimated to be optimal. However,
because it uses our new denition of action value, the algorithm also satises theoretical conditions
that are necessary, though not sufcient, to guarantee convergence to a locally optimal policy. The

other RL algorithms mentioned above, for example, do not satisfy these necessary conditions, and
for some POMDPs they converge to policies that are not locally optimal or fail to converge to any
policy. Experiments showed the feasibility of our new algorithm, though studies on more POMDPs
and comparisons to existing algorithms are in order. An obvious next step in the theoretical anal-
ysis is to establish conditions under which the algorithm we have presented can be guaranteed to
converge.

Acknowledgments

This work was funded by the National Science Foundation under grant numbers ECS-9980062 and
ECS-0070102.

References
[1] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. 1. Athena Scientic, 1995.
[2] G. Gordon. Chattering in sarsa(!). CMU Learning Lab Internal Report. Available at

www.cs.cmu.edu/ ggordon, 1996.
[3] T. Jaakkola, S. Singh, and M. Jordan. Reinforcement learning algorithm for partially observ-

able markov decision problems. In Advances in Neural Information Processing Systems 7,
Cambridge, MA, 1994. MIT Press.

[4] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4:237–285, 1996.

[5] M. L. Littman. Memoryless policies: Theoretical limitations and practical results. In From
Animals to Animats 3: Proceedings of the Third International Conference on Simulation of
Adaptive Behavior, Cambridge, MA, 1994. MIT Press.

[6] J. Loch and S. Singh. Using eligibility traces to nd the best memoryless policy in a partially
observable markov decision process. In Proceedings of the Fifteenth International Conference
on Machine Learning, San Francisco, CA, 1998. Morgan Kaufmann.

[7] A. K. McCallum. Reinforcement learning with selective perception and hidden state. PhD
thesis, Computer Science Department, University of Rochester, 1995.

[8] N. Meuleau, L. Peshkin, K. E. Kim, and L. P. Kaelbling. Learning nite-state controllers for
partially observable environments. In Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, pages 427–436, San Francisco, CA, 1999. Morgan Kaufmann.

[9] R. Parr and S. Russell. Approximating optimal policies for partially observable stochastic
domains. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-95), San Francisco, CA, 1995. Morgan Kaufmann.

[10] M. Pendrith. Personal communication.
[11] M. D. Pendrith and M. J. McGarity. An analysis of direct reinforcement learning in non-

markovian domains. In Machine Learning: Proceedings of the 15th International Conference,
pages 421–429, 1998.

4 / End
3 / C

2 / C1 / B

1,0

0,0 0,1

0,!1

0,0

0 / A

Figure 2: Counterexample to convergence of Q-Learning and Sarsa

Appendix A: Non-Convergence of Q-Learning and Sarsa
Consider the POMDP depicted in Fig. 2. The rounded boxes represent states, and are labelled with
a state number (0 4) and with the observation that the agent receives when the environment is in
that state (A, B, C, or End). The dashed box around states 2 and 3 shows the fact that they appear
the same to the agent. The arrows represent actions, and are labelled with an action number and the
immediate reward received upon taking that action. For example, from state 0, there are two actions
available, 0 and 1, and both give immediate reward 0. Episodes start in state zero and end in state 4.
We assume # 1
Suppose Q-learning with) greedy action selection is used to learn a reactive policy for this
POMDP. Q-learning maintains an observation-action value function Q o a . It updates this func-
tion as follows. When the agent receives observation o, takes action a, receives reward r and
reaches a terminal state, it updates Q as: Q o a 1 (Q o a (r. If, instead of reach-
ing a terminal state, the agent receives a non-terminal observation o , it updates Q as: Q o a
1 (Q o a (r #maxa Q o a Under) greedy action selection, the agent chooses the

action with highest Q-value with probability 1) and chooses a different action with probability
). We assume) 0 0 5
State 0 is the only state with any choice of action. Let A0 denote the policy of choosing action 0
from this state (“A0” because the agent sees observation A). Let A1 denote the policy of choosing
action 1 from state 0. Suppose Q-learning converges to policy A0—meaning that at some time, A0
is the greedy policy and remains greedy forever after. Because of its action selection procedure,
state 2 would occur in an episode with probability 1) . State 3 would occur with probability
) Thus observation C would be followed by a reward of 1) 1) 1 1 2) on average.
The partition-action value Q C 0 would converge to this value. Working backwards, we nd that
Q-learning would learn the observation-action values: Q B 0 # 1 2) , Q A 0 # 2 1 2) ,
and Q A 1 # 1 2) . Since # 1 and) 0 5, then #2 1 2) # 1 2) . This contradicts the
supposition that Q-learning converges to policy A0.
By similar reasoning, if we assume Q-learning converges to policy A1, it would learn partition-
action values: Q C 0)1 1) 1 2) 1, Q B 0 # 2) 1 , Q A 0 #2 2) 1 ,
and Q A 1 # 2) 1 . Since # 1 and) 0 5, #2 2) 1 # 2) 1 . This contradicts the
assumption that Q-learning converges to policy A1. Thus, Q-learning cannot converge to either
policy. Note that these are policies of much different value according to our denition; this is not an
example of relatively harmless chattering among policies of equal value.
We note that the same argument works for Sarsa with) greedy action selection, because for this
POMDP the updates that Sarsa and Q-learning make are the same. The argument can be generalized
to any form of action selection, as long as the greedy action is always more likely to be selected than
the non-greedy action, and as long as the non-greedy action is selected innitely often (so that its
value can be learned.)
This example does not rely on our denition of action value. Action 0 from observation A is always
followed by a discounted return of #2. Action 1 is always followed by a discounted return of #
Standard Monte Carlo action evaluation would quickly uncover which action is better. This is simply
an example where Monte Carlo updating outperforms temporal difference-style updating. Other
researchers have noted this phenomenon before, e.g. [11].

0/A End
1/A

2/A

0

1

0

1

0

1

Figure 3: Counterexample to convergence of Sarsa(!).

Appendix B: Non-Convergence of Sarsa(!)

In this appendix we demonstrate a POMDP on which)-greedy Sarsa(!) for learning reactive policies
cannot converge to a single policy, for any ! and all 0)) 0 for some)0 0.

Consider the POMDP depicted in Figure 3. The rounded boxes represent states. There are three
non-terminal states: 0, 1, and 2, which all give observation A, and there is a terminal state, End.
From any non-terminal state there are two actions allowed, 0 and 1. Transitions are deterministic
as indicated by the arrows. From state 0, either action receives zero immediate reward. Actions 0
and 1 from state 1 receive immediate rewards r0 and r1 respectively. Actions 0 and 1 from state 2
receive immediate rewards r2 and r3 respectively. In other words, the POMDP can be viewed as
implementing the following reward structure:

Action sequence taken Terminal reward
0 0 r0
0 1 r1
1 0 r2
1 1 r3

Let r0 r3 r1 r2 and let there be no discounting of returns. The gist of the proof is as follows.
Since all states yield the same observation, there are only two deterministic reactive policies: take
action 0 always or take action 1 always. Now, suppose)-greedy Sarsa(!) were to converge to the
policy of always taking action 0, and that) is small. The algorithm learns action values for both
actions, let us call them Q0 and Q1. Action 0 occurs most frequently in the action sequence 0 0,
which happens with probability 1) 2. The action sequences 0 1 and 1 0 are relatively much less
frequent, and so the learned value of Q0 would be very near to r0. On the other hand, action 1
occurs most frequently via the action sequences 0 1 or 1 0, and relatively rarely via the sequence 1
1. So the valued learned for Q1 would be near to r1 r2. But then Q1 would be greater than Q0,
contradicting our assumption that the algorithm converges to the policy of always taking action 0.
Likewise, it is also inconsistent for the algorithm to converge to the policy of always taking action
1. Thus, the algorithm must chatter between the two policies indenitely. The remainder of this
document formalizes this argument.

First, consider the case of replacing traces. Let us suppose the learner takes action 0 with probability
p and action 1 with probability q=1-p.)-greedy behavior when Q 0 Q1 is then represented by the
choice p 1). For Q1 Q0, p) describes the learner’s action selection. The table below lists
the possible trajectories, along with their probabilities of occurrence, and the updates made to Q 0
and Q1.

Action
sequence Probability Updates

0 0 p2 Q0 Q0 (0 Q0 Q0 Q0 Q0 (r0 Q0
0 1 pq Q0 Q0 (0 Q1 Q0 Q0 Q0 (! r1 Q1 Q1 Q1 (r1 Q1
1 0 pq Q1 Q1 (0 Q0 Q1 Q1 Q1 (! r2 Q0 Q0 Q0 (r2 Q0
1 1 q2 Q1 Q1 (0 Q1 Q1 Q1 Q1 (r3 Q1

Collecting the updates for Q0, we nd the xed point is at:

p2 r0 Q0 pq Q1 Q0 pq! r1 Q1 pq r2 Q0 0

or,

Q0
pr0 q 1 ! Q1 !r1 r2

p 2q

And for Q1 we have:

pq r1 Q1 pq Q0 Q1 pq! r2 Q0 q2 r3 Q1

or,

Q1
qr3 p r1 1 ! Q0 !r2

q 2p

Note that as p 1, Q0 r0, and Q1
1
2 r1 1 ! Q0 !r2

1
2 r1 1 ! r0 !r2

1
2 r1 r0 r0 Q0. Note that since this inequality is strict and holds as p 1, then it holds
for some range of p near 1, by continuity of the solutions Q 0 and Q1 to the above equations. The
punchline is this: if we assume Sarsa(!) does)-greedy exploration and that) is small, and that the
algorithm converges to the policy of always taking action 0, then it should learn a value ofQ 1 greater
than Q0. This means action 0 is not greedy, contradicting the convergence to that policy.

Similarly, as p 0, Q1 r3 and Q0
1
2 1 ! Q1 !r1 r2

1
2 1 ! r3 !r1 r2

1
2 r3

r2 r3 Q1. Thus, the algorithm cannot converge to the policy of always taking action 1. The
algorithm cannot converge to either policy, and instead must chatter between the two.

The argument for accumulating traces is similar in form, differing only in the exact calculations.
The table below lists the possible trajectories, along with their probabilities of occurrence, and the
updates made to Q0 and Q1.

Action
sequence Probability Updates

0 0 p2 Q0 Q0 (0 Q0 Q0 Q0 Q0 (1 ! r0 Q0
0 1 pq Q0 Q0 (0 Q1 Q0 Q0 Q0 (! r1 Q1 Q1 Q1 (r1 Q1
1 0 pq Q1 Q1 (0 Q0 Q1 Q1 Q1 (! r2 Q0 Q0 Q0 (r2 Q0
1 1 q2 Q1 Q1 (0 Q1 Q1 Q1 Q1 (1 ! r3 Q1

Collecting the updates for Q0, we nd the xed point is at:

p2 1 ! r0 Q0 pq Q1 Q0 pq! r1 Q1 pq r2 Q0 0

or,

Q0
p 1 ! r0 q 1 ! Q1 !r1 r2

p 1 ! 2q

And for Q1 we have:

pq r1 Q1 pq Q0 Q1 pq! r2 Q0 q2 1 ! r3 Q1

or,

Q1
q 1 ! r3 p r1 1 ! Q0 !r2

q 1 ! 2p

Examining the limits as p 1 reveals that they are the same as in the replacing traces case, thus the
same argument that completed the previous argument works here as well.

Discussion

Note that since r0 r1, the example presented is not one of relatively harmless chattering among
policies of equal value. The least attering way of describing the example is that it shows Sarsa(!)
oscillating between the worst and best policies in the space.

In some cases, one desires to let the exploration parameter) go to zero at a suitable rate. The theorem
we have proved shows that for any xed, small), the algorithm will chatter. Since this is true of all
) 0)0 for some)0 0, it is not difcult to extend the result to the case where) goes to zero in
a suitable fashion.

The proof relies on the fact that)-greedy action selection is discontinuous in the action values. It
is not clear whether a counterexample can be constructed for a method of action selection that is
smooth in the action values, such as Gibbs/Boltzmann action selection.

Gordon [2] has presented a similar counterexample and argument (not quite a formal proof) to the
one here, along with simulation experiments. The example here improves on his in at least one
important way. Gordon demonstrates a POMDP on which Sarsa(0) does not converge, and claims
similar counterexamples can be constructed for any ! 0 1 . Our single counterexample applies
for any ! 0 1 This is an important distinction because it has been conjectured (by, among others,
Pendrith [10]) that for any POMDP, Sarsa(!) might be convergent for ! sufciently close to 1, where
“sufciently close” has a problem-dependent meaning. Our example shows that this is not the case.

We also note that the non-convergence proven here can be trivially interpreted as a non-convergence
result for Sarsa(!) on MDPs with state-aggregation function approximation, or more generally, with
linear function approximation, of the action values.

