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Abstract

The bandwidth-intensive and long-lived nature of high quality digital video make it a challenging problem to
transmit such video over the Internet. In this paper, we consider the problem of streaming a set of popular videos
from a remote server to a large number of asynchronous clients, while making efficient use of network bandwidth,
and still allowing clients to start instantaneous playback. We propose a scalable and flexible framework which
combines proxy-based prefix caching in conjunction with periodic broadcast of the suffix of a video from the
server. We develop a methodology for (i) optimally allocating the proxy buffer space among a set of popular
videos and (ii) choosing appropriate prefix and suffix transmission schemes based on the principle of decoupling
the suffix and prefix transmissions from each other. A greedy proxy buffer allocation algorithm is presented
that minimizes the aggregate bandwidth usage on the server-proxy path. Our studies show that this approach
yields a buffer allocation close to global optimal for practical settings where proxy-client path bandwidth is much
cheaper than long-haul path bandwidth. When the proxy buffer is allocated to a set of videos using our allocation
scheme, a total buffer space of just of the video repository is adequate to realize substantial reductions
in the aggregate bandwidth usage on the server-proxy path. Finally, we present an integrated prefix and suffix
transmission scheme such that the client only needs to listen to at most two channels simultaneously.

I. INTRODUCTION

A broad range of applications (entertainment and information services, distance learning, corporate telecasts,
narrowcasts, etc.) will be enabled by the ability to stream continuous media data from servers to clients across a
high-speed network. However, due to the bandwidth intensive nature (usually larger than Mbps) of high quality
digital video, and the long-lived nature (tens of minutes to a couple of hours) of video content, server and network
bandwidths are major limiting factors in the widespread streaming of such videos over the Internet. The problem
is further complicated by the fact that clients are plentiful and heterogeneous, and that clients asynchronously
issue requests for the same media stream. Particularly for popular clips, a large number of client requests may
arrive close together in time relative to the duration of the stream. Consequently there has been tremendous
interest in developing techniques for the bandwidth-efficient distribution of video to such a client population. In
this paper we explore the use of proxy-based prefix caching in conjunction with efficient transmission schemes,
such as periodic broadcast and patching, for reducing the bandwidth cost of delivering popular videos to a large
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number of asynchronous clients while still allowing instantaneous playback startup. In particular, we develop
techniques for allocating proxy buffer space across a set of videos, and determining the appropriate proxy-based
and server-based transmission scheme, respectively, for each video such that the above goal is reached.

A. Background

Service providers can reduce response time, server load, and network traffic by deploying proxy caches. How-
ever, video files can be very large, particularly for high quality long duration videos, and techniques that cache
entire objects [1, 2] are not appropriate for such videos. A number of caching strategies have been proposed
in recent years [3–5] that cache a portion of a video file at the proxy. In particular, storing an initial prefix of
the video [6] at the proxy has numerous advantages, e.g., shielding clients from delays and jitter on the server-
proxy path, performing online smoothing to reduce the burstiness of Variable-Bit-Rate video without introducing
additional client playback delays, and reducing traffic on the server-proxy path.

Recent research has focused on using multicast and broadcast connections to reduce server and network loads.
Periodic broadcast and patching [7–13] described in more detail in Section II-A, are two approaches that have
received considerable attention recently. These techniques exploit the use of multiple multicast channels to
reduce network and server resource usage over the case of multiple unicast transmissions, while at the same time
satisfying the asynchronous requests of individual clients and providing a guaranteed bound on playback startup
latency. In periodic broadcast, the server divides a video object into a number of segments, and continuously
broadcasts the segments on a set of transmission channels. Using a constant number of channels or segments,
periodic broadcast can deliver video to an arbitrary number of asynchronous clients. In patching, the server only
transmits video data on demand, when new clients arrive. Patching allows a client to begin playback immediately,
while under periodic broadcast, a client has to wait until the beginning of the next broadcast period of the first
segment to begin playback.

B. Contributions

In this paper, we explore the use of proxy-based prefix caching in conjunction with periodic broadcast for
reducing the transmission bandwidth cost, while ensuring instantaneous playback startup for clients. We use
periodic broadcast to transmit the suffix from the server, and either patching or a combination of patching and
periodic broadcast for streaming the prefix from the proxy.

We develop a methodology for optimally allocating the proxy buffer space among a set of popular videos
and choosing appropriate prefix and suffix transmission schemes based on the principle of decoupling the
suffix and prefix transmission from each other. Briefly, this methodology consists of
– Choosing an appropriate periodic broadcast scheme for the suffix, and in the context of that scheme, deter-

mining the proxy buffer allocation and corresponding segmentation for each video, such that the aggregate
bandwidth usage on the server-proxy path is minimized. In particular, we choose the first segment size of
suffix to be the same as the allocated prefix for computing the lengths of the segments in the suffix. We
shall see later that this can result in significant reductions in transmission cost.

– Each proxy determines, based on the relative popularity of a video among clients of that proxy, an appro-
priate prefix transmission scheme that makes efficient use of bandwidth on the proxy-client path.

We present a greedy algorithm to determine the allocation of the proxy buffer among the different videos
such that the aggregate bandwidth usage on the server-proxy network path is minimized.
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We also present an integrated prefix and suffix transmission scheme such that the client only needs to listen
to at most two channels simultaneously.

Decoupling the suffix and prefix transmissions enables different proxies to use different prefix transmission
schemes, while sharing the same common suffix transmission from the server. This also allows a proxy to dy-
namically adapt its prefix transmission scheme to small variations in the local demand for any video without
requiring changes to the global suffix transmission scheme which is shared among multiple proxies. This flexi-
bility is especially desirable in dynamic, heterogeneous environments like the Internet, where the request rate for
a particular video at a given proxy may vary with time, and the relative popularities of the videos as well as avail-
able client resources (e.g., reception bandwidth, buffer space) may vary across different proxies. We find that for
practical settings where bandwidth on the local proxy-client path is significantly cheaper than the bandwidth on
the long-haul server-proxy path, this approach of first determining the proxy buffer allocation that minimizes the
bandwidth cost on the server-proxy path and then tailoring the prefix transmission to reduce the local bandwidth
cost results in buffer allocation and end-end bandwidth cost which are close to what would be achieved under a
global optimal approach that attempts to minimize the server-proxy and proxy-client bandwidth costs together.

Our studies show that for a single video, making the first segment of the suffix equal in size to the prefix can
substantially reduce bandwidth usage on the long-haul path. Under our approach, caching a small to moderate
prefix ( of the video) can realize most of the bandwidth savings. When the proxy buffer is allocated to a
set of videos using our allocation scheme, a total buffer space of just of the video repository is adequate
to realize substantial reductions in the aggregate bandwidth usage on the server-proxy path. Furthermore, the
choice of a particular periodic broadcast scheme does not significantly impact the number of server channels
required provided that the proxy can cache around of the video repository. However, for smaller proxy
buffers, more aggressive schemes, such as GDB(n) [8] with , exhibit superior performance.

This paper complements several recent works [14, 15] that combine caching with scalable transmission of
continuous media. [15] combines patching with prefix caching to reduce transmission bandwidth overheads
for a single video. In the context of periodic broadcast, [14] employs numerical techniques to determine the
optimal proxy buffer allocation across a set of equal length videos, each with a predetermined fixed prefix size,
that are delivered using periodic broadcast with a predetermined fixed segmentation of the video. Evaluations
show that with the same available proxy buffer space, our scheme results in a much lower bandwidth usage on
the server-proxy path than the scheme proposed in [10]. We discuss other differences in Section V-B.

The remainder of the paper is organized as follows. Section II presents the problem setting, and introduces
key concepts and terminology used in the remainder of the paper. Section III presents the prefix caching assisted
periodic broadcast framework. In Section IV, we give a greedy algorithm that optimally allocates the proxy buffer
to different videos, and evaluate the algorithm. In Section V, we considers the impact that the choice of periodic
broadcast scheme has on the bandwidth savings, and compare the prefix-caching assisted periodic broadcast with
the scheme proposed in [14]. We also present a delivery scheme for bandwidth constrained clients. Finally,
Section VI concludes the paper and describes ongoing work.

II. PROBLEM SETTING

In its simplest form, a Streaming Content Distribution Network (Fig. 1) is a two level hierarchy, typically
including a geographically distributed core of a few very large data servers connected via very high capacity
links, and an an overlay network consisting of a much larger set of smaller caching servers, called edge prox-
ies, distributed across the Internet, and located closer to end-clients. The data servers are the principle content
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repositories and are expensive high-end servers or server farms configured with substantial storage (Terabytes),
processing and IO bandwidth capacity for handling high request rates. By caching popular content at the edge
proxies, and serving them locally to clients, service providers can significantly reduce response time, server load,
and network traffic.

Fig. 1. An Internet Content Distribution Network

In this paper, we focus on prefix-caching based techniques for transmitting popular videos to clients over such
a video distribution system. Consider a single proxy and the client population it serves. We assume that both the
server-proxy network paths and proxy-client network paths are multicast capable, and that clients always request
playback from the beginning of a video. The prefix is streamed to the client using a prefix transmission scheme.
The remainder of the video (suffix) is delivered using a corresponding suffix transmission scheme. The prefix and
suffix transmission schemes together constitute the transmission scheme for a video for the clients of a particular
proxy. The following are some desirable properties of such a distribution scheme :

Low startup delays: Clients should be able to start playback with low delays.
Bandwidth Scalability: The distribution scheme should make efficient use of the end-end network bandwidth.
Flexibility: The distribution scheme should be sufficiently flexible to accommodate inherent heterogeneities
in the system. For example, the relative popularities of the videos may vary across proxies, and the actual
request rate for a video may vary with time at a given proxy, and clients in different ISPs may have different
resource (reception bandwidth, buffer space) constraints. A flexible distribution scheme would be able to
to addresses the particular needs of different local client population, while still making efficient use of the
server-proxy and proxy-client network bandwidths.

In Section III we present a methodology and techniques for determining the appropriate prefix transmission
scheme, suffix transmission scheme, and corresponding prefix buffer allocation for each video that exhibits the
above properties.

We next provide a formal model of the system, and introduce notation and key concepts that will be used in
the remainder of the paper. Table I presents the key parameters in the model. We consider a multimedia server
with a repository that includes popular videos. We assume the videos are Constant-Bit-Rate (CBR) and have



5

Parameter Definition
Number of popular videos
Length of video (sec.)
Proxy cache size (sec.)
prefix of video cached at the proxy (as a fraction of the video length)
Number of server channels for video

TABLE I
PARAMETERS IN THE MODEL.

the same playback rate. Assume the length of video is seconds, and that the proxy can store up to seconds
worth of video. Assume the first seconds of video are cached at the proxy, . Henceforth will
be referred to as the prefix size of video . Note that the videos cached at the proxy cannot exceed the storage
constraint of the proxy, that is, .

An imporant goal in our scheme is to minimize the transmission bandwidth requirement on the server-proxy
path, aggregated over all the videos in the repository, i.e., the metric , where is the number of
server channels for video when a prefix of is cached at the proxy. All channels are of equal bandwidth. In the
rest of the paper, unless otherwise stated, we shall use the term transmission cost to refer to this metric. Once the
prefix allocation (specified by the storage vector ) is known, the individual video prefixes are then stored at the
proxy, in advance of client requests, based on the proxy buffer allocation. In Section IV we present an algorithm
to determine the optimal proxy cache allocation that minimizes the transmission cost.

For ease of exposition, we assume that the propagation delay is zero in the rest of the paper. However, our
results are easily extended to account for a bounded propagation delay. We also assume the client has sufficient
buffer space and network bandwidth to accommodate an entire video clip. Finally, note that we focus on a single
server and a single proxy for simplicity of exposition. However our results apply directly to Content Distribution
Networks with multiple proxies with identical storage capabilities, where each proxy serves a different set (no
overlapping) of clients with potentially different local population sizes and different local demands for a set of
videos. We next provide a brief background on periodic broadcast and patching schemes.

A. Periodic broadcast

We use periodic broadcast for suffix delivery. In periodic broadcast, the initial segments are repeated more
frequently than later ones. This has the benefit of reducing both the client startup delay and the transmission
bandwidth requirements. These schemes ([16] has a nice literature overview) can be broadly classified into three
categories (1) Schemes that divide a video into segments of increasing length that are transmitted over channels
of the same bandwidth [7, 8, 17]. (2) Schemes that divide the video into equal sized segments, and transmit
earlier segments over higher bandwidth channels than later ones [18]. (3) Hybrid schemes that the above two
approaches [19]. In this paper we focus on schemes belonging to the first category. However, our approach
should be applicable to schemes in the other two categories.

We associate with each segment an integer , s.t. the length of the -th segment is , and
is taken to be one. We shall consider some representative schemes from the first category which use the

following segment size progressions: Skyscraper: [1,2,2,5,5,12,12, , Dynamic skyscraper: [1,2,2,4,4,8,8,
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], GDB(3): [1,2,4,6,8,12,16, ], GDB(4): [1,2,4,8,14,24,40, ], GDB(5): [1,2,4,8,16,30,56, ], GDB(6):
[1,2,4,8,16,32,62, ].

B. Patching

Patching promotes sharing by allowing a later arriving client to join an on-going multicast transmission started
by an earlier request, and the server transmits the initial missing part directly to the client. Several authors [11,
20, 21] have proposed to use a threshold to control the frequency at which new multicast sessions are started. The
threshold is determined by minimizing the average bandwidth requirement when the clients arrive according to
a Poisson process. Catching [22] combines periodic broadcast with patching in order to realize both zero latency
client playback, as well as the resource efficiency of periodic broadcast. Catching use patching to deliver the first
segment of the periodic broadcast. Since patching outperforms catching when the client request rate is low while
catching is more suitable for high request rates, [22] uses a policy called selective catching to determine, based
on the request rate of a video, whether to use patching or catching.

III. PREFIX CACHING ASSISTED PERIODIC BROADCAST

In this section we describe the prefix-caching assisted periodic broadcast framework, and present some key
intuitions and design principles guiding our approach. Our goal is to design a scalable, flexible framework for
delivering video to clients with little or no startup delay. We first focus on the caching and transmission schemes
for a single video and then consider the multiple-video resource allocation problem.

A. Distributing a single video

In our framework, a proxy is responsible for serving a prefix of the video, while the source server is responsible
for serving the suffix. A salient feature of any periodic broadcast scheme is that the total number of server
channels is constant for a given playback delay, independent of the number of clients requesting the video. This
makes periodic broadcast very bandwidth efficient when arrival rates are high. We therefore choose Periodic
Broadcast for transmitting the suffix of the video. In this work, we focus on the class of periodic broadcast
schemes that use segments increasing in length and are transmitted over equal bandwidth channels.

The proxy uses either catching or patching to deliver the prefix - both schemes can provide instantaneous
playback, and the scheme which incurs the lowest transmission cost is selected. Note that in the absence of
prefix caching, the length of the first segment would determine the worst case startup delay for any client. In
our scheme, because a separate prefix transmission scheme is used for the initial part of the video, we can afford
to have a large first segment for the suffix, while providing instantaneous playback. Hence it becomes possible
to reduce the number of channels by making the first segment of the suffix as large as possible. For example,
with a small sec. initial segment, a min. video needs roughly channels under Skyscraper broadcast
(Fig. 2). With a larger minute first segment, the number of channels reduces to . In addition, the reduction
in number of channels is not linear in the size of the first segment. Instead, the reduction is large for small to
moderate initial segment sizes and gradually approaches zero. Other periodic broadcast schemes, such as GDB(i),
dynamic skyscraper, etc., show similar behavior. This trend argues persuasively for using a large first segment.

The length of the first segment, however, cannot be arbitrarily large and an upper constraint is imposed by
the need to guarantee starvation-free playback to the client. To avoid starvation when switching from playing
back the prefix to playing the suffix, a client should start to receive the suffix before the end of prefix is reached.
To ensure this, the first segment of the suffix cannot be larger than the prefix. We therefore select the length of
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Fig. 3. Number of server channels vs. prefix size

the first segment to equal the prefix length. Fig. 3 depicts the corresponding tradeoff between the prefix buffer
allocation and associated long-haul transmission cost, when skyscraper broadcast is used to deliver the suffix.

t 2t 1 t 2 t 2 t 1+( - )

t 1

Prefix Suffix (remote server)(proxy)

video

segment 3
segment 2

segment 1

time

prefix (multicast)

+T0 T 2T 3T
clients:
client 1

client 2

a new stream for client 1

patching stream to client 1

Fig. 4. Prefix-caching assisted periodic broadcast

Fig. 4 illustrates an example of prefix caching assisted periodic broadcast. The suffix is partitioned into several
segments (we show the first three segments) which are periodically broadcast. In this example, the proxy uses
patching to deliver the prefix. Client arrives at time , the proxy initiates a new stream to transmit the prefix to
it. At time , client begin to receive the suffix starting from segment (the shaded segments). Client arrives
at time while the proxy is still multicasting the prefix. Suppose that is less than the patching threshold,
client immediately taps into the ongoing multicast. Simultaneously the proxy sends the patch, ,
to client . Notice that client will also begin to receive suffix at time and receive the shaded segments at the
same time as client . There is a period of time during which the client simultaneously receives both the prefix



8

and the suffix. Thus the number of channels the client needs to listen to, in the worst case, is the sum of the
channels required to obtain the prefix and suffix.

B. Distributing a set of videos

We now turn our attention to the case where there are several popular videos in the repository. If we adopt the
scheme described above for each video, the next question is how to allocate a limited proxy buffer to all of the
videos such that aggregate transmission costs are minimized. From Fig. 3 we can see that for a given video, a
large prefix reduces long-haul bandwidth requirements. We propose the following approach to allocate the proxy
buffer and determine the prefix transmission scheme.
Step 1. Allocate the proxy buffer so as to minimize the aggregate server channel (long-haul bandwidth) require-
ment to support all videos.
Step 2. The proxy uses patching, or catching, to deliver the prefix based on the local client request rate.

Our design principle is to decouple the local (prefix) transmission from the long-haul path (suffix) transmission.
First, we determine a buffer allocation that minimize the bandwidth consumed on the long haul path from the
server to the proxy, without considering the delivery cost on the local path. Then each proxy tries to use an
appropriate transmission scheme for the prefix that minimizes the average bandwidth on the proxy-client path.
The rationale behind this approach is as follows:

Typically it is more expensive to transmit a unit of data from the remote server to the proxy, than from the
proxy to the client. So reducing the long-haul bandwidth usage is important.
The local transmission cost is closely related to the local client request rate, which is not easy to obtain and
difficult to predict, making the accurate estimation of local delivery cost practically infeasible. Furthermore,
there can be tremendous heterogeneity among proxies. Even for a hot video, it may not be popular at every
local area. It is better to let the proxy take the responsibility to decide how to deliver the prefix locally.
In section IV-C, we shall show that the total bandwidth used to deliver a single video, including both long-
haul and proxy-client path network bandwidth, is close to the long haul bandwidth requirement, if the cost of
transmitting a unit of data locally is relatively small (compared to the long haul cost). Thus our decoupling
approach yields a solution that is close to the globally optimal solution in many practical settings, e.g., proxy
is much closer to user than remote server, while still enjoying the benefits of simplicity, flexibility, and
robustness against the presence of incomplete request rate information.

In summary, prefix caching assisted periodic broadcast is a scalable and flexible framework with which to
support a hot video streaming service with zero playback delay. The scalability derives from the combination
of periodic broadcast with the proxies, as well as from the minimization of the long-haul server-proxy path
bandwidth. The flexibility comes from decoupling the prefix and suffix transmission from each other, and the
use of selective catching for the delivery of prefix. In the following section, we develop and evaluate a buffer
allocation scheme that minimizes the long-haul transmission bandwidth.

IV. PROXY BUFFER ALLOCATION

As described in the previous section, we try to place as large a prefix of the video as possible at the proxy so
as to minimize the number of server channels/long-haul path bandwidth. In the following, we present a greedy
buffer allocation algorithm that minimizes the aggregate server-proxy path network bandwidth usage. We then
evaluate the algorithm using a set of videos of varying lengths.
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A. Optimal proxy buffer allocation algorithm

Denote by the minimum prefix size (as a fraction of video length) for broadcasting a suffix using server
channels, and the length of video . We use the subscript to distinguish the videos. The segment size progres-
sion is determined by the choice of periodic broadcasting scheme. The video consists of two parts: prefix
and suffix. Recall that the first segment of the suffix is chosen to be equal in length to the prefix. If we assume
server channels are used to deliver the suffix, then we have:

for (1)

We let . Because is a non-decreasing function, is a convex function in . Let be number
of server channels needed with prefix size of . By definition, we have

if

The proxy buffer allocation problem is to allocate the proxy buffer to a set of videos, given that the video
lengths are known in advance, so as to minimize the total number of server channels (long-haul path bandwidth).
The buffer allocation problem can be formulated as follows:

(2)

subject to

where . Prefix of video , , cannot be equal to 0. Otherwise there is no prefix for video to
do patching or catching, and instantaneous playback cannot be achieved.

A greedy algorithm to solve the buffer allocation problem (2) is illustrated in Fig.s 5 and 6 (see Appendix for
the proof). Here is the set of videos, , is the number of server channels used, and

. Denote by the increase of prefix size to multicast video in server channels rather than
channels, and the decrease of prefix size to multicast video in channels rather than channels. We
have:

Both and are non-negative because is non-increasing function. As illustrated in Fig. 5, in step
1 an initial point where all videos use the same amount of buffer is generated. Step 2 minimizes the proxy buffer
usage without changing the aggregate number of server channels. In step 3, the leftover buffer is allocated to the
videos so that the long-haul bandwidth is minimized. Specifically, at step 2 (Fig. 6), the algorithm determines
the following two quantities at each round: 1) the video , that needs the least extra amount of buffer, , in
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Proxy Buffer Allocation( , , )
Step 1. Generate a feasible initial point.

Step 2. Minimize buffer usage without changing the number of channels used
Minimize Buffer Usage( , , , )

Step 3. Allocate the leftover buffer while minimizing the number of server channels

while

Fig. 5. PBA Algorithm: Pseudocode for allocating the proxy buffer to minimize the aggregate number of server channels

Minimize Buffer Usage( , , , )
initialize and

while

Fig. 6. MBU Algorithm: Pseudo code for minimizing the proxy buffer usage while keep the total number of server
channels unchanged.

order to use one less server channel; and 2) the video , that can gives up maximum amount of buffer, ,

by using one more channel. It then compare with . If is less than , it will swap
one channel from video to video , reducing the proxy buffer size while maintaining the aggregate number of
server channels unchanged. The algorithm stops until no channel swapping can be performed. At this point, the
total amount of buffer is minimized given server channels used. In step 3, the algoirthm iteratively allocates
the left-over buffer space to the video which requires least amount of buffer to use one less server channel. The
minimization of long-haul bandwidth usage is achieved at the end.

B. Numerical examples

It has been observed [23] that most of the requests (about ) is for a small set of (10 to 20) popular videos.
Thus we use a set of 20 videos in the following examples. We expect similar conclusions to hold for different
number of videos.

We first consider a set of equal length videos. Suppose we want to support videos of 100 mins each. Every
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video has a playback rate of 1.15Mbps (VCD NTSC standard). Fig. 7 shows the long-haul path bandwidth
required as a function of the proxy buffer size. Since all videos are of the same length, the buffer is distributed
among videos so that the number of server channels for different videos do not differ by more than one channel.
The curve decreases initially rapidly, and then more gradually with increasing proxy buffer size. The behavior
suggests that most of the bandwidth saving can be achieved in the buffer region of 1 Gbytes - 4 Gbytes, which is
about of the total video repository.

Fig. 8 depicts the number of videos that can be supported as a function of the buffer size, given a number
of long-haul path channels (each channel has bandwidth equal to the playback rate 1.15Mbps). For instance, a
proxy buffer of 2Gbytes is needed to support 20 videos with 80 remote server channels, and a proxy buffer of
10Gbytes is needed to support 40 videos with 80 remote server channels. Furthermore, if there are 160 channels
for 40 videos, only 3.6Gbytes of buffer is needed.

We further investigate the proxy buffer allocation with a set of videos of different sizes. We choose a set of 20
videos with lengths 20min, 30min, ..., 210min. The videos are indexed in the order of their length.

Fig. 9 presents how the proxy buffer is allocated among these videos. We represent the prefix size as a
fraction of its video length. One observation is that a larger fraction of the shorter videos are stored at the proxy.
Furthermore, when we increase the proxy size from , to , , and of the total video repository,
this trend becomes more significant. This phenomenon is understandable since at each iteration, the proxy buffer
allocation algorithm always allocates buffer to the video that reduces the objective function the most. We observe
from Fig. 3 that the number of server channels is determined by the prefix in terms of the fraction of its video
size. Thus the same amount of buffer means more to a short video than a long one.

We also compare the optimal buffer allocation scheme with a naive buffer allocation scheme, where the buffer
is evenly divided among the videos without considering the video size. The optimal buffer allocation always
outperform the naive scheme; and the difference becomes larger as the prefix increases. In the region where
buffer is about to of the video size, the optimal allocation scheme reduces the remote server channels
by about over the naive scheme.
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C. Global optimization vs. decoupling approach

In Section III, we proposed a hierarchical two-step approach for determining the optimal proxy buffer allo-
cation and appropriate prefix and suffix transmission schemes for each video. In the first step, we optimally
allocate the proxy buffer to a set of videos ignoring the local delivery cost of prefix, i.e., we choose so as
to minimize . Ideally we may want to perform a global optimization in order to lower the total cost of
both the average long-haul path bandwidth and average local bandwidth, that is:

where is a weight placed on the local bandwidth and is the average bandwidth for both prefix
and suffix transmission over the local network path, given prefix size and request rate for video . Since
the proxy is typically much closer to the clients than the remote server, is expected to be much smaller than
one. Solving this global optimization problem results in the minimum global cost, but requires client request
rate information for each video at every proxy. Moreover, it is computationally intractable. Let us see how our
approach compares with the globally optimized solution in a practical setting.

We consider a single video first. Fig. 11 depicts the average bandwidth requirement vs. prefix size for a 100
min. video for different values of . We use the skyscraper scheme to deliver the suffix, and selective catching
for prefix transmission. We choose a request rate of 60/min. We only plot the points at which the number of
server channels decreases (the cost for the prefix size in between two adjacent jump points will increase. The
reason is that the number of long-haul path channels remains the same, while the prefix delivery cost increases.).
The optimal buffer allocation must occurs at these discrete points.

One observation is that the cost function is monotonically decreasing so long as , i.e., the larger the
fraction of the video cached at the proxy, the less bandwidth is needed to deliver the video. This supports our
intuition that we should make full use of the proxy buffer in most practical settings.

Another observation is that the total cost increases quickly once becomes larger than 0.1, which suggests
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Fig. 11. Average bandwidth requirement vs. prefix size for a video of 100 mins

that, if possible, we should place the proxy as close to the end clients as possible.
If , only long-haul path bandwidth is considered, corresponding to the objective function used in our

approach. The costs with are close to the cost for . Hence if is in the the range ,
the cost of the buffer allocation obtained by our greedy algorithm will be close to the global optimal solution,
while being simple, flexible, and robust to the uncertainties about the request rate.

We also computed the costs for request rates varying from 1/min to 500/min. For the sake of the brevity, these
are not presented here. We also observe that the smaller the request rate, the larger range of have the cost
function close to that of . But even for the request rate of 500/min, the cost function with equal to 0 and
0.01 are close.

V. DISCUSSIONS

In this section, we first investigate the impact that the choice of periodic broadcast scheme has on the bandwidth
savings on the server-proxy path. We then compare the prefix caching assisted periodic broadcast to the scheme
proposed in [14]. Last, we present an integrated prefix and suffix transmission scheme such that client only needs
to listen to at most two channels simultaneously.

A. The choice of periodic broadcast scheme

As illustrated in Section II, the periodic broadcasting schemes differ in their segmentation series. The segment
progression of more aggressive schemes grow faster. However more aggressive scheme usually require the client
to be able to simultaneously listen to more channels and sometimes require larger client buffers. In the following
we investigate the impact that the choice of periodic broadcasting scheme has on the server-proxy path bandwidth
saving in our framework.

Fig. 12 depicts the number of server channels vs. the prefix size for several periodic broadcasting schemes,
such as skyscraper, GDB3, GDB(4), GDB(5), GDB(6), and dynamic skyscraper. Note that if the prefix size is
around of the video size, then all schemes need the same number of server channels, more specifically, three
server channels. The reason for this is that the first three segment sizes are very similar across all the the periodic
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Fig. 12. Comparing periodic broadcast schemes

broadcast schemes, and when the prefix size is around , under our approach of having the first segment of
the suffix equal to the prefix, the suffix has three segments. The graphs show that a proxy buffer size of around

of the video repository, the difference between the different schemes is small. Only for much small
buffer sizes, more aggressive broadcast schemes tend to perform better. We thus recommend choosing the most
aggressive scheme that accommodates the client’s buffer and bandwidth constraints.

B. Comparison with optimized regional caching

Optimized regional caching (ORC) [14] uses dynamic skyscraper broadcast to initially segment the video,
and categorizes some segments as leading segments. The proxy is allowed to cache the entire video, the entire
leading segments, or nothing. An analytical model is then used to determine the cache allocation that minimizes
the end-end delivery cost, assuming that the client request rate information at all the proxies is known beforehand.

We next compare our approach with ORC from two main perspectives: (1) proxy buffer and network bandwidth
usage, and (2) the objective function used in the optimization model.

Fig. 13 depicts the number of server channels required given a fixed amount of proxy buffer allocated to a 100
min long video. For fairness, we also use dynamic skyscraper broadcast for suffix delivery in our approach. For
optimized caching, we choose the first segment size to be 0.1min, 1 min, and 1.5 mins respectively. Recall that
in [14], the entire leading segments have to be cached in proxy. Here, for the sake of comparison, as many of
the segments as possible are placed in the proxy buffer. The number of server channels is equal to the number of
channels used to deliver the part that cannot be cached in the proxy.

Prefix-caching assisted periodic broadcast outperforms ORC for almost all proxy buffer sizes. For instance,
when the proxy buffer is around of the video size, our approach requires only of the long-haul
path bandwidth required for ORC. From another perspective, in order to require no more than server channels,
the proxy would require to store just of the video using our approach, and of the video at the proxy under
ORC. We do find that when the first segment for ORC is large (more than min. long), the bandwidth usage is
closer to our scheme. However, under ORC, the client delay is determined by the length of the first segment, and
hence such a large first segment would result in long client delays.

We next compare the objective function used in these two works. In prefix caching assisted periodic broadcast,
our goal is to minimize the number of server channels (or long-haul path bandwidth), where no client request
rate information is needed. The heterogeneity of the local requests is handled by the proxy and the local prefix
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Fig. 13. Comparison of prefix caching assisted periodic broadcast vs. dynamic skyscraper scheme

delivery scheme. In contrast, the ORC approach assumes prior knowledge of client request rates at the different
proxies, and incorporates this information in the objective function whose goal is to minimize the aggregated
end-end bandwidth cost. In contrast, the optimization problem formulated in this paper is more from a CDN’s
perspective - trying to deliver the video as efficient as possible through long-haul path, and allowing the proxy to
account for the heterogeneity locally. In addition, our solution is close to the global optimal for many practical
settings, and more robust to the uncertainty of the local information, as discussed before.

C. Bandwidth constrained client

It is often the case that the client has limited reception bandwidth. For the end user connected to the network
via DSL or cable modem, the access speed is limited - e.g., DSL offers around Kbps. Despite the advances
in coding techniques, the playback rate of a reasonably good quality video is at least Kbps. Therefore the
home user may only be able to receive from at most two channels simultaneously. In the following we present an
integrated patching and periodic broadcast scheme that requires a client to listen to no more than two channels
simultaneously.

t 1 t 1
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Fig. 14. Left: skyscraper for suffix and patching for prefix. Right: modified skyscraper and dynamic threshold patching.
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One observation of prefix-caching assisted periodic broadcasting is that the receptions of prefix and suffix
overlap. For example, for client 1 in Fig. 14 the receptions overlap during . During this period,
a client with a two-channel constraint must be able to use only one channel to receive the prefix and only one
channel to receive the suffix. We next modify the suffix broadcast scheme, and propose a new patching scheme
for the prefix, called dynamic threshold patching to meet the constraints on the number of client channels.

First we choose a broadcast scheme which requires a client to listen to at most two channels simultaneously,
e.g., Skyscraper broadcasting. We then add a new first segment, equal in size to the original first segment. For
skyscraper, the progression changes from to . The benefit of having first two
segments be of the same size is that a client can always receive these segments sequentially.

In dynamic threshold patching, the client is patched to an earlier stream only if (1) the arrival is within the
normal threshold, and (2) either the patching stream itself or the earlier stream patched to does not overlap the
first segment of the suffix. For example, client 2 cannot patch to client 1’s stream since the patching stream will
overlap the first segment (see right part of Fig.14). A new stream will be initiated for client 2.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we explore the use of proxy-based prefix caching in conjunction with periodic broadcast for
reducing transmission bandwidth costs, while ensuring instantaneous playback startup for clients. We proposed
a prefix caching assisted periodic broadcast scheme and developed a methodology for (i) optimally allocating the
proxy buffer space among a set of popular videos and (ii) choosing appropriate prefix and suffix transmission
schemes based on the principle of decoupling the suffix and prefix transmission from each other. We present a
greedy algorithm to determine the allocation of the proxy buffer among the different videos such that the aggre-
gate bandwidth usage on the server-proxy network path is minimized. The framework is scalable, flexible, and
supports popular video streaming service with instantaneous playback. The scalability derives from combining
periodic broadcast with the prefix caching, as well as from the minimization of the long-haul path bandwidth.
The flexibility is the result of our decoupling design principle, and the approach of allowing each proxy to deter-
mine the appropriate local prefix transmission scheme for each video. To handle bandwidth constrained clients,
we present an integrated prefix and suffix transmission scheme such that the client only needs to listen to at most
two channels simultaneously.

We are further exploring this research space along a number of directions. In this paper, we only consider
one group of periodic broadcast scheme using increasing size of segments and logical channels of the same
bandwidth. We are extending the current framework to accommodate other types of periodic broadcast schemes.
Another interesting path involves extending our work to support VBR video delivery. Last, we are developing a
server-proxy-client testbed [24] which we shall use to explore our framework in a realistic network setting.
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APPENDIX

Note: The Appendix is included in the current submission for the reviewers’ perusal and will be excluded from the final
version of the paper.

Observe that is a step function (see Fig. 3). If is an optimal solution of the above problem, then , where
(left jump point closest to in ), is also an optimal solution. Therefore the proxy

buffer allocation problem can be reduced to the following problem.

(3)

subject to

where only takes discrete values. In the following we will describe a greedy algorithm to solve the above problem.
Define the buffer minimization problem given the total number of server channels is , , as follows:

(4)

subject to

Denote by the optimal solution of problem . Thus the total buffer size using server channels is
minimized at . We have the following theorem.

Theorem 1: If is the minimum number of server channels that satisfies , i.e.

then is the optimal solution of proxy buffer allocation problem (3), and server channels are required to
provide streaming media service in prefix caching assisted periodic broadcast framework.

The proof of this Theorem relies on the following Lemma.
Lemma 1: is the optimal solution of the following optimization problem:

(5)

subject to

Proof: We prove the lemma by contradiction. is obviously feasible in (5). Suppose is not the optimal
solution of (5) and there exists the optimal solution , where , and , .
Construct as follows:

if
otherwise

(6)

Then . Since is the optimal solution of ,

(7)

However is a non-increasing function of , so . Therefore . which
contradicts the formula (7).
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Proof of Theorem 1: For all s.t. , from Lemma 1, is a feasible solution of problem (3).
Furthermore, since is minimum among all feasible solutions, is thus the optimal solution of proxy buffer
allocation problem (3). In addition, because , server channels are required to provide streaming
video service.

Now we turn to study how to find . In the following Lemma we show that monotonically decreases as
increases. Therefore if we can increase until , is the optimal solution of
problem (3).

Lemma 2: monotonically decreases as increases.
Proof: For arbitrary , let be the optimal solution of problem . Construct as follows:

if
otherwise (8)

Then .
Because is a non-increasing function, . So . Furthermore, is the

optimal solution of problem , so . Therefore , which establish
as a decreasing function of .

The key to solve proxy buffer allocation problem (3) is to solve problem . The problem can be rewritten as
follows:

(9)

subject to

This is a typical discrete resource allocation problem with a separable convex objective function. In [25], this type of
problem is studied (Theorem 4.1.1) and “greedy” algorithm (or “marginal allocation”) is given (Theorem 4.2.1). Starting
with an initial solution (which is not feasible), one unit of resource is assigned at each iteration to the most
favorable activity (in the sense of minimizing the objective function) until is attained. The greedy algorithm
illustrated in Fig. 5 starts from a feasible point and leads to the optimal solution.


