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Abstract

We see an opportunity to improve overall performance by intelligently managing both the cache and prefetch
using static structural information from program compilation during run-time. Such information enables better use of
cache resources and promotes future-based (e.g., dependence graph lookahead) decisions on how to allocate resources
rather than history-based (e.g., LRU replacement policy, branch history table). In this paper we outline the benefits of
such a system and we verify the essential condition for enabling this approach: the existence of instruction run-lengths
in applications that are necessary to support a sufficient level of prefetching. As evidence we present data showing
the SPEC95 benchmarks from the persepective of instruction run-lengths.

1 Introduction

Much literature [HS89, GHPS93, RBS94, CB92, Jou90] is devoted to improving cache perfor-
mance. Most designs rely strictly on run-time information, either from the instructions or from
historical behavior such as branch target addresses. Some architectures allow the compiler to sup-
ply information or hints in the instructions about the control flow, such as the direction a branch
is most likely to take [Int94]. The dynamic stream running on the hardware provides localized
data-dependent information that the compiler can’t know, but the compiler has global structure in-
formation that the hardware is not aware of. With ever-increasing pressure on the cache design to
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effectively decouple the processor core from off-chip memory, it is natural to consider the potential
impact on cache performance if we combine knowledge of the static program structure with the
dynamics of a running program.

While the above applies to both instruction and data streams, in this paper we discuss only
the instruction stream and outline a cache memory system that we call the Control Dependence
Graph (CDG) Cache. Some of its interesting qualities include space utilization and hit rates
comparable to fully-associative organizations from a direct-mapped RAM, and a cache controller
integrated with branch prediction free of aliasing on branch information. This paper presents data
from a study to explore whether codes exhibit the behavior to support such a design. The key
factor in its feasibility is the size of the run lengths of applications to support the necessary level of
prefetching. The run length is the number of instructions between unanticipated changes in control
flow. We present a view of the Spec benchmarks in terms of their distribution of run lengths and
discuss the implications.

2 Related Work

In microprocessor systems with limited IO bandwidth and the relatively slow but cheap off-chip
memories, reducing delays due to memory accesses is essential for peak performance. The idea is
to fetch information into cache before the processor needs it and keep it there, as best as possible,
if the same code is to be accessed again. A typical microprocessor memory system consists of
multiple pieces: cache management policy, cache RAM, branch prediction and target buffer hard-
ware, and, currently, sophisticated instruction prefetch hardware. Each piece has been explored
extensively. We present representative work here.

2.1 Cache Management Policy

Cache management hardware controls how data is added to and removed from the cache RAM.
Many policies have been explored [HP96]: direct-mapped memory, fully-associative memory, and
memory with LRU and other forms of replacement. The simplicity of the direct-mapped cache
allows its access time to be faster [Hil88] than an associative cache for a given overall cache size,
though performance may actually degrade due to a smaller hit ratio.

2.2 Branch Prediction

Branch prediction hardware attempts to correctly guess the direction a data-dependent branch will
follow prior to its condition being resolved. The simplest systems do no prediction of conditional
branches. The next level of prediction uses target buffers [CHP97] for unconditional jumps and
subroutine calls where the target address is not available from the instruction binary, but rather a
data value in a register. The target buffer is a cache of target addresses typically indexed by the
address of the branch instruction.

Some processors accept hints from the compiler in the form of a taken/not taken bit in the
instruction encoding [Int94]. The processor always fetches along the path determined by the bit
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making this a static policy. A common heuristic is the backward-taken-forward-not (BTFN)
policy that always follows the target path on backward branches and falls through to the next
consecutive instruction on forward branches.

In contrast, dynamic branch prediction policies have the capability to alter the branch pref-
erence during run-time based on previous behavior of the branch. The bimodal predictor is a
single level predictor that uses a two-bit saturating counter to determine the prediction path. Every
time the branch is taken the counter is incremented up to its maximum value, and when not taken
decremented. The global branch predictor is a two-level predictor that uses the outcomes of the
last N-branches as an index into a table of two-bit saturating counters, based on the expectation
that the behavior of a branch correlates with the path of control up to that point. Jouppi and Ran-
ganathan [JR97] compare the performance of both the bimodal and global predictors as well as
proposed hybrids. An important result by Chen et al. [CCM96] showed that the global predictor is
an approximation to an optimal predictor in data compression. Their empirical studies showed that
the approximation is quite good, leaving little room for improvement in the absence of aliasing.

Dynamic predictors typically store state and target addresses in shared tables or caches. To
save space no tags are used to disambiguate between shared locations. Thus, totally unrelated
branches can modify the same state bits or use unrelated cached targets. This conflict between
branches is called aliasing and almost always impacts performance negatively [SLM96, MSU97].
Many of the papers on branch prediction involve schemes to reducing aliasing [ECP96, MSU97,
JR97].

2.3 Instruction Prefetch

Guarded Sequential Prefetching [XT96] is a proposed software technique where the compiler gives
hints when to prefetch the next sequential block. The compiler sets a guard bit in the last instruction
of a prefetch sequence. The processor prefetches along a path until it encounters an instruction with
its guard bit set.

The simplest hardware prefetch mechanism is next-line prefetching proposed by
Smith [Smi82]. The Markov Prefetcher [JG97] uses a Markov predictor that dynamically learns
from past program behavior the most probable cache lines to prefetch. Wrong-Path instruction
prefetching [PM96] prefetches the target line into cache when a branch is not taken, in the hopes
that on a subsequent pass the branch will require the target. These techniques use only run-time
information to guide prefetching.

Lee et al. [LBCG95] compare system performance across prefetch strategies with varying
degrees of aggressiveness. Their conclusions show that neither very aggressive nor pessimistic
prefetch policies are superior. The best prefetch policy depends on system parameters such as
latency.

3 CDG Cache

We are exploring ways to improve processor performance by exploiting compile-time information
about program structure to more efficiently manage the limited bandwidth and high latency associ-
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ated with accessing memory. Our approach is to explore what can be accomplished if the processor
has access to the structural information generated by a compiler in conjunction with the dynamic
information obtained at run-time. We use two common data structures to represent this informa-
tion: a control flow graph (CFG) [Muc97] for sequencing information and a control dependence
graph (CDG) [Fer87] to explicitly represent dependencies between basic blocks. These graphs are
generated by most compilers for program optimizations, e.g., code motion, loop unrolling, dead
code removal, and branch deletion.

A control flow graph explicitly represents possible transitions to and from each code basic
block, which is a straight-line single-entry, single-exit sequence of code. The control dependence
graph is derived from the CFG to represent the essential control flow relationships in a program.
Using the CFG and CDG together gives a concise picture of program structure.

Additional information can be associated with each basic block such as virtual address, size,
cache residency index and status, and branch history data. The following example illustrates the
potential of using this data.

Figure 1 shows the CFG of a simple program and Figure 2 is its corresponding CDG. In this
program the start node always jumps to A. Node A optionally branches on TRUE to G near the end
or to node AA on FALSE. Nodes B, C, D, E, and F make up a loop with B as its head. The CDG
readily shows us what blocks are to be executed given the current program counter. For example,
if the FALSE edge out of A is taken then the CDG shows that AA, B, C, and F are all guaranteed
to be executed and one of the two nodes D or E depending on the branch outcome at C. The loop
back on node F shows that on a TRUE condition we loop back to the head and must execute the
same group of blocks. (This conditional check at the end of the loop represents the semantics of a
repeat loop.)

An intelligent cache manager can use this information to its advantage. Once the condition at
AA is known a prefetch unit can retrieve blocks B, C, and F directly. The prefetch of F is intriguing
in that the processor is able to look beyond the sequential set of branches to key control flow points
in the program and has the option of ignoring the resolution of C’s branch to fetch F. The processor
can also use the block size information and cache residency status to control how blocks D and
E are prefetched. The management unit can assess the cost given system parameters and may
decide to fetch both blocks if the cost warrants (e.g., they are small relative to access overhead),
fetch only the block missing in cache, fetch neither, or fetch the most likely to be accessed or
least costly. The additional information enables intelligent, dynamic prefetch and replacement
management policies.

3.1 Benefits of the CDG Cache

The CDG provides static structural information about the program. Once it is in place it also
provides the opportunity to attach additional dynamically acquired information. For example,
adding branch history data to the CDG avoids the branch aliasing that Sechrest et al. [SLM96]
show can undercut the potential gains of advanced global correlation prediction schemes for large
programs. Of course, this comes at a cost which we address below.

Given that the processor has global information about the program, it now has more options
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Figure 1: Control Flow Graph (CFG) Figure 2: Control Dependence Graph (CDG)

for prefetching effectively. Size information can help in deciding a replacement strategy. For ex-
ample, loops that do not fit in cache would thrash in a direct-mapped or LRU associative cache
as the excessive instructions in an iteration displace earlier references from cache. In very large
caches this may not be a problem, but some real-time systems divide the cache into small parti-
tions [Mue95, Kir89] and some of the SPEC95 applications have static paths that are thousands of
instructions long. The Fortran application fpppp has a single basic block that is 6189 instructions
long, almost 25KB. Having access to size information the processor may decide not to encache
that entire block in the primary cache so the overall hit rate and performance improves. Such a
policy allows peformance to degrade gracefully in larger loops, avoiding a sharp performance drop
due to thrashing. These examples are future-based replacement strategies that differ sharply from
history-based strategies like LRU.

With the combination of the CDG and dynamic information we can differentiate between
fetching for the cache and fetching for the pipeline. When we fetch for the cache, once a loop is
completely encached the processor can start fetching beyond the loop in anticipation of its finish.
The processor fetches each block in the loop once. In contrast, fetching for the pipeline continu-
ously requests each instruction from the cache until the loop terminates and only then does it look
beyond the loop. Clearly, decoupling the two types of fetch alleviates latency pressure on fetch-
ing from slow off-chip memory and provides time for the prefetch unit to compute its successive
accesses.

The CDG Cache looks ahead in the program flow. This allows the fetch unit to run signif-
icantly ahead of the pipeline and provides slack that we can use to radically restructure the basic
cache design. With reliable run-ahead fetching the processor would be able to afford a multi-cycle,
pipelined cache structure that exhibits hit rate behavior similar to a fully-associative cache while
achieving access speeds of a simple, direct-mapped RAM. Figure 3 shows how pointers can be
used to implement this. Note that once the first hit of a basic block is detected, subsequent fetches
in the block need not check tags, and can be read from memory as a stream.
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When the processor brings in a basic block it gets a RAM location from the cache manager
hardware to store the instruction data. The basic block information is updated with the index into
the RAM. When fetching an instruction from a block the index is read from the CDG structure and
pipelined to the cache RAM read hardware. There is one lookup per block of instructions. This, in
effect, implements a mapping table between the basic block in the CDG and the RAM, providing
flexibility in block placement. Though the access is easily pipelined, the two-cycle latency is a
penalty. Reliable lookahead capability amortizes this cost over the number of references in the
stream. Blocks in the cache have pointers back to the CDG structure to reset residency bits upon
replacement.

Figure 3: CDG Cache

3.2 Implementation Considerations

We are exploring the cost/benefit tradeoffs of this approach by first estimating the potential for
processor performance improvement, through simulation. Once we have determined that the po-
tential performance benfits are sufficient, we will consider in detail the implementation cost issues
involved in practically building such a design. One issue is the space required to store the program
structure information. The CDG cache structure will replace the traditional cache, cache tags,
associative matching hardware, branch target buffer, and branch history tables in today’s micro-
processors. That considerable amount of silicon will be replaced by a direct-mapped RAM, storage
and logic for the CDG, and intelligent management logic for the cache. To save space on the CDG
implementation we are looking to a hierarchical CDG [Fer87]. Thus, the on-chip CDG storage
becomes a cache for the full CDG structure with meta-blocks representing non-local pieces of the
application (e.g., whole procedures represented by one node) possibly having enough information
to hide the overhead of bringing in its detailed representation. Caching the CDG structure also
implies overhead in startup time.
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4 Run-length Requirements

Lookahead fetching is only beneficial if the prediction/prefetch logic can consistently and accu-
rately predict long streams of instructions. What constitutes long is relative to a particular system’s
memory access structure. A system with very long access times and small cache will require much
longer run-lengths than a system with a memory access time of a few cycles. To decide if we are
justified in pursuing the CDG cache we explored the run-lengths of the SPEC95 [SPE96] suite.
The results present a novel view of the benchmarks and we believe they justify the approach.

4.1 Experimental Method

On a DEC Alpha [ERP95], we instrument the SPEC95 codes with the shorter test data set and an
MPEG encoder application with ATOM [SE94] and measure the run-lengths on a simulator that
implements the various prediction strategies. Each branch has its own prediction state, if applica-
ble, so aliasing of target addresses is not an issue as it would be in a design with a fixed size branch
target buffer. This removes the negative effects on run-length due to resource limitations [SLM96].

To reduce the size of the recorded output we average run-lengths over intervals of 10,000
blocks (roughly 40K-80K instructions per interval depending on the application). The exceptions
are m88ksim and vortex where we averaged over 1,000 block intervals due to their short test cases.
An interval of 10,000 blocks averages the run-lengths across regions of code that would likely take
less than 1 ms on a typical 200 MHz machine, a fairly small time slice for a process to run. While
the averaging can obscure mixes of short and long run-lengths, this would imply that long runs are
much longer than the average, providing more time to handle prefetching the interspersed short
runs.

Branches are broken down into the following categories:

1. Unconditional: Always taken; target known from offset

2. Return: Always taken; target predicted from call stack

3. Branch Subroutine: Always taken; target known from offset

4. Jump Subroutine: Always taken; target determined from offset.

5. Jump: Similar to Jump Subroutine.

6. Jump Subroutine Coroutine: Always taken; target linked through call stack. (Never used.)

7. Conditional: Outcome data-dependent; target known from offset.

Jumps and jump subroutine calls in the Alpha provide a hint in an offset field of the lower
16 address bits of the target. This allows a prefetch to start a cache access. The target address is
actually supplied via a register. We presume the compiler knew the jump address if the lower 16
bits match the address of the next instruction executed. If there is a match we consider the jump
as being correctly predicted. Most such branches are known; however, in jump tables and function
pointers in C the target will not be known.
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5 Results

Figures 5 through 22 plot the different applications. There are four data sets per plot. One is most
applicable to real-time where the need for predictable timing dictates that the fetch unit stalls on all
unconditional branches, jumps, and jump subroutines (whose targets are unavailable on the Alpha),
called No Predict. Another follows all branches where the target is known at compile time, i.e.,
most jumps and jump subroutines, called Known Target. A third adds the capability of statically
predicting backward branches taken and falling through on forward branches, called BTFN. The
final scheme is the bimodal technique using two-bit saturating counters. Note that some plots are
have a logarithmic y-axis to show the complete range of values.

The first observation is that more sophisticated schemes improve on simpler ones as ex-
pected. What is interesting is the generally large increase in run-length when going to the bimodal
technique. Figure 5 demonstrates the clear superiority of the bimodal predictor on the MPEG ap-
plication with run-lengths consistently over 100 instructions. Dips in the plots of predictors show
regions of code with (relatively) many branches that vary between taken and not taken. Dips in
static predictor plots that correspond with peaks in the bimodal plot are regions of many forward
branches that are consistently taken. Regions where the static and bimodal schemes match have
code that doesn’t exploit the potential of the better prediction scheme, e.g., few branches or highly
unpredictable branches.

Another observation is that certain codes have distinct phases. MPEG shows three dis-
tinct regions. The first region processes user input parameters- command line flags and setup
file information- and has many IF clauses. The second region computes a fast discrete cosine
transform (DCT) via a sizable loop of branch-less code. In this region the run-length is over 1000
instructions using the two-bit branch predictor. The third region does the post-DCT computation of
quantization and RLE Huffman encoding. While the loops in this region are large there are many
IF clauses that conditionally run code depending on out of range values and arithmetic sign. Static
predictors do poorly under these conditions and the run-lengths average around 10 instructions
in the first and last regions. The two-bit dynamic predictor consistently has run-lengths over 100
instructions.

Figure 4 lists the overall run-length averages for the applications. Across the benchmarks
the bimodal predictor experiences run-lengths over 49 instructions long and often over 100. Of the
benchmarks tested the MPEG encoding phase, compress, perl, ijpeg, applu, apsi, fpppp, mgrid,
swim, turb3d, and wave5 had average run-lengths near 100 or above. While go, li, m88ksim,
vortex, hydro2d, su2cor, and tomcatv had run-lengths ranging from 50 instructions to 100. We find
these results encouraging and feel they justify continued research on the CDG Cache design.

6 Conclusion

In this paper we propose research with a radically different approach to instrution cache design, the
CDG Cache, to explore the full potential of combining static information generated at compile time
with run-time information. Previous work has limited integration of these two types of information,
but much greater integration poses interesting possibilities. We believe a CDG Cache offers unique
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Application No Predict Known Targets BTFN Bimodal
su2cor 5.9 6.2 8.0 49.3
go 7.1 8.0 16.7 51.8
li 5.4 7.6 11.7 58.9
tomcatv 6.0 6.5 8.3 59.5
hydro2d 6.2 6.9 9.3 61.9
vortex 6.4 8.3 12.5 78.6
m88ksim 7.1 8.4 11.4 78.7
perl 6.1 7.3 11.3 95.6
applu 29.7 29.9 42.8 117.7
ijpeg 14.3 16.1 28.0 129.5
mpeg 10.8 13.1 20.4 142.1
apsi 21.8 24.7 35.4 304.9
turb3d 32.4 34.1 41.7 377.6
compress95 14.7 17.7 21.4 393.4
fpppp 73.9 83.7 128.3 652.0
wave5 12.6 18.1 27.0 1756.3
mgrid 68.8 69.2 72.0 2104.7
swim 35.9 54.2 54.8 4779.4

Figure 4: Overall Average Instruction Run-Lengths

advantages such as hit ratio levels of a fully-associative cache from a direct-mapped RAM, using
global information to guide prefetching, and the potential for future-based replacement strategies
rather than the current history-based approach. The overhead incurred in such a structure requires
that programs have relatively long instruction run-lengths to amortize the costs. We have observed
that the SPEC95 benchmarks and MPEG satisfy that condition.

7 Future Work

We are completing a simulator to further test the ideas presented here. Much work is to be done
in understanding the variety of dynamic conditions that occur and what policies to apply. The
additional information in the CDG allows us to subclass situations and possibly manage each one
in a unique way. Examples include small vs. large loops, small vs. large conditional blocks,
and nested conditionals. Also, we are exploring implementation issues to make a CDG Cache
design, or some variation, a practical alternative to traditional designs. Of course, this work will be
expanded to data accesses by extending the CDG cache to a Program Dependence Graph (PDG)
Cache that includes data dependences. Finally, our approach evolved from a study on adapting
RISC architectures for use in real-time by minimizing variance in execution time. We feel such a
design can be used to improve predictability in processors while still providing good performance,
and will continue to explore this aspect of the research.
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Figure 5: MPEG
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Figure 6: COMPRESS95

0.0 10000000.0 20000000.0 30000000.0
1

10

100

1000

Bimodal
No predict
Known Target
BTFN

Figure 7: GO
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Figure 8: IJPEG
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Figure 10: M88KSIM
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Figure 11: PERL
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Figure 16: HYDRO2D
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Figure 17: MGRID
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Figure 19: SWIM
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Figure 20: TOMCATV
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Figure 21: TURB3D
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Figure 22: WAVE5
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