Tradeoffs in Probabilistic Packet Marking for IP Traceback.

Micah Adler
Department of Computer Science
University of Massachusetts, Amherst

Abstract

Recently, a number of probabilistic packet marking schemes have been proposed for the
problem of tracing a sequence of packets back to an anonymous source. This paper introduces a
new technique for marking that applies when the packets are all sent along the same path. This
new technique allows this path to be traced even when there is only a single bit in the header
allocated to the marking scheme. If the path is encoded using n bits, then with this scheme,
for any constant e > 0, the number of packets required to reconstruct the path is O((2 + €)?").
We also demonstrate that (2") packets are necessary if only one bit is used. To contrast our
new technique with existing protocols, we demonstrate that all existing protocols belong to a
class of algorithms for which at least logn bits are required. We also study the tradeoff between
b, the number of header bits used, and the number of packets required. We provide a protocol
such that O(bn22°(2 + €)*"/2") packets are sufficient, for any constant ¢ > 0. This protocol
is simple enough to be quite effective in practice. We also provide an information theoretic

lower bound demonstrating that Q(2°2"/ 2b) packets are necessary. These are the first results
concerning optimal tradeoffs in probabilistic packet marking.

1 Introduction

In recent years, the Internet has seen an alarming increase in what are known as denial-of-service
attacks. Such an attack consists of a malicious party sending huge volumes of traffic to a remote
host or a network, thereby denying legitimate access to these resources. Unfortunately, such attacks
are easy to perform, and in fact there are well known techniques for mounting attacks that are
coordinated between a large number of distributed hosts [3]. To make matters worse, in the current
and foreseeable routing architectures of the Internet, a host transmitting packets can use a forged
(or spoofed) source address for those packets. This means that there is little or no accountability
for the source of these attacks. Thus, one of the most important tools that is needed to help fight
denial-of-service attacks is the ability to trace packets back to their source. This is known as the
IP Traceback problem.

A number of different approaches to the IP Traceback problem have been suggested. For example,
Ingress Filtering [5] requires network providers to prevent spoofing by blocking a packet at or near
its source if it is sent with an incorrect source address. Network providers have resisted Ingress
Filtering for a variety of reasons, including the resulting degradation in performance, the additional
administrative overhead involved, and the reliance on spoofing by some of the techniques proposed
for mobile networking [10]. Furthermore, Ingress Filtering is only effective as a means of enforcing
accountability in the Internet if performed universally, or nearly universally. Other approaches to
the IP Traceback problem include requiring routers to keep a log of forwarded packets [13], and

generating additional traceback packets that routers send to the destination of a regular packet [1].
Shortcomings of these and other techniques are discussed in [2] and [12].

Recently, [12] proposed the following clever approach to the IP Traceback problem. Some fixed
number of bits in the packet header are allocated to IP Traceback. Those bits are used to store
a router ID, and a hop count. Every router that forwards a packet, independently with some
probability p, writes its unique ID to those bits, and sets the hop count to 0. With probability
1 — p, the router ID is left unchanged, and the hop count is incremented. Now, say an attacker
is performing a denial-of-service attack on a wictim by sending a stream of packet along a path of
length £. If p ~ 1/¢, then after the victim has received O(¢log{) packets, with high probability
this scheme provides the victim with the entire path back to the attacker.

Note that since some packets may not be marked by any intervening router, the attacker might
be able to insert fake information, possibly making the path look like it extends beyond its actual
source. Various ways of dealing with this have been suggested, including using cryptographic
techniques [14], or knowledge of the routing topology [12]. For simplicity, we assume here that it
is sufficient to determine a path that contains the correct path to the attacker as a suffix.

It turns out that the number of header bits required by this scheme is too large to make it practical
(header bits are a quite valuable resource). Thus, [12] also suggests the following: instead of sending
the ID of each router in one piece, partition the ID into ¢ pieces, and send a randomly chosen piece
along with a logt bit description of which piece is being sent. This reduces the number of header
bits required, but increases the number of packets required to O(¢klog(¢k)). They optimize this
scheme to one that requires 16 header bits, and can reconstruct the entire path with high probability
after a few thousand packets have been received.

The scheme proposed in [12] has produced a flurry of activity in the networking community. This
kind of technique is now referred to as probabilistic packet marking, or PPM. In a relatively short
time, a number of variations on PPM have been introduced to improve and further analyze the [12]
technique [4, 8, 14] (see also [7] and [9]). One important concern is reducing the number of header
bits required for PPM. Prior to this paper, the minimum known number of required bits was 13,
achieved by a scheme in [4]. Also, some of the approaches are computationally expensive. Despite
the number of papers in this area, a rigorous theoretical analysis of PPM has been lacking: There
is no real understanding of the interplay and inherent tradeoffs between the number of header bits
used and the number of packets required to reconstruct (with high probability) the path used by
the attacker.

Let b be the number of header bits allocated to IP Traceback, and let n be the number of bits
required to represent a path of attack. The previous work in this area does not study the relationship
between these parameters, but all previous PPM protocols belong to a class of protocols for which
b must be at least logn for the victim to be able to determine the n-bit path description with
probability greater than 1/2. In particular, all previous protocols encode a path p using a subset
S(p) of the set of 2° possible b-bit headers. The subset S(p) is unique for each possible path of
attack. All packets sent along p arrive at the victim with the b bits set to one of the elements of
S(p), and if enough packets are sent along p, then, with high probability, the victim receives at
least one of each element of S(p). This tells the victim the set S(p), and thus the path p as well.
For example, the scheme described above from [12] has this property.

To see the lower bound on this class of protocols, note that there are 22" different subsets S that
are possible. Since there are 2™ possible n-bit strings, if the victim must determine the correct path

with probability at least 1/2, then 22" must be at least 2" /2. Assuming that n > 2, the fact that b
must be an integer implies that b > logn.

In this paper, we introduce a new PPM technique that allows for a much more efficient encoding
of the path description. This new kind of encoding takes advantage of the distribution of different
packet headers received at the victim. In other words, to determine the path of attack, the victim
examines how many of each possible header it has received, and not just what subset of the
possible headers is received. This new encoding technique can be implemented with the same
restrictions as the previous protocols: the routers along the path of attack operate in a completely
distributed fashion, and the protocol does not require any state information at a router. Due to the
memoryless nature of Internet routing, the lack of state information is an important requirement
for PPM protocols: it is impractical for routers to store any information on individual flows.
The computation required by this protocol at the routers is extremely fast and simple, and the
computation required at the victim is also efficient.

As in [8] and [12], we here consider the important special case of the problem where the attacker
sends all of its packets along the same path. With this assumption, our new technique allows any
path description to be revealed to the victim even when b = 1. In other words, this new scheme
requires using only a single header bit, which is obviously the minimum possible. Unfortunately,
this requires ©((2 + €)?*) packets to be received by the victim, for any constant € > 0, and thus
is only appropriate for small values of n. However, we also provide an information theoretic lower
bound demonstrating that €(2™) packets are necessary for any protocol where the victim is able to
determine the correct path with probability greater than 1/2.

In this paper we also study the case where b > 1. In fact, we are able to obtain a good understanding
of the optimal tradeoff between the number of header bits used and the number of packets required
in the case where there is only a single path used by the attacker. We provide a protocol, as
well as an information theoretic lower bound, demonstrating that the optimal number of packets
that must be received for given values of n and b grows exponentially with n, but decreases doubly
exponentially with b. Specifically, O(bn22°(2+¢)*"/ 2b) packets are sufficient, for any constant € > 0,
and Q(2b27/ 2b) packets are necessary. These are the first results concerning optimal tradeoffs in
probabilistic packet marking.

2 The Model

In this paper, we use two slightly different models for the upper bound and for the lower bound.
The lower bound model is strictly more powerful than the upper bound model: lower bounds for
that model imply lower bounds for the upper model, and upper bounds for the upper bound model
imply upper bounds for the lower bound model. The actual scenario of interest lies somewhere
between the two models; we address this in more detail in Section 5.

For the upper bound model, there is a network N consisting of a rooted tree. The root of the tree
is the victim. At the start of the attack, the attacker chooses a node of the tree, and then sends
packets to the victim along the path in the network from the chosen node to the victim. We here
assume that the attacker only chooses a single location in the network: there is only one path of
attack. The case where the attacker is able to use multiple paths is an interesting open problem.

For ease of exposition, we introduce the protocols by first making a number of simplifying assump-

tions about the network. We demonstrate in Section 5 that our results can easily be extended to
hold in scenarios where these assumptions are relaxed. In particular, we first assume that the tree
is a complete binary tree. We also assume that when a packet is sent to a node, that node is able to
distinguish which child of the node the packet came from. Finally, we also assume that the victim
has complete knowledge of the network topology. Again, we demonstrate in Section 5 that each of
these assumptions can be removed.

The header of each packet contains b bits that are allocated to traceback information. No other
bits of the packet can be utilized, and thus we shall simply assume that each packet consists of
only these b bits. For each packet that is forwarded from the attacker to the victim, each of the
intermediate nodes is allowed to alter these b bits. However, the intermediate nodes are memoryless,
and thus, for each node, the new set of b bits that a node forwards to its parent in the tree can
only be a function of the incoming b bits, which child of that node the packet arrives from, and
some random bits. For the upper bound, we also assume that the nodes do not know their location
in the network, and thus every node is required to use the same algorithm. The victim, on the
other hand, does have storage. The objective is for the intermediate nodes to forward packets to
the victim in such a manner that after collecting enough of these packets, the victim is able to
determine a simple path in A from itself to another node such that the attacker is one of the nodes
on this path.

For a given placement of the adversary at a distance n + 1 from the root, we shall refer to the
node on the path from the root to the attacker at distance i from the root as N; (where the victim
is No, and the attacker is Nyy1). The victim directly sees which child it receives packets from.
Since we are assuming a binary tree, we can represent the remainder of the path as a binary string
B = B1Bs...B,, where B; = 0 if the path goes to the left child of V;, and B; = 1 otherwise. Note
that when determining the outgoing bits for any packet, node N; has local access to one bit of the
string B: specifically the bit B;.

We refer to the entire sequence of messages sent from the adversary to the victim as the transmission
of a single packet (where the bits contained in that packet may change as it makes its way through
the network). We are concerned with the tradeoff between b and the number of packets that must
be sent in order for the victim to know the string B with probability at least 1 — A.

For the lower bound model, we assume that there are three nodes in the system: the adversary,
an intermediate node, and the victim. The intermediate node has an n-bit string to send to the
victim. The adversary is allowed to send any b-bit packet to the intermediate node. For each
such packet, the intermediate node forwards that packet on to the victim. The bits sent by the
intermediate node are allowed to depend on the bits sent to it by the adversary, as well as the n-bit
string it holds, as well as an unlimited number of random bits, but nothing else. In particular, the
intermediate node has no memory, and cannot remember previous packets it has sent, not can it
remember previous used random bits. Clearly any algorithm for the upper bound model can be
simulated in the lower bound model, and thus the lower bound model is strictly more powerful
than the upper bound model.

3 The upper bound

We start by providing an algorithm for the case where b = 1. The basic idea behind the protocol
is to encode the string B into p, the probability that the bit received by the victim is a 1. For

example, consider the encoding where p = Y1 Bz(%)z With this encoding, we show below that it
is sufficient that the victim obtains enough samples to determine the bias of p (with the required
confidence) within an additive term of (%)””. All of our protocols use this general kind of an
encoding to transmit bits to the victim, and so the following lemma is a useful tool for analyzing
this kind of protocol.

Lemma 1 Consider any set of bits By ... By, and any protocol where the victim is able to determine
real numbers p, o, and ¢y ... cy, that satisfy the following conditions:

1 lp-Y'¢Bj| <o.
2. Foralli, 1l<i<(—1,¢>20+Y5 ., c

3. ¢y > 20.

These values uniquely determine the bits By ... By.

Proof: We demonstrate that for any ¢, 1 < ¢ < /£, if the victim knows Bj...B;_1, then it can
determine the value of B;. To do so, let p' = p — Z;;ll ¢jBj. If p' > ¢; — o, then it must be the
case that B; = 1. On the other hand, if p’ < ¢; — o, it must be the case that B; = 0. Thus, the
values of the B; can be computed in a greedy fashion, starting with B; and working one bit at a
time towards By.]

Let DECODE(p,0,c1,...,cq) be the result of performing this decoding using the real numbers p,

o, and ci,...,c. It turns out that the encoding (described above) where ¢; = (1) is not sufficient

for our purposes. Instead, we use ¢; = g, for r = 1/2 — ¢, for any € such that 0 < e < 1/2. To
describe the protocol that actually achieves such an encoding, we describe what any node IV; does
on the receipt of a bit from its neighbor. Note that there are only four possible inputs for the node
Nj, differentiated by the bit B; and the bit that NN; receives from node N;y;. The following table
describes the probability that N; forwards a 1 to node IV;_; on the four possible inputs:

Incoming bit
B, 0o | 1

0 0 1/2 —€
1 1/2 1—e¢

Otherwise, in all four cases, N; forwards a 0.

The victim now uses the following decoding algorithm: Obtain ¢t = O ((1/er™)?log(1/A)) samples.
Let = be the number of 1s in this set of samples, and let p = =/t — r"/2. Let 0 = /2 + er™. Set

the bits By ... B, according to the process DECODE(p, o, 3, 4, ;, e ’"nz_l).

Theorem 1 With probability 1 — A, this process returns the correct answer.

Proof: Let p{ (p}) be the probability that the bit received by node N; is a 1, given that the adversary
starts with a 0 (1, respectively).

Claim 1 For r = 1/2 — ¢, we have that pd = 37, BiriT_l, and p§ =r"+ 30, Blg

Proof: We see that for i < n, if B; = 0, then p{ ; = rp§, for e € {0,1}. If B; = 1, then
p¢ = (1—e€)p¢+ (1 —p¢) =rp¢ + 3, for e € {0,1}. The claim now follows by induction. []

From this claim, we see by a Chernoff bound that Pr[|p — p3| > r"/2 + er"] < A. When |p — pj| <
r™/2 + er™, condition 1 of Lemma 1 is satisfied. To see that condition 3 is always satisfied, note
that 7/2+er™ < r" ! /4 is equivalent to requiring that (3 +€) < 1/4, which follows from the fact
that » = 1/2 — €. To see that condition 2 is also always satisfied, note that for alli, 1 <i < /¢ —1,
c; — Z;Z-:i 11¢ > ¢p. Thus, by Lemma 1, the victim is able to determine the entire string with
probability 1 — A. [

Note that this algorithm leads to an exponential dependence on n. We show in Section 4 that for
the case where b = 1, such a dependence is necessary. Since this makes the protocol impractical
for all but small values of n, we also consider larger values of b. We next describe how to extend
the one bit scheme to the case where b > 1. One approach would be to run b versions of the one
bit scheme in parallel, using a single bit and disjoint sets of nodes for each scheme. For example
we could partition the n nodes into b sets of size n/b (for now, ignoring rounding), where each set
consists of the nodes IV; for ¢ = k mod b, for 0 < k < b — 1. This approach does in fact lead to a
valid protocol. Since the effective value of n decreases linearly with b, this leads to an exponential
decrease in the number of samples required as b increases.

However, it turns out that this is far from optimal. In fact, it is possible to obtain a doubly expo-
nential decrease in the number of samples required as b increases. To do so, instead of partitioning
the nodes into b sets, we partition them into d = 2°~! sets, numbered 0 to d — 1. Node N; is in
the set ¢ mod d. Each of these sets will perform the one bit protocol (almost) independently. To
see how to develop this idea into a valid protocol, we first consider an idealized scenario, where for
every packet, the adversary sets the b bits by choosing randomly from the uniform distribution over
all 20 possible settings. We then describe how to convert this into a protocol where the adversary
can set the b initial bits arbitrarily.

Denote the b bit positions as dy . ..dp_1. For the idealized setting, in each packet, the nodes in one
cell of the partition perform the one bit protocol using the bit dyg. The remainder of the bits are used
as a counter to specify which cell of the partition participates in the one bit protocol. In particular,
for a particular packet P, let IiP be the integer corresponding to the binary representation of the
bits dj ...dp_1 that are received at node N;. Thus, we say node ¢ sets Ii}il = j to mean that on
packet P, the bits dy ...dp_1 sent from node N; to node N; 1 are set to the binary representation
of j. Each node N; performs the following protocol for each packet P:

e If I” = 0, then perform the one bit protocol using bit dy. Forward dy as the resulting bit of
the one bit protocol, and set Ifil =1.

e Otherwise, forward dy unchanged, and set I” ; = I + 1 mod d.

It is not hard to see that each cell k of the partition performs the one bit protocol on a subset of
the bits. Let t; be the number of samples received that perform the one bit protocol for cell k& of
the partition. Let d = 2°~1. If the total number of samples received is © (d(l/«sr”/d)2 log(d/A)),

then as long as n > d, t;, > © ((1/67‘”/(1)2 log(d/A)) with probability at least 1 — A/2d. This result

follows from a Chernoff bound; we omit the details since it is subsumed by the analysis of the full
version of the protocol below. For this value of ¢z, the effect is identical to performing the one bit
protocol on a set of n/d bits. Thus, the victim is able to reconstruct all of the bits in cell k of the
partition with probability 1 — A/2d. Thus, the victim is able to reconstruct all of the bits with
probability 1 — A.

To make this algorithm work for an adversary that is allowed to set the initial bits arbitrarily, we
need to modify the protocol slightly. Note that otherwise the adversary could, for example, set the
initial bits to the same value for every packet, which would only inform the victim of the bits in
one cell of the partition. The change to the protocol is simple: with a probability p (which can be
any probability such that 0 < p < 1, but ideally p = 1/n), each node N; performs what is called
a reset: it ignores the incoming bits completely, and sets Ii}i 1 = 1. Bit dj is forwarded as B; with
probability % and as 0 otherwise. This has the effect of resetting the counter with some probability,
thereby allowing the bits from every partition to be sent to the victim.

With this more powerful adversary, we also need to develop a more complicated decoding procedure.
The proof that this procedure is able to successfully decode is somewhat involved. We start with
some intuition for this decoding algorithm. Let r;! be the probability that a packet P is reset
by some node between N,, and Ny, inclusive, and I = k. If z(n, k) is the number of integers i,

1 < i < n, such that i mod d = k, we see that r}} = Zj(:nl’k) p(1—p)U—Dd+k=1 We shall later use the

fact that if p < 1/n, then r} > @. Also, let a;? be the probability that a packet that arrives at
Ny is reset last by some node between Ny, and Ny (;_1)q, given that it is reset by some node between

N, and Nj, and that If’ = k. From Bayes rule, we obtain a;? = rin ng;-’k) p(1 — p)U—Ddthk—1
k

Let Pj, be the set of packets P such that I = k. For 0 < k < d — 1, let ¢} be the fraction of
packets in Py such that no node between N; and N, (inclusive) performs a reset on the packet.
Note that ¢} is not a value readily available to the victim; an important portion of the decoding
algorithm is computing for each k a value g that serves as an estimate for ¢;'. Consider a packet
chosen uniformly at random from the set of packets in Py for which the adversary sets dy = t, for
t € {0,1}. The probability that the packet has dy set to 1 when it arrives at Ny is

. z(n,k) . pi—1
pi =t- qgrz(n’)+ Z Bchr(j—l)d(qL1 +(1 - qg)aj)—2 .
=1

Thus, if we knew exactly the values ¢, the decoding process would not be very different from the
single bit protocol. However, without at least a fairly accurate estimate for g}, such a decoding
process would not have enough information. We next describe a decoding algorithm that computes
such an estimate. We here describe this algorithm for the case where the value of n is known.
However, the same process applies for any value of £ < n determined by the victim: the victim
can decode any prefix of the path up to the adversary. We here also describe the easier case of
the decoding process where p < % We also want to emphasize that for this version of the paper,
we have made no attempt to optimize the constants of the algorithm. We strongly suspect that
the constants appearing here can be significantly improved; we shall address this in a later version.
The algorithm works as follows:

2
e Ny waits until it has received F = ((prlLGchdJ) (%f) ln(4d/A)> packets.

e For0<k<d-1,5€{0,1}, let f,g be the total number of packets in P for which the value
of the bit dy received at Ny is j.

1 0_nn,
o Let ¢} = _fk§£k+f’lék F

e Fork=0tod—-1:

For j =1 to z(n, k),
- ji—1
* Let c;‘-’ = (g +(1- qz)af)'d

2
y _ z(n,k)
— Let o, = (g + (1 — ql?)a]:(n,k))r 2
B B f]i B qgrz(n,k)
Let py = FIHf0 2

Set the bits By, for t = k+ (j — 1)d, 1 < j < z(n,k), according to the process
DECODE (py, oy, ck, ... ck(n K))-

)z

Note that in the case that p = (1/n), the number of packets required by this algorithm is
0 (2'n? ln(2b/A)). Also note that the interesting case of the algorithm is when 2 < b < [logn],

pan/2b
since the first algorithm described above handles the case when b = 1, and when b > [logn], then
techniques such as those used in [12] are sufficient.

Theorem 2 If2 < b < [logn], then with probability at least 1 — A, this process returns the correct
values of B;, Vi, 1 <1 < n.

Proof: We here show that each of the d decoding processes produces the correct answer with
probability at least 1 — A/d, from which the theorem follows directly from a union bound. For
each call to the decode process, we demonstrate that the conditions of Lemma 1 are satisfied. For
condition 2, we must show that for 1 < j < z(n,k) — 1, c;? > 20 + ng;i)l cF. Note that since
the expression (g7 + (1 — (ﬂ;)af) is monotonically nonincreasing as j increases, and r < 1/2, we see
that c;? — ng;’f)l ck > p#(mk)=1/2 Since q¢ + (1 — qﬁ)a’;(n’k) < 1, we have that oy, < ##(™k)-1/4,
implying condition 2. Also note that condition 1, i.e., that c’;(n k) > 20y, follows directly from the
definitions of c’;(n k) and o, and the fact that r < 1/2.

Thus, we only have left to prove that condition 1 holds with probability at least 1 — A/d, or that
Pr Hpk — Zj(:nl’k) c;?B(]-,l)dJrk‘ < ak] > 1 — A/d. Recall that pl, is the probability that a packet
chosen uniformly at random the set of packets in P, that start with dg = ¢, for t € {0, 1}, arrives at
Np with dp set to 1; an expression for pl, is given above. If it were the case that (a) ¢f = @, (ie., if
our estimates of g} were exact), and (b) p(fi+f) < ft < pi(fi+f°) (which occurs if the fraction
of packets for which dy = 1 at Ny is exactly the expectation), then a value of o}, = ¢}r* (k) /2 would
be sufficient. Of course, the probability of these random variables being exactly their expectation
is too small for our purposes. However, we can demonstrate that, with sufficiently high probability,
they do not deviate far from their expectation.

To do so, we use two versions of the Chernoff bound [11]. In particular, if X; ... X; are i.i.d. random
variables, such that Pr[X; = 1] = p, and Pr[X; = 0] = 1 — p, then for any ¢ such that 0 < § <1,

-, i
Pr|Y X > (1+d)tp| < e ¥t/3,
Li=1 i
and -, i
Pr|Y X <(1-d)tp| <e T2

Li=1 i

We first use these bounds to demonstrate that it is likely that Pj is large enough to provide good
estimates on the quantities of interest. In particular, we show the following:

2
Claim 2 Let py = (%) In(4d/A). Prff+ff <p] <A

Proof: Regardless of what the adversary does, for any packet P, Pr[I{’ = k] > r%. Thus, we can
define a set of i.i.d. indicator variables X7 ... Xy, where T is the total number of packets sent, such
that X; = 1 if packet j is in P;. We see that f) + fi = 3 X, and Pr[X; = 1] > r}, and since the
probability that f,? + f,% is too small is maximized when Pr[X; = 1] = r, we assume that this is
the case. Recall that r} > ko, By the assumption that b < [log n], this implies that 7} > 3&

The claim now follows from the second Chernoff bound above, using § = % |

We next demonstrate that our estimate of ¢;’ is quite accurate:

Claim 3 Given that fk + fk > u, Pr [|qk — gl > prz(n k):|

A
< &

Proof: Let 77 be the actual fraction of the F packets P which are reset by some node and I = k.
fLltf—rp-F FF—rpF
f1+f0 f1+f0
then the fact that Pr [|FZ F—r}-F|> prz(b "F] A follows from the Chernoff bounds above,

the fact that riy > £% and the assumptlon that b > 2. If we then condition on f} + fP > u, by
z(n k)

Since ¢} = , we see that |7 — q}| = . If we do not condition on f + fi > p,

Claim 2, this increases Pr [|f,'§ -F—r}-F|> £ Ty } to at most %. Thus, with probability

z(n,k) P z(n,k) . . .
at most ﬁl, @y — ag| > P52 T’L > £——, where the second inequality again uses the fact that

o
Tk 2 ded- u

We next demonstrate what the implications of this are on our algorithm:

Claim 4

z(n,k)

Pg - Z C§B(j—1)d+k <|qr —aqi| — (lay — qZ|)rZ("’k)
j=1

Proof: Since a;? < 1, we see that ‘pg — Zj(:nl’k) C;?B(j—l)d-}-k‘ < Zj(:nl’k) |7k — qp

(g — gpl)r=h).

| T‘

<lap —axl -
n

Claim 5 Given that f) + fi > pu,

prz(n,k)

4e2

A
.

IN

T .
Pr [ka — il > 7’“7“2(""“) + (1@ — ap)r* ™ +

Proof: We here bound the probability that p; is too large; the probability that pg is too small

is similar. It is easy to see that Pr [pk —p) > q’” rH k) 4 (|gR — qR|)rz (k) ‘W(T;)] is maximized

when the adversary sets all initial values of dj to 1, and thus we assume that the adversary does

so. Note that this implies that E[pg] = anZ(n R =pd + qPr z(n,k) _ w <p?+ q’” r#(nk) 4

(lag — qi])r*™"). We now let X;, for 1 < j < tk, be a random variable, where X; =1 1f the jth

packet in Pk arrives to Ny with dg = 1 and X; = 0 otherwise, where t; = fk + fk We shall bound
z(n,k)

the probability that %, X; > ti(p} + 252—).

Unfortunately, we can not use a Chernoff bound on this sum directly, since conditioning on fQ+ f} >
p can result in a small amount of dependence between the X;s (this is actually somewhat subtle).
To remove this dependence, we partition the integers from 1 to ¢; into two sets, where j € Sy
if packet j arrives without being reset, and j € S; otherwise. The variables X; for j € Sy are
independent, as are the variables X; for j € S;. Let so = Pr[X; = 1] for j € Sg We see that

g—l

so = r#(mk) 4 Z nk Bk+(] 1)a"5—- Likewise, let s; = Pr[X; = 1] for j € S;. We see that

Jj—1

81 = Z;(:l)Bk+(jfl)da§r 5

z(n,k)

We show that for w € {0,1}, Pr [2165 X; > [Swlsw + tr gz

|S1] = (1 — q})t, this implies that Pr [L X > te(ph + s
follows. By the first Chernoff bound above

| < A/8d. Since [So| = gty and
)| < A/4d, from which the claim

z(n k)

2(n,k) __(tkﬂr‘““k))zwsumsw
<

pr— 82 [Swlsw 3

JESw
This probability is maximized by making |S,|s, as large as possible, but it must be the case
that |Sy|sw < tg. Thus, we may consider only the case where |Sy|sy = tx. Now, since we are
conditioning t; > u, and we have that b > 2, we see that

7(tkprz("k)) [Swsw
e \&Swlsw/) 3 < A/8d.

Now note that Claims 2, 3, 4, and 5 together give us that

z(n,k) =n..z(n,k) z(n,k)
ap pr—
Pr | |py — Z C?B(j,l)dﬂg > 2k 5 + 92 < A/d.
Jj=1

Thus, we only have left to show that

ar prind) n,k)

2
7 T o2 (Qk +(1—gp)ak 2(n, k)) 5

or that & < (1 —q})ak 7, k). We have that

n—1

k p(1—p)
Xz (n,k) =z z(n,k)
Zt:l Y

Y

10

and so using the assumption that p < 1/n, we see that a’;(n k) > ﬁ Thus, we only need to

show that 1 — g > w. By the definition of ¢}, this is equivalent to fi + ff < m -rp - F.
Since rf > M, we only need that f,% + f,g < F'. This follows simply from the fact that at most,
all the packets are in the set Pj. [|

4 The lower bound

For our lower bound, we consider the simple adversary strategy where every packet the adversary
sends simply has all bits set to 0. Thus, this lower bound really captures the difficulty of sending
information from a memoryless node using a bounded number of bits. It is somewhat surprising that
we are able to provide an algorithm that achieves close to this lower bound with the significantly
more powerful adversary of the upper bound. Also recall that our lower bound model assumes a
single intermediate node with all n bits of the input, rather than the more distributed model of the
upper bound. With these assumptions, we are able to prove our lower bound.

For any protocol P, let £(P) be the expected number of packets received when the input is chosen
uniformly at random from the set of all 2" possible inputs. Let p(P) be the probability that protocol
P makes a mistake when the input is chosen uniformly at random from the set of all 2" possible
inputs.

Theorem 3 For any protocol P, if E(P) < 22—;12"/2b — 2072 then p(P) > 1/2.

Proof: Any algorithm employed by the victim can be thought of as a (possibly randomized) pro-
cedure for deciding, for each possible sequence of packets that the victim has received, whether or
not to continue receiving packets, and if the victim decides to not continue, then the procedure
must specify a probability distribution over possible results for the victim to output. We refer to
such an algorithm as a general protocol. A restricted class of protocols is Monte Carlo protocols,
where the victim waits until it has received exactly 1" packets, where T" depends only on n and b.
The protocol maps the set of T' received packets to a distribution over possible results, which the
victim uses to produce an output.

Lemma 2 For any general protocol P, there is a Monte Carlo protocol P', such that E(P') =
4E(P), and p(P') < p(P) + 1/4.

Proof: We define P’ as follows: collect T' = 4€(P) packets. Using the order that the packets arrive
at the victim, simulate the protocol P. If P produces a result before it receives T packets, then P’
produces the same result, ignoring the remainder of the packet that it has. If P has not produced a
result after receiving T' packets, then P’ specifies to the victim to output a result chosen uniformly
at random from the set of all 2" possible outputs. The bound on p(P’) follows from the fact that
by Markov’s inequality, the probability that P has not produced a result after receiving T' packets
is at most 1/4.]

We shall demonstrate that for any Monte Carlo protocol, if the number of packets received is too
small, then the probability that the protocol makes a mistake is at least 3/4. This result, combined
with Lemma 2, implies the theorem. Thus, we henceforth only consider Monte Carlo protocols.

11

The input to the victim can be described via a receipt sequence: a sequence (7 ...rr), where r;
is a b-bit string describing the ith b-bit packet that is received by the victim. Any Monte Carlo
protocol for the victim is a function that maps a receipt sequence to a probability distribution
over n-bit strings. Another kind of description of the input to the victim is a receipt profile: a
2b_tuple R = (rg,...,79_4), where r; is the number of packets of type i received by the victim.
Note that Z?b:Bl r; = T. For any receipt profile R, let S(R) be the set of receipt sequences S
such that for all i, 0 < i < 2% — 1, the number of packets of type i in the sequence S is exactly
r;. Let a permutation oblivious algorithm for the victim be a function that maps a receipt profile
to a probability distribution over n-bit strings. Intuitively, a permutation oblivious algorithm is a
Monte Carlo algorithm that ignores the permutation information of the input, and only uses the
receipt profile of the input.

Lemma 3 For any Monte Carlo algorithm P' for the victim, there is a permutation oblivious
algorithm P" for the victim, such that E(P") = E(P'), and p(P") = p(P').

Proof: Given a Monte Carlo algorithm P’ for the victim, we define P” as follows: on an input
receipt profile R, choose a receipt sequence S from S(R) uniformly at random. The probability
distribution over n-bit strings returned by P” is the same as P” would return when the input is
S. To see that p(P") = p(P’'), note that since the intermediate node is memoryless, on any n-bit
string that is input to the intermediate node, and for any receipt profile R, the probability that
the receipt sequence is any receipt sequence in S(R) is the same for all receipt sequences in S(R).
Thus, it does not matter whether the intermediate node “chooses” a receipt sequence uniformly at
random from the set of receipt sequences in the receipt profile, or whether the victim makes this
same choice. [

Thus, we can simply show a lower bound for permutation oblivious algorithms, and this will imply
a lower bound for all possible algorithms. Let 1 (7T) be the set of all possible receipt profiles for
which the total number of packets received is exactly T'. Let ¢(n) be the set of all 2" inputs to the
intermediate node. For any 7 € /(T') and I € «(n), let p(7,) be the probability that the algorithm
outputs I when the receipt profile is 7. Note that for any input I, the probability that the algorithm
outputs I, given that the intermediate node receives the input I, is at most ZT@,(T) p(7,I). Thus,
for any permutation oblivious algorithm P”,

ZIEL (1 - ZTE¢(T) p(T> I))
on .

p(P") >

Now, note that

>, p(nI) < ().

TeP(T);I€L(n)

This implies that p(P") > 1 — |¢2(_Z)\ Thus, if [(T)| < 2™/4, the permutation oblivious protocol
must make a mistake with probability at least 3/4. Thus, we only need to compute [)(T)| for a
given value of b. By a standard combinatorial argument, the number of receipt profiles in ¥ (7T') is

b_
T4+20—1 (T+20—1)e\>
<|———— .

N T e T |

12

simply

2b
Thus, p(P") > 3/4, provided that (”;jf”l)e) < 27/4, or that T < 2-127/?" 26 By Lemmas 2 and

.. . . 2b_1 b b—
3, this implies that for any general protocol P, p(P) > 1/2, provided that £(P) < W2"/2 — 202,
|

We also point out that a slightly tighter analysis of the required value of T' gives us that when
b =1, the lower bound is Q(2").

5 Applications of the Model

In this section, we demonstrate that the upper bound model actually leads to a quite general
solution. In particular, it is easy to map our solutions to a number of scenarios. We demonstrate
this by considering three scenarios here: the case where the underlying tree is not binary, the case
where the routers are not given the information of which child forwarded them a given packet, and
the case where the routers have no information about the network topology or routing strategy
other than a unique ID. Our lower bound model is strong enough that for all of these other scenarios
considered, our lower bound still applies.

First, consider the case where the victim knows the entire routing topology, and also is able to
see which child it receives a given packet from, but the underlying tree is not binary. We use the
following type of encoding of the path: for every node N of the tree, we represent what child of
that node is the predecessor of IV in the adversary’s path of attack using a Shannon code, where
the distribution used in the code is the distribution over the children of N when a node of the
subtree rooted at NN is chosen uniformly at random.

Claim 6 The mazimum number of bits required to represent any path using this scheme is at most
h + log m, where m s the number of nodes in the system, and h is the height of the tree.

Proof: Let C1 ...Cy be the sequence of code words used along any path from the victim to a node.
Let T} be the number of children in the subtree rooted at the jth node of this path. Since we are

using a Shannon code, TTT+L1 > 2/Cil=1_ Since T}, = 1 for any path, we have that T} = ;‘;11 T—jTh,

L
and so T} > 9(2i=1 16D~ Since m > Ty, logm > (Zle |C;]) — ¢, from which the claim follows. m

To use a protocol for the upper bound model to actually compute this encoding, consider some
router R on the path of attack with ¢ children, and corresponding code words C;...C:;. On a
message received from child j, router R simulates what would occur in a tree of height |C};| when
the child specified by C; receives a packet from the adversary. This provides a mechanism for
encoding the string C;.

Next consider the case where nodes still know the entire routing topology, and the tree is binary,
but nodes do not obtain the information of which child they received a given packet from. In this
case, the information that is reconstructed is slightly different: instead of being able to reconstruct
a path that contains the attacker, this smaller amount of information only allows us to reconstruct
a path such that the attacker is a child of some node along that path. We refer to this model as
the source oblivious model, and the model used for the bulk of the paper as the source cognizant
model. We show that the two models are equivalent in the following sense:

13

Claim 7 Any protocol for the source cognizant model for a tree of height n provides a protocol for
the source oblivious model for a tree of height n — 1. Any protocol for the source cognizant model
for a tree of height n provides a protocol for the source oblivious model for a tree of height n — 1.

Proof: To simulate a protocol for the source cognizant model in the source oblivious model, each
node simply does exactly what its parent would do in the source cognizant model. Each node
clearly has enough information to do this. The parent of the attacker follows the source oblivious
protocol correctly, and this simulates the parent of the parent of the attacker following the source
cognizant protocol correctly. Thus, the path is followed correctly back to the parent of the attacker.

For the reverse simulation, each node IV does exactly what its child V. on the path would do in
the source oblivious protocol on receiving the bits that IV receives. In the case that N, is actually
the attacker, the node N simulates what N. would do if it were not the attacker, but a child of N,
were the attacker. Since the node IV has the information of which child it receives a packet from,
N has enough information to perform such a simulation. Since the parent of the attacker simulates
what the attacker would do in the source oblivious protocol if the attacker were on the path, but
not an attacker, this gives the source cognizant protocol the ability to obtain a path that contains
the attacker. [|

Finally, consider the case where neither the victim nor the routers have any information about the
network topology, nor do they see the information of which child sends it a packet. Each router
simply knows a unique router ID, and our task is to inform the victim of ¢ unique IDs of routers
along the path of attack. These IDs might for example correspond to IP addresses. We assume
that a router ID can be any k-bit string. To use a protocol for the upper bound model in such a
scenario, each router, on receiving a b-bit string from a preceding router would simulate a binary
tree of height k in the source oblivious model, where the node in the tree that receives the packet
is the node corresponding to the string that represents the ID of the router.

References

[1] S. M. Bellovin, ICMP Traceback Messages. Internet Draft: draft-bellovin-itrace-00.txt, Mar.
2000.

[2] Hal Burch and Bill Cheswick, Tracing Anonymous Packets to Their Approximate Source. In
Proc. Useniz LISA ’00, 2000.

[3] Sven Dietrich, Neil Long, and David Dittrich, Analyzing Distributed Denial of Service Attack
Tools: The Shaft Case. In Proc. 14th Systems Administration Conference, LISA 2000.

[4] Drew Dean, Matt Franklin, Adam Stubblefield, An Algebraic Approach to IP Traceback. In
Proc. 2001 Network and Distributed System Security Symposium.

[6] P. Ferguson and D. Senie, RFC 2267: Network Ingress Filetring: Defeating Denial of Service
Attacks which employ IP Source Address Spoofing. The Internet Society, 1998.

[6] S. Floyd and V. Jacobson, Random Early Detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking, 1(4), August 1997.

14

[7]

[10]

[11]

[12]

S. Lee and C. Shields, Tracing the Source of Network Attack: A Technical, Legal and Societal
Problem. In Proceedings of the 2001 IEEE Workshop on Information Assurance and Security,
June 2001.

K. Park and H. Lee. On the effectiveness of probabilistic packet marking for IP traceback
under denial of service attack. In Proc. IEEE INFOCOM ’01, pp. 338-347, 2001.

K. Park and H. Lee. On the effectiveness of route-based packet filtering for distributed DoS
attack prevention in power-law internets. To appear in Proc. ACM SIGCOMM ’01, August
2001.

C. Perkins, IP Mobility Support. RFC 2002, Oct. 1996.

Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms. Cambridge University
Press, New York, NY, 1995.

Stefan Savage, David Wetherall, Anna Karlin and Tom Anderson, Practical Network Support
for IP Traceback. In Proceedings of ACM SIGCOMM 2000 , pp. 295-306, August 2000.

Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fabrice Tchakountio,
Stephen T. Kent, and W. Timothy Strayer. Hash-Based IP Traceback. To appear in Proc.
ACM SIGCOMM 2001, August 2001.

Dawn X. Song and Adrian Perrig, Advanced and authenticated marking schemes for IP trace-
back, In Proc. IEEE INFOCOM ’01, 2001.

15

