A Visual Query Language for Relational Knowledge Discovery

H. Blau* N. Immerman* D. Jensen*

{blau, immerman, jensen}@cs.umass.edu
Department of Computer Science, University of Massachusetts, Amherst, MA 01003-4610

Abstract

QGRAPH is a visual query language for knowledge discovery in relational data. Using QGRAPH, a
user can query and update relational data in ways that support data exploration, data transformation,
and sampling. When combined with modeling algorithms, such as those developed in inductive logic
programming and relational learning, the language assists analysis of relational data, such as data drawn
from the Web, chemical structure-activity relationships, and social networks. Several features distinguish
QGRAPH from other query languages such as SQL and Datalog. It is a visual language, so its queries are
annotated graphs that reflect potential structures within a database. QGRAPH treats objects, links, and
attributes as first-class entities, so its queries can dynamically alter a data schema by adding and deleting
those entities. Finally, the language provides grouping and counting constructs that facilitate calculation
of attributes that can capture features of local graph structure. We describe the language in detail, discuss
key aspects of the underlying data model and implementation, and discuss several uses of QGRAPH for
knowledge discovery.

1 Introduction

We have been investigating how to analyze large sets of relational data. As an example of such data, consider
Figure 1, which shows a fragment from a database about movies. The figure uses objects to represent movies
(e.g., Network and The Thomas Crown Affair), people (Faye Dunaway), organizations (MGM), and things
(Oscars), and it uses binary links to represent relations between objects (e.g., Actorln, DirectorOf). The
labels on the objects indicate their name, and the labels on links indicate their type. Not shown in the figure
are other attributes of objects, such as the gender of an actor, the year a movie was released, or the location
of a studio. Similarly, links could have attributes, such as the salary an actor received for starring in a given
movie. The figure represents only a fragment of much larger database of movies, persons, organizations,
and awards.

The data shown in Figure 1 exemplify a general data representation we have been exploring for knowl-
edge discovery. Based on recent usage of the term in knowledge discovery and machine learning (e.g.,
De Raedt and Kramer 2000), we refer to this data representation as “relational”, in contrast to data where
objects are homogeneous, identically distributed, and statistically independent (often called “propositional
data” or “iid data”). Specifically, our relational data sets consist of objects, binary links, and attribute-
value pairs that record features of the object or link. An object or link can have zero or more attribute-
value pairs, and all attributes are set-valued. That is, multiple values for the same attribute can be stored
on an object. For example, a person can have multiple names. We are investigating how large data sets
in this representation can be analyzed in an integrated knowledge discovery system called PROXIMITY
(http:// kdl.cs .umass .edu/systems/proximity/).

Relational data are an increasingly common target for research in knowledge discovery. Work in induc-
tive logic programming (e.g., Muggleton 1992) and social network analysis (Wasserman and Faust 1994)

* Authors listed in alphabetical order.

Howard

Robert Duvall Gottfried

DirectorOf StudioOf

Actorin \ J ProducerOf
n

Nominated

Actorin

The Handmaid’s
Tale

Actorin

Actorl
Actorln Nominated | \ Awarded

Actorln Faye Dunaway

The Thomas
Crown Affair (1968)

Oscar for Best
Actor (1977)

Actorin

Awarded Nominated

Actorin Oscar for Best

Picture (1977)

RemakeOf Nominated

Oscar for Best
Actress (1977)

The Thomas
Crown Affair (1999)

William Holden

Figure 1: Graphical data fragment from a movie database

have explored this topic for years. More recently, work in learning statistical models of relational data has
yielded several practical techniques (De Raedt and Kramer 2000; Getoor and Jensen 2000). Finally, work
on analyzing data about the Web and other computer networks has produced useful algorithms for Web page
classification (Kleinberg 1999; Craven et al. 1998).

Our own work with several large data sets has indicated the need for a query language with special fea-
tures that support relational knowledge discovery. We have designed a new query language — QGRAPH—
that has many of these features. QGRAPH queries can identify subgraphs of a larger graph, and allow varia-
tion in the number and types of objects and links that form the subgraph. Queries can identify and name the
particular roles that specific objects and links serve in a matched subgraph. Finally, queries can transform
matched subgraphs by adding and removing objects, links, and attributes. Added attributes can be the result
of evaluating mathematical expressions that include the values of attributes on the objects and links in a
matched subgraph.

The feature set of QGRAPH distinguishes it from other query languages such as SQL, Datalog, and Lorel,
and make it well-suited for several phases of the knowledge discovery process, including ad hoc exploration,
data transformation, sampling, and mining. We have found QGRAPH to be both an expressive and intuitive
medium for expressing the queries necessary for these operations.

The first section below describes the language and gives examples of using QGRAPH to query the
database from which Figure 1 was drawn. Next, we examine why the language is useful for knowledge
discovery. We explain the multiple roles played by QGRAPH for PROXIMITY, and compare the expres-
siveness of this language to that of other languages such as SQL and Datalog. Finally, we describe our
implementation to date and our plans for future work.

2 Language description

QGRAPH is a visual language for querying and updating a database of relational structures. A QGRAPH
query is a labeled graph in which the vertices correspond to objects and the edges to links. We use the
terms vertex and edge when referring to the query, object and link when referring to the database. The query
specifies the desired structure of vertices and edges. It may also place boolean conditions on the attribute
values of matching objects and links, as well as global constraints relating one object or link to another.
Each vertex and edge of a QGRAPH query has a unique label. The query must be a connected graph.

A query consists of match vertices and edges and optional update vertices and edges. The former
determine which subgraphs in the graph database constitute a match for the query. The latter determine
what modifications are made to the matching subgraphs. A query with only match vertices and edges serves
to identify and display a collection of subgraphs. To match the query, a subgraph must have the correct
structure and satisfy all the boolean conditions and constraints. A query with both match and update vertices
and edges can be used for attribute calculation and for structural modification of the database. The query
processor first finds the matching subgraphs using the query’s match elements, then makes changes to those
subgraphs as indicated by the query’s update elements.

2.1 Conditions

The query shown in Figure 2 finds all subgraphs where an ActorIn link exists between a Person and a
Movie. The type restrictions are expressed by conditions on the two vertices and one edge of the query.
In this example only one attribute is tested in each condition; in general a condition can be any boolean
combination of restrictions on attribute values.

A, B, and X are unique labels assigned to each vertex and edge in the query. We use letters at the
beginning of the alphabet for vertices, and those from the end of the alphabet for edges. Labeling query
elements is useful for talking about the query and for writing constraints (see Section 2.5). The labels have
no intrinsic meaning and do not indicate anything about the type of object or link that would match the
labeled element. Where desired, type restrictions are enforced with conditions on vertices and edges.

For the sample database of Figure 1, this query produces 8 matches (Figure 3). Unlike the SELECT
statement in SQL, a QGRAPH query does not specify which attributes of matching objects and links should
be included in the result. Evaluating a QGRAPH query returns a collection of all the matching subgraphs
from the database. The user can examine any subgraph in the resulting collection, and any object or link
in that subgraph, with the user interface. All the object and link attributes, not just those mentioned in the
query conditions, are available for inspection.

2.2 Numeric annotations

To group the actors together for each movie, we add a numeric annotation to the Person vertex (Figure 4).
Executing this query against the database produces 4 matches (Figure 5), one for each movie, compared
with 8 matches for the query without the numeric annotation (Figure 3). A numeric annotation can be
specified on a vertex or an edge of a QGRAPH query. (We will see in Section 2.6 that a subquery can also
have a numeric annotation.) A numeric annotation takes one of three forms. An unbounded range [i..] on a
vertex (or edge) means at least ¢ instances of the annotated object (or link) must be present in any matching
database fragment. A bounded range [i..j] means at least ¢ and no more than j instances are required for a
match. An exact annotation [¢] means exactly ¢ instances are required. ¢ can be any integer > 0; j can be any
integer > 7. If the lower end of the possible range is 0, the annotated structure is optional in any matching
database fragment. (The annotation [..j] is not allowed because it would be ambiguous between [0..5] and

X
ObjType = Person A ObjType = Movie
LinkType = Actorin

Figure 2: Find all Person,ActorIn,Movie subgraphs

Robert Duvall Actorin -

The Handmaid’s Tale

Faye Dunaway Actorin

The Thomas Crown
Affair (1968)

Faye Dunaway Actorin

Actorin

B

The Thomas Crown
Affair (1999)

Faye Dunaway Actorin

Robert Duvall Actorln The Handmaid’s Tale

William Holden

Faye Dunaway Actorin

ACtorIn -

Figure 3: Matches for query in Figure 2

X
ObjType = Person A ObjType = Movie
LinkType = Actorin

[1..]

Figure 4: For each movie, find all its actors

Faye Dunaway

(o2

Robert Duvall

Actorin

Actorin

Actorin

Actorin

William Holden

Faye Dunaway

Actorln
\’
Actorin "

The Handmaid’s Tale

Robert Duvall

The Thomas Crown
Affair (1968)

Faye Dunaway Actorin

The Thomas Crown

Actorl
Faye Dunaway elorin Affair (1999)

Figure 5: Matches for query in Figure 4

ObjType = Person a ObjType = Movie A ObjType = Award A
Gender = Female Genre = Mystery AwardType = Oscar

Y

A

LinkType = Actorin LinkType = Awarded
[0..2] [0]

Figure 6: Mysteries with fewer than 3 female actors and no Oscar awards

LinkType = Nominated
X
ObjType = Award A

: _ . AwardType = Oscar A
ObjType = Movie ° e Category = BestPicture 2
Year = 1997

LinkType = Awarded
[0]

Figure 7: Movies nominated for Best Picture in 1997 that did not win

[1..5].) The annotation [0] on a vertex (or edge) indicates negation: to match the query, a database fragment
must not contain the corresponding object (or link).

A numeric annotation serves two purposes in a query. It groups together into one match repeated iso-
morphic substructures that would otherwise create multiple matches for the query. It places limits on how
many such structures can occur in matching portions of the database. To group the substructures without
limiting their number, we use the annotation [1..] (as in Figure 4). There is no mechanism in QGRAPH to
limit the number of matching substructures without grouping them together.

The query of Figure 6 selects mystery movies that never received an Oscar and have fewer than three
female actors. A movie that has won no awards at all, or has won awards that are not Oscars, could match
this query. The movie Sleuth (1972) is a match. Sleuth had only one female actor (Eve Channing) and won
no Oscars, although it garnered several nominations. Sleuth did win an Edgar Allan Poe Award and a New
York Film Critics Circle Award. If we wanted only movies that have won no awards at all, we would drop
the conjunct AwardType = Oscar from the condition on node C, leaving just ObjType = Award.

A negated element (annotation [0]) does not show up in the results of a query, because a subgraph
matches the query only if it has no object (or link) matching the negated vertex (or edge). For the query of
Figure 6, no Award objects or Awarded links would appear in the results. Person objects and ActorIn
links would appear only in matches for movies that had exactly one or two female actors, such as Sleuth.
They would not appear in matches for movies that had no female actors.

The query of Figure 7 selects movies that were nominated for the Best Picture Oscar in 1997 but did not
win. This query illustrates a numeric annotation on a link. The movies As Good as It Gets, The Full Monty,
Good Will Hunting, and L.A. Confidential match this query.

To be well-formed, a query must remain a connected graph when any optional or negated structures

ObjType = Award A ObjType = Award A
AwardType = Oscar A _ _ _ _ AwardType = Oscar a
Category = BestPicture ObjType = Movie ObjType = Movie Category = BestPicture

LinkType = LinkType = LinkType =
Awarded RemakeOf Awarded

[0]

Figure 8: {Remake, original} pairs where one won Best Picture and the other did not

(annotations [0], [0..], or [0..n]) are removed. To avoid ambiguities of interpretation, only one of any two
adjacent vertices can be annotated. An edge incident to an annotated vertex can itself be annotated. If the
edge incident to an annotated vertex has no explicit annotation, it bears an implicit annotation of [1..]. The
annotation on the vertex takes precedence over the annotation (implicit or explicit) on the edge. We first find
objects that match the annotated vertex, then for each matching object we find links that match the annotated
edge.

2.3 Projecting over subgraph structure

For many queries, the user does not need to see the entire matching subgraph. For the query of Figure 7,
there is no need to include the Award object and the Nominated link in every subgraph of the resulting
collection. The focus of interest is the movie. To see only Movie objects in the results, we highlight vertex
A in the query (leaving the other vertex and the edges unhighlighted). This highlighting is analogous to
the projection operator in relational algebra. In QGRAPH, we project over structures by highlighting the
elements that interest us. Highlighting does not change how the query is evaluated against the database. It
changes how the matching subgraphs are displayed. Only those objects and links that match highlighted
vertices and edges are displayed.

2.4 Undirected edges

The data model underlying QGRAPH is a directed graph; it has no undirected links. Nevertheless, QGRAPH
allows undirected edges for queries in which we do not know, or choose to ignore, the directionality of the
relationship. For example, in the movie database the RemakeOf link goes from a new remake to the older
original. Suppose we want to find {remake, original} pairs such that one of the two movies received an
Oscar for Best Picture while the other did not. Either the remake or the original received the award, but not
both. This query can be succinctly expressed with an undirected RemakeOf edge between the two Movie
vertices (Figure 8). The silent classic Ben-Hur (1925) and the 1959 remake starring Charlton Heston match
this query. The 1959 film won the Oscar for Best Picture; the original predated the Oscar awards.

2.5 Constraints

The query of Figure 9 selects pairs of people such that each has acted in one or more movies directed by
the other. This query matches the database fragment shown in Figure 10. Burt Reynolds directed The End
(1978) in which David Steinberg acted, and Steinberg directed Paternity (1981) in which Reynolds acted.

ObjType = Person ObjType = Movie
Jyp LlnkType Actorin Jvp

Figure 10: Database fragment for Burt Reynolds and David Steinberg

This query also matches any director who has acted in his own movies. Multiple vertices of a query can
match a single database object provided the object satisfies the conditions on all the vertices. Likewise two
or more edges having the same start- and endpoints can match a single link in the database. In the case of an
actor-director, the vertices A and B match the same Person, C and D the same Movie, W and X the same
ActorIn link, Y and Z the same DirectorOf link. For example, this query would match John Sayles
and all the films he both directed and appeared in: Return of the Secaucus 7 (1980), Lianna (1983), The
Brother from Another Planet (1984), Matewan (1987), Eight Men Out (1988), City of Hope (1991), Passion
Fish (1992).

To eliminate the actor-director matches, we add two inequality constraints to the query: A # B and
C # D. (Inequality constraints on the vertices force the edges to be distinct as well, since one edge cannot
have two different endpoints.) Inequality constraints are necessary whenever we want to ensure that two
vertices (or edges) map to distinct database objects (or links), unless the conditions on the two query ele-
ments are incompatible anyway. In addition to inequality constraints, a constraint can relate attribute values
of one object or link to those of another in the matching subgraph. For example, suppose the ActorIn link
has a Salary attribute recording the amount the actor earned for that appearance. With constraints, we can
compare the salaries of two different actors, or the salaries of the same actor for two different movies.

4)

ObjType = Person ObjType = Movie ObjType = Award

X Y
A B

LinkType = DirectorOf LinkType = Awarded

[3..]

- J

[1..]

Figure 11: Directors of movies that have won three or more awards each

Both conditions and constraints restrict the matches to a query. Conditions on a vertex (or edge) involve
only the attributes of the corresponding object (or link). Constraints relate one vertex (or edge) of the query
to another vertex (or edge), by asserting that the two are distinct or by comparing their attribute values. No
inequality or other constraint is allowed between two vertices that both have numeric annotations, for the
same reason that two vertices joined by an edge cannot both be annotated.

2.6 Subqueries

A subquery is a connected subgraph of vertices and edges that can be treated as a logical unit. It has one or
more edges that leave the subquery box and attach the subquery to some vertex or vertices of the main query
(or another subquery). A subquery enables the user to attach a numeric annotation to a connected group of
vertices and edges, instead of just a single vertex or edge.

Figure 11 shows a query that finds people who have directed very successful movies, where a movie
is considered “very successful” if it has won three or more awards. The numeric annotation [1..] on the
subquery box will group together all the successful movies for a given director into one match for the query.
Without the subquery box, one match would be returned for each successful movie of each director.

The director Steven Spielberg matches this query. His very successful movies include Raiders of the
Lost Ark (1981), 4 Oscars; E.T. the Extra-Terrestrial (1982), 4 Oscars; Jurassic Park (1993), 3 Oscars;
Schindler’s List (1993), 7 Oscars; and Saving Private Ryan (1998), 5 Oscars. The entire subgraph shown in
Figure 12 constitutes one match for the query in Figure 11.

2.7 Data transformation

In addition to its many convenient features for data extraction, QGRAPH is a flexible data transformation
language for graph databases. We can add new objects, links, and attributes, or delete existing ones. We
can calculate new attribute values by applying simple arithmetic operations or aggregation functions (sum,
average, efc.) to the values of known attributes.

Conceptually, QGRAPH query processing comprises two phases: match and update. The match phase
determines which subgraphs of the database are selected by the query’s match vertices and edges (with
their associated conditions, constraints, and numeric annotations). The update phase performs all indicated
updates in parallel to the selected subgraphs. Within a query having more than one update element, the
result of applying one update cannot create a new match for another update from the same query.

01

{enTeamau} — (e3nqrI33e)seniea
SUBQW Yorym
anTeAMaU =: 93ngraIjle
USNILIM ‘ON[BA MU JY) (I INGLINE Y} JO san[ea Junsixd ay) doedor e

:sorepdn oinquie jo sadAl 931y 10 sopIaoid HAVIDO ‘pPan[eA-1as e saINqLIjIe asnedoyq
‘(anTea #o3nqTralle \/ TINN #93NqTIIIe) pauyep SI Anqrnje ayj JI ss9) 11y Jey) uorn
-1puod punodwos e Yirm Wy} 2JBUIWI[d UBD dM ‘9[qRIISOpUN I8 SIYJJBW ISAY) J| "SNTeA # 93nqrIlle
uonIpuod Ay} saysnpes () = (@3ngTI33e)SenTea ‘sl JBy)) pauyapun SI 93NQTIFFL YoIym IoJ Jul|
10 109[qo Aue jey 9J0N - (93ngrI3zle)ssnTes H SnTeA I0J PUBYIOYS SI SNTRA # 93ngTrIlle
‘OSIMOYIT " (@3NgTI33e)sanTeAa DS anTeA I0J puBylMoys SI SNTeA = 93NgTIJ3e UONRIOU Y],
'so2d AL, L0 JUSISIJIP [8I9AdS aArY JYSTW 109(qo 9[3UIS © ‘Surewiop Iayjo Ul ng ‘oIpnis
uononpoid e pue pIeme ue 10 ‘o1Aowl B pue uosiad e yjoq st 302[qo ou :3os uoid[3urs e st anqrue adAL Lo
) ‘oseqeIep SIAOW Y} U] *S19S U0ISUIS 9q 0] SIINQLINE SUIOS JO SINBA) UTENSUOD Iseqeiep aY) Aq pajuss
-o1do1 urewop 9y} JO SONUBWIAS) ‘SASLD AUBW U] "PIN[A-)IS Ik SAINQLIIE [[€ ‘[opowl Blep HAVIDO 9y} Uf

S9INqLI)je paneA-)3s uo sdjepdn pue suonipuo) 87

11 2In31] ur A1onb 10J yoeA i 2In31

(8661) punos
1seg 1o} JedosQ

(e661) punog
1seg 1o} 1edosQ

(8661+) Bunipz
‘/?..Vu — papiemy wyi4 1899 10} JBOSO

popIEMYy
popiEmy: sied oisseinp ueAy
a1eALd Buines Pop.EMy

papIemy’

(€661)""s108)3

1seg Jo} JeosQ

(8661)"s10943
1seg 10} 1edsQ

(€661) " "say3
1seg 10} JeosQ

866 1) "borewsuly
1seg 10} 1edsQ

papiemy

(z861) punog
1seg 1o} JedosQ

(8661) 40300110
1seg 10} JedosQ

J0l0p8110 JoJ00811Q

(2861)o1sNIy papiEMy
1sag loj Jedsp

(e661) " uonodaug
Hy 1seg 10} JedsQ

|elsaig] -esxy
ey 1’3

biaqelds uanalg
(z861)"s10943
1sag Jo} JedsQ popieny mm%mm_:._wwﬂﬁwm_o

papremy
(2861) " 's108y3 J04010811Q

1seg 10} JedsQ

(e661) Bunipz
papremy wji4 1seg 10} J1edsQ

JoJ0pa1g

(1861) punog
1seg o} JeosQ

(€661)"o1ISN
1seg 10} JeosQ

(1861) Bunp3 PopIENY. popIEMY
wji4 1seg Jo} Jeosp

(€66 1) BuIM
1seg 10} 1edsQ

Y 1507

oy} jo siapiey papiemy

(1861) " 's0ay3
1seg 10} J1e2sQ

(€661) 40300110
1seg 1o} JedsQ

(1861)"uonodaua
My 1sag Jo} JeasQ

(€661) 21mdId
1sag loj JeasQ

4)

ObjType = Person ObjType = Movie ObjType = Award
X Y
A B
LinkType = DirectorOf LinkType = Awarded
MeasureSuccess := i [3..]

- J

li=1.]

Figure 13: Add measure of success as attribute of director

e add the new value to the existing ones, written
attribute += newValue
which means
values (attribute) + values(attribute) U {newValue}

e remove an existing value from the set, written
attribute -= oldvalue
which means
values (attribute) + values(attribute) — {oldvalue}

We can add, remove, or replace multiple values at once. For example,
attribute := newValuel, newValue2, newValue3

means

values (attribute) « {newValuel, newValue2, newValue3}.
To remove all values for an attribute, set it to null:

attribute := NULL

which means

values (attribute) « 0.

2.9 Counter variables in attribute updates

Figure 13 shows a variation on the query from Figure 11 in which we store the number of very successful
movies as a new attribute of the director. The numeric annotation [:= 1..] on the subquery box illustrates
the use of a counter variable that is set to the number of matches for the subquery. Any or all of the numeric
annotations in a query may be augmented with counter variables, so long as the variable names are unique
within the query.

The variable ¢ counts the number of movies by this director that have received three or more awards.
This value is copied into a new attribute MeasureSuccess on the Person object. The italic font and
assignment operator indicate an attribute update.

11

ObjType = Person ObjType = Movie ObjType = Studio

X Y
A C
7 LinkType = Actorln LinkType = StudioOf

LinkType := EmployeeOf
TotalSalary := SUM (X.Salary)

Figure 14: Add link from actor to studio with total salary

2.10 Adding a link

The query of Figure 14 creates an EmployeeOf link between an actor and a studio if the actor has appeared
in movies made by that studio. The query calculates the total salary the actor earned from all his appearances
in the studio’s movies and records the figure as as an attribute of the new link.

This example illustrates the use of an aggregation function to calculate the actor’s total salary. Aggrega-
tion functions such as SUM, AVG, MIN, and MAX may be used in a QGRAPH constraint or attribute update.
The expression SUM (X .Salary) calculates the sum of the Salary attribute for all the ActorIn links X
connecting the actor to a movie made by the studio. The numeric annotation on the movie vertex is essential
for the calculation of TotalSalary. The annotation groups together into one match all the movies for
a given {actor, studio} pair. Without the numeric annotation, a separate link from actor to studio would
be created for each {actor, movie, studio} triple, and the value of the TotalSalary attribute on the link
would be the salary for that particular movie.

A new EmployeeOf link is created for each {actor, studio} pair that matches the query. The salary
is summed over just the movies involving that {actor, studio} pair. If the actor has worked for several
different studios, the query creates an EmployeeOf link to each studio with a corresponding value for the
TotalSalary attribute.

If we wanted to create the new link only in cases where the actor had earned one million dollars or more
working for the studio, we would add a constraint to the query: SUM(X.Salary) > 1(P.

3 Query Languages and Knowledge Discovery

Querying and updating are key operations for several stages of knowledge discovery. Querying is necessary
for effective data exploration, data sampling, and data mining. Updating is central to data transformation, in
addition to being necessary for operations such as sampling and data mining.

Despite these uses, query languages for knowledge discovery have not been widely investigated. One
reason is that many knowledge discovery methods address propositional data, and querying and updating
propositional data is relatively simple. Nearly all queries can be expressed in simple SQL, and many data
transformation are functions applied to single attributes (e.g., log) or simple mathematical expressions
combining the values of several attributes from a single instance (e.g., patient-height /patient-weight).

12

In contrast, our work with relational data has highlighted the importance of querying and updating complex
graphical structures such as those discussed in the previous section.
Specifically, we have developed QGRAPH to assist with:

e Data exploration — We frequently need to ask questions about the existence and frequency of specific
structures present in the data. For example:

Q: Does the database contain movies linked to zero actors?

A: Yes, but most cases appear to be errors.

Q: Do actors ever have multiple roles in the same movie?

A: Yes, Tony Randall had seven roles in The Seven Faces of Dr. Lao.

Such ad hoc exploration of large data sets virtually mandates a query language, and our needs in this
area were a strong motivation in developing QGRAPH.

o Attribute creation — We often need to calculate attributes that capture properties of local graph struc-
ture. Such attributes can be calculated based on the elements of a subgraph, and then stored as an
attribute of an object or link. For example: How many award-winning movies has each actor starred
in? How many studios has each actor worked for? What is the first year that each actor starred in
any movie? In contrast to standard attribute calculations for propositional data, calculating attributes
in relational data requires querying both the structure and attributes of the data. Such attributes are
important to many relational learning and inference methods, including some ILP techniques (Mug-
gleton 1992), probabilistic relational models (Getoor et al. 2001), and iterative classification (Neville
and Jensen 2000).

e Structural transformations — We have often found it convenient to make fundamental alterations in
the structure of databases by adding and deleting objects and links. For example, some calculations
about the relationships among movies can be made substantially more efficient by adding links that
directly connect movies that share a common actor or director. Similarly, objects and links might be
added to represent “families” of movies (e.g., the multiple Star Wars or James Bond movies) that share
a common studio, producer, and set of characters. Such structural transformations allow fundamental
aspects of a particular data representation to be altered dynamically in ways that assist analysis, and
we have found such alterations to be important for practical knowledge discovery.

e Sampling — Our recent work on sampling relational data (Jensen and Neville 2001) shows the im-
portance of sampling entire subgraphs rather than individual objects or links. For example, one type
of subgraph in the movie data might include movies and all linked actors, directors, and producers.
Sampling individual objects can produce biased parameter estimates in statistical models, and lead to
incorrect estimates of accuracy. Sampling entire subgraphs can overcome such biases, but construct-
ing such subgraphs requires an appropriate query language.

e Data mining — Our work on data mining in relational data (Neville and Jensen 2000) uses Bayesian
classifiers, but queries and updates can also be thought of as a knowledge representation. Methods
have been developed to learn Datalog queries that accurately classify relational data, and we con-
jecture that methods could also be developed to learn QGRAPH queries. Though we have not yet
developed such methods, we plan to investigate them in the future.

13

4 Related Work

Researchers and practitioners of knowledge discovery already have access to many query languages, in-
cluding SQL, Datalog, Lorel, OQL, and GOOD. Our own work has made extensive use of SQL, and other
researchers in knowledge discovery and machine learning make use of Datalog. Lorel (Abiteboul, Quass,
McHugh, Widom, and Wiener 1997), OQL (Alashqur, Su, and Lam 1989), and GOOD (Gyssens, Paredaens,
Van den Bussche, and Van Gucht 1994) are three of the better known languages for querying semi-structured
data. QGRAPH differs from these other query languages because of its design goals and the degree to which
the language achieves those goals. Specifically, we designed QGRAPH to be visual, intuitive, and useful for
knowledge discovery.

QGRAPH is a truly visual language. In contrast to SQL and Datalog, the primary elements of QGRAPH
queries and updates are expressed as graphs with textual annotations. While graphic user interfaces and
visualizers have been developed for SQL and Datalog, these tools are only adjuncts to the primary textual
representation. QGRAPH queries have a structure that closely approximates the data, making it easier for
users to imagine the structure of potentially matching subgraphs.

Many of our design decisions were intended to preserve syntactic clarity in ways that make the language
more intuitive. Specifically, we have avoided language features that have several reasonable and conflicting
interpretations, rather than make arbitrary choices about language semantics. For example, an annotation of
the form [..3] could be interpreted either as [0..3] or [1..3]. We designed QGRAPH to require users to specify
a lower bound, rather than assigning an arbitrary meaning when a lower bound was not provided.

Similarly, we have made several design decisions because of overall conceptual clarity and ease of
interpretation. For example, queries containing updates are processed by first finding all matches to the
match portion of the query and then executing all parts of the update portion in parallel. This requires that
some types of updates (e.g., those with interdependent calculations) be executed as multiple queries, but it
greatly simplifies the language semantics.

The decision to represent attributes textually illustrates a tradeoff between our goals of a visual language
and an intuitive one. Some visual query languages, such as GOOD, represent attributes as nodes in the
query graph. For queries involving even a small number of attributes, the visual elements of the query that
represent attributes dominate, and obscure the structural elements of objects and links. In contrast, it is easy
to distinguish between structural elements and attributes in QGRAPH queries.

A third design goal was to make QGRAPH useful for knowledge discovery. We wanted a language
for easily expressing common queries needed for our work with PROXIMITY. These include queries for
ad hoc exploration, data sampling, and attribute calculation. Essentially all of these queries involve small
subgraphs surrounding core objects (e.g., all people related to a given studio through movies). Because of
this goal, we focused on queries that capture the characteristics of local graph structure, rather than global
characteristics of graphs (e.g., diameter, mean shortest path, etc.). We decided against language features that
would allow queries to express transitive closure or calculate distances between arbitrary nodes. Given our
current experience, we feel that these features would be complex to implement and would be rarely used.

For similar reasons, we designed the language to query and update graphs containing links with multiple
attributes. Many existing languages either assume that links contain no data or that they have a fixed attribute
structure (e.g., a single type attribute). For example, languages for querying XML data often have these
restrictions. Our data model allows links to have an arbitrary number of set-valued attributes, and QGRAPH
provides the means to query and update such attributes.

14

S Implementation and Future Work

We are currently implementing QGRAPH within PROXIMITY, our system for relational knowledge discov-
ery. Our current implementation of PROXIMITY stores all data in relational database tables. Separate tables
are used for objects, links, and individual attributes. Collections of subgraphs are stored in an additional
table. When PROXIMITY processes a QGRAPH query, it is compiled to a set of SQL queries that insert rows
into the subgraph table based on the query and the contents of the object, link, and attribute tables.

Our current implementation processes only simple queries that contain a single core vertex connected to
one or more edges and vertices. Each edge and non-core vertex can be annotated or unannotated. Vertices
and edges can be constrained via boolean expressions on attributes. Several advanced language features
remain to be implemented, including subqueries and global constraints. Despite the limitations of our current
implementation, many useful queries can be expressed within this subset of QGRAPH. For example, many
of the queries we make for sampling and attribute calculation can be made with this subset of the language.
Our work on the implementation continues, and we expect to complete all features of the current version of
the language in the next three months.

In addition, we are currently characterizing the complexity of the QGRAPH queries. This work aims to
improve the efficiency of query processing and provide feedback to users as they construct and edit queries.
We hope to develop a small number of statistics about databases that can be easily maintained and used
to improve the efficiency of query processing. Finally, we hope to examine the effect of particular graph
topologies on the efficiency of QGRAPH queries. Recently, attention has focused on so-called “small world”
topologies (Watts 1999), which exhibit both small diameter and a high degree of clustering. We conjecture
that such topologies will create substantially different demands on query processing than more uniform
topologies.

Acknowledgments

We thank Jen Neville for her timely assistance with the examples presented in this paper, and Matt Cornell
for his skillful implementation of the QGRAPH query processor. We have also benefited from their in-
sightful comments in the early design phase of QGRAPH. Examples in this paper are drawn from queries
on the Internet Movie Database (www . imdb.com) and the Movies database from the UCI KDD Archive
(kdd.ics.uci.edu). This research is supported by DARPA/AFOSR under contract No. F30602-00-2-
0597 and DARPA/AFRL under contract No. F30602-99-C-0061. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.
The views and conclusions contained in this paper are solely those of the authors.

References

Abiteboul, S., D. Quass, J. McHugh, J. Widom, and J. Wiener (1997). The Lorel query language for
semistructured data. International Journal on Digital Libraries, 1(1):68-88.

Alashqur, A.M.,Su,S.Y.W.,and Lam, H. (1989). OQL: A query language for manipulating object-oriented
databases. Proceedings of the VLDB Conference (pp. 433-442).

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., and Slattery, S. (1998).
Learning to extract symbolic knowledge from the World Wide Web. Proceedings of the Fifteenth National
Conference on Artificial Intelligence (pp. 509-516). Menlo Park: AAAI Press.

15

De Raedt, L., and S. Kramer (Eds.) (2000). Proceedings of the Workshop on Attribute Value Learning
and Relational Learning: Crossing the Boundaries, Workshop held at the 17th International Conference on
Machine Learning, Stanford.

Getoor, L. and D. Jensen (2000). Learning Statistical Models from Relational Data: Papers from the AAAI
2000 Workshop. Menlo Park: AAAI Press. Technical Report WS-00-006.

Getoor, L., N. Friedman, D. Koller, and A. Pfeffer (2001). Learning probabilistic relational models. In
Relational Data Mining (S. Dzeroski and N. Lavrac, Eds.). Springer-Verlag.

Gyssens, M., J. Paredaens, J. Van den Bussche, and D. Van Gucht (1994). A graph-oriented object database
model. IEEE Transactions on Knowledge and Data Engineering 6(4): 572-586.

Jensen, D. and J. Neville (2001). Subgraph Sampling for Relational Data. In Computing Science and
Statistics: Proceedings of the Thirty-Third Symposium on the Interface. Volume 33 (forthcoming).

Kleinberg, J (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM 46.
Muggleton, S. (Ed.) (1992). Inductive Logic Programming. San Diego: Academic Press.

Neville, J., and D. Jensen (2000). Iterative classification in relational data. In Learning Statistical Models
Jfrom Relational Data: Papers from the AAAI 2000 Workshop (L. Getoor and D. Jensen, Eds.). Menlo Park:
AAAI Press. Technical Report WS-00-006.

Wasserman, S. and K. Faust (1994). Social Network Analysis: Methods and Applications. Cambridge:
Cambridge University Press.

Watts, D. (1999). Small Worlds. Princeton, NJ: Princeton University Press.

16

