
1

Scalable Consistency Maintenance in Content Distribution Networks
Anoop Ninan, Purushottam Kulkarni, Prashant Shenoy, Krithi Ramamritham and Renu Tewari

Department of Computer Science, IBM Research Division,
University of Massachusetts Amherst T J. Watson Research Center

agn,purukulk,shenoy,krithi @cs.umass.edu tewarir@us.ibm.com

Abstract—In this paper, we argue that cache consistency
mechanisms designed for stand-alone proxies do not scale to
the large number of proxies in a content distribution network
and are not flexible enough to allow consistency guarantees
to be tailored to object needs. To meet the twin challenges
of scalability and flexibility, we introduce the notion of coop-
erative consistency along with a mechanism, called clustered
leases, to achieve it. By supporting consistency semantics
and by using a single lease for multiple proxies, clustered
leases allows the notion of leases to be applied in a flexible,
scalable manner to CDNs. Further, the approach employs
application-level multicast to propagate server notifications
to proxies in a scalable manner. We implement our approach
in the Apache web server and the Squid proxy cache and
demonstrate its efficacy using a detailed experimental eval-
uation. Our results show a factor of 3.2 reduction in server
message overhead and a 20% reduction in server state space
overhead when compared to original leases, albeit at an in-
creased inter-proxy communication overhead.

I. INTRODUCTION

A. Motivation

HE past decade has seen a dramatic increase in the
popularity and use of the World Wide Web. Numer-

ous studies have shown that web accesses tend to be non-
uniform in nature, resulting in (a) hot-spots of server and
network load and (b) increases in the latency of web ac-
cesses. Content distribution networks have emerged as a
possible solution to these problems. A content distribu-
tion network (CDN) consists of a collection of proxies that
act as intermediaries between the origin servers and the
end clients. Proxies in a CDN cache frequently accessed
data from origin servers and serve requests for these ob-
jects from the proxy closest to the end-user. By doing so, a
CDN has the potential to reduce the load on origin servers
and the network and also improve client response times.
Architectures employed by a CDN can range from tree-

like hierarchies [22] to clusters of cooperating proxies
that employ content routing to exchange data [11]. From
the perspective of endowing proxies with content, prox-
ies within a CDN can either pull web content on-demand,
prefetch popular content, or have such content pushed to
them [9]. Mechanisms for locating the best proxy to service
a user request range from Anycast to DNS-based selection.
Regardless of the exact architecture and mechanisms, an
important issue that must be addressed by a CDN is that

of consistency maintenance. Since web pages tend to be
modified at origin servers, cached versions of these pages
can become inconsistent with their server versions. Using
inconsistent (stale) data to service user requests is undesir-
able, and consequently, a CDN should ensure the consis-
tency of cached data with the server by employing suitable
techniques.
The problem of consistency maintenance is well-studied

in the context of a single proxy and several techniques such
as time-to-live (TTL) values [4], client-polling, server-
based invalidation [3], adaptive refresh [18], and leases
[21] have been proposed. In the simplest case, a CDN can
employ these techniques at each individual proxy—each
proxy assumes responsibility for maintaining consistency
of data stored in its cache and interacts with the server to
do so independently of other proxies in the CDN. Since
a typical content distribution network consists of hundreds
or thousands proxies, requiring each proxy to maintain con-
sistency independently of other proxies is not scalable from
the perspective of the origin servers (since the server will
need to individually interact with a large number of prox-
ies). Further, consistency mechanisms designed from the
perspective of a single proxy (or a small group of prox-
ies) do not scale well to large CDNs. The leases approach,
for instance, requires the origin server to maintain per-
proxy state for each cached object. This state space can be-
come excessive if proxies cache a large number of objects
or some objects are cached by a large number of proxies
within a CDN. These arguments motivate the need for de-
signing novel consistency mechanisms that scale to large
CDNs and is the focus of this paper.

B. Research Contributions
In this paper, motivated by the need to reduce the load at

origin servers and to scale to a large number of proxies, we
(a) argue that delta consistency semantics are appropriate
for CDNs because they allow the tailoring of consistency
guarantees to the nature of objects and their usage, and
(b) introduce the notion of cooperative consistency along
with a mechanism, called clustered leases, to achieve it.
Cooperative consistency enables proxies to cooperate with
one another to reduce the overheads of consistency main-
tenance. By supporting delta consistency semantics and
by using a single lease for multiple proxies, our clustered
leases mechanism allows the notion of leases to be applied
in a scalable manner to CDNs. Another advantage of our
approach is that it employs application-level multicast to

2

propagate server notifications of modifications to objects,
which reduces server overheads. We address the various
design issues that arise in a practical realization of clus-
tered leases and then show how to implement the approach
in the Apache web server and the Squid proxy cache using
HTTP/1.1. Finally, we experimentally demonstrate the ef-
ficacy of our approach using trace-driven simulations and
the prototype implementation. Our results show that clus-
tered leases can reduce the number of server messages by
a factor of 3.2 and the server state by 20% when compared
to original leases, albeit at an increased proxy-proxy com-
munication overhead.
The rest of this paper is structured as follows. Section II

defines the problem of consistency maintenance in CDNs
and presents our clustered leases approach. We examine
various design issues in instantiating clustered leases in
Section III. Section IV discusses the details of our proto-
type implementation. Section V presents our experimental
results. Section VI discusses related work, and finally, Sec-
tion VII presents some concluding remarks.

II. CACHE CONSISTENCY IN CDNS: SEMANTICS,
MECHANISMS, AND ARCHITECTURE

A. Delta Consistency: Consistency Semantics for Cached
Objects

Objects cached within a content distribution network
need different levels of consistency guarantees depending
on their characteristics and user preferences. For instance,
users may be willing to receive slightly outdated versions of
objects such as news stories and sports scores but are likely
to demand the most up-to-date versions of “critical” objects
such as financial information and stock prices. Typically,
the stronger the desired consistency guarantee for an ob-
ject, the higher the overheads of consistency maintenance.
For reasons of flexibility and efficiency, rather than provid-
ing a single consistency semantics to all cached objects, a
CDN should allow the consistency semantics to be tailored
to each object or a group of related objects.
One possible approach for doing so is to employ -

consistency semantics [20]. -consistency requires that a
cached version of an object is never out-of-date by by more
than time units with its server version. The value of
determines the nature of the provided guarantee—the larger
the value of , the weaker the consistency guarantee (since
the object could be out of date by up to time units at any
instant). An advantage of -consistency is that it provides
a quantitatively characterizable guarantee by virtue of pro-
viding an upper bound on the amount by which a cached
object could be stale (unlike certain mechanisms that only
provide qualitative guarantees). Another advantage is that
it provides the flexibility of choosing a different value of
for each object, allowing the guarantee to be tailored on

a per-object basis. Finally, strong consistency—a guaran-
tee that a cached object is never out-of-date with the server

version—is a special case of -consistency with .1
Due to the above advantages, in the rest of this paper,

we assume a CDN that provides consistency semantics.
Next, we present a consistency mechanism to provide
consistency and then discuss its implementation in a CDN.

B. Clustered Leases: A Cache Consistency Mechanism for
CDNs

A consistency mechanism employed by a CDN should
satisfy two key requirements: (i) scalability: the approach
should scale to a large number of proxies employed by
the CDN and should impose low overheads on the origin
servers and proxies, and (ii) flexibility: the approach should
support different levels of consistency guarantees. We now
present a cache consistency mechanism that satisfies these
requirements. Our approach is based on a generalization of
leases [10].
In the original leases approach [10], the server grants a

lease to each request from a proxy. The lease denotes the
interval of time during which the server agrees to notify
the proxy if the object is modified. After the expiration
of the lease, the proxy must send a message requesting a
lease renewal. More formally, a lease is a tuple
maintained by the server, where the server agrees to notify
proxy of all updates to an object during time interval
.
The leases approach has two drawbacks from the per-

spective of a CDN. First, leases provide strong consistency
semantics by virtue of notifying a proxy of all updates to
an object. Maintaining strong consistency is expensive, and
as argued earlier, not all objects cached within a CDN need
such stringent guarantees. Second, leases require the server
to maintain state for each proxy caching the object; the
resulting state space overhead can be excessive for large
CDNs. Thus, leases do not scale well to busy servers and
large CDNs.
To alleviate these drawbacks, we generalize leases along

two dimensions:
1. We add a rate parameter to leases that indicates the
rate, , at which the server agrees to notify a proxy of
updates to an object. This enhancement allows a server
to relax the consistency semantics provided by leases from
strong consistency to -consistency—a proxy is notified
of updates at most once every time units (instead of after
every update) and no later than time units after an update.
Using reverts to the original leases approach (i.e.,
strong consistency), while a non-zero value of allows
the server to provide weaker consistency guarantees (and
correspondingly reduces the number of notifications sent
to a proxy).
2. We allow a server to grant a single lease collectively to a
group of proxies, instead of issuing a separate lease to each

Implementing true strong consistency requires the server to first send
notifications to all proxies caching the object; the write commits only
after receiving acknowledgements from these proxies.

3

individual proxy.2 For each cached object, the proxy group
designates a distinguished proxy, referred to as the leader,
that is responsible for all lease-related interactions with the
server. The leader of a group manages the lease on behalf
of all the proxies in the group. Moreover, the server only
notifies the leader upon an update to the object; the leader
is then responsible for propagating this notification to other
proxies in the group that are caching the object. Such an
approach has two significant advantages: (i) it reduces the
the amount of state maintained at a server (by using a sin-
gle lease to represent a proxy group instead of an individual
proxy); and (ii) it reduces the number of notifications that
need to be sent by the server (by offloading some of notifi-
cation burden to leader proxies).
We refer to the resulting approach as clustered leases.

Formally, a clustered lease is a tuple where
the server agrees to notify the leader representing proxy
group of any updates to the object once every
time units for an interval . While leases is a pure server-
based approach to cache consistency, clustered leases re-
quire both the server and the proxy (especially the leader)
to participate in consistency maintenance. Hence this ap-
proach is more scalable when compared to original leases,
and thus, more suited to CDN environments.

C. Clustered Leases in a CDN: System Model
Before discussing the implementation of clustered leases

in CDNs, we present the system model assumed in this
paper. A content distribution network is defined to be a
collection of proxies that cache content stored on origin
servers. For the purposes of maintaining consistency, prox-
ies within the CDN are assumed to be partitioned into non-
overlapping groups referred to as clusters (issues in doing
so are beyond the scope of this paper). Proxies within a
cluster are assumed to cooperate with one another for main-
taining consistency of cached objects. Cooperative consis-
tency is orthogonal to cooperative caching—whereas the
latter involves sharing of cached data to service user re-
quests, the former involves cooperation solely for maintain-
ing consistency of data cached by proxies within a cluster.
Further, the organization of proxies into clusters is limited
to consistency maintenance; a different overlay topology
can be used for exchanging data and meta-data within the
CDN. Each proxy in a cluster is assumed to maintain a di-
rectory of all objects cached in the cluster. The directory
maintains the leader information for each cached object
(and possibly other information required by the CDN). Sev-
eral directory schemes such as hint caches [19] and bloom
filters [6] have been proposed to efficiently maintain such
information; any such scheme suffices for our purpose.

D. Operations of Clustered Leases in a CDN
Clustered leases can be instantiated as follows (see Fig-

ure 1 and Table I).
In addition, it is also possible for a lease to collectively represent

multiple objects. Techniques for doing so are studied in [21].

Fig. 1. Interactions between servers (S), leaders (L) and proxies
(P) in clustered leases

First-time requests: When an object is requested for the
first time within the cluster (i.e., upon a global cache miss),
a leader needs to be chosen for the object. The proxy
receiving the request runs a leader selection algorithm to
pick a leader.3 Different cached objects can have differ-
ent leaders—the clustered leases approach attempts to dis-
tribute leader responsibilities across proxies in the cluster
for load balancing purposes. Specific techniques for leader
selection are discussed in Section III-A. After choosing a
leader, the proxy issues a HTTP request to the server and
piggybacks the leader information with the message; the
message can also include optional information such as the
desired rate parameter . The requested object is then sent
to the proxy and the lease is sent to the leader along with
a copy of the object. As will be clear later, the presence
of a copy of the object at the leader enables us to perform
certain optimizations. The leader proxy then broadcasts a
directory update to all proxies in the cluster indicating it is
the designated leader for the object. The leader also main-
tains amembership list consisting of all proxies caching the
object; the list is initialized to the proxy that requested the
object. Figure 1(a) depicts these interactions.
From this point on, the leader is responsible for renewing

the lease on behalf of proxies in the cluster and for termi-
nating the lease when proxies are no longer interested in
the object. Policies for doing so are discussed in Section
III-C.
Subsequent requests: For each subsequent request to the

object within the cluster, a proxy first examines its local
cache. In the event of a cache hit, the proxy services the
request using locally cached data. In the event of a local
cache miss, the proxy can pursue one of several possible
alternatives. It can either fetch the object from the server or
consult its directory for a list of proxies caching the object
and fetch the object from one such proxy (the exact proxy
that is chosen may depend on the information in the direc-
tory and metrics such as proximity). Since the focus of our
work is on consistency maintenance, the clustered leases
approach does not mandate the use of cooperative caching
or require a particular policy for cooperative caching—the
proxy is free to fetch the object from from any entity that

It is also possible to do a DNS lookup and have the DNS server pick a
leader. We also note that leader selection in CDNs is distinct from leader
election algorithms developed by the distributed systems community.

4

TABLE I
DESIGN CONSIDERATIONS

Event Design Decision Discussed in
Issue a new Choose a leader Sec III-A
lease Choose and Sec III-B
Lease expiry Lease renewal policy Sec III-C
Object changes Send update or invalidate Sec III-D
Global cache miss see “issue a new lease” event –
Local cache miss Update membership list Sec II-D

has the object, including the server. The only requirement
imposed by clustered leases is that the proxy notify the
leader of its interest in the object. The leader then updates
the membership list for the object and starts forwarding any
subsequent notifications from the server to this proxy. Fig-
ure 1(b) depicts these interactions.
Observe that a proxy can optimize the overheads of the

above operations by just fetching the object from the leader.
Since the leader always caches the most recent version of
the object (recall that a copy of the object was sent to the
leader), this eliminates the need to send two different mes-
sages, one to fetch the object and the other to notify the
leader of this fetch.
Updates to the Object: In the event the object is modi-

fied at the server, each proxy caching the object needs to be
notified of the update. To do so, the origin server first noti-
fies the leader of each cluster caching the object, subject to
the rate parameter . The notification consists of either a
cache invalidate or a new version of the object (see Section
III-D for details). Each leader in turn propagates this notifi-
cation to every proxy in the cluster caching the object (i.e.,
to all proxies in the membership list). Depending on the
type of notification, proxies then either invalidate the ob-
ject in the cache or replace it with the newer version. Our
approach is equivalent to using application-level multicast
for propagating notifications; the membership list and the
leader constitute the “multicast group”. Figure 1(c) depicts
these interactions.
For simplicity, this paper assumes that the application-

level multicast tree within a cluster is only two levels deep,
spanning from servers to leaders and from leaders to prox-
ies. Whereas a two level hierarchy suffices for small clus-
ters (likely to be the common case), a multi-level tree is
needed for large clusters. The clustered leases algorithm
can be recursively extended to multi-level hierarchies as
well. Due to space constraints, the generalized approach
is discussed briefly in Section VII; the complete algorithm
for multi-level clusters can be found in [17].

III. DESIGN CONSIDERATIONS FOR CLUSTERED
LEASES

In this section, we discuss various design issues that arise
when implementing clustered leases in a CDN. These in-
clude leader selection, selecting the lease duration and no-
tification rate, policies for lease renewal and sending inval-

idations versus updates (see Table I).

A. Leader Selection
We consider two different policies for choosing a leader

when an object is accessed for the first time within the clus-
ter. In the simplest case, the proxy that receives this request
can become the leader for the object. Since many web ob-
jects tend to be accessed by only one user [2], an advan-
tage of this approach is that only one proxy is involved in
consistency maintenance for such objects (since the proxy
caching the object is also the leader). This results in lower
communication overheads. A drawback, however, is that
the approach has poor load balancing properties—leader
responsibilities can become unevenly distributed if a small
subset of proxies receive a disproportionate number of first-
time requests. Additionally, if several proxies receive si-
multaneous first-time requests to an object, it is possible
for multiple proxies to declare themselves the leader. Such
duplication can be prevented using tie-breaking rules or by
having the server perform additional error checks before
issuing a new lease to a cluster.
An alternate approach is to employ a hashing function to

determine the leader for an object. To illustrate, the leader
could be determined based on the MD5 hash of the ob-
ject URL (i.e., mod , where is the
number of proxies in the cluster). More complex hashing
functions can take other factors, such as the current load on
proxies, into account in addition to the URL [13]. An ad-
vantage of the hash-based approach is that it has good load
balancing properties and results in a more uniform distribu-
tion of leader responsibilities across proxies. A limitation
though is that it can impose a larger communication over-
head than our first approach. Since the leader can be poten-
tially different from proxies caching the object, additional
directory updates, server notifications and lease manage-
ment messages need to be exchanged between these prox-
ies, which increases communication overheads. Section V
quantitatively evaluates the tradeoffs of these two policies.

B. Choosing the Lease Duration and Notification Rate
Two key factors that influence the performance of clus-

tered leases are the lease duration and the rate param-
eter . In a recent work, we investigated techniques for
determining the lease duration for the original leases ap-
proach and proposed policies for computing based on
parameters such as object popularity, write frequency, and
server/network load [5]. Since similar policies can be em-
ployed for computing the lease duration in CDNs, we do
not consider this issue any further.
The notification rate can either be specified by the user

(or proxy), or computed by the server. In the former ap-
proach, the end-user or the proxy specifies a tolerance
based on the desired consistency guarantee The server then
grants a lease with this if it has sufficient resources to
meet the desired tolerance. In the latter approach, the server
computes an appropriate notification rate based on various

5

system parameters while issuing a new lease. For instance,
the server could compute based on the server or network
load. Rather than rejecting a request for a lease during peri-
ods of heavy load, the server could continue to grant leases
but provide weaker guarantees (i.e., use a larger). To
illustrate,

load LWM
LWM load HWM
load HWM

(1)

where is a constant and and denote low
and high watermarks (thresholds), respectively. Here the
server notifies leaders of all updates at low loads. is
increased linearly with the load at moderate utilizations and
is finally set to the lease duration at high loads (is the least
possible notification rate, since at least one update should
be sent in each lease duration).

C. Eager versus Lazy Lease Renewals
Another important issue in clustered leases is the pol-

icy for lease renewals. Since the leader manages the lease
on behalf of all proxies in the cluster, it needs to decide
whether and when to renew a lease. Two different renewal
policies are possible:
Eager renewals: In this policy, the leader continuously

renews the lease upon each expiration until it is explicitly
notified by proxies not to do so. This approach requires
each proxy to track its interests in locally cached objects
and send a “terminate lease” message to the leader when it
is no longer interested in an object. For instance, a proxy
can send such a message if it hasn’t received a request for
an the object for a long time period. Upon receiving such
a message, the leader removes that proxy from its mem-
bership list and stops forwarding server notifications to the
proxy. Consequently, a “terminate lease” message is equiv-
alent to a “leave” message from the application-level multi-
cast group. When the membership list becomes empty (i.e.,
all proxies caching the object send terminate messages), the
leader stops renewing the lease. It then broadcasts a direc-
tory update to all proxies indicating that it has relinquished
leader responsibilities for the object.
Lazy renewals: Here, the leader does not renew a lease

upon expiration. Instead it sends a “lease expired” message
to all proxies caching the object; proxies in turn flag the
object as “potentially stale”. Upon receiving a subsequent
request for this object, a proxy sends an if-modified-since
(IMS) request to the server. The server then issues a new
lease for the object, if one hasn’t already been issued, and
responds to the IMS request by sending a new version of
the object if the object was modified in the interim. The
lease, if one is issued, is sent to the leader.
In the lazy approach, proxies do not need to track their in-
terest in each cached object. Moreover, since leases are
renewed lazily and only when an object is accessed, the
approach is efficient for less popular objects (e.g., “one-
timers”). The drawback though is that each request re-

ceived after a lease expiration involves an additional inter-
action with the server (in the form of an IMS request). In
contrast, the eager approach only involves leader-server in-
teractions after lease expiry; individual proxies do not need
to interact with the server, which reduces server load.

D. Propagating Invalidates versus Updates

Upon modification to an object, the server notifies each
leader proxy with an active lease (subject to the rate param-
eter). As explained earlier, this notification consists of
either a cache invalidate or an updated (new) version of the
object. Sending a cache invalidate causes a proxy to delete
the object from its cache; a subsequent request requires the
proxy to fetch the object from the server (or from another
proxy in the cluster if that proxy has already fetched the
updated object). Thus, each request after a cache invalidate
incurs an additional delay due to this remote fetch. No such
delay is incurred if the server sends out the new version of
the object upon a modification.4 In such a scenario, subse-
quent requests can be serviced using locally cached data. A
drawback, however, is that sending updates incurs a large
network overhead (especially for large objects). This ex-
tra effort is wasted if the object is never subsequently re-
quested at the proxy. Consequently, cache invalidates are
better suited for less popular objects, while updates can
yield better performance for frequently requested objects.
Observe that sending invalidates is equivalent to a lazy up-
date policy at proxies, while sending new versions of ob-
jects amounts to eager updates.
A server can dynamically decide between invalidates and

updates based on the characteristics of an object. One pol-
icy is to send updates for objects whose popularity exceeds
a threshold and to send invalidates for all other objects. Al-
though a server does not have access to the actual request
stream at proxies to compute object popularities, it can es-
timate the popularity based on lease renewals. A continu-
ously renewed lease is an indication that the object is pop-
ular within a cluster. Hence, the server can send updates
for objects whose leases have been renewed at least con-
secutive times (is a threshold). Using causes only
updates to be sent, whereas causes only invalidates
to be sent; an intermediate value of allows the server to
dynamically choose between the two based on the object
popularity. A more complex policy is to take both popular-
ity and object size into account. Since large objects impose
a larger network transfer overhead, the server can use pro-
gressively larger thresholds for such objects (the larger a
object, the more popular it needs to be before the server
starts sending updates).

IV. IMPLEMENTATION CONSIDERATIONS

We have implemented the clustered leases algorithm in
the Squid proxy cache and the Apache web server. Our

Security and authentication issues in doing so are beyond the scope
of this paper.

6

Fig. 2. Implementation architecture. The figure depicts the ar-
chitecture of a single cluster. Each CDN will have a number
of such clusters.

implementation is based on HTTP/1.1, which allows user
defined extensions as part of the request/response header.
We use these header extensions to enable proxies to request
and renew leases from a server. To do so, lease requests
and responses are piggybacked onto normal http requests
and responses. Lease renewals and invalidation requests
are also sent as request header extensions. The exact HTTP
grammar for lease requests, renewals and invalidations is
described in [17].
For simplicity and modularity, our implementation sep-

arates lease management functionality from the serving of
web requests. Lease management at the server is handled
by a separate lease server (leased). Such an architecture
results in a clean separation of functionality between the
Apache server, which handles normal http processing, and
the lease server which handles lease processing and main-
tains all the state information (see Figure 2). Whenever the
Apache server receives a lease grant/renewal request piggy-
backed on a http request, it forwards the former to the lease
server for further processing. The lease duration and the
rate parameter are computed using policies listed in [5]
and Section III-B. The http response is then sent back to
the client (proxy), while the lease is sent to the leader. In-
validation requests are handled similarly—the web server
forwards the request to the lease server, which then sends
invalidations to all leaders with active leases. Leaders for-
ward the invalidations to all proxies caching the object as
described below.
Analogous to the web server architecture, our imple-

mentation in Squid consists of two components–the proxy
cache and the lease handler—that separate the caching
functionality from lease management. The lease handler
() can either act as a leader or as a client. In the former
case, the lease handler maintains a membership list of all
proxies caching the object and forwards notifications from
the server to this list. The lease handlers at member proxies
are responsible for tracking object popularities and send-
ing lease terminate messages to the leader for cold objects.
Server failures and/or network partitions can be handled
at the leader by exchanging heartbeat messages [15] or by
maintaining a persistent TCP connection with the server—

a broken connection indicates a failure and requires cached
objects to be invalidated within time units.

V. EXPERIMENTAL EVALUATION

In this section, we demonstrate the efficacy of clus-
tered leases by (i) comparing the approach with the origi-
nal leases from the perspective of scalability, (ii) evaluating
the tradeoffs of various policies described in section III and
(iii) quantifying the implementation overheads of clustered
leases. We employ a combination of trace-driven simula-
tion and prototype evaluation for our experiments. We use
simulations to explore the parameter space along various
dimensions and use our prototype to measure implementa-
tion overheads (an aspect that simulations don’t reveal). In
what follows, we first present our experimental methodol-
ogy and then our experimental results.

A. Experimental Methodology

A.1 Simulation Environment

We have designed an event-based simulator to evaluate
the efficacy of clustered leases. The simulator simulates
one or more proxy clusters within a CDN. Each proxy is
assumed to receive requests from a large number of clients.
Cache hits are serviced using locally cached data. Cache
misses involve a remote fetch and are serviced by fetching
the object from the leader (if one exists) or from the server.
The directory maintained by the proxy is used to make this
decision. Our simulator supports all policies discussed in
Section III for leader selection, server notifications, lease
renewals and rate computations.
Our experiments assume that each proxy maintains a

disk-based cache to store objects. We assume each proxy
cache is infinitely large—a practical assumption, since disk
capacities today are in tens of gigabytes and a typical proxy
can employ multiple disks. Data retrievals from disk (i.e.,
cache hits) are modeled using an empirically derived disk
model with a fixed OS overhead added to each request.
For cache misses, data retrieval over the network are mod-
eled using the round trip time, available network bandwidth
and the object size. The network latency and bandwidth
between proxies and leaders is assumed to be 75ms and
500KB/s, while that between proxies and origin servers is
250ms and 250 KB/s. Although actual network latencies
and bandwidths vary with network conditions, the use of
this simple network model suffices for our purpose (due to
our focus on consistency maintenance rather than end-user
performance). Due to space constraints, we only present
results for a single cluster; we performed experiments with
multiple clusters to verify that each cluster behaves simi-
larly to other clusters from the perspective of consistency
maintenance (see [17]). Unless noted otherwise, our ex-
periments assume a default cluster size of 10 proxies and a
lease duration of 30 minutes. We also assume that a leader
always caches a copy of the object and this copy is updated
upon a modification.

7

TABLE II
TRACE CHARACTERISTICS

Trace Num Duration Unique Num
Requests (secs) Objects Writes

DEC 750000 42031 276914 17126
NLANR 750000 56518 393853 14385

A.2 Workload Characteristics

The workload for our experiments is generated using
traces from actual proxies, each containing several hun-
dred thousand requests. We use two different traces for
our study; the characteristics of these traces are shown in
Table II. The same set of traces are used for our simula-
tions as well as our prototype evaluation (which employs
trace replay). Each request in the trace provides informa-
tion such as the time of the request, the requested URL, the
size of the object, the client ID, etc. We use the client ID to
map each request in the trace to a proxy in the cluster—all
requests from a client are mapped to the same proxy. To de-
termine when objects were modified, we considered using
the last modified times as reported in the trace. However,
these values were not always available. Since the modi-
fication times are crucial for evaluating cache consistency
mechanisms, we employ an empirically derived model to
generate modification times. Based on observations in [1],
[12], we assume that 90% of all web objects change very
infrequently (i.e., have an average lifetime of 60 days). We
assume that 7% of all objects are mutable (i.e., have an av-
erage lifetime of 20 days) and the remaining 3% objects
are very mutable (i.e., have a lifetime of 5 days). We par-
tition all objects in the trace into these three categories and
generate write requests and last modified times using ex-
ponentially distributed lifetimes. The number of synthetic
writes generated for each trace is shown in Table II.
Next, we describe our experimental results.

B. Impact of Leader Selection Policies

To evaluate leader selection policies, we simulated
a cluster of ten proxies that employed two different
policies—the hash based policy and the “first proxy is
leader” policy. Our experiment assumed eager lease re-
newals and notifications in the form of invalidations (lead-
ers were sent updates, leaders forwarded invalidations). For
each policy, we measured how evenly leader responsibili-
ties were distributed across proxies in the cluster as well
as the total control message overhead imposed. Figure 3(b)
and (c) depict our results, while Figure 3(a) shows the num-
ber of requests processed by each proxy in the cluster (we
only plot results for one of the traces due to space con-
straints. See [17] for complete results). As expected, the
“first proxy is leader” scheme suffers from load imbalances
since some proxies service a larger number of requests (and
assume leader responsibilities for a correspondingly larger
number of first-time requests). The figure also shows that

there is a factor of 1.5 difference in load between the most
heavily-loaded and the least-loaded proxy. In contrast, the
hash-based policy shows better load balancing properties
but imposes a larger communication overhead (since lead-
ers can be different from proxies caching the object, re-
quiring additional message exchanges). As shown in Fig-
ure 3(c)), the total increase in control message overhead is
about 10% and the increase is primarily due to the lease
terminate messages sent from proxies to leaders. Since a
small (10%) increase in message overhead is tolerable to
correct a potentially large imbalance (factor of 1.5), our re-
sults indicate that the hash-based leader selection is a better
policy than the “first proxy is leader” approach.

C. Eager versus Lazy Renewals
Next, we evaluate the impact of eager and lazy lease re-

newals on performance. Like in the previous experiment,
we assume a cluster of ten proxies, each with an infinite
cache. We vary the lease duration from 5 minutes to 5 hours
and measure its impact on lazy and eager renewals. Figure
4 depicts our results. As shown on Fig 4(a), depending on
the lease duration, eager renewals result in a 15-63% im-
provement in cache hit ratios; the hit ratio is lower for lazy
renewals since requests arriving after a lease expiry trigger
an IMS request to the server. The higher hit ratios for eager
renewals are at the expense of an increased control mes-
sage overhead (see Figure 4(b)). The message overhead is
33-175% higher and is primarily due to extra lease renew
and terminate messages. The overhead for both policies de-
creases with increasing lease durations (since longer leases
require fewer renewals). Finally, Figure 4(c) plots the state
space overhead of the two policies; as expected, eager re-
newals result in a larger number of active leases at any in-
stant, causing a 3-9% increase in state space overhead.
An important factor governing the performance of the

eager renewals is the lease termination policy—the policy
employed by member proxies to notify the leader that they
are no longer interested in the object. As shown in Figure 5,
the larger the period of inactivity before which a “terminate
lease” message is sent, the larger the state space overhead
at the server and the larger the control message overhead
(since the leader continuously renews leases until such a
message is received).
Thus, the two policies show a clear tradeoff—eager re-

news yield better hit ratios and response times at the ex-
pense of a larger control message overhead and a slightly
larger state space overhead. Depending on whether user
performance or network/server overheads are the primary
factors of interest, one policy can be chosen over the other.

D. Server Notifications: Invalidate versus Updates
To understand the implications of sending invalidates

versus updates, we considered a policy where the server
sent updates for objects whose leases were renewed at least
times in succession; invalidates were sent for the remain-

ing objects. We varied from 0 to and measured its

8

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10

Re
qu

es
t D

ist
rib

ut
io

n
ac

ro
ss

 p
ro

xie
s

Proxy ID

Request Distribution (DEC Trace)

Request Distribution

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7 8 9 10

Lo
ad

 D
ist

rib
ut

io
n

ac
ro

ss
 p

ro
xie

s

Proxy ID

Load Distribution (DEC Trace)

First Proxy-based
Hash-based

0

2e+06

4e+06

6e+06

8e+06

1e+07

Total
msgs

Terminate
msgs

ExtraLease
msgs

Nu
m

be
r o

f M
es

sa
ge

s

Control Message Overhead (DEC)

First Proxy-based
Hash-based

(a) Request distribution (b) Leader distribution (c) Control message overhead

Fig. 3. Comparison of leader selection schemes

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

Hi
t R

at
io

 (%
)

Lease Duration (mins)

Hit Ratio (DEC Trace)

Eager Renewal
Lazy Renewal

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

5 30 60 300

Nu
m

be
r o

f C
on

tro
l m

es
sa

ge
s

Lease Duration (mins)

Message Overhead(DEC Trace)

Eager Renewal
Lazy Renewal

0

20000

40000

60000

80000

100000

120000

140000

5 30 60 300

Nu
m

be
r o

f L
ea

se
s

Lease Duration (mins)

Server State Space Overhead (DEC)

Eager Renewal
Lazy Renewal

(a) Cache hit ratio (b) Control message overhead (c) State space overhead

Fig. 4. Comparison of lease renewal policies.

0

2e+06

4e+06

6e+06

8e+06

1e+07

0 30 60 90 120 150

N
u

m
b

e
r

o
f

C
o

n
tr

o
l M

e
ss

a
g

e
s

Inactivity duration (min)

Msg. overhead, 30min leases(DEC)

CtrlMsg

(a) Control message overhead

0
10000
20000
30000
40000
50000
60000
70000
80000

0 30 60 90 120 150

N
u

m
b

e
r

o
f

L
e

a
se

s

Inactivity duration (min)

State Space Overhead, 30min leases(DEC)

Server Space

(b) State space overhead
Fig. 5. Evaluation of lease termination policies.

impact on the cache hit ratio and the control message over-
head. Figure 6 shows that the notification policy has a neg-
ligible impact on the cache hit ratio (% reduction as
increases from 0 to). The control message overhead

increases slightly (by about 1%) with increasing . This
small increase is due to an increase in the number of in-
validates, each of which triggers an HTTP request upon a
subsequent user request. To better understand this behav-
ior, Figure 6(c) plots the percentage of updates and inval-
idates sent for different s; the percentage of objects ac-
cessed subsequent to a server notification is also shown.
As shown, when (i.e., the invalidate-only sce-
nario), only 5% of the invalidated objects are accessed sub-

sequently. This indicates that a vast majority of the objects
are never accessed after a server notification and sending
updates for such objects results in wasted network trans-
fers. Thus, our results show that updates should be sent
only for very popular objects, which can be achieved us-
ing a large . More generally, our analysis of read and
write frequencies has shown that updates are advantageous
when the write frequency is (i) less than 3 times the read
frequency for small objects and (ii) less than the read fre-
quency for large objects [17].

E. Impact of the Notification Rate

To understand the impact of the notification rate, we var-
ied from 5 seconds to 30 minutes and measured the im-
pact on the number of notifications (invalidates) sent by the
server (the leases duration was fixed at 30 minutes). As
shown in Figure 7(a), the number of notifications drops by
an order of magnitude with increasing s. This indicates
that an appropriate choice of can result in substantial
savings at the server, albeit at the expense of weaker con-
sistency guarantees. Next we considered a policy where
the server computes based on the load as explained in
Equation 1; the server state space overhead is used as an
indicator of the load. Note that is computed based on the
server load only at the beginning of a lease; once picked,
does not change for that lease until lease expiry. We var-

9

0

5

10

15

20

25

30

35

U(0) 2 5 11 21 I(inf.)

Hi
t R

at
io

 (%
)

Renewal threshold (tau)

Hit Ratio (NLANR Trace)

Hit Ratio

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

U(0) 1 2 4 I(inf.)

Nu
m

be
r o

f M
es

sa
ge

s

Renewal threshold (tau)

Message Overhead (NLANR)

CtrlMsg
FileTransfers

0

20

40

60

80

100

U(0) 1 2 4 I(inf.)

Pe
rc

en
ta

ge
 o

f M
es

sa
ge

s

Renewal threshold (tau)

Updates-Invalidates Propagated (NLANR)

Updates
Invalidates

Subseq. access

(a) Cache hit ratio (b) Message overhead (c) Num. of notifications

Fig. 6. Comparison of server notification policies.

ied the high and low watermarks in Eq. 1 and measured its
impact on . Figure 7(b) shows the variation in the server
load over a 15 hour period, while Figure 7(c) plots the cor-
responding value of used for new leases and renewals.
The figure shows that the value of closely matches the
variation in the server load. Further, depending on the low
and high watermarks used, the server uses during
periods of low load and increases to its maximum value
(i.e.the lease duration) during periods of heavy load. Thus,
an intelligent choice of helps provide the desired level of
consistency guarantee while lowering server overheads.

F. Scalability Issues: Comparison with Original Leases

To compare clustered leases with original leases, we con-
sider a cluster of 20 proxies. To permit a fair comparison,
other than the cache consistency mechanism, all simula-
tion parameters are kept identical across our two experi-
ments, the first involving clustered leases and the second
employing the original leases approach. The lease duration
is set to 30 minutes and . Figure 8 and Table III
depict our results. As expected, the number of leases man-
aged by the server decreases when clustered leases is used
(since each lease represents multiple proxies, fewer leases
are needed). The reduction in state space overhead is 20%
(see Table III); the reduction is smaller than expected since
a large number of objects in the workload are requested by
only one proxy and clustered lease do not provide any ben-
efits in such scenarios. The number of server notifications,
however, is smaller by a factor of 3.2 indicating that clus-
tered leases successfully offload the burden of sending no-
tifications to leader proxies, thereby improving scalability.
These reductions come at the expense of having to main-
tain a directory of cached objects and an increased control
message overhead due to directory updates. This results in
a factor of 6.6 increase in message overhead for a 20 proxy
cluster—the directory update overhead is proportional to
the number of proxies in the cluster when application-level
multicast (i.e., unicast) is used (see Figure 8). The use of
IP-multicast, instead of application-level multicast, to send
directory updates can help lower this overhead (since IP-
multicast is more efficient than unicast). Also note that

TABLE III
COMPARISON WITH ORIGINAL LEASES (DEC)

Clustered Leases
Leases

Total no. of leases 311600 387210
Num active leases 23038 28653
Server notifications 2267 7319

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

Original
Leases

Clustered
(App. MCast)

Clustered
(IP Multicast)

Nu
m

be
r o

f C
on

tro
l M

es
sa

ge
s
Cluster vs. Original Leases (DEC)

Original Leases
Clustered (App. MCast)
Clustered (IP Multicast)

Fig. 8. Control message overhead for clustered and original
leases.

each unique value associated with an object needs its
own application level multicast group; a server can reduce
the number of multicast groups by restricting itself to a
small set of s. Thus, we conclude that clustered leases
do indeed enhance scalability from the perspective of the
server (in terms of the state space and server message over-
head), albeit at the expense of increased leader-proxy com-
munication overhead.

G. Implementation Overheads

Whereas the preceding sections examined the efficacy of
clustered leases using simulations, in this section we study
the overheads of various operations needed for consistency
maintenance. The testbed for our experiments consists of
the lease-enhanced Apache web server, a cluster of four
Squid proxy caches and a client workload generator, all of
which run on a cluster of Linux PCs. Each PC in our exper-

10

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800

No
tif

ica
tio

ns

Delta (sec)

Fixed notification rate (NLANR)

Number of notifications

0

5000

10000

15000

20000

25000

30000

0 100 200 300 400 500 600 700 800 900 1000

Nu
m

be
r o

f L
ea

se
s

Time (mins)

Server Load (NLANR Trace)

Server Load

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 900 1000

De
lta

 (s
ec

)

Time (mins)

Server Load-based rate (NLANR)

HWM=9000 leases
HWM=12000 leases
HWM=18000 leases

(a) Effect of (b) Server load (c) Computed

Fig. 7. Impact of the notification rate.

TABLE IV
IMPLEMENTATION OVERHEADS (NLANR)

Proxy Overheads Server Overheads
Event Time (ms) Event Time (ms)

Dir. lookup 0.052 Grant lease 0.64
Dir. update 0.056 Renew lease 0.28
Dir. broadcast 2.7 Inv. to Leader 3.36
Renew lease 2.65
Inv. to Proxy 0.565

1

10

100

1000

10000

1 2 3 4

Nu
m

be
r o

f o
bj

ec
ts

Membershiplist size

Size of member lists (NLANR)

of objects

Fig. 9. Distribution of membership list sizes.

iment is a 700MHz Pentium III with 512MB RAM, inter-
connected by 100 Mb/s switched ethernet. The client work-
load generator employs trace replay and uses the traces de-
scribed in Table II. To do so, it maps each URL in the trace
to a unique object stored on the server of approximately the
same size. Further, like in our simulations, each end-host
in the trace is bound to a fixed proxy cache using a hashing
function. The proxy and the server maintain consistency
using clustered leases as described in Section IV. We mea-
sured the overhead of various lease management operations
at the server and the proxies over the duration of the trace.
Table IV and Figure 9 list our results. As shown in the ta-
ble, the overhead of granting and renewing leases is very
small (order of milliseconds). Similarly directory updates
and server notifications (invalidates) can be propagated ef-
ficiently to proxies in the cluster (clearly these overheads

depend on the number of proxies in the cluster and num-
ber of proxies that caching an object, respectively). Figure
9 plots the distribution of membership list sizes at leader
proxies. As shown, the number of active leases in the clus-
ter at any instant is in the order of few thousands. Moreover
most leases have only one proxy in the membership list; the
membership list has multiple proxies only for a small num-
ber of (popular) objects. Together, these results indicate
that clustered leases can be implemented efficiently in web
servers and CDN proxies.

VI. RELATED WORK

Recently several cache consistency mechanisms have
been developed for single proxies [3], [4], [5]; as argued
earlier, these mechanisms do not scale well to proxies in
a CDN. Three recent efforts have focused on the issue of
scalability [15], [21], [22]. We discuss each in turn.
A cache consistency mechanism for hierarchical proxy

caches was discussed in [22]. The approach does not pro-
pose a new consistency mechanism, rather it examines is-
sues in instantiating existing approaches into a hierarchical
proxy cache using mechanisms such as multicast. They ar-
gue for a fixed hierarchy (i.e., a fixed parent-child relation-
ship between proxies), whereas we allow different proxies
to be leaders for different objects. In addition to consis-
tency, they also consider pushing of content from servers
to proxies.
Mechanisms for scaling leases are studied in [21]. The

approach assumes volume leases, where each lease repre-
sents multiple objects cached by a stand-alone proxy. In
contrast, we focus on CDNs and employ clustered leases
where a lease can represent multiple proxies. They examine
issues such as delaying invalidations until lease renewals,
whereas we employ a formal model— consistency—for
propagating invalidations. consistency allows a separa-
tion of the notification frequency from the lease duration,
providing additional flexibility to the server. They also dis-
cuss prefetching and pushing of lease renewals. Our re-
newal policies are more complex, since leaders need to in-
teract with member proxies to decide on renewals.
The web cache invalidation protocol (WCIP) is an at-

11

tempt to standardize the propagation of server invalidations
using application-level multicast [15]. The focus of this ef-
fort is on a protocol for propagating invalidations; the ap-
proach is agnostic of the actual cache consistency mecha-
nism employed by proxies. In contrast, our work focuses
on cache consistency mechanisms and semantics, and we
are less concerned about the protocol (i.e., message for-
mats) used for sending invalidations. Indeed, our proto-
type implementation could have employed WCIP instead
of HTTP for sending invalidations.
Finally, numerous studies have focused on specific as-

pects of cache consistency or content distribution. For
instance, piggybacking of invalidations [14], the use of
deltas for sending updates [16], an application-level multi-
cast framework for internet distribution [8] and the efficacy
of sending updates versus invalidates [7] have all been stud-
ied. These efforts complement our work and can coexist
with our approach.

VII. CONCLUDING REMARKS

In this paper, we argued that existing consistency tech-
niques are not suitable for CDN environments. To alleviate
this drawback, we proposed the notion of cooperative con-
sistency and a mechanism called clustered leases to achieve
it. Clustered leases meets the twin goals of flexibility and
scalability by (i) employing consistency semantics, (ii)
using a single lease to represent multiple proxies and (iii)
using application-level multicast to propagate server noti-
fications. We implemented our approach into a prototype
web server and proxy cache and demonstrated its efficacy
via an experimental evaluation. Although our experiments
assumed a single cluster with a two-level hierarchy, neither
our approach nor our experiments are limited by these as-
sumptions. The generalized clustered leases approach and
experimental results for multiple proxy clusters and multi-
level hierarchies are presented in [17]. Briefly, multi-level
hierarchies require multiple proxies (not just the leader) to
participate in propagating server notifications. The exact
benefits for origin servers and the overheads of inter-proxy
communication depend upon the span-out of a node, the
depth of the hierarchy and the size of the cluster [17].

REFERENCES
[1] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web

Caching and Zipf-like Distributions: Evidence and Implications.
In Proceedings of Infocom’99, New York, NY, March 1999.

[2] M. Busari and C. Williamson. On the Sensitivity of Web Proxy
Cache Performance to Workload Characteristics. In Proceedings
of IEEE Infocom’01, Anchorage, Alaska, April 2001.

[3] P. Cao and C. Liu. Maintaining Strong Cache Consistency in the
World-Wide Web. In Proceedings of the Seventeenth International
Conference on Distributed Computing Systems, May 1997.

[4] V. Cate. Alex: A Global File System. In Proceedings of the 1992
USENIX File System Workshop, pages 1–12, May 1992.

[5] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive Leases: A Strong
Consistency Mechanism for the World Wide Web. In Proceedings
of the IEEE Infocom’00, Tel Aviv, Israel, March 2000.

[6] L. Fan, P. Cao, J. Almeida, and A Z.Broder. Summary Cache: A
Scalable Wide-area Web Cache Sharing Protocol. In Proceedings

ACM SIGCOMM’98, Vancouver, BC, pages 254 – 265, September
1998.

[7] Z. Fei. A Novel Approach to Managing Consistency in Content
Distribution Networks. In Proceedings of the 6th Workshop on
Web Caching and Content Distribution, Boston, MA, June 2001.

[8] P. Francis. Yoid: Extending the Internet Multicast Architec-
ture. Technical report, AT&T Center for Internet Research at ICSI
(ACIRI), April 2000.

[9] S. Gadde, J. Chase, and M Rabinovich. Web Caching and Content
Distribution: A View From the Interior. In Proceedings of the 5th
International Web Caching and Content Delivery Workshop, 2000.

[10] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency. In Proceed-
ings of the Twelfth ACM Symposium on Operating Systems Princi-
ples, pages 202–210, 1989.

[11] M. Gritter and DR. Cheriton. An Architecture for Content Routing
Support in the Internet. In Proceedings of the USENIX Symposium
on Internet Technologies,San Francisco, CA, March 2001.

[12] J. Gwertzman and M. Seltzer. World-Wide Web Cache Consis-
tency. In Proceedings of the 1996 USENIX Technical Conference,
January 1996.

[13] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide
Web. In Proceedings of the Twenty-ninth ACM Symposium on The-
ory of Computing, 1997.

[14] B. Krishnamurthy and C. Wills. Study of Piggyback Cache Vali-
dation for Proxy Caches in the WWW. In Proceedings of the 1997
USENIX Symposium on Internet Technology and Systems, Mon-
terey, CA, pages 1–12, December 1997.

[15] D. Li, P. Cao, and M. Dahlin. WCIP: Web Cache Invalidation
Protocol. IETF Internet Draft, November 2000.

[16] J C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy.
Potential Benefits of Delta Encoding and Data Compression for
HTTP. In Proceedings of ACM SIGCOMM Conference, 1997.

[17] A. Ninan. Maintaining Cache Consistency in Content Distribu-
tion Networks. Master’s thesis, Department of Computer Science,
Univ. of Massachusetts, June 2001.

[18] R. Srinivasan, C. Liang, and K. Ramamritham. Maintaining Tem-
poral Coherency of VirtualWarehouses. In Proceedings of the 19th
IEEE Real-Time Systems Symposium (RTSS98), Madrid, Spain,
December 1998.

[19] R. Tewari, M. Dahlin, H M. Vin, and J. Kay. Beyond Hierarchies:
Design Considerations for Distributed Caching on the Internet. In
Proceedings of the 19th International Conference on Distributed
Computing Systems (ICDCS), June 1999.

[20] B. Urgaonkar, A. Ninan, M. Raunak, P. Shenoy, and K. Ramam-
ritham. Maintaining Mutual Consistency for Cached Web Objects.
In Proceedings of the 21st International Conference on Distributed
Computing Systems (ICDCS-21), Phoenix, AZ, pages 371–380,
April 2001.

[21] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering Server-
driven Consistency for Large-scale Dynamic Web Services. In
Proceedings of the 10th World Wide Web Conference, Hong Kong,
May 2001.

[22] H. Yu, L. Breslau, and S. Shenker. A Scalable Web Cache Con-
sistency Architecture. In Proceedings of the ACM SIGCOMM’99,
Boston, MA, September 1999.

