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Abstract

Current solution and modelling approaches to Markov Decision Processes (MDPs)
scale poorly with the size of the MDP. Model minimization methods address this issue
by exploiting redundancy in problem specification to reduce the size of the MDP model.
Symmetries in a problem specification can give rise to special forms of redundancy that
are not exploited by existing minimization methods. In this work we extend the model
minimization framework proposed by Dean and Givan to include symmetries. We base
our framework on concepts derived from finite state automata and group theory.
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Current solution and modelling approaches to Markov Decision Processes (MDPs)
scale poorly with the size of the MDP. Model minimization methods address this issue
by exploiting redundancy in problem specification to reduce the size of the MDP model.
Symmetries in a problem specification can give rise to special forms of redundancy that
are not exploited by existing minimization methods. In this work we extend Dean
and Givan’s [5] model minimization framework to include symmetries. We base our
framework on concepts derived from finite state automata and group theory.

1 Introduction

Markov Decision Processes (MDPs) [21] are a popular way to model stochastic sequential
decision problems. But most modelling and solution approaches to MDPs suffer from the
fact that they scale poorly with the size of the problem. While modelling real-world sce-
narios, often there is a lot of redundancy in the MDP model. Model minimization methods
introduced by Dean and Givan [5] exploit such redundancy in the problem specification to
derive smaller models, i. e., models with fewer states, by aggregating “equivalent” states.

Figure 1 illustrates the model minimization process. The gridworld on the left is the
given MDP. This has the usual gridworld dynamics with 4 deterministic actions {N, S, E, W }.
Each cell in the grid corresponds to a state of the MDP. All the states in the top row are
goal states with identical rewards for reaching them. Dean and Givan consider two states
equivalent if the effect of each of the available action is equivalent in both the states and
if no essential information is lost by aggregating them. In this example, the states in each
row can be considered equivalent to one another.®> The resulting reduced model is just a
column of states as depicted in the right of Figure 1. It is evident that solving this reduced
model will give us a solution to the original problem.
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8We formalize the notion of equivalence later. Informally, in this special case, the states in a row are
considered equivalent since each action changes the distance to goal by the same amount. Action N takes
you one step closer to the goal. Action S takes you one step farther in most cases and keeps you at the same
distance in the bottom row. Actions E and W keep you at the same distance from the goal.
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Figure 1: Illustration of Model Minimization in a Simple Gridworld

A special form of redundancy arises in cases where the problem is symmetric and Al
researchers have been exploring ways to take advantage of that (e. g., refs. [1, 20]). Sym-
metries in a problem specification naturally give rise to notions of equivalence. For example
consider another simple gridworld with usual dynamics, shown to the left in Figure 2. The
goal state is labelled G. Intuitively one can see that there is a symmetry about the NE-SW
diagonal. For example taking action E in state A is equivalent to taking action N in state
B, in the sense that they go to equivalent states that are one step closer to the goal. One
can say that states A and B are symmetrically equivalent. Dean and Givan’s model mini-
mization framework cannot accommodate such notions of equivalence and hence considers
this gridworld irreducible.* In this work we extend the model minimization framework to
include such notions of symmetrical equivalence. A reduced model of the gridworld under
our framework is shown to the right in Figure 2.
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Figure 2: Model Minimization with Symmetric Equivalence

In the next section we present some basic concepts and notation. Then we discuss some
related work on minimization of different structures. In Section 4 we present an extension
to Dean and Givan’s model minimization framework using the notion of homomorphisms
derived from classical finite state automata (FSA) [11] theory. Next we develop a formal
definition of symmetry in MDPs and show how it relates to our model minimization frame-
work. We conclude with a discussion of certain specializations of our framework, some
implications and future directions for research.

“States in the same row in the gridworld of Figure 1 are also symmetric to each other. While Dean and
Givan’s framework does accommodate some cases of symmetries, their theory does not explicitly consider
symmetries of MDPs.



2 Basics and Notation

2.1 Markov Decision Processes

A Markov Decision Process is a tuple (S, A, ¥ P, R), where S is the set of states, A is the
set of actions, ¥ C S x A is the set of admissible state-action pairs, P : ¥ x S — [0,1] is
the transition probability function with P(s,a,s’) being the probability of transition from
state s to state s’ under action a, and R : ¥ — IR is the expected reward function, with
R(s,a) being the expected reward for performing action a in state s. We assume that the
rewards are bounded. Let A; = {a|(s,a) € ¥} C A denote the set of actions admissible in
state s. We assume that for all s € S, A; is non-empty. In this work we assume that the
set of states and set of actions are finite, but the language of homomorphisms we employ
extends to infinite spaces with little work.

A stochastic policy 7 is a mapping from ¥ to the real interval [0, 1] with >, 4 7(s,a) =1
for all s € S. For any (s,a) € ¥, 7(s, a) gives the probability of picking action a in state s.
The value of state s under policy 7 is the expected value of the discounted sum of future
rewards starting from state s and following policy 7 thereafter. The walue function V™
corresponding to a policy 7 is the mapping from states to their values under w. It can be
shown (e. g., ref. [2]) that V™ satisfies the Bellman equation:

VT(s)= > m(s,a) |R(s,a) +7 ) P(s,a,8)\V(s) |,

aGAs s'eS

where 0 < v < 1 is a discount factor. This formulation is known as the discounted sum of
rewards criterion.

Similarly, the value of a state-action pair (s, a) under policy 7 is the expected value of
the discounted sum of future rewards starting from state s, taking action a, and following 7
thereafter. The action value function Q™ corresponding to a policy 7 is the mapping from
state-action pairs to their values and satisfies [2]:

Q"(s,a) = R(s,a) +v ) P(s,a,8)V7(s"),
s'eS

where 0 < v < 1 is a discount factor.

The solution of an MDP is an optimal policy 7 that uniformly dominates all other
possible policies for that MDP. It can be shown [2] that the value functions for all optimal
policies is the same. We denote this optimal value function by V*. It satisfies the Bellman
optimality equation:

V*(s) = max Y P(s,a,s') [R(s,a) +yV*(s')] .
a€4s s'eS

Similarly the optimal action value function Q* satisfies:

* — P ! |:R * (! ! .
Q'(e10) = X2 Plssare) [Rlov) + 7 g @'(¢,a)



These two optimal value functions are related by V*(s) = max, Q*(s,a).

Typically MDPs are solved by approximating the solution to the Bellman optimality
equations (e. g., refs. [2, 23]). Given the optimal action value function, an optimal policy
is given by

P(s,0) > 0 if Q*(s,a) = maxges, Q(s,a)
= 0 otherwise.

2.2 Partitions, maps and equivalence relations

A partition B of a set X is a collection of disjoint subsets, or blocks, b; C X such that
U;bs = X. For any @ € X, [z]g denotes the block of B to which & belongs. Let B; and
Bs be partitions of X. We say that B; is coarser than Bs (or Bj is a refinement of Bi),
denoted By > By, if for all 2,2’ € X, [z]g, = [2'], implies [z]g = [2'] 5,. The relation >
is a partial order on the set of partitions of X.

To any partition B of X there corresponds an equivalence relation, =,, on X with
x =, «' if and only if [z]; = [2'] 5 for all ,2’ € X. Any function f from a set X into a set
Y defines an equivalence relation on X with 2 =, ' if and only if f(z) = f(z'). We say that
z and z' are f-equivalent when x =, z', and we denote the partition of X corresponding to
this equivalence relation by By.

Let B be a partition of Z C X x Y, where X and Y are arbitrary sets. For any z € X,
let B(x) denote the set of distinct blocks of B containing pairs of which x is a component,
that is, B(z) = {[(w, )]z | (w,y) € Z,w = x}. The projection of B onto X is the partition
B|X of X such that for any z,2’ € X, [z]g x = [2']px if and only if B(z) = B(2'). In

other words, z =, . 2’ if and only if every block of B containing a pair in which z (z') is

B|X
a component also contains a pair in which ' (z) is a component.® Note that if By and Bs
are partitions of Z, then B; > Bj implies that B;|X > Bs|X.

A partition of an MDP M = (S, A, ¥ P, R) is a partition of ¥. Given a partition B of
M, the block transition probability of M is the function T : ¥ x B|S — [0,1] defined by
T(s,a, [s’]B‘S) = ZSHE[SI]B\S P(s,a,s"). In other words, when applying action a in state s,
T(s,a,[s']ps) is the probability that the resulting state is in the block [s] 5jg. It is clear
that since B|S is a partition of S, each of these block transition probabilities is in the

interval [0, 1].

Example 1

Let M = (S,A, U, P R) be an MDP with S = {s1,s92,83}, A = {a1,a2} and ¥ =
{(s1,01), (s1,a2), (s2,a1), (s2,a2),(s3,a1)}. We give the projections under both our defi-
nition and the traditional one (see footnote).

’The more traditional definition of a projection is: z =px z' if and only if (z,y) =, (z',y) forally € Y.
This projection is always a refinement of the our projection. We need the modified definition to facilitate
the development of some concepts below.



i) If B) = {{(Sl,al), (s2,a2)}, {(s1,02), (s2,01), (83,611)}},
then B1|S = {{31,32}, {33}} (ours); {{31}, {32},{33}} (traditional).

i) It By = {{(s2,a1)},{(s1,01), (51, 02), (52, 02), (s3,01)} },
then By|S = {{51,53}, {82}}; {{51}7 {52}7{53}}-

iii) If By = {{(51,a1), (s2,02)}, {(s1,02), (53,a1)},{(827a1)}}7
then Bs|S = {{51}, {52},{83}}; {{51}, {82},{53}}‘

3 Related Work

There has been extensive work on minimization of FSAs [11]. Minimization techniques
derive the “smallest” model that is equivalent to the given model. This simplifies the
search for an efficient implementation. See Hartmanis and Stearns [11] for more details.
Similar techniques exist for Probabilistic Automata [19], Probabilistic Transition Systems
[17], Concurrent Processes [18, 7], Finite Markov Chains [15] and Markov Processes [22].

Dean, Givan and colleagues have explored minimization of MDPs in detail. Dean and
Givan [5] introduce a framework for model minimization and explore its relation to some
existing algorithms. They also give algorithms for finding reduced models of MDPs with
special representations. They base their definition of equivalence on the notion of homoge-
neous partitions of the state set. This concept of equivalence is related to the substitution
property of finite state machines [11] and the notion of lumpability of markov chains [15].
Givan et al. [9] explore minimization based on certain relaxed equivalence criteria, and
Dean et al. [6] extend the framework to facilitate elimination of redundant actions. Givan
et al. [8] formulate the model minimization problem in terms of stochastic bisimulations
derived from the notion of bisimulations of concurrent processes [12, 17, 18] and establish
all their previous results in this framework.

Minimization techniques frequently exploit symmetries of the underlying structure (e. g.,
see ref. [14] for FSAs, ref. [10] for Markov Chains and refs. [13, 7] from model checking for
concurrent processes). But there has not been much work on exploiting symmetries of
MDPs for minimization. Recently Zinkevich and Balch [24] defined symmetries of MDPs
and derived algorithms that take advantage of such symmetries. But their work did not
relate to the existing research on model minimization.

In this article we extend the model minimization framework of Dean and Givan to
include symmetrical equivalence. This gives us additional power and sometimes enables
greater reduction as outlined in the introduction. We base our framework on the notion of
MDP homomorphisms derived from the concept of homomorphisms of FSAs. Traditionally
symmetries are defined via groups of morphisms (e. g. ref. [16]) and hence employing
homomorphisms makes it easier to include symmetries in our framework.

In the next section we present extensions of some of the key results in Givan et al. [8]
using our framework. In Section 5 we define symmetries of MDPs using group theoretic



concepts and show that our extended minimization framework can exploit symmetrical
equivalence.

4 Homomorphisms and model minimization

In this section we extend the concept of machine homomorphism from the FSA literature
to MDPs and develop a notion of equivalence of states and state-action pairs based on
this extended homomorphism. Informally, a homomorphism of a system with transition
dynamics is a transformation that preserves some aspects of the dynamics.

For example, consider two MDPs M = (S, A, ¥, P,R) and M’ = (S’ A, ¥' P' R')
that have deterministic actions. By abusing notation, we employ the shorthand P(s,a)
to denote sy in S, such that P(s,a,s1) = 1. A map f: S — S’ is a homomorphism if
P'(f(s),a) = f(P(s,a)) and R(s,a) = R'(f(s),a) for all (s,a) € ¥. The homomorphism f
is said to commute with the dynamics of the MDPs. We can depict this using commutative
diagrams as follows:

P(-
s AL s R(,a) _
1 2 $ ——— T
f f RI('aa)
PI('aa) !
sy /> s 51

Figure 3: Homomorphisms Represented by Commutative Diagrams

More generally a homomorphism from an MDP M to an MDP M’ is a map from ¥ to ¥’
that commutes with the transition dynamics and preserves the reward function:

Definition: An MDP homomorphism h from an MDP M = (S, A, ¥, P,R) to an MDP
M' = (S'"A', U P R') is a surjection from ¥ to ¥', defined by a tuple of surjections
(f,{gsls € S}), with h((s,a)) = (f(s),gs(a)), where f : S — S and g5 : As — A,f(s) for
s € S, such that:

P'(f(s),gs(a),f(s')) = T(s,a, [sl]Bh|S)a Vs,s' € S,a € A, (1)
R'(f(s),g9s(a)) = R(s,a), Vs € S,a € A (2)

We call M’ the homomorphic image of M under h. We use the shorthand h(s, a) to denote
h((s,a)).

Let Py, : S — [0,1] be the distribution over states resulting from taking action a in
state s, 1. e., Ps(s1) = P(s,a,s1) for any s1 in S. The aggregation hPs,, of Py, over h,
is the distribution over S such that hPs,(s') = >3, cf-1(s) Psa(51) for each s’ € S'. Here



f7Y(s'") = {s € S|f(s) = s'} is the pre-image of s’ in S. A homomorphism commutes
with the one step dynamics of the MDP in the sense that the aggregation hPs, is the same
distribution as P}( 5)9s(a) for all (s,a) € ¥. We can depict this using commutative diagrams
as follows:

P
_ R
(3,‘1) Py, (s,a) —
h agg. h R
(s'a') ——— Ply (s'a)

Figure 4: An MDP Homomorphism as Commutative Diagrams

Apart from the preservation of block transition behaviour, the usefulness of homomorphisms
lie in the fact that they help establish the following equivalences.

Definition: State action pairs (s1,a;) and (s2,a2) € ¥ are equivalent if hP; 4, = hPs,q,,
i. e., the aggregation of their next state distributions is the same. Note that any h-equivalent
state-action pairs are also equivalent in this sense.

Definition: States s; and sy € S are equivalent if for every action a; € A,,, there is an
action ag € Ay, such that (s1,a1) and (s2,az) are equivalent and for every action as € As,,
there is an action a; € Ay, such that (s1,a1) and (s2,az) are equivalent.

These notions of equivalence lead us to the following theorem on optimal value equivalence.
This theorem is an extension of the optimal value equivalence theorem developed in Givan
et al [8] for stochastic bisimulations.

Theorem 1: (Optimal value equivalence) Let M' = (S’ A’, ¥', P’  R') be the homomorphic
image of the MDP M = (S, A, ¥, P, R) under the MDP homomorphism h = (f,{gs|s € S}).
For any (s,a) € ¥, Q*(s,a) = Q*(f(s),9s(a)).

Proof: (Along the lines of [8]) Let us define the m-step optimal discounted action value
function recursively for all (s,a) € ¥ and for all non-negative integers m as

Qm(s,a) = R(s,a) +v Z P(s,a,s1) max Qpm_1(s1,a1)
S1ES a1€4s

and set @_1(s1,a1) = 0. Letting V;,,(s1) = maXg, e A,, Qm(s1,a1), we can rewrite this as:
Qm(s,a) = R(s,a) +7 Y [P(s,a,51)Vimn-1(s1)].
s1E€S

Now we prove by induction on m that the theorem is true. For the base case of m = 0,
we have that Qo(s,a) = R(s,a) = R'(f(s),g9s(a)) = Qo(f(s),gs(a)). Now let us assume



that Q;(s,a) = Q;(f(s),gs(a)) for all values of j less than m and all state-action pairs in
V. Now we have,

Qm(s,a) = R(s,a)+7 Y P(s,a,8)Vm-1(s')
s'eS
= R(s,a)+y >, T(sa,l[s] Bh|S)Vm_1(s') (since h is a homomorphism)

[s']3, |s€BnlS

= R'(f(s),95(a)) +7 D P'(f(5),95(a), s")Vim-1(s) (")

s'esS’
= Qmu(f(s),9s(a))
Since R is bounded it follows by induction that Q*(s,a) = Q*(f(s), gs(a)) for all (s,a) € V.
O

Corollary:
1. For any h-equivalent (s1,a1), (s2,a2) € ¥, Q*(s1,a1) = Q*(s2, az).
2. For all equivalent s1,s2 € S, V*(s1) = V*(s2).
3. Forall s € S, V*(s) = V*(f(s)) .

Proof: Corollary 1 follows from Theorem 1. Corollaries 2 and 3 follow from Theorem 1 and
the fact that V*(s) = max,ca, Q*(s,a). O

The above theorem establishes optimal value equivalence. As shown by Givan et al.
[8], this is not a sufficient notion of equivalence. In many cases even when the optimal
values are equal, the policies might not be related and hence we cannot easily transform
solutions of the image MDP to the original MDP. The optimal policies of an MDP and its
homomorphic images are closely related and the following establishes the correspondence.

Definition: Let M’ be the image of M under homomorphism h. For any s € S, g;'(a’)
denotes the set of actions that have the same image a’' € A'f( 5) under g;. Let m be a

stochastic policy in M'. Then 7 lifted to M is the policy w4 such that for any a € g;!(a'),
(s, a) = 7(f(s),a") [ g5 (a")].

Note: It is sufficient if 35 - -1, mm(s,a) = w(f(s),a’), but we use the above definition to
make the lifted policy unique.

Example 2

Consider MDP M from example 1 and M’ = (S’ A", ¥' P' /R') with ' = {s,s5}, A" =
{a),ab} and O’ = {(s},d}), (s],ah), (sh,a))}. Let h = (f,{gs|s € S}) be a surjection from
M to M’ defined by

f(s1) =51 f(s2) = 55 f(s3) = 55
gs,(a1) = a3 gs,(a1) = aj gss(a1) = aj
9s1 (a2) = all Gso (a2) = all



Let 7 be a policy in M’ with
w(s},a) =0.6 w(s},ah) =04 m(sh,a}) =1.0

Now = lifted to M, the policy w4, is derived as follows:

Tm(s1,a1) = mw(sh,ah) =0.4 Tm(s1,a2) = m(sh,a}) =0.6
Tm(s2,a1) = 7(sh,a})/2 =0.5 Tm(s2,a2) = w(sh,a})/2 =0.5
Tm(s3,a1) = m(sy,a1) = 1.0

Theorem 2: Let M' = (S', A", ¥’ P’ R') be the image of M = (S, A, ¥, P, R) under the
homomorphism h = (f,{gs|]s € S}). If 7* is an optimal policy for M', then 7%, is an
optimal policy for M.

Proof: Let 7* be an optimal policy in M'. Consider some (s,a) € ¥ such that 7*(f(s), gs, (a1))
is greater than zero. Then Q*(f(s1),9gs,(a1)) is the maximum value of the @* function in
state f(s1). From Theorem 1, we know that Q*(s,a) = Q*(f(s),gs(a)) for all (s,a) € V.
Therefore @Q*(s1,a;) is the maximum value of the Q* function in state s;. Thus a; is an
optimal action in state s; and hence 77, is an optimal policy for M. O

Theorem 2 establishes that an MDP can be solved by solving one of its homomorphic
images. To achieve the most impact, we need to derive the smallest possible homomorphic
image of the MDP, i. e., an image with the least number of admissible state-action pairs.
The following definitions help formalize this notion.

Definition: An MDP M is a minimal MDP if for every MDP M’ that is a homomorphic
image of M, there exists a homomorphism from M’ to M.

Definition: A minimal tmage of an MDP M is a homomorphic image of M that is also a
minimal MDP.

A minimal image of an MDP M is the smallest MDP whose solution can be lifted to yield
a solution to M. Finding a minimal image is the goal of model minimization. Since this
can be computationally prohibitive, we frequently settle for a reasonably reduced model,
even if it is not a minimal MDP.

4.1 Homomorphisms and Partitions

As mentioned earlier any map on a set induces a partition of the set. Thus a homomorphism
from M = (S, A, ¥, P,R) to M' = (S', A", ¥' P’ R') induces a partition on ¥. Classical
FSA literature employs such partitions of the state set in minimization of machines. There
are various algorithms for identifying a suitable partition that gives rise to a reduced image
of a machine. Dean and Givan [5] propose several such algorithms for MDP model mini-
mization and demonstrate that they are effective in finding minimal images. The basic idea
behind all these algorithms is to start with a very coarse partition satisfying some condi-
tions and successively refine it until one obtains a suitable partition that can be induced



by a homomorphism. In this section, we explore the relationship between partitions of ¥
and homomorphisms, and we establish conditions under which a partition corresponds to
a homomorphism. We can then extend algorithms that identify suitable partitions of S to
identify suitable partitions of V.

Definition: A partition B of an MDP M = (S, A, ¥, P, R) is said to be reward respecting
if B > B.% In other words B is reward respecting if (s1,a1) =5 (s2,a2) implies R(s1,a1) =
R(s2,az) for all (s1,a1),(s2,a2) € V.

Definition: A partition B of an MDP M = (S, A, ¥, P, R) has the stochastic substitu-
tion property if for all (s1,a1),(s2,a2) € ¥, (s1,a1) =, (S2,a2) implies T(sl,al,[s]B|5)
= T(s2,a2,[s]pg) for all [s]p 5 € B|S.

In other words, the block transition probability is the same for all state-action pairs in
a given block. A partition that satisfies the stochastic substitution property is an SSP
partition. This is an extension of the substitution property for finite state machines [11].
The SSP block transition probability is the function T, : B x B|S — [0,1], defined by
Ty([(s1,01)] 5, [slps) = T(s1,01,[s]p|s). This quantity is well-defined only for SSP parti-
tions.

Theorem 3: Let A be an MDP homomorphism from an MDP M = (S, A, ¥ P, R) to an
MDP M’ = (S', A", ¥' P' R'). Then By, the partition of ¥ induced by h, is a reward
respecting SSP partition.

Proof: Let h = (f,{gs|s € S}) be the homomorphism from M to M’'. We need to show
that the partition Bp, is a reward respecting SSP partition.

First let us tackle the stochastic substitution property. Let (s1,a1),(s2,a2) € ¥, be
h-equivalent. From the definition of a homomorphism we have that f(s;) = f(s2) = s € 5’
and gs, (a1) = gs,(a2) = o’ € Aj,. Thus, for any s € 5, T(s1,a1,[s]p,s) = P'(s',d', f(s)) =
T(s2,a2,[s]p,|s)- Hence By is an SSP partition.

From condition 2 in the definition of a homomorphism, it is clear that the partition
induced is reward respecting. O

Theorem 3 establishes that the partition induced by a homomorphism is a reward re-
specting SSP partition. But the converse of the theorem, that for every reward respecting
SSP partition there exists a homomorphism that induces it, is not true. The following ex-
amines how to construct a homomorphic image of an MDP given a reward respecting SSP
partition.

Definition: Let B be a reward respecting SSP partition of MDP M = (S, A, ¥, P, R).
Let n(s) be the number of distinct blocks of B that contain a state-action pair with s
as the state component and let {[(s,a;)]z|i = 1,2,---,7n(s)} be the blocks. Note that if
[s1]pjs = [s2]p)s then n(s1) = n(s2), hence the following is well-defined. The quotient
MDP M|B is the MDP (S', A", ', P, ') where, §' = B|S; A' = Uy, _cp|s 4]

where
5]B|S

SRecall, Bp is the partition of ¥ induced by the reward function.
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fs]B‘S = {ay, a3, -+, a;(s)} for each [s]p)g € BIS; P' is given by P,([S]B\Svaga [SI]B\S) =

Tp([(s,ai)]p , [s'] |s) and R' is given by R'([s]p s, a;) = R(s, a).

Theorem 4: Let B be a reward respecting SSP partition of MDP M = (S, A, ¥, P, R).
There exists a homomorphism from M to the quotient MDP M/B.

Proof: Given a reward respecting SSP partition B of M, we show by construction that
there exists a homomorphism & from M to the quotient MDP M/B = (S’ A", ¥’ P' R').

The homomorphism h = (f, {gs|s € S}) between M and M/B is given by f(s) = [s] 5
and gs(a) = a; such that T'(s,a,[s']gs) = P'([s]ps,as [s]5s) for all [s']gs € B|S. In
other words, if [(s,a)]p|g is the i-th unique block in the ordering used in the construction
of M/B, then gs(a) = a}. It is easy to verify that h is indeed a homomorphism. O

The partition induced on M by h, is only guaranteed to be a refinement of B and is
not always the same partition as B. In other words, B > Bp,. In fact By, is the least coarse
partition such that By|S = B|S, and M/B is the same MDP as M/Bj, up to a relabelling
of states and actions.

Partitions and minimal images

As we said earlier model minimization algorithms work by finding suitable partitions of an
MDP. As is evident now, by suitable partitions we mean reward respecting SSP partitions.
Here we explore the relationship between reward respecting SSP partitions and minimal
images of the MDPs

Definition: A partition B of an MDP M is the coarsest reward respecting SSP partition
of M if and only if for every reward respecting SSP partition B’ of M, B > B'.

It is easy to verify (by contradiction) that there exists an unique coarsest reward respecting
SSP partition for any MDP M. Intuitively one would expect the quotient MDP corre-
sponding to the coarsest reward respecting SSP partition of an MDP M to be a minimal
image of M. The following theorem states that formally.

Theorem 5: Let B be the coarsest reward respecting SSP partition of MDP M. The
quotient MDP M /B is a minimal image of M.

Proof: We defer the proof of this theorem to the next section, after we define composition
of homomorphisms.

Given an MDP M = (S, A, ¥, P, R) the outline of a basic model minimization algorithm
is as follows:

1. Start with any reward respecting partition of ¥. The most obvious choice is to pick
the one that is induced by the expected reward function R. This is the coarsest

possible reward respecting partition, but any suitable reward respecting partition will
do.
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2. Repeatedly refine the partition until all violations of the SSP property are resolved.
This process might take as much time as solving the original MDP itself. Therefore
most modifications of this basic algorithm focus on special representations of M that
make this step simpler. Let B be the resulting partition.

3. Form the quotient MDP M /B and identify the homomorphism between M and M/B.

Now one can solve M/B and lift the optimal policy to get an optimal policy for M.
Specific methods for refining the partitions can provide certain guarantees on the quality
of the SSP partition derived. For example, see ref. [5] for a method that guarantees finding
the coarsest reward respecting SSP partition.

5 Automorphisms and Symmetries

Recall the notion of symmetrical equivalence outlined in Section 3. That notion is a special
case of the notion of equivalence we developed in the previous section. In this section we
define symmetries using homomorphisms. We also borrow concepts from group theory to
define groups of symmetries and show that considering such groups together can lead to a
greater reduction in problem size. This is a special case of our earlier framework and unifies
the concepts of model minimization and exploiting symmetries.

Definition: An MDP homomorphism h = (f,{gs|s € S}) from MDP M = (S, A, ¥, P, R)
to MDP M' = (§' A", ¥', P' R') is an MDP isomorphism from M to M’ if and only if f
and gs, s € S, are bijective. M 1is said to be isomorphic to M’ and vice versa.

Note that property (1) of a homomorphism reduces to a simpler form in this case: P(s,a,s’) =
P'(f(s),gs(a), f(s')) for all s,s" € S and a € As;. Therefore, when two MDPs are isomor-

phic, it means that the MDPs are the same except for a relabelling of the states and the

actions. Thus we can transfer policies learned for one MDP to the other by simple trans-

formations. Also note that an MDP M is a minimal MDP if it is isomorphic to all of its

homomorphic images.

Definition: An MDP isomorphism from an MDP M = (S, A, ¥, P,R) to itself is an
automorphism of M.

Intuitively one can see that automorphisms can be used to describe symmetries in a
problem specification. In the gridworld example of Figure 2 a reflection of the states along
the NE-SW diagonal and a swapping of actions N and E and of actions S and W is an auto-
morphism. It is easy to see that this remapping captures the symmetry that we discussed
earlier. When we consider all such symmetries together we achieve greater reduction in the
size of an MDP.

Let the set of all automorphisms of an MDP M be denoted by AutM. This set forms
a group under composition of homomorphisms. This group is the symmetry group of M.
Let G be a subgroup of AutM denoted by G < AutM .
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The subgroup G defines an equivalence relation =, on ¥: (si,a;1) =, (s2,a2) if and
only if there exists h € G such that h(s1,a1) = (s2,a2). Note that since G is a subgroup,
this implies that there exists an A~ € G such that h!(s2,a2) = (s1,a1). Let B, be the
partition of ¥ induced by =;.

Lemma: For any h = (f,{gs|s € S}) € G, f(s) € [S]Bg\s-
Proof: The lemma follows from the properties of groups, namely closure and existence of
an inverse. O

Theorem 6: Let G < AutM be a group of automorphisms on M = (S, A, ¥, P, R). The
partition B, is a reward respecting SSP partition of M.

Proof: Consider (s1,a1), (s2,a2) € ¥ such that (s1,a1) =, (s2,a2). This implies that there
exists an h = (f,{gs|s € S}) in G such that f(s1) = s2 and g5, (a1) = as.

From the definition of an automorphism we have that for any s € S, P(s1,a1,8) =
P(s9,az, f(s)). Using the lemma, we have Ysrelsl, s P(s1,a1,8') = Ysrelsly s P(sg,a9,5").
Since we chose s arbitrarily, this holds for all s ingS . Hence B, is an SSP pgartition.

Again from the definition of an automorphism we have that R(s;, a;) = R(s2,a2). Hence

B_ is reward respecting too. |

g

Corollary: There exists a homomorphism hg from M to M/B,. We call M/B, the
G-reduced image of M.
This follows from Theorems 4 and 6. O

Corollary: An optimal policy for M/B, lifted to M is an optimal policy for M.
This follows from the above corollary and Theorem 2. O

Note that the converse of Theorem 6 is not true. It is possible to define SSP partitions
that are not generated by groups of automorphisms. We give an example in the next
section. Frequently the AutM-reduced image of an MDP M is a minimal image of M, as
in the example in the next section. Even when we employ some G < AutM we get useful
reductions. Thus model reduction can also be accomplished by finding the symmetry group
of an MDP.

Proof of Theorem 5

Definition: Let h = (f,{gs|s € S}) : M1 — My and b’ = (f',{g}|s € S}) : My — M3 be
two MDP homomorphisms. The composition of h and h' denoted by h o h' is a map from

My to M3, with (hoh')(s,a) = h'(h(s,a)) = (f’(f (8)),9}(5)(95 (a))) for all (s,a) € U. It
can be shown that h o b’ is a homomorphism from Mj to M3.

Theorem 5: Let B be the coarsest reward respecting SSP partition of MDP M =
(S, A, ¥, P, R). The quotient MDP M /B is a minimal image of M.

Proof: We will prove this by proving the contrapositive: if M/B is not a minimal image of
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M, then B cannot be the coarsest reward respecting SSP partition of M.

Let h be the homomorphism from M to M/B. If M/B is not a minimal MDP, then
there exists a homomorphism A’ (that is not an isomorphism) from M/B to some MDP
M'. Therefore there exists a homomorphism (h o h') from M to M'. From the definition
of composition, it is evident that By < B(pop)-

We need to show that B is not coarser than Bjop). In other words we need to show
that either B < Bpop) or they are not comparable. From the construction of a quotient
MDP it is clear that By|S = B|S since we use B|S as the states of M/B. Since M’ is
a homomorphic image of M/B but is not isomorphic to it, either (i) M’ has fewer states
than M/B or (ii) some states in M’ have fewer actions than M/B. In case (i) we have
that B|S < B(non)|S. We know that this implies that B is not coarser than B(jopry. In case
(ii) we have that B|S = B(pon)|S. Let [s]p (= [S]B(hoh’)) be a state with fewer admissible
actions in M’. This implies that s appears in fewer unique blocks in B(popry than in B.
Thus B < Bpep). Therefore B is not the coarsest reward respecting SSP partition. Hence
M/ B is a minimal image if B is the coarsest reward respecting partition of M. |

6 An Example

In this section we work out a slightly detailed example.

Consider the MDP M = (S, A, ¥, P,R) with S = {s1, 32,53,84}, A = {a1,a2}, ¥ =
S x A, P and R defined as follows:
P(s;,a1,s;) is given by the entry in the i-th row and j-th column of:

S1 S2 S3 S4
s1 0 0.8 0.2 0
82 0.2 0 0 0.8
S3 0.8 0 0 0.2
84 0 0 0 1.0

and P(s;,az,s;) is given by:

51 82 83 84
81 0 0.2 0.8 0
82 0.8 0 0 0.2
S3 0.2 0 0 0.8
84 0 0 0 1.0

R(s2,a1) = R(s3,a2) = 0.8 and R(s2,a2) = R(s3,a1) = 0.2. For all other values of i and j,
R(si,a;) equals zero. Figure 5 gives the transition graph of M.

Consider the partition B of M given by B = {{(sl,al), (s1,a2)}, {(s2,a1), (s3,a2)},

{(s2,a2), (s3,a1)}, {(s4,a1), (34,a2)}}. B is a reward respecting SSP partition. We can
derive the quotient MDP M /B = (S’ A", ¥’ P' R') as follows:
S'=BI|S = {{31}, {s2, 83}, {34}} are the states of M/B.
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Figure 5: Transition graph of example MDP M

Now, n(s1) = 1, n(s2) = n(s3) = 2 and n(s4) = 1. Hence we set A’{SI} = {a}}, AI{52 53} =
{ah,ab} and A,y = {al}.

Now P,({Sl}, a'l, {52, 83}) = P(Sl, ai, 52) +P(51, ai, 53) = P(Sl, as, 52) +P(51, as, 83) =1.0.
Proceeding similarly, we have

P'({s1},a,{s2,s3}) = 1.0 P'({s4},a},{s4}) =10
P'({s2,s3},a1,{s1}) = 0.8 P'({s2,83},a3,{s1}) = 0.2
P,({SQ’ '53}’ all’ {84}) =0.2 PI({s2a 83},(112, {'54}) =0.8

The probability of the each of the other transitions is zero. R'({s2,s3},a}) = 0.2, R'({s2, s3},
ab) = 0.8 and all other rewards are zero. Figure 6 shows the transition graph for M/B.

One can define a homomorphism (f, {gs|s € S}) from M to M/B as follows: f(s1) =
{s1}, f(s2) = {s2,s3}, f(s3) = {s2,83} and f(s4) = {sa}. gsi(ai) = gs,(ai) = ay, for
i=1,2, gsz(al) = 933(02) = a,2 and gs, (a2) = gss(al) = a’ll'

Let 7 be the identity map on ¥ and let h be an automorphism on M defined by:
h(s1,a1) = (s2,a2), h(s2,a1) = (s3,a2), h(s2,a2) = (s3,a1) and h(s4,a1) = (s4,a2). The set
of all automorphisms is given by AutM = {7, h} and with the composition operator is the
symmetry group of M. It is easy to see that B = B. Hence the M/B is the G-reduced
image of M. M/B is also the minimal image of M.

Consider the partition By = {{(sl,al)}, {(s1,a2)}, {(s2,a1), (s3,a2)}, {(s2,0a2), (s3,a1)},

{(s4,0a1)}, {(54,(12)}}. By is also a reward respecting SSP partition, but is not generated
by any group of automorphisms on M.
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Figure 6: Transition graph of reduced MDP M/B

7 Special forms of Homomorphisms

In some special cases we can study simpler transformations of an MDP that give rise to
useful reduced images. In this section, we discuss some special forms of homomorphisms.

If there exists an isomorphism from MDP M to MDP M/, then they are the same except
for a relabelling of states and actions. Frequently the relabelling of actions is independent
of the states. In such cases one can consider a simpler definition of a homomorphism as
an ordered pair of surjections. Thus a homomorphism h from M = (S, A, ¥, P,R) to
M' = (S A" V' P' R') is defined by (f,g) where f : S — S"and g : A — A'. h still
needs to satisfy both conditions (1) and (2) of a homomorphism. We assume that in such
scenarios each state has the same set of actions admissible in it, i. e., ¥ = 5§ x A.

For example consider the symmetric gridworld example from Section 3. That world is
isomorphic to problems with the goal in any of the other corners. If the goal moves from
the NE corner to the SE corner, then an isomorphism between the two problems maps the
states in the bottom half of the grid to those in the top half and vice versa. Action N goes
to S and vice versa. Actions W and E are mapped onto themselves. This certainly is a
simpler description than giving action maps for each of the 25 states.

Another interesting specialization is the case of state homomorphisms. When the actions
admissible in a state and its homomorphic image are the same, i. e., A; = A’f( 5) foralls € S,
we can consider homomorphisms with gs(a) = a for all s. Thus a homomorphism A reduces
to just a surjection on states f. This is the case widely studied in model minimization
literature. This simplifies the derivation of a reduced image. As Dean and Givan [5] show,
it is still a hard problem to derive a minimal image and frequently we have to settle for
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some reduced image.

This formulation of a homomorphism is sufficient for a large class of problems. But
(full) homomorphisms as we define them in Section 4 are more powerful and enable greater
reduction in MDP size. For example, in the previous section, if we had restricted ourselves to
state homomorphisms, the given MDP M is a minimal MDP. Also certain symmetries such
as rotational and reflectional symmetry, which are not captured by state homomorphisms,
are captured by (full) homomorphisms.

As mentioned earlier, given a partition, it is a very hard task to identify and refine viola-
tions of the SSP property. To make this task easier one can employ different representations
of the MDPs. One such method is to use factored representations as in refs. [5, 6]. Here
the states of the MDP are represented by using various features. For example, a gridworld
MDP might be represented by the # and y co-ordinates rather than a grid number. With
factored representations, one can study partitions that result from projections on to one or
more of the features in the cross product. Though this restricts the class of partitions that
we examine, it sometimes makes it easier to check for violations of the SSP property. Dean
and Givan [5] show that such restrictions lead to useful algorithms.

8 Discussion

In this article, we extended the model minimization framework of Givan and Dean to enable
greater reduction in problem size. Givan et al. [8] consider two states equivalent if every
action admissible in one state is admissible in the other and is equivalent. We extend the
notion of equivalence so that two states are considered equivalent if for every action available
in one state there is some equivalent action available in the other state.

Givan et al. [8] examined other notions of equivalence from existing literature before
adopting stochastic bisimulations. For example, one such notion from FSA literature is
action sequence equivalence. Two machines are considered equivalent if they produce the
same sequence of output symbols given the same sequence of input symbols and the same
starting state. In an MDP framework, this would translate as MDPs having the same
distribution over sequences of rewards received given the same sequence of actions. This is
not a sufficient notion of equivalence for MDPs, since we are interested in equivalence of
policies and not just sequences of actions. See ref. [8] for an example where MDPs that are
action-sequence equivalent have different optimal values.

MDP homomorphisms can be viewed as a form of stochastic bisimulations employed by
Givan et al. [8] but they are a more basic concept. Stochastic bisimulation are defined via
relations between sets and hence they have a greater expressive power than homomorphisms
that are based on surjections. Despite this greater power, one can show that there exists
a stochastic bisimulation between two MDPs if and only if they have a common minimal
image. Thus, from the view point of model minimization, the same reductions are achievable
with both formulations.

Givan et al. [8] also outline several methods for arriving at reward respecting SSP par-
titions. It should be trivially possible to extend those methods to our extended definitions.
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It is also possible to extend their results on structured state spaces. We are working on this
presently. Dean and Givan [5] show that model reduction algorithms such as state-space
abstraction [3] and structured policy iteration [4] are special cases of model minimization.
These results also hold for our extended definition. In fact it is possible to show that a larger
class of algorithms fit into our general framework. We outline one such example next.

Zinkevich and Balch [24] define special classes of symmetries of MDPs and develop
algorithms for taking advantage of such symmetries by copying values among symmetrically
equivalent state-action pairs. Their notion of symmetries is based on equivalence relations
on state-action pairs and can be shown to be a special case of our definition. Their algorithm
can then be viewed as a special form of model minimization.

The insight that symmetries give rise to reward respecting SSP partitions gives us an-
other way to look for such partitions. One can start from obvious symmetries in a problem
and find their closure to generate suitable partitions. In some cases, especially that of
spatial problems, it is possible to define the resulting homomorphism h,, and hence the
reduced image, without explicitly finding G.

Finding representations that exploit symmetries have always been a challenging prob-
lem [1]. Combining model minimization with symmetries gives us some guidance in this
direction. By examining the form of the homomorphism one can suitably modify repre-
sentations so as to make it easier to derive the quotient MDP. This in turn simplifies the
solution process. Again consider the symmetrical gridworld in Figure 2. As we discussed
earlier, the gridworld is symmetrical around the NE-SW diagonal. If we adopt a scheme
that assigns the same representation to states that are symmetrical then we simplify the
learning process. One such scheme is to represent each square by the horizontal and vertical
projections on the NE-SW diagonal. Actions also should be represented with respect to the
diagonal. This representation cuts the state space roughly in half. The resulting MDP can
be shown to be isomorphic to that in Figure 2 and is in fact a minimal MDP.

Even when partitions of MDPs do not satisfy the SSP property exactly, sometimes they
satisfy some relaxation of it. Givan et al. [9] study model minimization with a weaker
criterion. The quotient MDP derived under this weaker condition is a Bounded Parameter
MDP where the transition probabilities are given by an interval. Analogously we would like
to develop a concept of approximate homomorphisms and approximate symmetries that
would let us apply our ideas to a still larger class of problems.

g
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