Towards Optimal Probabilistic Packet Marking for IP Traceback.

Micah Adler
Department of Computer Science
University of Massachusetts, Amherst

October 9, 2001

Abstract

There has been considerable recent interest in probabilistic packet marking schemes for the
problem of tracing a sequence of network packets back to an anonymous source. An important
consideration for such schemes is b, the number of packet header bits that need to be allocated
to the marking protocol. However, all previous schemes belong to a class of protocols for which b
must be at least log(n), where n is the number of bits used to represent the path of the packets.
In this paper, we introduce a new marking technique for tracing a sequence of packets sent along
the same path. This new technique is effective even when b = 1. In other words, the sequence
of packets can be traced back to their source using only a single bit in the packet header. With
this scheme, the number of packets required to reconstruct the path is O(22"), but we also show
that Q(2") packets are required for any protocol where b = 1.

We also study the tradeoff between b and the number of packets required. We provide a
protocol and a lower bound that together demonstrate that for the optimal protocol, the number
of packets required (roughly) increases exponentially with n, but decreases doubly exponentially
with b. The protocol we introduce is simple enough to be useful in practice. We also study the
case where the packets are sent along k different paths. For this case, we demonstrate that any
protocol must use at least log(2k — 2) header bits. We also provide a protocol that requires
log(2k + 1) header bits in some restricted scenarios (to which the lower bound applies). This
protocol introduces a new coding technique that may be of independent interest.

1 Introduction

In recent years, the Internet has seen an alarming increase in what are known as denial-of-service
attacks. Such an attack consists of a malicious party sending enormous volumes of traffic to a remote
host or a network, thereby denying legitimate users access to this shared resource. Unfortunately,
such attacks are easy to perform, and in fact there are well known techniques for mounting attacks
against a single shared resource that are coordinated to occur simultaneously from a large number
of distributed hosts [3]. To make matters worse, in the current and foreseeable routing architectures
of the Internet, a host transmitting packets can use a forged source address for those packets. This
means that there is little or no accountability for the source of these attacks, and that the process
of halting an attack in progress is slow and requires significant resources. Thus, one of the most
important tools needed to fight denial-of-service attacks is an automated technique for tracing a
stream of packets back to its source. This is known as the IP Traceback problem.

A number of different approaches to the IP Traceback problem have been suggested. For example,
Ingress Filtering [5] solves this problem by requiring network providers to block a packet at or

near its source if it is sent with an incorrect source address. Network providers have resisted
Ingress Filtering for a variety of reasons, including the resulting degradation in performance, the
additional administrative overhead involved, and the reliance on forged source addresses by some of
the techniques proposed for mobile networking [10]. Furthermore, Ingress Filtering is only effective
as a means of enforcing accountability in the Internet if performed universally, or nearly universally.
Other approaches to the IP Traceback problem include requiring routers to keep a log of forwarded
packets [13], and generating additional traceback packets that routers send to the destination of a
regular packet [1]. Shortcomings of these and other techniques are discussed in [2] and [12].

Recently, [12] proposed the following clever approach to the IP Traceback problem: some fixed
number of bits in the packet header are allocated to IP Traceback, and are used to store a router
ID and a hop count. Every router that forwards a packet, independently with some probability
p, writes its unique ID to those bits, and sets the hop count to 0. With probability 1 — p, the
router ID is left unchanged, and the hop count is incremented. Now, say an attacker is performing
a denial-of-service attack on a wictim by sending a stream of packets along a path of length £. If
p = ©(1/¢), then after the victim has received O({log ¢) packets, with high probability this scheme
provides the victim with the entire path back to the attacker.

This kind of technique is referred to as probabilistic packet marking, or PPM. The elegant PPM
scheme of [12] has produced a flurry of activity in the networking community, and in the relatively
short time since [12] appeared, a number of variations on PPM have been introduced to improve
and further analyze the [12] technique [4, 8, 14] (see also [7] and [9]). One important concern in
this literature is reducing the number of header bits required for PPM. In [12], they further refine
their scheme so that they require 16 header bits, and can reconstruct the entire path with high
probability after a few thousand packets have been received. This has subsequently been improved
to 13, achieved by a scheme in [4], which is the minimum required bits achieved prior to the work
described in this paper.

There has also been significant effort to develop PPM protocols that are effective when the packets
travel to the victim of the attack along multiple paths [4, 14]. This is a concern both when the
attacker is sending packets from a number of distributed sources simultaneously, as well as when
because packets from a single source travel to the victim using a number of different paths.

Despite the number of papers in this area, a rigorous theoretical analysis of PPM has been lacking.
There has been no real understanding of how the number of header bits and the number of packets
required grow as the size of the underlying network increases. Furthermore, there has been no
understanding of the interplay and inherent tradeoffs between the number of header bits used, the
number of paths of attack, and the number of packets required to reconstruct (with high probability)
the path or paths used by the attacker. In addition to the significant practical importance of PPM,
it turns out that developing a thorough understanding of these questions is an interesting and
challenging theoretical problem.

Furthermore, all previous techniques for PPM have used techniques that belong to a restrictive
class of protocols. In particular, all previous PPM protocols encode the path information in such
a manner that the victim only uses the information of what packets it receives, and it can ignore
the information of how many of each type of packet it receives. For example, the scheme described
above from [12] has this property. Let b be the number of header bits allocated to IP Traceback,
and let n be the number of bits required to represent a path of attack. For any protocol with this
property, if b < logn then there is some attacker path that can only be correctly identified with

probability less than 1/2.} Thus, logn is a lower bound on b for this class of protocols.

1.1 Summary of results

In this paper, we consider two different cases of the IP Traceback problem: the important case
(studied in [8] and [12]) where the attacker sends all of its packets along the same path, and
the more general case where there are multiple paths of attack. For the case of a single path of
attack, we introduce a new type of PPM technique that does not belong to the class of protocols
described above, and thus allows for a much more efficient encoding of the path description. This
new technique allows any path description to be revealed to the victim even when b = 1. In other
words, this new scheme requires using only a single header bit, which is obviously the minimum
possible. Unfortunately, this requires ©((2 4 €)?") packets to be received by the victim, for any
constant € > 0, and thus is only appropriate for small values of n. However, we also provide an
information theoretic lower bound demonstrating that Q(2") packets are necessary for any one-bit
protocol where the victim is able to determine the correct path with probability greater than 1/2.

The large number of packets required by one-bit protocols leads to the question of how the number
of packets required decreases as b increases. In this paper we provide a good understanding of the
optimal tradeoff between these two quantities. We demonstrate that the optimal number of packets
that must be received for given values of n and b grows exponentially with n, but decreases doubly
exponentially with b. Specifically, we provide a protocol that requires only O(bn22°(2 + €)**/ 2b)
packets, for any constant € > 0, to reconstruct the path (w.h.p.), as well as an information theoretic
lower bound showing that Q(2027/ 2b) packets are necessary for the victim to be able to determine
the correct path with probability greater than 1/2. The protocol that achieves the upper bound is
simple (although its analysis is not simple), and the communication model is realistic, and thus we
expect the protocols for the single path case to be quite effective in practice.

For the case of multiple paths of attack, we demonstrate that one-bit protocols are not possible, no
matter how many packets the victim receives. In particular, let k& represent the number of paths
used by the attacker. We provide a lower bound demonstrating that any correct protocol must use
at least log(2k — 2) header bits, regardless of the number of packets received by the victim. We also
provide a protocol demonstrating that for a restricted class of attacker strategies, [log(2k+1)] bits
are sufficient. This protocol relies on a new encoding technique that looks promising in terms of
leading to an upper bound for an unrestricted adversary, and may also be of independent interest.

2 The Models

We use slightly different models for the protocols and for the lower bounds, where the lower bound
model is at least as powerful as the upper bound model. We first describe the model used for the
protocols. From the perspective of the victim, the routing topology of the network consists of a
tree rooted at the victim. Thus, any packet sent to the victim travels up this tree until it reaches
the victim. At the start of the attack, the attacker chooses a set of nodes of the tree, and then for
each packet, it determines which of these nodes sends that packet to the victim. We first examine

'To see this, note that there are 22" different sets of packets that can be received. Since there are 2" possible n-bit

strings, if the victim must determine each possible correct attacker path with probability at least 1/2, then 22" must
be at least 2" /2. Assuming that n > 2, the fact that b must be an integer implies that b > log n.

the case where the attacker only chooses a single path; additional details on the model where there
are multiple paths are provided in Section 5.

For ease of exposition, we introduce the protocols by first making a number of simplifying assump-
tions about the network. We demonstrate in Section 8 that our results can easily be extended to
hold in scenarios where these assumptions are relaxed. In particular, we start by assuming that the
tree is a complete binary tree of height n, with the victim forming an additional node connected
to the root of the tree. We also assume that when a packet is sent to a node, that node is able to
distinguish which child of the node the packet came from. Finally, we also assume that the victim
has complete knowledge of the network topology. Again, we demonstrate in Section 8 that each of
these assumptions can be removed.

The header of each packet contains b bits that are allocated to traceback information. No other
bits of the packet can be utilized, and thus we simply assume that each packet consists of only
these b bits. For each packet that is forwarded from the attacker to the victim, the attacker sets
the initial value of these bits, and then each of the intermediate nodes is allowed to alter them,
but no other communication occurs. In addition, we require that the intermediate nodes of the
network all run the same protocol. This will be utilized in Section 8 to show that results for the
simple model described here can be generalized.

We also make the restriction that protocols do not require any state information at the intermediate
nodes. Due to the memoryless nature of Internet routing, the lack of state information is an
important requirement for PPM protocols: it is impractical for routers to store any information on
individual flows. Thus, for each node, the set of b bits that a node forwards to its parent in the
tree can only be a function of the incoming b bits, which child of that node the packet arrives from,
and random bits (that are not remembered). The victim, on the other hand, does have storage.

For a given placement of the attacker at a leaf of the tree, we shall refer to the node on the path
from the root to the attacker at distance 7 from the root as N; (where the victim is Ny, and the
attacker is Np41). Since we are assuming a binary tree, we can represent the path as a binary
string B = B1Bs ... By, where B; = 0 if the path goes to the left child of N;, and B; = 1 otherwise.
Note that when determining the outgoing bits for any packet, node N; has access to one bit of the
string B: the bit B;.

The objective is for the intermediate nodes to inform the victim of the string B. Note that if
the attacker chooses a node that is not a leaf of the tree, it may be able to set the initial bits of
the packets in such a manner that it exactly simulates what would occur if one of the children of
the chosen node were sending the packets. In other words, the path would look like it extends
beyond its actual source. Various ways of dealing with this have been suggested, including using
cryptographic techniques [14], or topological knowledge [12]. For simplicity, we assume here that
it is sufficient to determine a path that contains the correct path from the victim to the attacker
as a prefix.

For the lower bound, we assume a stronger model (i.e., a model where the problem is at least as
easy to solve as in the model for the protocols). For the lower bound model, we assume a system
consisting of only two parties, called the Victim and the Network. The Network has an n-bit string
to send to the Victim. No communication occurs from the Victim to the Network. The Network
is allowed to send b-bit packets to the Victim, but it is stateless: for each packet it sends, it has
no memory of the previous packets that it has sent. This lower bound model actually captures the
difficulty of sending information from a memoryless node using a bounded number of bits. This

seems like a fundamental problem, and may be of interest beyond the context of the IP Traceback
problem.

It is easy to show that any protocol for the upper bound model can be simulated in the lower
bound model, and thus the upper bound model is at least as powerful as the lower bound model,
and bounds for the lower bound model also apply to the upper bound model. Furthermore, it
seems likely that the lower bound model is strictly more powerful than the upper bound model,
since the lower bound model has a single node that knows the entire n-bit string, instead of that
string being distributed across n nodes that must all run the same protocol, and must also deal
with a malicious attacker that sets the bits of the initial packet the n nodes receive.

3 Upper bound for a single path of attack

We start by providing an algorithm for the case where b = 1. The basic idea behind this protocol is
to encode the string B into p, the probability that the bit received by the victim is a 1. For example,
consider the encoding where p = Y71 B;(3)". With such an encoding, if the victim receives enough
packets to determine the bias of p (with the required confidence) within an additive term of (1)"*2,
then it is able to determine all n bits of the binary string B. All of our protocols use variations on
this kind of encoding to transmit information to the victim, and so we start by proving a general

lemma concerning such encodings.

Lemma 1 Consider any set of bits By ... By, and any protocol where the victim is able to determine
real numbers p, o, and ¢y ... cy, that satisfy the following conditions:

1. |p—2§:10ij| <o.
2 Foralli,1<i<(—1¢>20+Y5 ¢

3. ¢y > 20.

These values allow the victim to efficiently and uniquely determine the bits By ... By.

Proof: We demonstrate that for any ¢, 1 < i < ¢, if the victim knows By ... B;_1 (or none of the
bits in the case that ¢ = 1), then it can determine the value of B;. To do so, let p' = p— ;;11 c;Bj.
If p' > ¢; — o, then it must be the case that B; = 1. On the other hand, if p’ < ¢; — o, it must
be the case that B; = 0. Thus, the values of the B; can be computed in a greedy fashion, starting

with B; and working one bit at a time towards By. [|

Let DECODE(p,0,c1,...,cq) be the result of performing this decoding using the real numbers p,
o,and c1,...,ce. It turns out that the encoding (described above) where ¢; = (3)’ can be achieved
if we assume that the attacker always sets the initial bit to 0. However, if the attacker is allowed
to set the initial value arbitrarily, then the resulting protocol does not quite uniquely specify the
encoded string.? Thus, we use the encoding where ¢; = g, for r = 1/2 — ¢, for any € such that
0 < € < 1/2. To achieve such an encoding using only one-bit packets, we describe what any node

N; does on the receipt of a packet from its neighbor. Note that there are only four possible inputs

2Specifically, the attacker can make lexicographically adjacent strings encode to the same probability.

for the node NN;, differentiated by the bit B; and the bit that N; receives from node N;;;. The
following table describes the probability that IN; forwards a 1 to node N; ; on the four possible
inputs:

Incoming bit
B; 0 | 1

0 1/2 —€
1 12 | 1—e

(e

Otherwise, in all four cases, IN; forwards a 0.

The victim uses the following decoding process: Obtain F = © ((1/er")?log(1/A)) samples. Let x
be the number of 1s in this set of samples, and let p = x/F — r"/2. Let 0 = r"/2 4+ er™. Set the
bits Bj ... B, according to the process DECODE(p, o, %, 5 g, e ’"n;). We call this protocol
Single-Bit.

Theorem 1 With probability 1 — A, protocol Single-Bit allows the victim to determine the correct
values of By ... By.

Proof: For t € {0, 1}, let p! be the probability that the bit received by node N; is a 1, given that
the attacker sets the initial bit to ¢.

Claim 1 For t € {0,1}, it holds that pfy =t -r" + 3", B,?

Proof: We see that for i < n, if B; =0, then p! | = rp!. If B; = 1, thenp! | = (1—€)pl+3(1—p!) =
rpl + % The claim now follows by induction.]

From this claim, we see by a Chernoff bound that Pr[|p — pd| > /2 + er"] < A. When |p — p§| <
r"™/2 + er™, condition 1 of Lemma 1 is satisfied. To see that condition 3 is always satisfied, note
that r"/2+4 er™ < r"~1/4 is equivalent to requiring that r(} +€) < 1/4, which follows from the fact
that r = 1/2 — €. To see that condition 2 is also always satisfied, note that for alli, 1 <i < /¢ —1,
c; — Zf-:i 11Ci > cp. Thus, by Lemma 1, the victim is able to determine the entire string with
probability 1 — A. [

Note that this algorithm leads to an exponential dependence on n. We show in Section 4 that for
the case where b = 1, such a dependence is necessary. Since this makes the protocol impractical
for all but small values of n, we must use a larger value of b. We next describe how to extend
the one bit scheme to the case where b > 1. In fact, it is possible to obtain a doubly exponential
decrease in the number of samples required as b increases. To do so, we partition the nodes of
the path into d = 2°~! sets, numbered 0 to d — 1, where node Nj is in the set i mod d. Each of
these sets performs the one-bit protocol (almost) independently, thereby decreasing the effective
length of the path encoded using the one-bit protocol by a factor of d. The doubly exponential
improvement comes from the fact that the number of packets required grows exponentially with n,
and we decrease n by a factor that is exponential in b.

To see how to develop this idea into a valid protocol, we first consider an idealized scenario, where
for every packet, the attacker sets the initial b bits by choosing a random sample from the uniform

distribution over all 2° possible settings. We then describe how to convert this into a protocol
where the attacker can set the b initial bits arbitrarily. Denote the b bit positions in the header as
ho ... hy_1. For the idealized setting, in each packet, the nodes in one cell of the partition perform
the one bit protocol using the bit hg. The remainder of the bits are used as a counter to specify
which cell of the partition participates in the one bit protocol. In particular, for a packet P, let IiP
be the integer corresponding to the binary representation of the bits hj ... hy_1 that are received
at node N;. Thus, we say node ¢ sets Ii}il = j to mean that on packet P, the bits hy...hy_1 sent
from node N; to node IV;_; are set to the binary representation of j.

Each node N; performs the following protocol for each packet P:

o If IiP = 0, then perform the one bit protocol using the received bit hg. Forward hg as the
resulting bit of the one bit protocol, and set I} ; = 1.

e Otherwise, forward hg unchanged, and set I}’ ; = IF 4+ 1 mod d.

It is not hard to see that each cell k of the partition performs the one bit protocol on a subset of
the bits. Let t; be the number of samples received that perform the one bit protocol for cell k& of

the partition. If the total number of samples received is © (d(l/er"/d)2 log(d/A)), then as long as

n > d, t > © ((1/er"/4)2log(d/A)) with probability at least 1 — A/d. This result follows from
a Chernoff bound; we omit the details since we give a full treatment for the analysis of the full
version of the protocol below. For this value of t;, the effect is identical to performing the one bit
protocol on a set of n/d bits. Thus, the victim is able to reconstruct all of the bits in cell k of the

partition with probability 1 — A/d, and hence is able to reconstruct all of the bits with probability
1-A.

To make this algorithm work for an attacker that is allowed to set the initial bits arbitrarily, we
need to modify the protocol slightly. Note that otherwise the attacker could, for example, set the
initial bits to the same value for every packet, which would only inform the victim of the bits in
one cell of the partition. The change to the protocol is simple: with a probability p (which can be
any probability such that p # 0 and p # 1, but ideally p = 1/n), each node N; performs what is
called a reset: it ignores the incoming bits completely, and sets I7; = 1. Bit hg is forwarded as
B; with probability % and as 0 otherwise. This has the effect of resetting the counter with some
probability, thereby allowing the bits from every partition to be sent to the victim.

With this more powerful attacker, we also need to develop a more complicated decoding procedure.
We start with some intuition for this decoding algorithm by developing an expression for the
probability that a packet has hg set to 1 when it arrives at Ny. Let v} be the probability that a
packet P is reset by some node between N,, and Ny, inclusive, and I’ = k. If z(n, k) is the number
of integers ¢, 1 < i < n, such that ¢ mod d = k, we see that v} = Zj(:nl’k) p(1 — p)U—Dd+k—1 " Also,
let a;? be the probability that a packet that arrives at Ny is reset last by some node between N,

and Ny (; 1), glven that it is reset by some node between N, and Ny, and that If = k. From
Bayes rule, we obtain a? = é ng;’k) p(1 — p)U—Ddtk—1

Let Pj, be the set of packets P such that I = k. For 0 < k < d— 1, let q; be the fraction of
packets in Py such that no node between N; and N, (inclusive) performs a reset on the packet.
Note that ¢} is not a value readily available to the victim; an important portion of the decoding
algorithm is computing for each k a value g that serves as an estimate for g;'. Consider a packet

chosen uniformly at random from the set of packets in Pj for which the attacker sets hy = ¢, for
t € {0,1}. The probability that the packet has hg set to 1 when it arrives at Ny is

z(n,k i
(n,k) rd 1

ph=t-qpr* ™) 4+ 3" BiionalaR + (1 - qf)af)
i=1

Thus, if we knew exactly the values ¢}, the decoding process would not be very different from the
single bit protocol. However, without at least a fairly accurate estimate for g, such a decoding
process would not be able to determine the string B uniquely. We next describe a decoding
algorithm that computes such an estimate. We here describe this algorithm for the case where the
value of n is known. However, the same process applies for any value of £ < n determined by the
victim: the victim can decode any prefix of the path up to the attacker. We here also describe the
easier case of the decoding process where p < % We also want to emphasize that for this version
of the paper, we have made no attempt to optimize the constants of the algorithm. We strongly
suspect that the constants appearing here can be significantly improved. The algorithm works as
follows:

2
e Ny waits until it has received F = ((ﬁ%) (%f) ln(4d/A)> packets.

e For0<k<d-1,j5€{0,1}, let f,g be the total number of packets in P for which the value
of the bit hg received at Ny is j. Note that F = Zﬁ;(l)(f,:; +).

1 0_n,
.U%ﬁ:&?hﬁF

e Fork=0tod—-1:

— For j =1 to z(n, k),
- ji—1
* Let c;‘? = (g +(1- qz)af)wz

y _ z(n,k)
— Let o = (q,? + (1 - qg)af(n,k))r 2
B B f}} B q’:}rz(n,k)

Let py = T 2

— Set the bits By, for t = k+ (j — 1)d, 1 < j < z(n,k), according to the process
DECODE@mamﬁpn,émM)

We call the resulting combination of the encoding algorithm at the nodes and the decoding algorithm
at the victim the protocol Multi-bit. Note that in the case that p = ©(1/n), the number of packets

required by Multi-bit is O (2'n? In(2%/ A)) Also note that the interesting case of the algorithm

r4n/2b
is when 2 < b < [logn], since Single-Bit handles the case when b = 1, and when b > [logn], then
techniques such as those used in [12] are sufficient.

Theorem 2 If2 < b < [logn| and A < 1/8, then with probability at least 1 — A, protocol Multi-
bit allows the victim to determine the correct values of B;, Vi, 1 <1¢ < n.

Proof: We here show that each of the d decoding processes produces the correct answer with
probability at least 1 — A/d, from which the theorem follows directly from a union bound. For

each call to the decode process, we demonstrate that the conditions of Lemma 1 are satisfied. For
condition 2, we must show that for 1 < j < z(n,k) — 1, c;? > 20p + Zi’;’ﬁ cF. Note that since
the expression (g + (1 — qg)af) is monotonically nonincreasing as j increases, and r < 1/2, we see
that c;? - ng;’f)l b > 2k =172 Since ar+ (1 - qﬁ)a’;(n’k) < 1, we have that oy, < ##(™k)~1/4,
implying condition 2. Also note that condition 1, i.e., that c’;(n k) > 20y, follows directly from the
definitions of c’;(n k) and o, and the fact that r < 1/2.

Thus, we only have left to prove that condition 1 holds with probability at least 1 — A/d, or that

Pr Hpk — Zj(:nl’k) c;?B(j_l)d+k‘ < ak] > 1— A/d. If it were the case that our estimates of g} were
exact, and the fraction of packets for which hy = 1 at Ny were exactly the expectation, then
condition 1 would follow easily. Of course, the probability of these random variables being exactly
their expectation is too small for our purposes, but we can demonstrate that, with sufficiently high

probability, they do not deviate far from their expectation.

To do so, we use two versions of the Chernoff bound [11]. In particular, if X; ... X; are i.i.d. random
variables, such that Pr[X; = 1] = p, and Pr[X; = 0] = 1 — p, then for any ¢ such that 0 < § <1,

- -
Pr ZXi > (1+9)tp| < 67‘52“’/3,
Li=1 i

and

Mt
Pr|Y X <(1-d)tp| <e T2

Li=1 i

We first use these bounds to demonstrate that it is likely that Pj is large enough to provide good
estimates on the quantities of interest. In particular, we show the following:

2
Claim 2 Let p = (%55) n(4d/A). Pr(f)+ f} <u] < 4.

Proof: Regardless of what the attacker does, for any packet P, Pr[I{ = k] > v}. Thus, we can
define a set of i.i.d. indicator variables X ... X such that X; = 1 if packet j is in P;. We see
that f + fi = le X, and Pr[X; = 1] > v}. Since the probability that f) + f} is too small is
maximized when Pr[X; = 1] = v}}, we can assume that this is the case. From the definition of v},
we see that v > %, which by the assumption that b < [logn]| implies that v} > 5%. The

2ed”
claim now follows from the second Chernoff bound above, using § = 5. |

N[

We next demonstrate that our estimate of ¢;’ is quite accurate:

z(n,k)

Claim 3 Given that f) + ft > u, Pr [|(j,? - qp| > prlT] <o

Proof: Let 9} be the actual fraction of the F' packets P which are reset by some node and I = k.

. Ly fo-on-F n-F—ol-F " 0 1
Since ¢ = fethy o F -k — k- If we do not condition on + >
Uk e . FIF 70 fe + e 2
prz n,k

then the fact that Pr (|3 - F — v - F| > #5520 F| < £ follows from the Chernoff bounds above
and the fact that v > £&. If we then condition on ft+ f2 > p, by Claim 2, this increases

, we see that |7 — q}| =

z(n,k
Pr [|1‘;g -F— o7 F| > PT'24(62)vg] to at most 2. Thus, with probability at most £, |gf — ¢}| >

z(n,k) z(n,k)
e ”k > e
24e = 12

, where the second 1nequahty again uses the fact that v}l > 2‘:& [|

We next demonstrate what the implications of this are on our algorithm:

Claim 4
P~ Z(ﬁf) B vark| < 1ak — gkl = (12§ — ap)r*™H)
j=1
Proof: Since a? < 1, we see that ‘pg — Z;(:nl’k) c;?B(j_l)d+k‘ < Z;(an’k g} — g 7” a7 — ¢} —
(I — qpr=tw). m
Claim 5 Given that f + fi > u,
Pr [m — bl > B0k (1 — g+ ”’;;(:;k) <2

Proof: We here bound the probability that p; is too large; the probability that pg is too small
is similar. It is easy to see that Pr [pk —p > Lepznk) 4 (|1gp — gR|)ra(mk) &] is maximized
when the attacker sets all initial values of hg to 1, and thus we assume that the attacker does so.

. . gl ps(n,k) 1 z(n k)
Note that this implies that E[py] = pj — %" = pd 4 gprenk) - qkf <pd+ qk rk) (| —
ahr 2(nk) ' We now let X;, for 1 < j <t, be a random variable, where X; =1 1f the jth packet

in Py, arrives to Ny with hg = 1 and X; = 0 otherwise, where t;, = fk + fk. We shall bound the

probability that Y% | X; > tx(p} + "f;:;’“)).

Unfortunately, we can not use a Chernoff bound on this sum directly, since conditioning on f,g + f,% >
p can result in a small amount of dependence between the X;s (this is actually somewhat subtle).
To remove this dependence, we partition the integers from 1 to t; into two sets, where j € Sy
if packet j arrives without being reset, and j € S; otherwise. The variables X; for j € Sy are
independent, as are the variables X; for j € S;. Let s = Pr[X; = 1] for j € So We see that

so = re(mk) 4 ZZ(n,k) By (s 1)de;' Likewise, let sy = Pr[X; = 1] for j € S;. We see that

z 1
81 = Z](1)Bk+(] 1ok - 0

dn k) .
T } < A/16d. Since |Sp| = gt and

We show that for w € {0,1}, Pr |3 [e Xj > |Swlsw + tr %
[S1] = (1 — gt this implies that Pr [S%, X; > te(ph + Zrye)| < A/8d, from which the claim

12¢2
follows. By the first Chernoff bound above,

2
z(n,k) _(tgpr* (MR) [Swlsw

pr 24e2(Sy |sw 3

X.
> X > |Sulsw + tr 1| <

JESw
This probability is maximized by making |Sy,|s, as large as possible, but it must be the case

that |Sy|sw < tg. Thus, we may consider only the case where |Sy|sy = tx. Now, since we are
conditioning t; > u, and we have that b > 2 and A < 1/8, we see that

t z(n,k) \ 2
7(Pr) [Suw|sw
24e?|Swlsw < AJ16d.

10

Now note that Claims 2, 3, 4, and 5 together give us that

q ’r‘) 7")
Pr ||px — Z C?B(j,1)d+k > 2k 5 +p6€2 < 3A/4d.
7j=1

Thus, we only have left to show that

= k) z(n,k) z(n,k)
qng(n pr -n -n\ k r
5t gz S (Qk +(1 —Qk)az(n,k)) 5
or that 37 < (1 — (ﬂc’)a’;(n’k). We have that
K p(L—p"*
Uank) = D
S p
and so using the assumption that p < 1/n, we see that a’;(n k) > ﬁ Thus, we only need to
show that 1 — g > %. By the definition of g7, this is equivalent to f} + f2 < % ~vp - F.
Since vy > w, we only need that f,% + f,g < 3F. This follows simply from the fact that at
worst, all the packets are in the set Pj. [|

4 Lower bound for a single path of attack

Recall that the lower bound model requires the memoryless Network to send an n-bit string to
the Victim using b-bit packets. It is somewhat surprising that we are able to provide an algorithm
that achieves close to this lower bound in the protocol model where the n-bit string is distributed
between n memoryless nodes that (a) each must run the same protocol, and (b) must deal with
the malicious attacker. For any protocol P, let £(P) be the expected number of packets received
by the Victim when the input is chosen uniformly at random from the set of all 2" possible inputs.
Let p(P) be the probability that using P, the Victim does not return the input string given to
the Network when that input is chosen uniformly at random from the set of all 2" possible n-bit
strings.

Theorem 3 For any protocol P, if E(P) < 22—;12"/217 — 202 then p(P) > 1/2.

Proof: Any algorithm employed by the Victim can be thought of as a (possibly randomized)
procedure for deciding, for each possible sequence of packets that the Victim has received, whether
or not to continue receiving packets, and if the Victim decides to not continue, then the procedure
must specify a probability distribution over possible results for the Victim to output. In the case
of a deterministic strategy for the Victim, the probability distribution over possible results would
consist of one result that is chosen with probability 1. We refer to such an algorithm as a general
protocol. A restricted class of protocols is Monte Carlo protocols, where the Victim waits until
it has received exactly T packets, where T' depends only on n and b. The protocol maps the set
of T received packets to a distribution over possible results, which the Victim uses to produce an
output.

11

Lemma 2 For any general protocol P, there is a Monte Carlo protocol P', such that E(P') =
4E(P), and p(P") < p(P) + 1/4.

Proof: We define P’ as follows: collect T' = 4E€(P) packets. Using the order that the packets arrive
at the Victim, simulate the protocol P. If P produces a result before it receives T packets, then P’
produces the same result, ignoring the remainder of the packet that it has. If P has not produced a
result after receiving T packets, then P’ specifies to the Victim to output a result chosen uniformly
at random from the set of all 2" possible outputs. The bound on p(P’) follows from the fact that
by Markov’s inequality, the probability that P has not produced a result after receiving T' packets
is at most 1/4.]

We shall demonstrate that for any Monte Carlo protocol, if the number of packets received is too
small, then the probability that the protocol makes a mistake is at least 3/4. This result, combined
with Lemma 2, implies the theorem. Thus, we henceforth only consider Monte Carlo protocols.

The input to the Victim can be described via a receipt sequence: a sequence (ry...rr), where r;
is a b-bit string describing the ith b-bit packet that is received by the Victim. Any Monte Carlo
protocol for the Victim is a function that maps a receipt sequence to a probability distribution
over n-bit strings. Another kind of description of the input to the Victim is a receipt profile: a
2b_tuple R = (ro, ... ,Tov_1), where r; is the number of packets of type ¢ received by the Victim.
Note that Z?b:Bl r; = T. For any receipt profile R, let S(R) be the set of receipt sequences S
such that for all i, 0 < i < 2% — 1, the number of packets of type i in the sequence S is exactly
r;. Let a permutation oblivious algorithm for the Victim be a function that maps a receipt profile
to a probability distribution over n-bit strings. Intuitively, a permutation oblivious algorithm is a
Monte Carlo algorithm that ignores the permutation information of the input, and only uses the
receipt profile of the input.

Lemma 3 For any Monte Carlo algorithm P’ for the Victim, there is a permutation oblivious
algorithm P" for the Victim, such that E(P") = E(P'), and p(P") = p(P').

Proof: Given a Monte Carlo algorithm P’ for the Victim, we define P” as follows: on an input
receipt profile R, choose a receipt sequence S from S(R) uniformly at random. The probability
distribution over n-bit strings returned by P” is the same as P” would return when the input is S.
To see that p(P") = p(P'), note that since the Network is memoryless, on any n-bit string that is
input to the Network, and for any receipt profile R, the probability that the receipt sequence is any
receipt sequence in S(R) is the same for all receipt sequences in S(R). Thus, it does not matter
whether the Network “chooses” a receipt sequence uniformly at random from the set of receipt
sequences in the receipt profile, or whether the Victim makes this same choice. [|

Thus, we can simply show a lower bound for permutation oblivious algorithms, and this will imply
a lower bound for all possible algorithms. Let 1 (7T) be the set of all possible receipt profiles for
which the total number of packets received is exactly T'. Let ¢(n) be the set of all 2" inputs to the
Network. For any 7 € ¢(T") and I € «(n), let p(7,I) be the probability that the algorithm outputs
I when the receipt profile is 7. Note that for any input I, the probability that the algorithm
outputs I, given that the Network receives the input I, is at most 3> cy(r) p(7,I). Thus, for any
permutation oblivious algorithm P,

ZIEL (1 - ZTE¢(T) p(T> I))

1/
>
p(P") > on

12

Now, note that

>, p(nI) < (D).

TeP(T);I€u(n)

This implies that p(P") > 1 — |¢2(_Z)\ Thus, if [(T)| < 2™/4, the permutation oblivious protocol
must make a mistake with probability at least 3/4. Thus, we only need to compute [¢)(T)| for a
given value of b. By a standard combinatorial argument, the number of receipt profiles in ¥ (7T') is

simply
b b 21
T+2°-1 < (T +2°—1)e
21)= 20— 1 ‘

2b
Thus, p(P") > 3/4, provided that (%) <27/4, or that T < 2172—;12”/217—2{’. By Lemmas 2 and

o : : 2b—15n/2b b—2
3, this implies that for any general protocol P, p(P) > 1/2, provided that £(P) < W2”/ — 202
| |

We also point out that a slightly tighter analysis of the required value of T gives us that when
b = 1, the lower bound is Q2(2"). Furthermore, a tighter analysis of the protocol in Section 3 for
the case where the attacker sets the initial bits randomly leads to an upper bound of O(b2b24"/ 2b).
Since such an attacker can be simulated in the lower bound model, this is also an upper bound for
the lower bound model. Asymptotically, this differs from our lower bound by only a factor of 4 in
the exponent, and a factor of b.

5 Model and Intuition for multiple paths of attack.

We next consider the case where the packets sent to the victim travel on multiple paths. For
protocols, we assume the same model as in the single path of attack case (i.e., complete binary tree
of height n, every node sees which child it receives any given packet from, and the victim knows
the entire topology.) In addition, the parameter k represents how many nodes of the network the
attacker can choose. At the start of the attack, the attacker chooses these k nodes, and then for
each packet it sends, it chooses the node for that packet; the packet travels from that node to the
victim. Note that our protocols do not require us to restrict the attacker to only using k paths.
Instead, they perform correctly when the attacker uses at most k paths, and perform unpredictably
when the attacker uses more than k paths.

We also introduce a second parameter a. To see why, notice that if the attacker sends all but one
of its packets along one path, for small values of b it is not possible for the victim to determine the
path used by the single packet that takes a different path. The parameter « represents the fraction
of packets that must be sent along a path before the victim is required to recover that path. In
particular, we say that a protocol is a-sensitive, if during any given attack, the victim is able to
reconstruct (with sufficiently high probability) all paths P, such that at least a fraction of ¢ of the
packets the attacker sends travel along P. Note that protocols where o > 1 are not of interest to
us, since the attacker could choose to send an equal number of packets along every path, in which
case an qa-sensitive protocol with a > 1 would not be guaranteed to return any path information.

We here also make the assumption that the attacker sends each packet with the initial b header
bits set to 0. The lower bounds we prove also hold without this restriction, since the attacker can
always choose to do this. This assumption does restrict the applicability of the protocol that we

13

introduce. However, we consider protocols in this model an important step towards a full solution.
We also state without proof that the technique for the multiple path protocol can be adapted to
work for a number of different restrictions on the adversary (for example, it can be adapted to a
model where the attacker chooses the initial bits using a uniform or any other known distribution).
Furthermore, the technique we use for this model looks promising in terms of a general solution,
and may also be of independent interest.

For the lower bounds, we assume the same model as the lower bounds for the single path of attack
case, except that the Network now has k strings to send to the Victim, but it only has access to one
of these strings for each packet that it sends to the Victim. Each time the Network sends a packet,
the Attacker is allowed to choose which of the n strings the Network sees. Since the Network has
no memory, it can only use one string in determining the contents of each b-bit packet. We shall
refer to each of the n-bit strings of the Victim as a path to be determined.

5.1 Intuition

We demonstrate that if b < log(2k — 3), then the attacker is information theoretically able to hide
its location in the network. Specifically, regardless of the number of packets received by the victim,
the victim is not able to determine even a single path P such that the probability that P is an
actual path of attack is greater than 1/2. On the other hand, if b > [log(2k + 1)], then there is a
protocol such that for any o and A, with probability at least 1 — A, the packets received by the
victim encode all paths used to send a fraction of at least T of the packets. To see why b must
grow as k grows, consider first the case where £ = 2 and b = 1. We describe why increasing k from

1 to 2 allows the attacker to ”hide” its location in the network.

As is described in the single path of attack case, a protocol communicates information by specifying
the probability distribution of the header bits that arrive at the victim for a packet that travels along
a given path. Let p;(P) be the probability that a packet traveling along P has the single header
bit set to 1 when it arrives at the victim. Now, consider the case where there are three possible
paths of attack P;, P, and P3, out of which the attacker is allowed to choose up to k = 2. We can
assume w.l.o.g. that p1(P1) < p1(P) < p1(Ps3). Consider two different attacker strategies: 1) the

attacker sends all packet along path P», and 2) for each packet independently, the attacker sends
p1(P2)—p1(Ps) p1(P2)—p1(Ps) _
p1(P1)—p1(Ps3) p1(P1)—p1(P3) —

. In both attacker strategies, the probability that the header bit of any packet is 1 is

the packet along P; with probability

p1(P1)—pi1(Ps)
p1(P1)—p1(Ps)
p1(P2), but the two cases do not share any paths. Thus, when the probability of receiving a 1 is

p1(P2), in trying to determine a path, the victim is not able to do better than guessing between the
two cases. Also note that obtaining more packets only gives a better and better estimate of py (P),
and no other information, and thus increasing the number of packets received is not helpful.

and along P with probability 1 —

With this motivation, we now see that the encoding for the paths is as follows: for any path P, there
is some distribution of the settings of the b header bits received by the victim. Thus, each path P
can be represented by a vector V'(P) of length 2°, where component i of V'(P), for 1 <i < 20 —1,
is the probability that a packet that travels along P arrives at the victim with the header bits
set to the binary representation of i, and component 2° is the analogous quantity for the binary
. . . 2b—1 . . .
representation of 0. Since it must be the case that) ;" ;* = 1, we can represent the distribution
as the vector V(P), which is the same as the vector V'(P) except it does not have component 2°,

and thus has length 2° — 1.

14

Let A;... Ay be the k paths used by the attacker. For the moment, assume that the attacker
decides on a set of probabilities A;...\; such that \; is the probability that a packet is sent on
path i. With such a strategy, for any packet, there is a probability ¢; that a packet received by the
victim has the header bits set to i. Let W be the vector with 2° — 1 components such that entry
i of W is q;. We see that W = Z?Zl A;jV(A;). Thus, in order to have a encoding for the set of 2"
paths P; ... Pon that allows the victim to correctly determine the paths of attack being used, we
need a set of 2" vectors V(Py) ...V (Pan) such that for any two sets of k paths S1 = {A1,..., A}
and Sy = {A,..., A}, there are no two sets of probabilities A; ...\ and A] ... A}, such that
Zle NV (45) = E?:l A;V(A), and either for some j such that A; ¢ Sz, A; > 0, or for some j
such that A;- ¢ 5y,)\;- > 0. Note that this is a stronger requirement than that the set of vectors
are 2k-wise independent in the following sense: if the vectors are 2k-wise independent, then they
satisfy our requirement. However, a set of vectors that satisfies our requirement is not necessarily
2k-wise independent.

6 Lower bound for multiple paths of attack
In this section, we prove the following theorem:

Theorem 4 If b < log(2k — 3) and there are at least 2k possible paths out of which the k paths
of the Network are chosen, then the Attacker is able to cause a situation where regardless of how
many packets the Victim receives, it is not able to determine any path P such that P is one of the
paths of the Network with probability at least 1/2.

Proof: We first demonstrate that if the Attacker can cause the same distribution of header bits to
be received at the Victim for two disjoint sets of paths, then the Attacker can cause the situation
described.

Lemma 4 For any protocol, if there exist two disjoint sets of paths S; = {Py, P,,..., P} and Sy =
{P{,Ps,..., P}, such that there are probabilities \1,...,\g, A},..., A}, such that Zle NV (P;) =
E?:l NV (P)), S X =1and S5 N = 1, then the Attacker can create a situation such that
the Victim is unable to return a single path P that is held by the Network with probability greater
than 1/2.

Proof: Let A; be an Attacker strategy where the Network has the set of paths S;, and the Attacker
chooses the path for each packet by choosing path P; with probability); independently of the
choice for all previous packets. Let Ay be an Attacker strategy where the Network has the set
of paths Sy and the Attacker chooses path P]f with probability)\;- independently of all previous
packets. For both Attacker strategies, the probability distribution over header bits received by the
Victim is the same. Let W be the 2° — 1 dimensional vector that describes this distribution. We
consider the scenario where the Attacker chooses each of the strategies A; and Az with probability
1/2.

If, at the start of the attack, we reveal to the Victim some additional side information, in particular
the vector W, then (by what is referred to as the ”little birdie” principle) this cannot make the
Victim’s task any harder. If the Victim knows W, then the packets that arrive to the victim do not

15

provide it with any additional information, since it knows W, and could simulate any such packets
without actually seeing them. Therefore, regardless of how many packets the Victim receives, the
Victim does not obtain any information past the vector W. However, with W, both strategy A
and strategy A, are equally likely. Since sets S; and S are disjoint, the Victim is not able to
determine any path that is in the set of paths of the Network with probability greater than 1/2. m

To complete the proof of the Theorem, we show that if b < log(2k — 3) and there are at least 2k
possible paths out of which the k paths of the Network are chosen, then there exist two disjoint sets
of paths Sy and S that satisfy the conditions of Lemma 4. Note first that if b < log(2k—3), then the
vectors representing each of the paths have 2k—4 components. Let the 2k paths be Py, Py, ..., Py, _1.
Since we are concerned with convex combinations of the vectors V(Fp), ..., V(Pa—1), we can assume
that one of them is the zero vector. We assume w.l.o.g. that V(P) is the zero vector.

Claim 6 If there exist p1 ... pog—2 such that Vj,p; > 0, 35 such that p; > 0, and Z] LV (Py) =

fkkl 1V (Pj), then there exist two disjoint sets of paths S1 and So that satisfy the conditions of
Lemma 4.

Proof: Let Q1 = f;ll Wi, and let Qo = Eﬂik pj. We can assume w.l.o.g. that Q2 > Q1. The two
sets are S; = {Py,...,P;_1} and Sy = {Pk, ooy Po 1}, If we let ,u; = ,u]/Qz, for 1 <j <2k-2,

po =1— Q—l, and phy,_; = 0, then we see that 22’“ kz ,u] =1, and Zk ,u] = 1. Furthermore, it

must be the case that Z] 0 u]V(P)= Z?k . 13V (Pj), since we have merely multiplied both sides
by a scalar, and added the zero vector. [|

Thus, we only need to find such p1 ... pog_o. Since the dimension of the vectors is at most 2k — 3,
there must exist some P; and Pj, j # 4 such that V(P;) is a linear combination of the 2k —
3 other non-zero vectors, and V(P;) is also a linear combination of the 2k — 3 other non-zero
vectors. We can assume w.l.o.g. that ¢ = 1 and j = 2. Thus, there exist A;...Aop_1 such that
SRINV(P) = V(By), where Ay = —1 and Ay = 0. Similarly, there exist A} ... Xy, ; such that

SRTIMNV(P) = V(By), where A, =0, and A, = —

Let T;" (T;") be the set of i such that \; > 0 (A > 0, respectively), let ;" (T) be the set of i
such that \; < 0 (A} < 0, respectively), and let T (79) be the set of i such that A\; = 0 (A} = 0,
respectively). If |T;"| < k—1 and |T]"| < k — 1, then we can obtain p1 ... pog_2 by renumbering the
P; so that the P; with ¢ € T, are numbered using integers from [1,k — 1], the P, with i € T| are
numbered using integers from [k, 2k — 2|, and the remainder of the paths are numbered arbitrarily to
fill in the remaining integers. By renumbering the A; in the corresponding fashion, and by negating
A; for ¢ € T, we obtain the required values of ;;. Thus, we henceforth assume that either |T1+ | >k
or [Ty | > k. In fact, since we could multiply all of the \; by —1, we shall assume that |T} | > k.
Similarly, we can assume that T}, | > k.

Using the fact that |1, | > k, we see that there exists R such that for any r > R, the number of
values of ¢ such that A; + 7\, < 0 is at least k. Since |T1+ | > k, there must exist some value s,
0 < s < R such that the number of values of ¢ such that A; + s\, > 0 is at most k — 1, and the
number of values of ¢ such that \;+s\] < 0 is also at most k—1. Thus, we can obtain 1 ... pog_2 by
setting p1 ... ug—1 to nonnegative values of \; + s}, and g . .. pog—2 to the negation of nonpositive
values of \; — s}, where the 0 values are assigned so as to ensure that both sets have exactly k — 1
elements. To satisfy the conditions of Claim 6, we also renumber the paths as appropriate.

16

This gives us the required order on the paths and required values of p; ... uog_o. Thus, by Claim
6 and Lemma 4, there is an Attacker strategy such that there is no path P that the Victim can
determine such that probability that P is held by the Network is greater than 1/2. [|

7 Upper Bound for Multiple Paths of Attack

We saw in the previous section that, if there are two disjoint sets of paths 57 and S such that
there is a convex combination of the vectors representing the paths in 5] that is equal to a convex
combination of vectors representing the paths in So, then the attacker is able to hide in the network.
In this section we demonstrate how to encode an arbitrarily large set of paths in such a way that
the resulting set of vectors has no such sets 57 and Sy. In fact, our technique produces a set of
vectors that satisfy a stronger criteria: every set of 2k vectors is linearly independent. In order to
do so, we shall consider a curve in 2k-dimensional space such that any set of 2k distinct vectors
with endpoints on this curve are linearly independent. With our encoding, the vector for every
path lies on this curve.

This curve is defined in terms of a parameter t. Let V(t) be the 2k-dimensional vector such that
the ith component of V() is t'. Let any path P be described by bits b1(P)...b,(P), where b;(P)
is a 1 if the ith branch follows the left child, and a 0 otherwise. To determine the path P, it is
sufficient to determine the value Xp = 3" ; b;(P)/2¢. To encode the path P, we use the probability
distribution defined by the vector V/(P) = V(3 Xp).

We first demonstrate how to compute the vectors on this curve in a distributed fashion. We use
b = [log(2k + 1)], and thus there are at least 2k + 1 possible headers. We only use the 2k + 1 of
these headers that represent the smallest integers (i.e., headers 0 through 2k). Recall that p;(P) is
the probability that a packet sent along path P arrives at the victim with the header bits set to .
We describe a protocol run by each of the distributed nodes such that p;(P) = (%Xp)i, for i > 0,

and po(P) = 1 — 3, pi(P).
Let pf ; be the probability that a node holding the bit e, for e € {0,1}, forwards the header j when

it receives the header ¢. Note that it must be the case that Vi, e, Z?io p;; = 1. When a node holds

the bit 0 (i.e., when e = 0), the probability transitions are defined as follows:

e For 0<i <2k pi;=2"andpy=1-2"
e Fori#j,and j #0, p}; =0.

* Pg,o =1
For the case where e = 1, the probability transitions are defined as follows:

o For 1 <i<j<2k pt,=2%"%()+2°%
e For 1 <j<i<2kori=0<j<2kpj;=27%
o For j=0<i<2kp},=1-57%%pl,

i=1

17

Claim 7 For each possible header received by a node, this protocol defines a valid probability dis-
tribution over headers that the node forwards. In particular, Vi,j,e, 0 < pf, < 1, and Vi,e,

Z] ZoPi; = 1.

Proof: We here show that for any ¢, 1 <17 < 2k, Z Yoot 7 < 1. From this, the claim follows easily.
For any 7, we see that Z] 1D5 ;= Z 12” 3]—1—2% 22z (4). Since we know that Z 1273 < 1)1,
we only need to demonstrate that the second sum is at most 6/7 We see that 22’“ 22z 31 (! .') =270

K223). Since (/) < 27, this sum is less than L3k 2% = +sz 7% <28

|
Claim 8 For any path P and 1 < i < 2k, p;(P) = (%)z.

Proof: We prove this by induction on n. We start with the inductive step: if we assume that the
claim is true for paths of length n— 1, we can show that it is true for paths of length n. Let p;'~ L(p)
be the probability that a packet sent on path P received by the node just prior to the victim has the
header bits set to 7. Since all nodes perform the same protocol, the inductive hypothesis gives us

n—1
that pP~!(P) = <X4 > where X5™1 = S , b;(P)2!~%. By the definition ofthep”,lfbl() =0,

b

then p;(P) = 2 #p" 1(P), and thus p;(P) = (X8) ~ ()"

n—1 .7
Similarly, for the case where by (P) = 1, we only need to show that p;(P) = (X% + %) . In the

following, we use the standard convention that (g) =0 1if j < i. We see that for all j > 0,

2%
= Zpgkl(P)le,j =
i=0

(-5 (%))5 ()

The base case of the inductive proof follows from a similar argument, since we assume that the
attacker must set all header bits to 0 in the packets it transmits. [|

We next demonstrate that with high probability, this process provides the victim with information
that specifies all paths P that receive a large enough fraction of packets.

18

2
Theorem 5 After the victim has collected 6 [%2(2’“2""“)("‘*2)] ln% packets, with probability at

least 1 — A, the victim is able to determine all paths P such that at least a fraction of { of the
packets the attacker sends travel along P.

Proof: We here provide the proof for the case where there are at least 2k possible paths for the
attacker to choose from; it is not difficult to remove this assumption. For convenience, we also
assume that the encoding is done in such a manner that there is no path P such that Xp = 0.
Denote the k paths used by the attacker as P; ... P;. Let)\; be the fraction of the received packets
that are sent by the attacker along path P;. If the attacker uses only k' paths, for ¥’ < k, then choose
an arbitrary set of k — k' other paths so that there are k disjoint paths, and set the corresponding
values of A; = 0. The probability that a randomly chosen packet from the set of received packets
has its header bits set to ¢ is ¢; = Z] 1 Ajpi(Pj). The set of received packets provides the victim
with an estimate on the values of the g;.

To get some intuition, let’s first assume that the victim knows the values of the g; exactly. We
demonstrate that this uniquely determines the entire set of paths used by the attacker. To prove
this, we show that if we assume that it does not uniquely determine this set of paths, we reach
a contradiction. In particular, assume that there is some set Pyyj ... Py of paths and fractions
Akt ---Agx such that Z?Zl NV(P;) = Z] k41 AjV(P;). For the set of paths to not be uniquely
determined, we require that there is some path Pj, such that A\; > 0 and if j < k then P; ¢
{Pi+1,-..,Por}, and if j > k then P; & {Py,..., P;}. Assume here that such a path is path Pyy;
the case where j < k is similar. In this case, we see that

2k—1
AaiV (Pag) = Z)\ V(P)— > NV(P)
j=k+1
This in turn implies that there is some set of 2k distinct paths Pj ... Py, and real numbers \| ... X}, ,
with A, > 0, such that
2k—1
AoV (Pyy,) Z % (1)

Now, consider the 2k x 2k matrix M where entry M; ; = p;(P}). From (1), we see that the columns

X pr
of M must be linearly dependent. However, from Claim 8, we see that M;; = < jj) . The

Xpr il

matrix M', where entry M;; = | — , is a Vandermonde matrix. Since the paths Pj ... Pj,

are distinct, if ¢ # j then X P! #* X P!y and thus M’ has full rank. Since we assume that for all
paths P, Xp # 0, this implies that the matrix M has full rank as well, which contradicts the
assumption that the columns of M are linearly dependent. Therefore, the exact values of the g;
exactly determines all paths P;, 1 < j <k, such that Ay > 0.

We next examine the effect of the fact that the victim does not know the values of the g; exactly.
In this case, with high probability the victim determines a good estimate on all of the g; values.

19

We demonstrate that with this estimate, any path that is used to send a large enough fraction of
the packets can be determined. The estimate used is as follows: let Y; be the number of times

that header i is seen in the N = 6 4%—’“22(2’“24"“)("‘*2)] In % samples. We set ¢; = ¥;/N. The
victim returns any path P; such that P; is contained in a linear combination of at most £ path

vectors, with the coefficient associated with P; being at least 7, such that the Euclidean distance

of the resulting linear combination from the corresponding point defined by the g;s is at most
ho = %%27(2k2+k)(n+2)‘

To see that this protocol does in fact return every path P such that a fraction of at least 7 of the

packets travel on P, let D, = Z?io (¢; — @;)?. Standard Chernoff bound techniques demonstrate
that with NV samples, the values gy, . . ., §ax are such that Pr[D, > Dy] < A. Thus, with probability
at least 1 — A, every required path is returned by the protocol.

We next show that there is no path P, such that P is not used by the attacker, but the probability
that the protocol returns P is greater than A. If such a path exists, then there must be some set
of paths P, ... Py, where P, ... P; are the paths used by the attacker, Py, 1 ... Py are the paths
contained in the incorrect linear combination, and P, is the path returned incorrectly. Thus,
Py, € {Py,..., P}, and there exist fractions Ap ... Ao, with A9y > 7, such that

2
2k 2k k
Pr| > (> Ajpi(Py) - Z/\jpi(Pj)) =Dy < Do| >A
7=1

i=1 \j=k+1

This in turn implies that there are 2k distinct paths Pj,..., Py, and real numbers A} ...}, with
bk > 7, such that

2k 2k—1 2
> | Mowi(Pyy) — Z Nipi(P}) | < 2Dq 2)
i=1

Let D; be the Euclidean distance in ®2* from the point Ay V(P3,.) to the subspace spanned
by V(P{),...V(Psy,_,).- For (2) to be true, it must be the case that D; < 2Dj. Thus, to

demonstrate that no such incorrectly returned path Py, can exist, it is sufficient to show that
Dy > 92~ (K +k)(n+2),

To see that this is the case, let V; be the 2k-dimensional volume of the parallelepiped defined by the
vectors V(P]),...,V(Py, 1), AV (P4;) in R2% and let Vs, be the (2k — 1)-dimensional volume of
the parallelepiped defined by the vectors V(P{), ...,V (P4._;) in R2*. We see that D; = E—; Since
all of the vectors V/(P])...V(Pj,_;) have at most unit length, V> < 1. Due to the convenient form
of the vectors V(Py),...,V(Pj,), we can determine a lower bound on V;. In particular, a standard
result from linear algebra is that V; is equal to the absolute value of the determinant of the matrix
T, where column j of T, for 1 < j < 2k — 1, is V(Pj), and column 2k is the vector gV (Py).

To compute |det(T')|, consider the matrix 7", where column j of 7", for 1 < j < 2k, is XLP,VJ" By
i

Claim 8, the matrix 7" is Vandermonde, and thus

X Xpr
det(Ty =] (f_ 41).

1<i<j<2k

20

Xp/ Xpl

. 2k
—+ — 51| = 5z, we see that |det(T")] > (#)(2) Since it is also the case

Since for any i # 7,

Xpr
that Vj, —+ > QR%, this implies that

a, 1 1 2%k
det(T)] > +(55) " (5r3) ().

Thus, Vi > %(2,#2)2’“2“. This implies that D; > %(ﬁ)zkuk, completing the proof of the
theorem. -

8 Applications of the Model

In this section, we demonstrate that the upper bound model actually leads to a quite general
solution. In particular, it is easy to map our solutions to a number of scenarios. We demonstrate
this by considering three scenarios here: the case where the underlying tree is not binary, the case
where the routers are not given the information of which child forwarded them a given packet,
and the case where the neither the routers nor the victim have any information about the network
topology or routing strategy other than their own unique ID.

First, consider the case where the victim knows the entire routing topology, and also each node is
able to see which child it receives a given packet from, but the underlying tree is not binary. We
use the following type of encoding of the path: for every node N of the tree, we represent what
child of that node is the predecessor of N in the attacker’s path of attack using a Shannon code,
where the distribution used in the code is the distribution over the children of N when a node of
the subtree rooted at IV is chosen uniformly at random.

Claim 9 The mazimum number of bits required to represent any path using this scheme is at most
h + log m, where m s the number of nodes in the system, and h is the height of the tree.

Proof: Let C ...Cy be the sequence of code words used along any path from the victim to a node.

Let T; be the number of children in the subtree rooted at the jth node of this path. Since we are
h—1 Tj
=1 T

using a Shannon code, T,-Til > 2/Cil=1, Since T) =1 for any path, we have that T} =

4
and so T} > 9(2i=1 16D~ Since m > Ty, logm > (Zle |C;]) — ¢, from which the claim follows. m

To use a protocol for the upper bound model to actually compute this encoding, consider some
router R on the path of attack with ¢ children, and corresponding code words C;...C:. On a
message received from child j, router R simulates what would occur in a tree of height |C;| when
the child specified by the path Cj receives a packet from the attacker. This provides a mechanism
for encoding the string Cj.

Next consider the case where nodes still know the entire routing topology, and the tree is binary,
but nodes do not obtain the information of which child they received a given packet from. In this
case, the information that is reconstructed is slightly different: instead of being able to reconstruct
a path that contains the attacker, this smaller amount of information only allows us to reconstruct
a path such that the attacker is a child of some node along that path. We refer to this model as
the source oblivious model, and the model used for the bulk of the paper as the source cognizant
model. We show that the two models are equivalent in the following sense:

21

Claim 10 Any protocol for the source cognizant model for a tree of height n provides a protocol for
the source oblivious model for a tree of height n — 1. Any protocol for the source oblivious model
for a tree of height n provides a protocol for the source cognizant model for a tree of height n + 1.

Proof: To simulate a protocol for the source cognizant model in the source oblivious model, each
node simply does exactly what its parent would do in the source cognizant model. Each node
clearly has enough information to do this. The parent of the attacker follows the source oblivious
protocol correctly, and this simulates the parent of the parent of the attacker following the source
cognizant protocol correctly. Thus, the path is followed correctly back to the parent of the attacker.

For the reverse simulation, each node NV does exactly what its child N, on the path would do in
the source oblivious protocol on receiving the bits that N receives. In the case that N, is actually
the attacker, the node N simulates what N. would do if it were not the attacker, but a child of N,
were the attacker. Since the node IV has the information of which child it receives a packet from,
N has enough information to perform such a simulation. Since the parent of the attacker simulates
what the attacker would do in the source oblivious protocol if the attacker were on the path, but
not an attacker, this gives the source cognizant protocol the ability to obtain a path that contains
the attacker. [|

Finally, consider the case where neither the victim nor the routers have any information about the
network topology, nor do they see the information of which child sends it a packet. Each router
simply knows a unique router ID, and our task is to inform the victim of ¢ unique IDs of routers
along the path of attack. These IDs might for example correspond to IP addresses. We assume
that a router ID can be any k-bit string. To use a protocol for the upper bound model in such a
scenario, each router, on receiving a b-bit string from a preceding router would simulate a binary
tree of height k in the source oblivious model, where the node in the tree that receives the packet
is the node corresponding to the string that represents the ID of the router.

9 Acknowledgments

The author would like to thank John Byers and Faith Fich for numerous helpful conversations and
insightful suggestions. Thanks especially to Faith for her help in simplifying the model for the
protocols.

References

[1] S. M. Bellovin, ICMP Traceback Messages. Internet Draft: draft-bellovin-itrace-00.txt, Mar.
2000.

[2] Hal Burch and Bill Cheswick, Tracing Anonymous Packets to Their Approximate Source. In
Proc. Useniz LISA ’00, 2000.

[3] Sven Dietrich, Neil Long, and David Dittrich, Analyzing Distributed Denial of Service Attack
Tools: The Shaft Case. In Proc. 1/th Systems Administration Conference, LISA 2000.

[4] Drew Dean, Matt Franklin, Adam Stubblefield, An Algebraic Approach to IP Traceback. In
Proc. 2001 Network and Distributed System Security Symposium.

22

[5]

P. Ferguson and D. Senie, RFC 2267: Network Ingress Filetring: Defeating Denial of Service
Attacks which employ IP Source Address Spoofing. The Internet Society, 1998.

S. Floyd and V. Jacobson, Random Early Detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking, 1(4), August 1997.

S. Lee and C. Shields, Tracing the Source of Network Attack: A Technical, Legal and Societal
Problem. In Proceedings of the 2001 IEEE Workshop on Information Assurance and Security,
June 2001.

K. Park and H. Lee. On the effectiveness of probabilistic packet marking for IP traceback
under denial of service attack. In Proc. IEEE INFOCOM ’01, pp. 338-347, 2001.

K. Park and H. Lee. On the effectiveness of route-based packet filtering for distributed DoS
attack prevention in power-law internets. To appear in Proc. ACM SIGCOMM ’01, August
2001.

C. Perkins, IP Mobility Support. RFC 2002, Oct. 1996.

Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms. Cambridge University
Press, New York, NY, 1995.

Stefan Savage, David Wetherall, Anna Karlin and Tom Anderson, Practical Network Support
for IP Traceback. In Proceedings of ACM SIGCOMM 2000 , pp. 295-306, August 2000.

Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fabrice Tchakountio,
Stephen T. Kent, and W. Timothy Strayer. Hash-Based IP Traceback. To appear in Proc.
ACM SIGCOMM 2001, August 2001.

Dawn X. Song and Adrian Perrig, Advanced and authenticated marking schemes for IP trace-
back, In Proc. IEEE INFOCOM ’01, 2001.

23

