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ABSTRACT
Software is increasingly expected to run in a variety of envi-
ronments. The environments themselves are often dynam-
ically changing when using mobile computers or embed-
ded systems, for example. Network bandwidth, available
power, or other physical conditions may change, necessi-
tating the use of alternative algorithms within the software,
and changing resource mixes to support the software. We
present Containment Units as a software architecture use-
ful for recognizing environmental changes and dynamically
reconfiguring software and resource allocations to adapt to
those changes. We present examples of Containment Units
used within robotics along with the results of actual exe-
cutions, and the application of static analysis to obtain as-
surances that those Containment Units can be expected to
demonstrate the robustness for which they were designed.

1. INTRODUCTION
In today’s world, software is becoming increasingly perva-
sive. Not only is software invisibly embedded in the cars we
drive, the elevators we take, and the machines we use, but
the Internet has made software increasingly visible in a wide
variety of operational contexts. Increasingly, people expect
access to Web sites and programs from desktop computers,
cell phones, handheld devices, etc. For an application to
be available and effective across such a range of platforms
and in a variety of challenging operational contexts requires
careful customization. Examination of various parameters
of the usage environment, including such factors as mem-
ory, screen size, processor speed, ambient conditions, and
communication speed is necessary in order to support the

selection of the proper software components and other re-
sources needed to assure satisfactory functioning. Adding
to the complexity of this problem is the fact that runtime
conditions will often change. Thus, perhaps the communi-
cation link speed or reliability changes, perhaps the available
memory changes due to behavior of concurrent tasks, or per-
haps the processor speed changes to conserve the battery. It
is clearly desirable that overall system operation continue in
spite of such changes. Often system operation can be contin-
ued with the help of resource reallocation or software com-
ponent modification or substitution. It is clearly desirable
that these adaptations take place as quickly and automati-
cally as possible, but only with clear assurances that these
automatic adaptations will be correct and effective.

In general, runtime adaptation is frequently needed in appli-
cations that are expected to work in a wide range of environ-
ments but where customization is required for those different
environments. Robotics offers an excellent example. Imag-
ine a team of robots whose task is to rescue people from a
fire. The robots may be faced with a wide range of environ-
mental conditions: smoke and heat to name two. While their
task remains the same, their selection of sensors and how
to interpret the data reported by the sensors vary depending
upon the environmental conditions. The environment can
change as the robot moves from one room to another and
thus dynamic adaptation to this changing environment is es-
sential to success of the mission.

Previously [16], we have introduced an approach to enable
software systems to select customized components and satis-
factory resource mixes that are suitable for the current envi-
ronment, to monitor those components and the environment
for satisfactory performance, and to adapt the software if
the environment changes. We call our realization of this ap-
proach Containment Units, which are modules able to self-
diagnose the need for changes in their operational character-
istics and also able to make a limited set of changes aimed
at meeting these needs. A Containment Unit is intended to
guarantee that it will maintain its capabilities in the face of



Figure 1: Phases of Software Modification

a range of changes in operational conditions by automati-
cally making internal adjustments. By composing systems
out of configurations of Containment Units, we are able to
construct more adaptable systems that should need less hu-
man involvement in making relatively modest modifications
and should be adaptable to important types of changes in
their operational environment in minutes or even seconds. A
key aspect of our work is its emphasis on automated analysis
aimed at deriving assurances that Containment Units can be
relied upon to always provide the robustness for which they
are designed.

In this paper, we present architectural details of our approach
to self-adaptation in software. We present a design pattern
for our key notion of a Containment Unit, discuss the separa-
tion of the coordination aspects of a Containment Unit from
its operational aspects, and then describe some of our ex-
periences developing Containment Units, and analyzing key
properties such as correct adaptation. Finally we compare
our approach to other work in this area, and then conclude,
suggesting future directions for this work.

2. OUR APPROACH
To explain the ideas underlying the Containment Unit con-
cept, we begin with some observations about the general no-
tion of software modification.

2.1 Some General Architectural Features
Software modification is a process with which there is much
experience. Figure 1 is a very high level activity diagram
conceptualizing the four main phases of a software modifica-
tion process. Modification begins by evaluating the behavior
of the currently deployed executing system. Not too surpris-
ingly, evaluation often indicates the need for change. At that
point, the formulation of a system modification takes place,
followed by some alteration of the system, reevaluation of
the alteration to determine if it is effective, and the utiliza-
tion of the modified system if the alteration seems effective.
If the alteration is not effective, a new change is formulated,
implemented, and evaluated until a solution to the problem

is found. The modified system then becomes the subject of
a new round of observation, evaluation, and alteration. This
process is presumably iterated continuously throughout the
lifetime of the system.

The purpose of modification is to improve system behavior.
Thus, increasing execution speed, adding facilities for han-
dling new cases or contingencies, and incorporating more
effective response to failure are all examples of possible ob-
jectives of modification. Both the details of the modification
and the actual modifications performed will vary for differ-
ent circumstances. Nevertheless, these different modifica-
tion processes share a common architecture.

Examination of Figure 1 suggests that there are two distinct
types of activities entailed in software system modification,
namely evaluation and alteration. We propose that each of
these capabilities be assigned as the specific responsibility
of a different modification component, as these two capa-
bilities correspond to separate concerns. We thus arrive at a
very high level representation of the architecture of a generic
modification process in which the deployed, operational sys-
tem is one component, an evaluator is a second component,
and a change agent is a third component.

Generally, when we consider software modification, we
think of evaluation as being done using principally auto-
mated analysis and testing activities while adaptation gen-
erally entails a great deal more emphasis on human involve-
ment. To support self-adaptation, we suggest that the same
modification architecture applies, but that it entails the au-
tomation of the adaptation activity. We refer to an architec-
ture that incorporates these three components as a Contain-
ment Unit.

2.2 Containment Units
To be more precise, a Containment Unit is a module that,
like other modules, encapsulates some functionality and im-
plements that functionality in such a way as to meet spe-
cific nonfunctional requirements. Specifically, we repre-
sent a Containment Unit interface, CUINT, with a tuple
(F, R, CP, FC). F represents the functionality of the Con-
tainment Unit. R represents the resource requirements in-
cluding time, memory, and other shared physical resources
such as special processors, sensors, and actuators. CP rep-
resents the communication protocol defining the input ex-
pected, output produced, and faults reported by the Contain-
ment Unit. Finally, FC represents the faults reported by the
operational components that are handled by the Containment
Unit, that is, situations that the Containment Unit guarantees
it can handle internally.

As shown in Figure 2, a Containment Unit implemen-
tation, CUIMP, is made up of four major components:
(Top, Op, Eval, Change). Top is the top level component
that is responsible for initializing the Containment Unit, and
managing the communication protocol. Op is a set of op-
erational components,Op = {opi}, each of which provides
the functionality of the Containment Unit. Eval is a set of
evaluators, Eval = {evali}, that dynamically monitor the
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Figure 2: Containment Unit Architecture

performance of the operational components to ensure that
the Containment Unit interface is being satisfied. There may
be one or more evaluators. For example, there may be one
evaluator to monitor execution speed, another to monitor
memory usage, and still another to evaluate the quality of
the functional results. The change agent, Change, provides
a capability for adaptation in the event that one of the evalu-
ators determines that the Containment Unit is not operating
satisfactorily.

The purpose of an operational component is to provide the
Containment Unit’s functionality within the specified re-
source limitations, as stated in R. Each operational com-
ponent within a Containment Unit has a specification that is
consistent with the specification of its encompassing Con-
tainment Unit. In particular, the functionality provided by
an operational component must be at least as comprehensive
as that provided by the Containment Unit itself. Each oper-
ational component must require no more time, memory, and
other resources than the Containment Unit as a whole. By
doing this, we can be certain that any operational component
will be able to satisfy the Containment Unit’s functional re-
quirements. But each operational component will probably
have environmental constraints that constrain it to be effec-
tive in only a subset of the operational environments sup-
ported by the overall Containment Unit. In particular, the
environmental constraints of a Containment Unit are gen-
erally a disjunction of the environmental constraints of the
enclosed operational components. This allows the change
agent to use information about current environmental condi-
tions to select an appropriate operational component. Oper-
ational components may be implemented using other Con-
tainment Units to support their hierarchical composition.
Such Containment Units are usual constructed through the
use of the Adapter pattern [7] to implement the higher-level
Containment Units functionality out of lower-level Contain-
ment Units.

As mentioned above, each operational component is not re-
quired to contain the faults that the enclosing Containment
Unit contains. Instead, the roles of the evaluators and the
change agent are to ensure that, should a fault arise, the Con-
tainment Unit will adapt either by running an alternative op-

erational component or by changing resource allocations so
that the fault is handled within the Containment Unit.

The relationship between the operational component speci-
fications and the Containment Unit specification is captured
below:

1. ∀op ∈ OpCU , Fop ≥ FCU (Each operational com-
ponent provides at least the functionality required by
the Containment Unit). More formally, we define≥ to
mean that for all I in the domain of FCU , FCU (I) =
Fop(I).

2. ∀op ∈ OpCU , Rop ⊆ RCU (Each operational compo-
nent does not use more resources than the Containment
Unit specifies.)

3. ∀op ∈ OpCU , INPUTop ≡ INPUTCU ∧
OUTPUTop ≡ OUTPUTCU (Each operational
component has exactly the same input and output as
the Containment Unit.)

4.
 

op FaultsReportedop − FaultsReportedCU ≡
FCCU ≡

 
op FCop (The faults contained by a Con-

tainment Unit are the difference between the faults re-
ported by the collection of operational components and
the faults reported by the Containment Unit. The faults
contained by a Containment Unit are also the disjunc-
tion over the faults contained by the collection of oper-
ational components. That is, if one operational compo-
nent reports a fault, but the Containment Unit contains
it, it must be the case that a different operational com-
ponent handles that fault.)

Evaluators are connected to operational components via the
Observer pattern [7]. The purpose of the evaluators is to
guarantee that the Containment Unit specification is satis-
fied by dynamically monitoring the behavior of the active
operational component. Should the result quality or perfor-
mance of the active operational component fall outside the
Containment Unit guarantees, the evaluator signals an error
to the change agent.

The change agent’s job is to turn off the current opera-
tional component and select an alternative component better
suited to the current environment or an alternative alloca-
tion of resources to the active component and then to con-
tinue. Because the operational components provide a great
deal of information about their resource and environmental
constraints, we expect that adaptations will lead to improved
system behavior as the environment changes.

A Containment Unit configuration CUCONFIG repre-
sents a Containment Unit at runtime and consists of
(OpCUR, Eval, Change). The key point here is that at run-
time, only a single operational component of the implemen-
tation will be active at a time. The evaluators and change
agent are bound to the Containment Unit, rather than indi-
vidual operational components. As a result, these remain
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Figure 3: Obtain Heading Containment Unit

active independent of which operational component is ac-
tive.

One particularly important attribute of this architecture is
that the signals sent by the evaluators and the structure adap-
tation procedures in the change agent are defined separately
from the implementation details of the operational compo-
nents. We believe this separation of the coordination aspects
of the containment unit architecture will allow the static
analysis to obtain assurances of the robustnesses of Contain-
ment Units and the safe addition of new operational compo-
nents.

3. EXPERIENCES WITH CONTAINMENT
UNITS

We now describe our experiences in defining, executing, and
analyzing Containment Units. While we have exploited our
agent coordination language Little-JIL [23, 24] to describe
the coordination within a Containment Unit and use our
Little-JIL runtime, Juliette [3], as the basis for our execution
experiments, the following discussion should not require un-
derstanding of Little-JIL.

Our example Containment Units are based on a robot search
and rescue example we have been developing. In particular,
we focus on an important element of a search-and-rescue
task, namely the ability to track a target moving through a
room with a set of fixed sensors [12, 1]. We begin by pre-
senting the top levels of a Containment Unit hierarchy, then
skip down to one of its lowest levels.

3.1 Obtain Heading Containment Unit
First we will discuss a high level Containment Unit that is
designed to obtain a heading towards a target under a wide
range of operational situations. This is intended to be used
in a search and rescue task, to determine where a target is in
a room and to track it as it moves, despite the fact that the
room may be smoky, littered with debris, etc.

The Obtain Heading Containment Unit, shown in Figure 3,
takes as a resource a set of sensors that it will use to track
the target. It begins by selecting an initial sensor to use and

then begins reading sensor values from the sensor and writ-
ing them into a global space for use by other components,
and monitoring the active sensor’s performance. The sensor
interface allows the sensor to report three exceptional condi-
tions:

• “No Target” if the sensor is unable to detect a target
within its observation area

• “Target Lost” if the sensor is tracking a target and then
loses it; the goes behind a wall for example, and

• “Sensor Fault” which reports internal diagnostic fail-
ures of the sensor.

When the change agent detects one of these failure modali-
ties, it stops reading values from the current sensor and at-
tempts to reconfigure the Containment Unit by selecting an
alternate sensor. If there is no target in the observation area
or no applicable sensors (“No Sensor”), the Containment
Unit terminates.

The interface to the Obtain Heading Containment Unit is
(F, R, CP, FC) where:

• F is a function that returns a heading to a target
• R is one or more sensors that can be used to track a
target

• CP states that this Containment Unit writes headings
into a global space, and reports “No Sensor” and “No
Target” as faults

• FC is the faults “Sensor Fault” and “Target Lost”

The implementation of this Containment Unit is a tuple
(Top, Op, Eval, Change) where:

• Top selects an initial sensor for the Containment Unit
• Op is a component that reads a sensor value and writes
it into the global space

• Eval is a monitoring component for the sensor that
detects the various failure modalities

• Change handles the faults “Sensor Fault” and “Target
Lost” by reconfiguring the resources for Op

At the conclusion of this section we describe our experiences
in using automated static analysis to verify that this Contain-
ment Unit performs as intended.

3.2 Track Heading Containment Unit
While the Obtain Heading Containment Unit can determine
the heading of a target with respect to a given sensor, it can-
not determine the exact position of a target in a room. All
that can be said is that the target lies on a given line that runs
through the sensor. With two sensors reporting headings,
there are two lines that the target lies on. The position of the
target can be determined by identifying the intersection point
of the two lines. This fails, however, if the target is on the
line that runs through both sensors. We call this a Colinear-
ity Fault. Thus, to determine the position of a target, we use
two Obtain Heading Containment Units and their respective
resources. An evaluator is responsible for identifying and
reporting colinearity faults.
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The Track Heading Containment Unit, shown in Figure 4
takes as input a set of sensors. It begins by dividing the sen-
sors into two disjoint subsets. Each of these sensor sets will
be used by an Obtain Heading Containment Unit to deter-
mine a heading towards a target. If no partitioning is pos-
sible (because there is only one sensor available, for exam-
ple), then the partitioning fails, signaling “No Partition,” and
the Containment Unit terminates. If a partitioning is possi-
ble, then an operational component that serves as an adapter
between two instances of the Obtain Heading Containment
Unit and this Containment Unit by computing the heading
based on their outputs.

The computation of a position from two headings introduces
a new failure modality: as the target gets closer to a line
drawn through the two sensors, the accuracy of the triangu-
lation decreases. The Containment Unit has a monitor that
detects this condition and signals a “Colinearity Fault.” It
is important to note that a colinearity cannot be detected or
handled in either of the Obtain Heading Containment Units,
since each of these only has access to a single heading. The
Track Heading Containment Unit has access to both head-
ings and can determine when a colinearity occurs.

When the change agent is notified of a colinearity fault, or
“No Sensor” from one of the nested Containment Units, it
responds by repartitioning the resource pool so that there are
appropriate resources for each of the two containment units.
Due to the hierarchy, this Containment Unit does not have
to handle the faults contained by the Obtain Heading Con-
tainment Unit. If Obtain Heading Containment Unit cannot
locate a target (“No Target”) the Containment Unit termi-
nates.

The interface to the Track Heading Containment Unit is
(F, R, CP, FC) where:

• F is the (set of) function(s) that return(s) the position

Operational
Component

Resource
Monitor

Lighting
Control

Lamp
Reconfigurer

Interface
X10

Figure 5: Lighting Control Containment Unit

of a target
• R is two or more sensors that can be used in the Obtain
Heading Containment Unit

• CP states that this Containment Unit writes positions
into a global space, and reports “No Partition” and “No
Target” as faults

• FC is the faults “Colinearity Fault” and “No Sensor”

The implementation of this Containment Unit is a tuple
(Top, Op, Eval, Change) where:

• Top selects an initial partitioning of the resource set
• Op is an adapter that invokes two Obtain Heading Con-
tainment Units and performs the triangulation on their
output

• Eval is a monitoring component that detects colinear-
ity between the active sensors and the target

• Change handles “Colinearity Fault” and “No Sensor”
by repartitioning the resources forOp

Later in this section we describe the analyses we attempted
on this Containment Unit.

3.3 The Lighting Control Containment Unit
As a very basic evaluation of our Containment Unit concepts
we used Little-JIL to define a Containment Unit, and then
used Juliette to execute the Containment Unit, demonstrat-
ing its ability to dynamically reallocate resources to assure
desired behavior in the face of failure.

The Lighting Control Containment Unit, shown in Figure 5,
is a lamp controller that might be used to provide illumi-
nation for use with vision sensors as part of a search and
rescue task. Our lamp controller Containment Unit uses the
commercially available X10 home automation system. This
system includes inexpensive switched electrical outlets, light
and motion sensors, and an interface that allows a computer
to send and receive messages that use the X10 protocol.

The lamp controller provides illumination when requested
by activating the switched outlet attached to a lamp, moni-
toring the state of the lamp using the light sensors, and in the



event that the monitor determines that the lamp has failed,
switching to an alternate switched outlet. While very simple,
this demonstrates the basic structure and operational compo-
nents of a Containment Unit.

The interface to the Lighting Control Containment Unit is
(F, R, CP, FC) where:

• F is the function providing illumination in a requested
area

• R contains the primary and alternate switched outlets,
and light sensors for monitoring the associated lamps

• CP states that this Containment Unit reports if illumi-
nation cannot be provided

• FC is the fault “Illumination Failure”

The implementation of this Containment Unit is a tuple
(Top, Op, Eval, Change) where:

• Top selects a primary and backup lamp, and the appro-
priate sensor for monitoring the primary lamp

• Op is a component that controls a lamp using the X10
protocol

• Eval is a component that monitors the lamp and re-
ports “Illumination Failure”

• Change responds to“Illumination Failure” by activat-
ing the backup lamp

Having defined this Containment Unit using Little-JIL, we
were then successful in using Juliette to support running
demonstrations showing the automatic switching over to a
backup working lamp in response to the failure of an ini-
tially selected lamp.

3.4 Analyzing Containment Units
As indicated earlier in this paper, we believe it is particularly
important to be able to reason about Containment Units,
specifically to be able to demonstrate that they have been
successfully defined to assure that their desired robustness
properties must always be achieved. Thus a key feature of
our work is the application of automated analyzers to ver-
ify that defined configurations and resource reallocations do
indeed assure desired robustness.

To address this key goal we employed FLAVERS (FLow
Analysis forVERification of Systems), a static analysis tool
that can verify user specified properties of sequential and
concurrent systems [6]. FLAVERS requires that a prop-
erty to be checked be represented as a Finite State Automa-
ton (FSA). FLAVERS uses an annotated graph model called
a Trace Flow Graph (TFG), derived from Control Flow
Graphs, that captures an overestimate of all possible system
executions. The FLAVERS model is highly abstracted so
that it is as small as possible. This makes the analysis more
tractable but comes at a cost in precision. FLAVERS results
are conservative, therefore if FLAVERS determines that a
property holds, then it guarantees that the property holds on
all possible system executions. If FLAVERS determines that
a property does not hold, this can either be because there is a
fault in the system or because the property is violated on an

infeasible path through the model, a path that does not cor-
respond to any possible execution of the system and result
from the imprecision of the model. FLAVERS uses Feasi-
bilty constraints, also represented as FSAs, to improve the
precision of the model and eliminate some infeasible paths
from consideration. FLAVERS uses an efficient state prop-
agation algorithm to verify the property that has worst-case
complexity that is O

 
N2 · |S|

 
, where N is the number of

nodes in the TFG, and |S| is the product of the number of
states in the property and all constraints.

To apply FLAVERS to determine whether or not some of
our Containment Units performed as intended, we manu-
ally transformed the Little-JIL descriptions of several Con-
tainment Units into Ada as described in [4], and then used
FLAVERS to analyze these models. In future work we
would hope to use automated translators to render Little-
JIL defined Containment Units into graphs amenable to
FLAVERS analysis.

In one such project, we modeled the Obtain Heading Con-
tainment Unit in Ada, and created the model so that the Con-
tainment Unit can receive up to four sensors1. This model
required 549 lines of Ada code.

We were interested in ensuring the Containment Unit could
successfully contain Sensor Faults, so we checked the prop-
erty that the Containment Unit would not terminate if three
sensor faults occurred. The TFG for this had 120 nodes and
1,592 edges. Proving this property required 11 feasibility
constraints. Even with this large number of feasibility con-
straints, FLAVERS was able to prove the property in less
than 1 second.

We also applied FLAVERS to the analysis of the Track
Heading Containment Unit. The model for this Containment
Unit required 1,873 lines of Ada code, and the model was
written so that it could accept up to 4 sensors.

We were again interested in the robustness of this Contain-
ment Unit. We wanted to check that if given four sensors,
that it could handle one of the sensors failing without requir-
ing a repartitioning. Unfortunately, we were unable to prove
this property on this Containment Unit. The number of fea-
sibility constraints needed to prove this property was large
enough that FLAVERS was unable to prove this property
using 2GB of memory.

While none of the analyses we performed found any faults in
any of the Containment Units, it has been shown that Little-
JIL coordination specifications can contain subtle faults that
can be detected by finite state verification [4], so we believe
that applying analysis techniques to Containment Units is
important to ensuring their correctness, and work continues
on extending FLAVERS to allow it to verify properties of
larger software systems.

1We were constructing Containment Units while we were develop-
ing the Containment Unit architecture. As a result, our analyses are
based on older versions of the Containment Units.



4. RELATED WORK
Perhaps the earliest work that has addressed adaptation to
faults was the work of Randall on recovery blocks [21]. In
this work the suitability of a software function was evalu-
ated, and when found to be inadequate, a recovery block was
called to try to mitigate the effects of the inadequate code.
This early work was quite static in nature, requiring that the
conditions to be examined, and the recovery strategies be
hard coded in advance. The representation of operational
components as resources allows us more dynamism.

Work with real time systems has some relationship to this
project as well. The work of [20], [14], [13], and [9], for
example, suggest the use of a framework within which to de-
scribe operational components and the real time constraints
on their performance. These approaches tend to use the real
time constraints primarily to determine whether proposed
module configurationswould necessarily meet real time con-
straints. In this work, however, unacceptable configurations
were often simply not deployed, or ad hoc responses were
generated. Our work differs in that we use language con-
structs to define programmed strategies for dealing with such
constraint violations. Like some of these authors we use
module replacement as the basis of our work.

Our work is also related to earlier efforts in software reuse.
This work, like ours, emphasized the importance of reposito-
ries of reusable modules, and the use of architectural frame-
works within which to insert them. These approaches are
presented in work such as [10, 22, 19]. Our work takes these
approaches further in using explicit, rigorous process repre-
sentations to effect the module reuse.

The work that this project most closely resembles, however,
is work in the areas of software architecture and domain spe-
cific software. Numerous authors have suggested the use
of architectures to guide the composition of software sys-
tem out of components or modules (e.g., [17, 18, 8]). Our
specific approach to module interchange is similar to that
suggested by [15] and [5] who propose the use of a defined
architecture as the framework within which different com-
ponents can be interchanged. Containment Units extend this
through the inclusion of mechanisms to detect when adapta-
tion is required, and to automate this reconfiguration.

A particular system with a similar goal and approach is
Chameleon. Chameleon is an infrastructure for adaptive
fault tolerance [11]. The Chameleon system is based on AR-
MORs, which are components that control all operations in
the Chameleon environment. An ARMOR can be thought
of as a wrapper around a component or set of components.
Each ARMOR provides a specific fault tolerance capabil-
ity and the Chameleon architecture supports specific failure
modes and recovery mechanisms. Some example ARMORs
include the Heartbeat ARMOR, which can be used to query
a component to see if it is up or down, the Checkpoint AR-
MOR, which saves the state of the component so it can be
resumed from the checkpoint in the event of failure, and the
Voter ARMOR, which implements n-version programming.
Like Chameleon, Containment Units are designed to support

the hierarchical composition of fault-tolerant components.
We believe Containment Units are a more general mecha-
nism because a Containment Unit can have a wider range of
adaptations available to it than those provided by an individ-
ual ARMOR

5. FUTURE DIRECTIONS
In this paper, we present Containment Units – modules that
provide the basis for building a self adaptive system and
show how they can be analyzed to prove their correctness.

The current Containment Unit architecture supports the
switching between different resource configurations and op-
erational components at run-time as long as the transition
between configurations is relatively simple. For the robotic
search and rescue platform, components do not require de-
tailed initial state to begin execution, and executions can
overlap without interference. However, we recognize that
this is not always the case. The Containment Unit archi-
tecture should include a mechanism for the orderly and safe
transition from one configuration to another.

Also, one of the goals of the Containment Unit architecture
is to allow new configurations and components to be added
to running systems in order to allow them to adapt to new
operational contexts. While we believe that the separation
of operational components from coordination structure will
greatly assist us in this goal, we have only a little experi-
ence to support this claim. The separation of resources in
the Containment Unit model allows us to change the col-
lection of resources that can be deployed at run-time, and
we have some experience with Little-JIL programs adapting
their behavior based on these change, but we do not yet have
any experience replacing the operational components.
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APPENDIX
A. LITTLE-JIL DESCRIPTION OF CON-

TAINMENT UNITS
In this section we present Little-JIL descriptions of the
Generic Containment Unit we have developed and the three
Containments Units described previously.

A.1 Generic Containment Unit
The details of the Little-JIL language are provided in other
papers [23, 2] and space does not permit us to repeat them
here. We begin by using Little-JIL to present a precise pic-
torial definition of the architecture of a generic Containment
Unit. Figure 6 depicts a Containment Unit as being made
up of several steps. “Run Containment Unit” is the top most
step which is decomposed sequentially into the structure of
substeps shown below it. The second level steps represent
the fact that “Select Component” is called first to select an
operational component to use initially, and after the selec-
tion is complete, both the component and the monitors are
started in the step “Run & Monitor Component.”

“Run & Monitor Component” is a parallel step. This allows
the component to run in parallel with all the monitors. The
“Monitor Component & Environment” step runs monitors to
ensure that, for example, the running component is meeting
its deadlines, obeying its memory constraints, producing re-
sults of sufficient quality, or working within the environment
in which it was designed to work.

If the component itself encounters an error or any of the
monitors encounter errors, the corresponding step throws
an exception. In response to the exception, the exception
handler attached to the × of the “Run Containment Unit”
step is executed to reconfigure the operational components
of the Containment Unit. In the simplest case, when an error
occurs during execution, the exception handler restarts the
Containment Unit resulting in the Containment Unit stop-
ping the current operational component, selecting a new one,
and starting it running again along with the monitors.

If an error occurs that cannot be handled, the exception han-
dler will not fire. Instead, the exception will propagate up
to the root step of this Containment Unit. At that point it
will propagate outside the Containment Unit to be handled
elsewhere.

The tuple for this Containment Unit implementation is
(Top, Op, Eval, Change) where:

• Top represents the agent that is assigned to the step
“Select Component” and the portions of the Little-
JIL runtime that manages the communication between
steps in the hierarchy

• Op represents the set of agents that could be assigned
to the step “Run Component”

• Eval is the (set of) agent(s) assigned to “Monitor Com-
ponent & Environment”

• Change is the agent assigned to the step “Adapt Con-
tainment Unit”

A.2 Obtain Heading Containment Unit

Figure 7 shows Little-JIL description of the Obtain Head-
ing Containment Unit. This Containment Unit takes as re-
sources a set of sensors that it will use to track the target.
It begins by selecting a sensor to use in the “Select Sen-
sor” step. Once this is done, the “Run & Monitor Com-
ponent” step is posted. This step has two substeps, “Run
Component” and “Monitor Component,” which can be ex-
ecuted in parallel. The “Run Component” step uses the
sensor to obtain the heading in the “Run Saccade-Foveate
B-Pgm” step and reads the heading in the “Process Sensor
Data” step. This latter step posts the heading read into a
global data space so that the data is available for use by
whomever needs it. While these steps are executing, the
“Monitor Sensor” step can execute and it also observes the
sensor, but watches for the error messages that can be re-
ported. There are three errors and are shown as the excep-
tions “Target Lost,” “No Target,” and “Sensor Fault.” When
an exception is thrown, it is first handled by the “Monitor
Component” step, which sends a message so that the agents
executing the “Run Saccade-Foveate B-Pgm” and “Process
Sensor Data” steps know to complete. “Monitor Compo-
nent” then rethrows the exception which will reach the “Ob-
tain Heading” step. If the problemwas a “No Target” excep-
tion, the Containment Unit terminates, since we currently
have no way to deal with this kind of fault. On a “Sensor
Fault” a restart handler is encountered, causing the Contain-
ment Unit to begin again by selecting a sensor in the “Select
Sensor” step. On a “Target Lost” exception, the Contain-
ment Unit knows that there is a target to be tracked, but it
may be that the target is moving too fast to be tracked by
the current sensor. To handle this, a restart handler is used
to cause another, presumably faster, sensor to be selected.
If “Select Sensor” cannot select a sensor, because none are
working or a faster sensor is not available, the step throws a
“No Sensor” exception which causes the Containment Unit
to terminate.

The interface to the Obtain Heading Containment Unit is the
tuple, (F, R, CP, FC) where:

• F is a function that returns a heading to a target
• R is one or more sensors that can be used in the
Saccade-Foveate B-Program

• CP states that this Containment Unit writes headings
into a global space, and reports “No Sensor” and “No
Target” exceptions

• FC is the faults “Sensor Fault” and “Target Lost”

The implementation of this Containment Unit is the tuple
(Top, Op, Eval, Change) where:

• Top is the agent assigned to the step “Select Sensor”
• Op is the (set of) agent(s) that could be assigned to the
step “Run Component”

• Eval is the agent assigned to the step “Monitor Com-
ponent”

• Change is the set of exception handlers consisting of
“SensorFault” and “TargetLost” of the “Obtain Head-
ing” step2, and the agent assigned to the step “Select

2Since the exception handler does not have a step attached to it,
there is no agent assigned to execute the exception handler.



Figure 6: Generic Containment Unit

Sensor”

A.3 Track Heading Containment Unit
The Little-JIL description of the Track Heading Contain-
ment Unit is shown in Figure 8. This Containment Unit
takes as input a set of sensors. It begins by dividing the sen-
sors into two disjoint subsets in the “Partition Sensors” step.
Each of these sensor sets will be used by an Obtain Heading
Containment Unit to determine a heading towards a target. If
no partitioning is possible (because there is only one sensor
available, for example), then this step throws a “No Parti-
tion” exception and the Containment Unit terminates. If a
partitioning is possible, the “Get Data” step is started. This
step tries to run two tasks in parallel. The first is the “Run
Component” step, which invokes two instances of the Obtain
Heading Containment Unit and a step to compute the Head-
ing based on the outputs of the Obtain Heading Containment
Units. The second is the “Monitor Component” step, which
uses the “Monitor Colinearity” step to detect if the target be-
ing tracked has become colinear with the two sensors and
that the target’s position cannot be determined. If this hap-
pens, this step throws a “Colinearity Fault.” It is important
to note that a colinearity cannot be detected or handled in ei-
ther of the Obtain Heading Containment Units, since each of
these only has access to a single heading. The Track Head-
ing Containment Unit has access to both headings and can
determine when a colinearity occurs. This exception gets
propagated to the “Track Heading” step which handles the
exception by restarting the process, causing a repartitioning
of the sensors.

The Obtain Heading Containment Units may terminate with
one of two exceptions: “No Sensor” and “No Target.” If
a “No Target” exception occurs, then the Track Heading
Containment Unit will terminate. However, if a “No Sen-
sor” exception occurs, then this gets propagated up to the
“Track Heading” step which invokes a restart handler, caus-
ing a repartitioning to occur. In this way, the Track Heading
Containment Unit can handle a fault of one of the Obtain

Heading Containment Units it uses to perform its task.

The interface to the Track Heading Containment Unit is the
tuple, (F, R, CP, FC) where:

• F is the (set of) function(s) that return(s) the position
of a target

• R is two or more sensors that can be used in the Obtain
Heading Containment Unit

• CP states that this Containment Unit writes positions
into a global space, and reports “NoPosition” and “No-
Target” exceptions

• FC is the faults “ColinearityFault” and “NoSensor”

The implementation of this Containment Unit is the tuple
(Top, Op, Eval, Change) where:

• Top is the agent assigned to the step “Partition Sensors”
• Op is the step “Run Component” which is an adaptor
to compute a location from two instances of the Obtain
Heading Containment Unit

• Eval is the subtree under “Monitor Component”
• Change is the exception handlers “ColinearityFault”
and “NoSensor” of the “Track Heading” step and the
agent assigned to the step “Partition Sensors”

A.4 Lighting Control Containment Unit
The Little-JIL description to the Lighting Control Contain-
ment Unit, is shown in Figure 93.

This Containment Unit takes two lamps and sensors to de-
termine their state as inputs. Execution begins by sending
an ”on” signal to the primary lamp (the left-most reference
to the step “Send Device On CU,” and using its associated
sensor to determine that the light does in fact turn on. Be-
cause the X10 protocol is event based, it monitors the sensor
for a fixed amount of time (represented by the clock hands
on the step “Check Unit Status” and if the light does not turn
3This Containment Unit is simplified from the Generic Contain-
ment Unit because it does not require the step “Select Component.”



Figure 7: Obtain Heading Containment Unit

on in that time, assume the lamp has failed, and turn on the
backup lamp as represented by the reference to “Send De-
vice On CU” in the exception handler.

The interface to the Lighting Control Containment Unit is
the tuple (F, R, CP, FC) where:

• F is the function providing illumination in a requested
area

• R contains the primary and alternate switched outlets,
and light sensors for monitoring the associated lamps

• CP states that this Containment Unit reports if illumi-
nation cannot be provided

• FC is the failure of themonitoring sensor to detect light

The implementation of this Containment Unit is a tuple
(Top, Op, Eval, Change) where:

• Top is empty since this containment unit has no initial-
ization

• Op is the agent assigned to the step “Send Device On
CU”

• Eval is the agent assigned to the step “Check Unit Sta-
tus”

• Change is the agent assigned to the exception handling
step “Send Device On CU”



Figure 8: Track Heading Containment Unit

Figure 9: Lighting Control Containment Unit


