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ABSTRACT
Property specifications concisely describe what a software system 
is supposed to do. It is surprisingly difficult to write these 
properties correctly. There are rigorous mathematical formalisms 
for representing properties, but these are often difficult to use. No 
matter what notation is used, however, there are often subtle, but 
important, details that need to be considered. PROPEL aims to 
make the job of writing and understanding properties easier by 
providing templates that explicitly capture these details as options 
for commonly-occurring property patterns. These templates are 
represented using both "disciplined" natural language and finite-
state automata, allowing the specifier to easily move between 
these two representations.  

1. INTRODUCTION 
Finite-state verification approaches, such as model checking, 
determine if the behavior of a hardware or software system is 
consistent with a specified property. Instead of specifying the full 
behavior of the system, each property may focus on one particular 
aspect of system behavior. These properties may be written in a 
number of different specification formalisms, such as temporal 
logics, graphical finite-state machines, or regular expression 
notations, depending on the finite-state verification system that is 
being employed. Although there are sometimes theoretical 
differences in the expressive power of these languages, these 
differences are rarely encountered in practice. A serious problem 
that is frequently encountered in practice, however, is expressing 
the intended behavior of the system correctly. Even though 
properties usually focus on some restricted aspect of a system's 
behavior, it is still surprisingly difficult to capture this behavior 
precisely. These properties are often "almost" correct, but fail to 
capture some important, and sometimes subtle, aspects of the 
system's intended behavior. Often these aspects are not revealed 
until testing or verification. Thus, analysts frequently spend a 
considerable amount of time trying to verify a property, only to 
later determine that the property has been specified incorrectly. 

Software developers tend to avoid the more mathematical 

property specification formalisms and instead write requirements 
and design specification documents in natural language, perhaps 
sprinkled with some tabular or graphical notations. Although 
these documents seem to be more accessible to practitioners, they 
are usually very verbose and contain imprecise—and sometimes 
ambiguous and inconsistent—descriptions of the system. Thus, 
they are of limited value when doing rigorous analysis of the 
system.  

What is needed is a property specification approach that is not 
only accessible to developers, but is also mathematically precise, 
so that it can be used as the basis for verification and other types 
of analysis. Recent work on property patterns [8-10] recognized 
that the properties used in formal verification often map onto one 
of several basic property patterns. These patterns can be 
instantiated with specific events or states and then mapped to 
several different formalisms. When we tried to employ these 
property patterns to represent some actual natural language 
requirements, however, we found that they were not adequate. 
They failed to represent some of the subtle differences in 
interpretation that we encountered.

In the work presented here, we build upon the property patterns in 
several important ways. First, we extend the patterns so that they 
are represented by pattern templates. Thus, instead of just 
parameterizing the pattern in terms of the events or states, we 
extend the patterns with alternative options that are explicitly 
shown to the specifier. Choosing among these options should help 
the specifier consider the relevant alternatives and subtleties 
associated with the intended behavior. Second, we represent these 
pattern templates using two different notations: an extended 
finite-state automaton (FSA) representation and a disciplined 
natural language (DNL) representation. Both of these 
representations have some advantages. The DNL representation 
provides a short list of alternative phrases that highlight the 
options, as well as synonyms for each option to support 
customization. This representation should appeal to those 
specifiers who prefer a natural language description. The extended 
FSA representation provides a graphical view that can be used to 
derive an instantiation of a specific FSA representation. It too 
helps the specifier see the options that need to be considered. 
Third, the instantiated FSA representation is mathematically well-
defined and thus can be used as the basis for verification, as well 
as for testing the acceptance of event sequences, validating the 
consistency of a set of property automata, or other types of 
analysis. Finally, we believe that providing specifiers with the 
ability to view both representations simultaneously and select the 
available options from either representation will help them to 
elucidate the desired property. We are currently developing a 
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system, called PROPEL, for "PROPerty ELucidation," that provides 
support for specifying properties based on the property pattern 
templates, using these two complementary representations. 

This paper describes property pattern templates and the PROPEL
system. The next section of the paper reviews property patterns 
and explains the concerns that motivated the extension to the 
templates. Section 3 describes the property pattern templates in 
both the FSA and the DNL representations and presents a detailed 
example for one of the patterns, using both forms. Section 4 
details an example of the specification process using PROPEL.
Section 5 addresses how we can incorporate scopes into the 
property pattern template representations. Section 6 discusses 
related work and Section 7 concludes with a discussion of 
limitations and future directions. 

2. The Property Patterns 
Dwyer, Avrunin, and Corbett [8-10] developed a system of 
property patterns to assist users of finite-state verification tools, 
such as SPIN [18], SMV [21], INCA [4], and FLAVERS [11]. 
They argued that the difficulty of writing correct properties in the 
various input formalisms used by such tools was a substantial 
obstacle to the adoption of finite-state verification technology, 
and they proposed the pattern system as a way to capture the 
experience of expert specifiers and to enable the transfer of that 
experience to other practitioners. 
Although the input formalisms of the various finite-state 
verification tools, such as the temporal logics LTL and CTL [3] 
are very expressive, Dwyer et al. observed that nearly all the 
properties found in the finite-state verification literature could be 
classified into a small number of basic types, and suggested that a 
collection of patterns, which they described as "high-level, 
formalism-independent, specification abstractions," could assist 
finite-state verification practitioners in formulating most of the 
properties they wanted to check. 
Each of the patterns describes an intent (the structure of the 
specified behavior), a scope (the extent of program execution over 
which the pattern must hold), mappings into the input formalisms 
for some finite-state verification tools, examples of known uses, 
and relationships to other patterns. For instance, the intent of the 
Response pattern is a cause-and-effect relationship between a pair 
of events or states, in which the occurrence of the "cause" or 
"action" leads to an occurrence of the "effect" or "response." 
Dwyer et al. identified five scopes, or segments of program 
execution, in which the specifier might want to insist that the 
specified intent holds. For instance, a particular Response relation 
might be intended to hold only while the system is executing in a 
certain mode, while instances of the action might require an 
entirely different response in other modes. The scopes are: global 
(the whole execution), before (the execution up to a given 
state/event), after (the execution after a given state/event), 
between (any part of the execution from one given state/event to 
another given state/event) and after-until (like the between scope 
but the designated part of the execution continues even if the 
second state/event does not occur). The scope is determined by 
specifying a starting and an ending state/event for the pattern. 
The mappings to various specification formalisms involve a 
number of choices. For instance, in state-based formalisms, 
Dwyer et al. chose to take the interval in which the property is to 
be evaluated to be closed on the left and open on the right. Thus, 

the scope consists of all states beginning with the starting state 
and up to but not including the ending state. They chose closed-
left open-right scopes because these were relatively easy to 
encode in specifications and were the most commonly 
encountered in the real properties that they had collected. They 
recognized, however, that other variations of the scopes might be 
required, such as open-left open-right scopes, and their web site 
[10] includes notes on how to modify the mappings to obtain such 
variations. These notes also discuss such issues as combinations 
of the patterns and which instantiations of parameters in the 
patterns are safe in which formalisms. 
A specifier who wishes to modify a pattern, however, must have 
significant expertise with the particular specification formalisms 
utilized by the finite-state verification tool being applied. Indeed, 
the property patterns themselves do not highlight the choices 
made and the notes do not attempt to point out all plausible 
modifications. It is assumed that the analyst who wants to verify a 
particular property can identify the ways in which it might differ 
from the particular forms in the property pattern system and, with 
some assistance from the notes, make the necessary modifications. 
Since the target audience for the property patterns system is users 
of finite-state verification tools, and expertise with the 
specification formalisms is a prerequisite for effective use of such 
tools, this is not an unreasonable requirement. 
In this work, however, we are concerned with eliciting precise and 
rigorous requirements from people who are unlikely to be fluent 
in temporal logics or other specification formalisms. We are thus 
especially interested in identifying the possible variations and 
determining which of these are intended. Our focus is on pointing 
out the various ways in which a high-level requirement might be 
interpreted and on helping the specifier elucidate the property by 
making informed choices between these interpretations. 

3. PROPERTY PATTERN TEMPLATES 
In our previous work with finite-state verification systems, we 
have found that finite-state automata, with their corresponding 
graphical depictions, are some of the more accessible notations for 
representing properties. We have also observed that many of the 
"shall" phrases found in requirements and specification 
documents seem to almost take on a template form. Thus, we 
wanted to see if we could marry these two notations via the 
property patterns. While the property pattern work included both 
state- and event-based formalisms, here we assume an event-based 
formalism.  

3.1 FSA Property Pattern Templates 
3.1.1 FSA Template Notation 
An FSA property is defined by the tuple <S, s, A, Σ, δ >, where S 
is the finite set of states, s∈S is the unique start state, A ⊆ S is the 
set of accepting states, Σ is the event alphabet, and δ:S×Σ→S is a 
transition function. A sequence e1, e2, ... , en ∈ Σ* is accepted by 
the FSA if a sequence of states s0, s1, ... , sn exists in S such that: 

1. s0 = s, 

2. sn ∈ A, and 

3. δ(si-1,ei) = si    for i= 1, ..., n. 

Traditionally, when depicting an FSA, states are shown as circles, 
the start state is denoted by an arrowhead on the circle, accepting 
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states are indicated by inner concentric circles, and the transitions 
are denoted by arrows between states indicating the direction of 
flow in the automaton. Each transition is labeled by one or more 
events from the alphabet Σ.

The FSA template notation extends the FSA property notation 
with the following additions: 

• optional transitions, 

• optionally-accepting states, 

• multi-labels, 

• "¬", the set complement operator, and  

• ".", the wildcard character, representing all of Σ.
An optional transition is indicated by a dashed line instead of a 
solid line. An optionally-accepting state is denoted by a state with 
a dashed inner concentric circle. A multi-label is denoted by a list 
of alternative sets of labels, each set separated by the word "or". 
The "¬" operator provides a shorthand notation to indicate the 
complement of the given set of events with respect to the property 
alphabet. The "." wildcard character is a shorthand notation for 
expressing the set of all events in the property alphabet. 

A property pattern template is fully instantiated when all the 
optional choices have been resolved and partially instantiated if 
only some of the options have been resolved. An optional 
transition in an FSA template will either resolve to a regular 
transition or it will not exist in the instantiated property. A multi-
label on a regular transition will resolve to only one of its label 
choices in the instantiated property. A multi-label on an optional 
transition will resolve to at most one of its label choices; an 
optional transition disappears if all of the label choices in its 
multi-label have been eliminated from consideration. An 
optionally accepting state will either resolve to an accepting state 
or a non-accepting state. After fully instantiating an FSA template 
by resolving all of the options, the specifier is left with an FSA 
property. 

3.1.2 The Response FSA Template 
We illustrate how a property pattern is represented as an FSA 
template using the Response pattern. As noted above, the 
Response pattern is concerned with expressing the concept of a 
stimulus event that must be followed by a response event. An 
example of this property pattern as written in natural language 
might look something like this: 

After the elevator button is pushed, the elevator 
closes its doors.

This property looks reasonably straightforward, but a closer 
examination will reveal that there are many questions concerning 
the precise meaning that need to be answered. For example, 
should the doors close repeatedly if the button is pushed 
repeatedly? What, if anything, is allowed to occur after the button 
is pushed, but before the doors are closed? We find that these 
questions can be captured by using the extended FSA property 
notation with six options. These options in the Response pattern 
template combine to produce a total of sixty-four distinct 
variations on this property pattern. When all of the options have 
been decided, an FSA that represents only one of the sixty-four 
possible variations is created. Figure 1 shows the Response FSA 
template, with all of the optional components displayed. 

Let us now examine the six options in the Response pattern 
template in more detail. This template has two pattern parameters: 
action and response. These parameters are placeholders for the 
events in the pattern that will be specified when the property 
pattern template is instantiated. The six Response pattern template 
options are as follows:  

• Pre-arity, which determines whether action may occur one 
time or many times before response does; 

• Post-arity, which determines whether response may occur 
one time or many times after action does; 

• Immediacy, which determines whether or not other 
intervening events may occur between action and 
response;

• Precedency, which determines whether or not response is 
allowed to occur before the first occurrence of action;

• Nullity, which determines whether or not action must ever 
occur; and 

• Repeatability, which determines whether or not 
occurrences of action after an occurrence of response are 
required to be followed by response.

Each of the above options is represented by particular components 
in the Response FSA template, as shown in Figure 1. Pre-arity is 
determined by the label chosen for the self-loop on the second 
state. If the self-loop does not exist because all of the choices for 
the multi-label associated with it have been removed from 
consideration, or if the label on it is ¬¬¬¬(action,response), then 
action may only occur once before response does. Any other 
label choice for that multi-label will permit action to occur 
multiple times before response occurs. Post-arity is determined by 
the multi-label on the self-loop of the third state. If the label on 
that transition becomes ¬¬¬¬(action,response) or ¬¬¬¬response, then 
response may only occur once after action has occurred. The 
other two labels on that transition allow response to occur 
multiple times after action has occurred. 
Since we assume that the alphabet may include more events than 
just action and response, Immediacy deals with whether or not  
these other events may occur at the second state. Immediacy is 
determined by the label chosen for the self-loop on the second 
state. If the self-loop does not exist because all of the choices for 
the multi-label associated with it have been removed from 
consideration, or if the label chosen for the self-loop is action,
then other intervening events are not allowed to occur between 
action and response. If the label chosen for the self-loop is 

action response

¬¬¬¬action
or

¬¬¬¬(action,response)

action

¬¬¬¬response
or

action
or

¬¬¬¬(action,response)

¬¬¬¬response
or

¬¬¬¬action
or

¬¬¬¬(action,response)
or
.

action response

¬¬¬¬action
or

¬¬¬¬(action,response)

action

¬¬¬¬response
or

action
or

¬¬¬¬(action,response)

¬¬¬¬response
or

¬¬¬¬action
or

¬¬¬¬(action,response)
or
.

Figure 1. Response FSA Template 
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¬¬¬¬(action,response) or ¬¬¬¬response, then other intervening events 
are allowed to occur between action and response.
Precedency is determined by the label on the self-loop of the first 
state. If the label is ¬¬¬¬(action,response), then response may not 
occur before the first occurrence of action. Nullity is determined 
by whether or not the first state is an accepting state. If the inner 
circle exists, then the state is accepting, and action is not required 
to occur for the property to be satisfied. Repeatability is 
determined by the existence of the transition from the third state 
to the second on an occurrence of action. If the property is 
repeatable, the label on the third state's self-loop cannot include 
action.
Figure 2 shows the other FSA templates developed for PROPEL,
based on the property patterns proposed by Dwyer et al. These 
three patterns and the Response pattern are the basic patterns that 
do not use any composition to express their concepts. The first 
pattern, Precedence, states that an action cannot occur until it has 
been preceded by the enable event. The second pattern, Existence, 
states that action must occur in the system execution. The last 
pattern, Absence, states that action must not occur in the system 
execution. Note that the Absence FSA template does not have any 
options. 
During the process of instantiating an FSA template, the specifier 
must define the alphabet and associate the appropriate events with 
their related pattern parameters. The FSA template structure is 
designed to assist the specifier in asking and answering the 
appropriate questions and in understanding the meaning of the 
decisions that are made. The specifier instantiates a property 
pattern template until all of the options have been resolved and an 
FSA property representation results. 

3.2 Disciplined Natural Language Templates 
3.2.1 DNL Template Notation 
Disciplined Natural Language (DNL) is the second representation 
that we propose to express the property pattern templates. As can 
be gathered from its name, DNL is a restricted subset of natural 
language that is intended to capture meanings unambiguously. 
This representation is not intended to stand by itself; it is meant to 
be used in conjunction with the FSA template representation. In 
expressive power, each DNL template corresponds to a single 
FSA template, and a fully-instantiated DNL template is mapped to 
a fully-instantiated FSA template. It is therefore possible to 
translate between the two representations and to develop them in 
parallel in the PROPEL process, as described in Section 4. It is 
hoped that a DNL property instantiated from a DNL template will 
improve accessibility, while the corresponding FSA property 
provides a rigorous and unambiguous representation. 

Like FSA templates, DNL templates are designed to elucidate the 
decisions associated with a property pattern. Therefore, the same 
options that must be decided in the FSA template are options in 
the DNL template representation. A DNL template for a particular 
property pattern consists of a Core phrase and perhaps one or 
more subsidiary phrases. We made the decision to have multiple 
phrases based on our sense of what is understandable; some of the 
instantiated DNL properties would have resulted in long and 
unwieldy sentences if confined to a single phrase. The Core 
phrase is used to express the basic meaning of the property 
pattern, and may itself be parameterized, to express one or more 
of the options. For customization, we introduce synonymous 

choices for most of the phrases so that specifiers can select the 
synonym that seems most natural to the particular property that 
they are trying to represent.  

3.2.2 The Response DNL Template 
The Response DNL template consists of four phrases: the Core 
phrase, the Nullity phrase, the Precedency phrase, and the 
Repetition phrase. We provide six synonymous ways of 
expressing the Core phrase. In addition, the Core phrase has three 
options to be determined within it: Pre-Arity, Post-Arity, and 
Immediacy. In the cases of Pre-Arity and Post-Arity, the options 
have multiple synonyms associated with them. The Nullity phrase 
has two options, and within those there are two synonyms apiece. 
The Precedency phrase and the Repetition phrase have two 
options each and no synonyms. Figure 3 provides a full 
description of the four phrases and their available choices. In this 
figure, bold lines are used to separate options and non-bold lines 
are used to separate synonyms. 

The Pre-Arity option provides a choice between stating that 
action can occur only once before response does or stating that 
action can occur multiple times before response does. The 
Immediacy option is a choice between "immediately" and 
"eventually," concerning whether or not action must be 
immediately followed by response or if other events may 
intervene in the sequence. The Post-Arity option is structured with 
exactly the same content as the Pre-Arity option, but it is placed at 
the opposite end of the Core phrase sentence. The Nullity phrase 
option provides a choice between stating that action must occur 
during the program execution or stating that action is not required 
to occur during the program execution. The Precedency phrase 
option is concerned with whether or not response is permitted to 
occur before the first action does. Finally, the Repetition phrase 
option determines whether or not the behavior described by the 
above phrases is repeatable. The DNL templates for the 
Precedence, Existence, and Absence property patterns are similar 
in structure to the Response DNL template. 

A fully-instantiated DNL template results in a paragraph of 
natural language text that is grammatically correct, readable, and 
maps to one, and only one, fully-instantiated FSA property. The 
relationship between the options in a pattern's DNL template and  
those in a pattern's FSA template is not necessarily one-to-one, 
however, since some DNL options affect the FSA templates in 
more than one location. Once an option has been decided, it does 

enable action

¬¬¬¬(enable,action)

enable

¬¬¬¬action
or

enable
or

¬¬¬¬(enable,action)

¬¬¬¬action
or

¬¬¬¬enable
or

¬¬¬¬(enable,action)
or
.

(a) Precedence

action

¬¬¬¬action ¬¬¬¬action
or
.

(b) Existence

action

¬¬¬¬action .

(c) Absence

enable action

¬¬¬¬(enable,action)

enable

¬¬¬¬action
or

enable
or

¬¬¬¬(enable,action)

¬¬¬¬action
or

¬¬¬¬enable
or

¬¬¬¬(enable,action)
or
.

enable action

¬¬¬¬(enable,action)

enable

¬¬¬¬action
or

enable
or

¬¬¬¬(enable,action)

¬¬¬¬action
or

¬¬¬¬enable
or

¬¬¬¬(enable,action)
or
.

(a) Precedence

action

¬¬¬¬action ¬¬¬¬action
or
.

(b) Existence

action

¬¬¬¬action .

(c) Absence

Figure 2. The Other Property Patterns' FSA Templates 
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not matter which of the synonyms for that particular choice are 
selected for the final DNL property. The synonyms are available 
so that the specifier can customize the DNL.  

Requirements documents written using PROPEL property templates 
can be used to produce natural language descriptions as well as 
FSA representations of the properties and, thus, provide rigor and 
precision in addition to accessibility. 

4. HELPING THE SPECIFIER WRITE 
PROPERTIES 
PROPEL provides an environment for specifying properties based 
on the property pattern templates. Specifiers are shown both the 
FSA template and the DNL template for each pattern and can 
select the pattern that seems most appropriate. When specifying 
the property alphabet or the parameters or instantiating the 
options, the specifier can use either the FSA or DNL template, or 
can change back and forth between the two representations. 
PROPEL keeps track of how the options in the two representations 
relate to each other; once an option in one representation is 
resolved the corresponding options in the alternative 
representation are also resolved. The specifier can choose to 
resolve the options in any order. 

Suppose that the specifier has in mind the statement first shown in 
Section 3.1.2: 

After the elevator button is pushed, the elevator 
closes its doors. 

As noted earlier, this is an example of a Response pattern, so the 
specifier would indicate this and then be presented with both the 
Response FSA template and the Response DNL template. The 
specifier must then determine what events the action and 
response pattern parameters map to in the alphabet of this 
property. The actual event names depend upon the event 
annotation mechanism for the finite-state verification system that 
is being used. For simplicity, let us assume that we have identified 
two events in the artifact that correspond to pushing a button and 
closing the doors, respectively. Let the alphabet of this property 
be button-push, door-close, and any other events of interest in the 
system. The specifier needs to explicitly state which of the events 
corresponds with which of the pattern parameters. Figure 4a 
shows the initial Response FSA template with the pattern 
parameters replaced by their respective events. 

The next step for the specifier might be to select how to express 
the basic stimulus-response concept in DNL.  For instance, the 
specifier could select the Core phrase synonym "action results in 
response" (see Figure 3 for the full list of Core phrase 
possibilities).  The following sentence would then be displayed as 
the Core phrase in the partially-instantiated DNL property: 

occurrences of response follow                     occurrences of action .

occurrences of action result in                      occurrences of response.

occurrences of response respond to                     occurrences of action.

occurrences of action cause                     occurrences of response .

occurrences of action lead to                     occurrences of response .

The behavior above is not repeatable.

The behavior above is repeatable.

Response may occur before the first action occurs.

Response cannot occur before the first action occurs.

Action must occur at least once.

Action may occur zero tim es.

Action must occur one or more times.

Action may never occur.

negative

positive

Pre-arity Im mediacy Post-arity

one or m ore

exactly one

only one

plural

singular

one or more

exactly one

only one

plural

singular
eventually

immediately

Pre-arity Immediacy Post-arity

Pre-arity

Pre-arity

Pre-arity

Immediacy

Immediacy

Immediacy

Post-arity

Post-arity

Post-arity

(a) Core Phrase

(d) Repetition Phrase

(c) Precedency Phrase

(b) Nullity Phrase

occurrences of response follow                     occurrences of action .

occurrences of action result in                      occurrences of response.

occurrences of response respond to                     occurrences of action.

occurrences of action cause                     occurrences of response .

occurrences of action lead to                     occurrences of response .

The behavior above is not repeatable.

The behavior above is repeatable.

Response may occur before the first action occurs.

Response cannot occur before the first action occurs.

Action must occur at least once.

Action may occur zero tim es.

Action must occur one or more times.

Action may never occur.

negative

positive

Pre-arity Im mediacy Post-arity

one or m ore

exactly one

only one

plural

singular

one or more

exactly one

only one

plural

singular
eventually

immediately

Pre-arity Immediacy Post-arity

Pre-arity

Pre-arity

Pre-arity

Immediacy

Immediacy

Immediacy

Post-arity

Post-arity

Post-arity

(a) Core Phrase

(d) Repetition Phrase

(c) Precedency Phrase

(b) Nullity Phrase

Figure 3. Response DNL Template 
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Pre-Arity occurrences of button-push Immediacy 
result in Post-Arity occurrences of door-close.

The options in the boxes in the Core phrase need to be 
determined, and at this point the specifier could change the setting 
of the options by either manipulating the associated FSA template 
or by choosing between the DNL options available. Let us assume 
that the specifier decides to use the FSA template to determine the 
Pre-Arity and the Post-Arity of the property. Figure 4b shows the 
partially-completed FSA template where Pre-Arity has been 
determined such that button-push may occur one or more times 
before door-close is required to occur, and Post-Arity has been 
determined such that after button-push has occurred, door-close
may occur only once.  For the Pre-Arity option, the FSA template 
has been changed such that the multi-label on the second state's 
self-loop no longer contains the ¬(button-push, door-close)
possibility. For the Post-Arity option, the FSA template cannot 
allow door-close to occur on the third state's self-loop, and thus 
the ¬button-push and "." possibilities are removed from the multi-
label on that transition. At this point, the DNL Core phrase looks 
like this: 

One or more occurrences of button-push
Immediacy result in only one occurrence of door-
close.

In Figure 4c, the specifier has decided to make the property 
repeatable and indicated that setting in the FSA template by 
making the transition from the third state to the second state on 
button-push a solid line. This change also has an effect on the 
multi-label on the self-loop of the third state, since button-push
cannot be allowed to occur on that transition. Therefore, the 
multi-label on that self-loop is resolved to the label ¬(button-
push, door-close). PROPEL reflects this change in the DNL 
representation by resolving the Repetition phrase to "The behavior 
above is repeatable." 

To finish the Core phrase in the DNL, the specifier could decide 
to determine the Immediacy option by choosing "eventually" for 
the DNL option there. This affects the FSA template in two ways. 
First, intervening events are now allowed to occur between 
button-push and door-close, so the self-loop on the second state 
becomes a solid-line transition. Second, the multi-label on that 
self-loop is resolved to the one label, ¬door-close, because 
button-push is now allowed to occur on this transition, since the 
Pre-Arity was set to be "one or more times" in a previous step, 
and because using the set complement operator allows intervening 
events other than button-push to occur on this transition. Two 
phrases in the Response DNL template have now been completed: 
the Core phrase and the Repetition phrase. The DNL template 
now looks like this: 

One or more occurrences of button-push eventually 
result in only one occurrence of door-close.
Nullity phrase 
Precedency phrase 
The above behavior is repeatable. 

Assume the next option selected is the question of Nullity; that is 
whether or not button-push must occur in the program execution. 
The specifier decides to set this option by making the optionally-
accepting state in the FSA template an accepting state. PROPEL
reflects this change in the DNL representation by resolving the 

Nullity phrase to "button-push may occur zero times." The DNL 
template provides a synonym to this choice, and the specifier can 
later decide whether or not to change which synonym is used. 

The last option set is Precedence, and the specifier decides to use 
the FSA template to make the choice. The multi-label on the first 
state's self-loop is resolved to be ¬(button-push,door-close),
which does not allow door-close to occur until button-push has 
occurred at least once. The accompanying DNL option results in 
the statement, "door-close cannot occur before the first button-
push occurs," being added to the DNL template. 

After fully-instantiating all the options, the FSA template is 
resolved to an FSA property and the DNL property is resolved to 
a completed natural language paragraph.  The final FSA property 
for the elevator example is shown in Figure 4d and the final DNL 
property could be: 

One or more occurrences of button-push eventually 
result in only one occurrence of door-close. button-
push may occur zero times. door-close cannot occur 
before the first button-push occurs. The behavior 
above is repeatable. 

Any option in a property in PROPEL can be unset and reselected if 
the option needs to be changed, and the DNL can be customized 
by choosing a different synonym at any time. Thus, the process is 
designed to help specifiers ask questions about their assumptions 
and elucidate the meaning of a property. The specifier could go 
through this process in a different order than has been described 
above and could make different decisions about when to use the 
FSA and DNL representations. 
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Figure 4. An Example of the PROPEL Process 
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5. INCORPORATING SCOPES 
So far, we have discussed how to develop the intent (the structure 
of the behavior specified) of a property. In this section, we discuss 
the definition of a scope and how it is applied to the property 
pattern template. As mentioned above, the patterns of Dwyer et al. 
have scopes that describe the extent of system execution over 
which the pattern must hold.  For example, a specifier might want 
to say:  

Between pushing the button and arriving at the 
requested floor, the elevator does not change 
direction.

A scope can be used to specify when it is important that the 
property holds. 
Dwyer et al. identified five basic scopes and defined whether the 
scope was closed or open on either end for each pattern. Most 
event-based formalisms use some version of an interleaved model 
of concurrent computation. In such formalisms, two events cannot 
coincide. In the property patterns system, therefore, event-
delimited scopes are open at both ends; an event that occurs 
within the scope cannot occur at the same time as an event that 
marks the beginning or end of the scope. We make the additional 
restrictions that the set of delimiter events defining the scope is 
disjoint from the alphabet of the FSA defining the intent and that, 
if the scope has both starting and ending delimiters, these are 
distinct. These restrictions seem reasonable and greatly simplify 
the application of a scope to an intent.  

With these restrictions, a scope may be characterized by three 
attributes: the starting delimiter, the ending delimiter, and whether 
or not the scope may occur repeatedly within the system 
execution. We represent the starting delimiter as the pattern 
parameter Q, and the ending delimiter as the pattern parameter P.
Thus, the five basic scopes become: 

• Global, which is over the entire system execution. This 
scope does not have delimiters, and it is not repeatable. 

• Before P, which is concerned with the event sequence up 
to the first occurrence of P. This scope only has a ending 
delimiter, and it is not repeatable. 

• After Q, which is concerned with the event sequence after 
the first occurrence of Q. This scope only has an starting 
delimiter, and it is not repeatable. 

• Between Q and P, which is concerned with the event 
sequence after an occurrence of the starting delimiter, Q,
and before an occurrence of the ending delimiter, P. P is 
required to occur for this scope to exist. This scope may 
occur repeatedly over the course of the system execution. 

• After Q Until P, which is concerned with the event 
sequence after an occurrence of the starting delimiter, Q,
and before an occurrence of the ending delimiter, P. P is 
not required to occur for this scope to exist. This scope 
may occur repeatedly over the course of the system 
execution. 

With the restrictions noted above, there is limited interaction 
between the intent and the scope. Thus, these restrictions allow us 
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Figure 5. Four Scopes Applied to the Response FSA Template 
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to propose a rather straightforward way to apply scopes to 
property pattern templates. We now describe how the templates 
can be extended to take scopes into account. 

5.1 Applying Scopes to the FSA Templates 
A scope can be applied to an intent by adding additional states 
that we call "scope states" and by adding transitions between the 
scope states and the states of the FSA that represent the intent. 
These transitions are labeled by the scope delimiters, Q and P. We 
add these scope delimiters to the alphabet, Σ. A scope state that 
has a self loop for every event in the alphabet is called a trap 
state. Figure 5 shows the Before P, After P, After Q Until P, and 
Between Q and P scopes added to the Response FSA template. 
The Global scope is not shown since it makes no visible changes 
to the FSA template. We have added numbers to the states in 
Figure 5 for easy reference. For the sake of brevity, instead of 
separately showing the self-loops on the states in the intent that 
are added for occurrences of the delimiters, we have changed the 
multi-labels on the existing self-loops to reflect these additions 
where possible. We have also not shown the transitions that go to 
a non-accepting trap state; when a transition is not provided that 
explicitly allows a delimiter to occur, it should be assumed that an 
occurrence of that delimiter puts the FSA into a non-accepting 
trap state. In the remainder of this section, we explain the 
additions needed to apply each scope to the Response pattern. 
Scopes are added to the intents of the other property patterns in 
much the same way. 

5.1.1 The Before P Scope 
We interpret the Before P scope to mean that the scope begins at 
the start of the program execution, so there is no starting 
delimiter, and that the ending delimiter is the first occurrence of P
in the program execution. Subsequent occurrences of P are 
ignored since this scope is not repeatable. When we apply the 
Before P scope to the intents, we must determine at each state 
what the effect will be of encountering the ending delimiter at that 
point in the sequence. Recall that the intent of the Response 
property is that an occurrence of action must be followed by an 
occurrence of response.
In the first state, labeled "1" in Figure 5a, an occurrence of P
results in a scope that has been ended before the intent of the 
property has been entered. This is called an empty scope. An 
empty scope is handled differently for each of the property 
patterns. For instance, the Absence property holds if the scope is 
empty, since that is actually the meaning of the Absence property 
pattern. Whether or not a Response property holds if the scope is 
empty, however, depends on the setting of the Nullity option, 
which determines whether or not action must occur at all. If 
action is not required to occur, then the first state, which is also 
the start state, will be an accepting state. If P occurs at this point 
and action is not required to occur, then this sequence is not a 
violation of the property and the empty scope does not prevent the 
property from holding. The optional transition that goes to the 
accepting trap state, labeled "4", would become a regular 
transition. If action is required to occur, then that first state will 
not be an accepting state. In this case, the occurrence of P when 
the FSA is in the first state puts the FSA into a non-accepting trap 
state because the scope would be ended before the intent's first 
requirement was met; this sequence would be a violation of the 
property. The optional transition that goes to the accepting trap 

state would not exist. As noted above, we do not show the 
transitions that go to a non-accepting trap state. 
When the FSA is in the second state, an action has occurred that 
is not yet followed by a response. At this point, response must 
occur before a P ends the scope, or the property is violated. An 
occurrence of P when the FSA is in the second state therefore puts 
the FSA into a non-accepting trap state. 
The third state is an accepting state and an occurrence of P at that 
point in the sequence could not violate the property. From this 
state, action is not required to occur and there is no occurrence of 
action that is waiting for an occurrence of response. If the scope 
is ended when the FSA is in the third state, the property holds. 
Since the Before P scope is not repeatable, we add a transition on 
an occurrence of P that goes from the third state to an accepting 
trap state. 
Applying a scope to the Response FSA template also affects the 
multi-labels. Because the set complement operator means that 
everything that is not in the set specified by the label choice is 
accepted, P needs to be added to each of those labels in which the 
set complement operator is used. Note that the final label choice 
in the multi-label on the third state's self-loop is changed from the 
whole set of events (".") to the set of events excluding P ("¬P"). 

5.1.2 The After Q Scope 
We interpret the After Q scope to mean that the scope is not 
started until the first occurrence of the starting delimiter, Q, in the 
system execution. Subsequent occurrences of Q are ignored since 
this scope is not repeatable. The scope is not ended until the 
execution ends, so there is no ending delimiter. As with the 
Before P scope, when we apply the After Q scope to the intents, 
we must determine at each state what the effect will be of 
encountering the ending delimiter at that point in the sequence. 
The first state in Figure 5b is a scope state that is added to the 
Response FSA template. An occurrence of Q at this state would 
begin the scope and after this point the intent of the property 
would be required to hold. As is shown with the self-loop that is 
labeled "¬Q" on state 1, all events that occur before the starting 
delimiter are ignored. An occurrence of Q at any of the other 
states would have no effect on the property, because after the 
occurrence of the starting delimiter all subsequent occurrences of 
Q are ignored. Therefore, all of the transitions on an occurrence 
of Q from states 2, 3, and 4 are self-loops on those states. As was 
stated in Section 5.1, instead of separately showing the self-loops 
on the states in the intent that are added for occurrences of the 
delimiters, we have changed the multi-labels on the existing self-
loops to reflect these additions where possible. Because the set 
complement operator means that everything that is not in the set 
specified by the label choice is accepted, the only place that Q
must be explicitly added is the multi-label on the self-loop on 
state 3. It is added to the label choice that only accepted 
occurrences of action, and that label choice becomes "action, Q". 

5.1.3 The After Q Until P Scope 
We interpret the After Q Until P scope to mean that the starting 
delimiter is an occurrence of Q and the ending delimiter is an 
occurrence of P. This scope can be repeated; whether or not it is  
repeatable is an option for the specifier to determine. For now, 
consistent with Dwyer et al., we assume that a scope with multiple 
occurrences of Q is ended by a single occurrence of P. An 
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occurrence of P that is not preceded by an unended scope is 
ignored. Given this interpretation, when we apply the After Q 
Until P scope to the intents we must determine at each state what 
the effect will be of encountering the ending delimiter at that point 
in the sequence. 
The first state in Figure 5c is a scope state that is added to the 
Response FSA template. An occurrence of Q at this state would 
start the scope and after this point the intent of the property would 
be required to hold. As is shown with the self-loop that is labeled 
"¬Q" on state 1, all events that occur before the starting delimiter 
are ignored. An occurrence of P at state 1 would also be ignored, 
since an occurrence of Q has not yet started the scope. 
In the second state, an occurrence of Q is ignored, because the 
scope has not yet been ended by an occurrence of P. An 
occurrence of Q is on a self-loop on this state and it is therefore 
incorporated into the multi-label on the self-loop that already 
exists on this state. Q does not need to be explicitly shown in 
either of the label choices on this multi-label because they are 
both expressed with a set complement operator.  
An occurrence of P in state 2 again brings up the issue of what to 
do with an empty scope, as was discussed in section 5.1.1. If state 
2 is accepting, then the optional transition from state 2 to state 1 
will be a regular transition. If state 2 is not accepting, then the 
transition on an occurrence of P from state 2 will go to a non-
accepting trap state. 
In the third state, an occurrence of Q is ignored, because the 
scope has not yet been ended by an occurrence of P. An 
occurrence of Q is on a self-loop on this state and it is therefore 
incorporated into the multi-label on the self-loop that already 
exists on this state. The only place in which Q must be explicitly 
added to the multi-label on the self-loop on state 3 is the label 
choice that only accepted occurrences of action. That label choice 
becomes "action, Q". 

When the FSA is in state 3, an action has occurred that is not yet 
followed by a matching response. At this point, response must 
occur before a P ends the scope, or the property is violated. An 
occurrence of P when the FSA is in state 3 therefore puts the FSA 
into a non-accepting trap state. 
In the fourth state, an occurrence of Q is ignored, because the 
scope has not yet been ended by an occurrence of P. An 
occurrence of Q is on a self-loop on this state and it is therefore 
incorporated into the multi-label on the self-loop that already 
exists on this state. Q does not need to be explicitly shown in any 
of the label choices on this multi-label because they are all 
expressed with a set complement operator. 
Figure 5c shows two optional transitions on an occurrence of P in 
state 4. If the specifier makes this scope repeatable, then an 
occurrence of P in state 4 would end the scope and allow the 
scope to be restarted by a subsequent occurrence of Q. The 
optional transition between state 4 and state 1 would then become 
a regular transition and the optional transition between state 4 and 
state 5 would not exist. If the specifier makes this scope not 
repeatable, then an occurrence of P in state 4 would put the FSA 
into the accepting trap state, labeled "5." In this case, the 
transition between state 4 and state 5 would become a regular 
transition and the optional transition between state 4 and state 1 
would not exist. 

5.1.4 The Between Q and P Scope
The Between Q and P Scope is identical to the After Q Until P 
scope except for one important difference. Figure 5d shows the 
difference: state 3 is accepting. The reason for this change is that 
the definition of the Between Q and P scope requires that both
delimiters occur, whereas the After Q Until P scope does not. The 
Between Q and P scope does not exist unless both of its delimiters 
occur. What this means is that if P does not occur, the intent of 
the property could be violated and yet the property as a whole 
would not be violated because it is not within an existing scope 
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when the violation happens. This is a "look-back" scope, where 
once a P occurs, the sequence of events up to that point must 
conform to the sequence required by the property, and only then 
can a violation of the property be determined. Applying this scope 
also affects the internal structure of the FSA templates for each of 
the other patterns. 

5.2 Applying Scopes to the DNL Templates 
For DNL templates, applying a scope to the intent of a property is 
relatively straightforward: we add another phrase to the template: 
the Scope phrase. Therefore, the complete Response DNL 
template is:  

Core phrase 
Nullity phrase 
Precedency phrase 
Repeatability phrase 
Scope phrase 

The Scope phrase can be resolved to one of the five scopes. 
Figure 6 shows the choices available for each scope in the DNL. 
The only option to be addressed for scopes is whether or not they 
are repeatable. Scope repeatability determines whether or not an 
occurrence of Q after the first occurrence of P is required to be 
followed by another occurrence of P for the scope to be closed. 
The Global, Before P, and After Q scopes cannot be made 
repeatable. This option is expressed in the DNL template by the 
choices provided for the After Q Until P scope and the Between Q 
and P scope. 

5.3 Using Scopes in PROPEL
The example in Section 4 showed how PROPEL would be used 
without taking scopes into account. Actually, the specifier must 
select a scope as well an intent and must then resolve any  options 
associated with their combination.  

6. RELATED WORK 
The PROPEL approach described in this paper builds directly on 
the property patterns [8]. That work identified commonly-
occurring types of specifications and attempted to provide users of 
finite-state verification tools with high-level, formalism-
independent abstractions for dealing with those types. This work 
has been extended in a number of directions. For instance, these 
patterns form the basis of the extensible specification language in 
the Bandera system [5, 6], and Paun and Chechik [23] have 
extended the patterns to deal with events in a state-based 
formalism. A number of other researchers have used templates or 
patterns in the construction of both requirements and properties 
for finite-state verification. For instance, van Lamsweerde and his 
co-authors [7, 20] have suggested using a library of refinements to 
construct detailed requirements from goals. The correctness of 
these refinements is verified in a formal logic. The Attempto 
Controlled English project [13, 14] offers annotated templates to 
guide non-expert users, and the Cico/Circe [1] tool includes 
suggested phrases for expressing relationships between artifacts.  
The FormalCheck [12] finite-state verification tool uses templates 
to formulate the properties to be checked. 
Other techniques, such as various tabular notations, have been 
aimed at providing requirements that are both accessible and 
suitable for formal analysis. For example, Heninger and her co-

authors' work on the A-7E project [17] focused on expressing 
properties with condition- and event-tables. Heitmeyer and her co-
authors (e.g., [16]), have built a variety of tools for checking 
consistency, completeness, and safety properties of requirements 
expressed in the tabular SCR notation. The Requirements State 
Machine Language [19], which provides a tabular notation for the 
guarding conditions of transitions to help make the requirements 
accessible to domain experts, supports similar analyses [15]. 
These approaches are general formalisms for expressing 
requirements, while the PROPEL approach aims at elucidating 
common properties that arise in finite-state verification. 
Some research, such as the Attempto Controlled English project, 
Cico/Circe, NLIPT [22], and the work of Bryant [2], attempt to 
construct formal specifications from natural language 
requirements. The use of natural language in the work described 
here is much less ambitious. PROPEL provides both disciplined 
natural language and FSA representations, and allows the 
specifier to move back and forth between them in order to help 
make the formal specifications more understandable and 
accessible, but this work does not attempt to understand natural 
language, even in restricted domains. 

7. CONCLUSIONS 
With PROPEL, users are provided with templates for the most 
common property patterns described in Dwyer et al. These 
templates are presented in an extended finite-state automaton 
notation and as natural language phrases, both of which explicitly 
indicate the options that must be considered. We hypothesize that 
this two-pronged approach will help specifiers elucidate the 
precise meaning of the properties that they are expressing. We are 
currently implementing the PROPEL system so that specifiers are 
presented with both notations and can move between them while 
instantiating the property templates incrementally. We believe that 
this approach is an effective way to achieve both accessibility and 
rigor in property specifications. 
There are a number of interesting directions that we intend to 
explore in future work. We want to study compositions of 
specification patterns, including arbitrary compositions and  
restricted compositions such as chaining. We intend to investigate 
new ways of composing scopes, such as nested scopes, and the 
possibility of loosening the restrictions on their alphabets. We 
also plan to extend the templates to include state-based and mixed 
event- and state-based notations. Although we have shown 
specific natural language phrases, one could argue that the 
resulting properties could be stated better. It would be reasonable 
to have natural language experts help define the phrases 
associated with each property. Another possible direction to 
explore is developing these properties in a non-interleaved model 
of concurrent computation. Most importantly, we plan to evaluate 
this approach by applying it to some industrial applications. 
Although we have applied this approach to several properties and 
been pleased with the results, we need to undertake a careful 
evaluation.  
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