
 1

PROPEL: An Approach Supporting Property Elucidation

Rachel L. Smith, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil
Department of Computer Science

University of Massachusetts
Amherst, Massachusetts 01003

(413) 545-2013

{rasmith, avrunin, clarke, ljo}@cs.umass.edu

ABSTRACT
Property specifications concisely describe what a software system
is supposed to do. It is surprisingly difficult to write these
properties correctly. There are rigorous mathematical formalisms
for representing properties, but these are often difficult to use. No
matter what notation is used, however, there are often subtle, but
important, details that need to be considered. PROPEL aims to
make the job of writing and understanding properties easier by
providing templates that explicitly capture these details as options
for commonly-occurring property patterns. These templates are
represented using both "disciplined" natural language and finite-
state automata, allowing the specifier to easily move between
these two representations.

1. INTRODUCTION
Finite-state verification approaches, such as model checking,
determine if the behavior of a hardware or software system is
consistent with a specified property. Instead of specifying the full
behavior of the system, each property may focus on one particular
aspect of system behavior. These properties may be written in a
number of different specification formalisms, such as temporal
logics, graphical finite-state machines, or regular expression
notations, depending on the finite-state verification system that is
being employed. Although there are sometimes theoretical
differences in the expressive power of these languages, these
differences are rarely encountered in practice. A serious problem
that is frequently encountered in practice, however, is expressing
the intended behavior of the system correctly. Even though
properties usually focus on some restricted aspect of a system's
behavior, it is still surprisingly difficult to capture this behavior
precisely. These properties are often "almost" correct, but fail to
capture some important, and sometimes subtle, aspects of the
system's intended behavior. Often these aspects are not revealed
until testing or verification. Thus, analysts frequently spend a
considerable amount of time trying to verify a property, only to
later determine that the property has been specified incorrectly.

Software developers tend to avoid the more mathematical

property specification formalisms and instead write requirements
and design specification documents in natural language, perhaps
sprinkled with some tabular or graphical notations. Although
these documents seem to be more accessible to practitioners, they
are usually very verbose and contain imprecise—and sometimes
ambiguous and inconsistent—descriptions of the system. Thus,
they are of limited value when doing rigorous analysis of the
system.

What is needed is a property specification approach that is not
only accessible to developers, but is also mathematically precise,
so that it can be used as the basis for verification and other types
of analysis. Recent work on property patterns [8-10] recognized
that the properties used in formal verification often map onto one
of several basic property patterns. These patterns can be
instantiated with specific events or states and then mapped to
several different formalisms. When we tried to employ these
property patterns to represent some actual natural language
requirements, however, we found that they were not adequate.
They failed to represent some of the subtle differences in
interpretation that we encountered.

In the work presented here, we build upon the property patterns in
several important ways. First, we extend the patterns so that they
are represented by pattern templates. Thus, instead of just
parameterizing the pattern in terms of the events or states, we
extend the patterns with alternative options that are explicitly
shown to the specifier. Choosing among these options should help
the specifier consider the relevant alternatives and subtleties
associated with the intended behavior. Second, we represent these
pattern templates using two different notations: an extended
finite-state automaton (FSA) representation and a disciplined
natural language (DNL) representation. Both of these
representations have some advantages. The DNL representation
provides a short list of alternative phrases that highlight the
options, as well as synonyms for each option to support
customization. This representation should appeal to those
specifiers who prefer a natural language description. The extended
FSA representation provides a graphical view that can be used to
derive an instantiation of a specific FSA representation. It too
helps the specifier see the options that need to be considered.
Third, the instantiated FSA representation is mathematically well-
defined and thus can be used as the basis for verification, as well
as for testing the acceptance of event sequences, validating the
consistency of a set of property automata, or other types of
analysis. Finally, we believe that providing specifiers with the
ability to view both representations simultaneously and select the
available options from either representation will help them to
elucidate the desired property. We are currently developing a

 2

system, called PROPEL, for "PROPerty ELucidation," that provides
support for specifying properties based on the property pattern
templates, using these two complementary representations.

This paper describes property pattern templates and the PROPEL
system. The next section of the paper reviews property patterns
and explains the concerns that motivated the extension to the
templates. Section 3 describes the property pattern templates in
both the FSA and the DNL representations and presents a detailed
example for one of the patterns, using both forms. Section 4
details an example of the specification process using PROPEL.
Section 5 addresses how we can incorporate scopes into the
property pattern template representations. Section 6 discusses
related work and Section 7 concludes with a discussion of
limitations and future directions.

2. The Property Patterns
Dwyer, Avrunin, and Corbett [8-10] developed a system of
property patterns to assist users of finite-state verification tools,
such as SPIN [18], SMV [21], INCA [4], and FLAVERS [11].
They argued that the difficulty of writing correct properties in the
various input formalisms used by such tools was a substantial
obstacle to the adoption of finite-state verification technology,
and they proposed the pattern system as a way to capture the
experience of expert specifiers and to enable the transfer of that
experience to other practitioners.
Although the input formalisms of the various finite-state
verification tools, such as the temporal logics LTL and CTL [3]
are very expressive, Dwyer et al. observed that nearly all the
properties found in the finite-state verification literature could be
classified into a small number of basic types, and suggested that a
collection of patterns, which they described as "high-level,
formalism-independent, specification abstractions," could assist
finite-state verification practitioners in formulating most of the
properties they wanted to check.
Each of the patterns describes an intent (the structure of the
specified behavior), a scope (the extent of program execution over
which the pattern must hold), mappings into the input formalisms
for some finite-state verification tools, examples of known uses,
and relationships to other patterns. For instance, the intent of the
Response pattern is a cause-and-effect relationship between a pair
of events or states, in which the occurrence of the "cause" or
"action" leads to an occurrence of the "effect" or "response."
Dwyer et al. identified five scopes, or segments of program
execution, in which the specifier might want to insist that the
specified intent holds. For instance, a particular Response relation
might be intended to hold only while the system is executing in a
certain mode, while instances of the action might require an
entirely different response in other modes. The scopes are: global
(the whole execution), before (the execution up to a given
state/event), after (the execution after a given state/event),
between (any part of the execution from one given state/event to
another given state/event) and after-until (like the between scope
but the designated part of the execution continues even if the
second state/event does not occur). The scope is determined by
specifying a starting and an ending state/event for the pattern.
The mappings to various specification formalisms involve a
number of choices. For instance, in state-based formalisms,
Dwyer et al. chose to take the interval in which the property is to
be evaluated to be closed on the left and open on the right. Thus,

the scope consists of all states beginning with the starting state
and up to but not including the ending state. They chose closed-
left open-right scopes because these were relatively easy to
encode in specifications and were the most commonly
encountered in the real properties that they had collected. They
recognized, however, that other variations of the scopes might be
required, such as open-left open-right scopes, and their web site
[10] includes notes on how to modify the mappings to obtain such
variations. These notes also discuss such issues as combinations
of the patterns and which instantiations of parameters in the
patterns are safe in which formalisms.
A specifier who wishes to modify a pattern, however, must have
significant expertise with the particular specification formalisms
utilized by the finite-state verification tool being applied. Indeed,
the property patterns themselves do not highlight the choices
made and the notes do not attempt to point out all plausible
modifications. It is assumed that the analyst who wants to verify a
particular property can identify the ways in which it might differ
from the particular forms in the property pattern system and, with
some assistance from the notes, make the necessary modifications.
Since the target audience for the property patterns system is users
of finite-state verification tools, and expertise with the
specification formalisms is a prerequisite for effective use of such
tools, this is not an unreasonable requirement.
In this work, however, we are concerned with eliciting precise and
rigorous requirements from people who are unlikely to be fluent
in temporal logics or other specification formalisms. We are thus
especially interested in identifying the possible variations and
determining which of these are intended. Our focus is on pointing
out the various ways in which a high-level requirement might be
interpreted and on helping the specifier elucidate the property by
making informed choices between these interpretations.

3. PROPERTY PATTERN TEMPLATES
In our previous work with finite-state verification systems, we
have found that finite-state automata, with their corresponding
graphical depictions, are some of the more accessible notations for
representing properties. We have also observed that many of the
"shall" phrases found in requirements and specification
documents seem to almost take on a template form. Thus, we
wanted to see if we could marry these two notations via the
property patterns. While the property pattern work included both
state- and event-based formalisms, here we assume an event-based
formalism.

3.1 FSA Property Pattern Templates
3.1.1 FSA Template Notation
An FSA property is defined by the tuple <S, s, A, Σ, δ >, where S
is the finite set of states, s∈S is the unique start state, A ⊆ S is the
set of accepting states, Σ is the event alphabet, and δ:S×Σ→S is a
transition function. A sequence e1, e2, ... , en ∈ Σ* is accepted by
the FSA if a sequence of states s0, s1, ... , sn exists in S such that:

1. s0 = s,

2. sn ∈ A, and

3. δ(si-1,ei) = si for i= 1, ..., n.

Traditionally, when depicting an FSA, states are shown as circles,
the start state is denoted by an arrowhead on the circle, accepting

 3

states are indicated by inner concentric circles, and the transitions
are denoted by arrows between states indicating the direction of
flow in the automaton. Each transition is labeled by one or more
events from the alphabet Σ.

The FSA template notation extends the FSA property notation
with the following additions:

• optional transitions,

• optionally-accepting states,

• multi-labels,

• "¬", the set complement operator, and

• ".", the wildcard character, representing all of Σ.
An optional transition is indicated by a dashed line instead of a
solid line. An optionally-accepting state is denoted by a state with
a dashed inner concentric circle. A multi-label is denoted by a list
of alternative sets of labels, each set separated by the word "or".
The "¬" operator provides a shorthand notation to indicate the
complement of the given set of events with respect to the property
alphabet. The "." wildcard character is a shorthand notation for
expressing the set of all events in the property alphabet.

A property pattern template is fully instantiated when all the
optional choices have been resolved and partially instantiated if
only some of the options have been resolved. An optional
transition in an FSA template will either resolve to a regular
transition or it will not exist in the instantiated property. A multi-
label on a regular transition will resolve to only one of its label
choices in the instantiated property. A multi-label on an optional
transition will resolve to at most one of its label choices; an
optional transition disappears if all of the label choices in its
multi-label have been eliminated from consideration. An
optionally accepting state will either resolve to an accepting state
or a non-accepting state. After fully instantiating an FSA template
by resolving all of the options, the specifier is left with an FSA
property.

3.1.2 The Response FSA Template
We illustrate how a property pattern is represented as an FSA
template using the Response pattern. As noted above, the
Response pattern is concerned with expressing the concept of a
stimulus event that must be followed by a response event. An
example of this property pattern as written in natural language
might look something like this:

After the elevator button is pushed, the elevator
closes its doors.

This property looks reasonably straightforward, but a closer
examination will reveal that there are many questions concerning
the precise meaning that need to be answered. For example,
should the doors close repeatedly if the button is pushed
repeatedly? What, if anything, is allowed to occur after the button
is pushed, but before the doors are closed? We find that these
questions can be captured by using the extended FSA property
notation with six options. These options in the Response pattern
template combine to produce a total of sixty-four distinct
variations on this property pattern. When all of the options have
been decided, an FSA that represents only one of the sixty-four
possible variations is created. Figure 1 shows the Response FSA
template, with all of the optional components displayed.

Let us now examine the six options in the Response pattern
template in more detail. This template has two pattern parameters:
action and response. These parameters are placeholders for the
events in the pattern that will be specified when the property
pattern template is instantiated. The six Response pattern template
options are as follows:

• Pre-arity, which determines whether action may occur one
time or many times before response does;

• Post-arity, which determines whether response may occur
one time or many times after action does;

• Immediacy, which determines whether or not other
intervening events may occur between action and
response;

• Precedency, which determines whether or not response is
allowed to occur before the first occurrence of action;

• Nullity, which determines whether or not action must ever
occur; and

• Repeatability, which determines whether or not
occurrences of action after an occurrence of response are
required to be followed by response.

Each of the above options is represented by particular components
in the Response FSA template, as shown in Figure 1. Pre-arity is
determined by the label chosen for the self-loop on the second
state. If the self-loop does not exist because all of the choices for
the multi-label associated with it have been removed from
consideration, or if the label on it is ¬¬¬¬(action,response), then
action may only occur once before response does. Any other
label choice for that multi-label will permit action to occur
multiple times before response occurs. Post-arity is determined by
the multi-label on the self-loop of the third state. If the label on
that transition becomes ¬¬¬¬(action,response) or ¬¬¬¬response, then
response may only occur once after action has occurred. The
other two labels on that transition allow response to occur
multiple times after action has occurred.
Since we assume that the alphabet may include more events than
just action and response, Immediacy deals with whether or not
these other events may occur at the second state. Immediacy is
determined by the label chosen for the self-loop on the second
state. If the self-loop does not exist because all of the choices for
the multi-label associated with it have been removed from
consideration, or if the label chosen for the self-loop is action,
then other intervening events are not allowed to occur between
action and response. If the label chosen for the self-loop is

action response

¬¬¬¬action
or

¬¬¬¬(action,response)

action

¬¬¬¬response
or

action
or

¬¬¬¬(action,response)

¬¬¬¬response
or

¬¬¬¬action
or

¬¬¬¬(action,response)
or
.

action response

¬¬¬¬action
or

¬¬¬¬(action,response)

action

¬¬¬¬response
or

action
or

¬¬¬¬(action,response)

¬¬¬¬response
or

¬¬¬¬action
or

¬¬¬¬(action,response)
or
.

Figure 1. Response FSA Template

 4

¬¬¬¬(action,response) or ¬¬¬¬response, then other intervening events
are allowed to occur between action and response.
Precedency is determined by the label on the self-loop of the first
state. If the label is ¬¬¬¬(action,response), then response may not
occur before the first occurrence of action. Nullity is determined
by whether or not the first state is an accepting state. If the inner
circle exists, then the state is accepting, and action is not required
to occur for the property to be satisfied. Repeatability is
determined by the existence of the transition from the third state
to the second on an occurrence of action. If the property is
repeatable, the label on the third state's self-loop cannot include
action.
Figure 2 shows the other FSA templates developed for PROPEL,
based on the property patterns proposed by Dwyer et al. These
three patterns and the Response pattern are the basic patterns that
do not use any composition to express their concepts. The first
pattern, Precedence, states that an action cannot occur until it has
been preceded by the enable event. The second pattern, Existence,
states that action must occur in the system execution. The last
pattern, Absence, states that action must not occur in the system
execution. Note that the Absence FSA template does not have any
options.
During the process of instantiating an FSA template, the specifier
must define the alphabet and associate the appropriate events with
their related pattern parameters. The FSA template structure is
designed to assist the specifier in asking and answering the
appropriate questions and in understanding the meaning of the
decisions that are made. The specifier instantiates a property
pattern template until all of the options have been resolved and an
FSA property representation results.

3.2 Disciplined Natural Language Templates
3.2.1 DNL Template Notation
Disciplined Natural Language (DNL) is the second representation
that we propose to express the property pattern templates. As can
be gathered from its name, DNL is a restricted subset of natural
language that is intended to capture meanings unambiguously.
This representation is not intended to stand by itself; it is meant to
be used in conjunction with the FSA template representation. In
expressive power, each DNL template corresponds to a single
FSA template, and a fully-instantiated DNL template is mapped to
a fully-instantiated FSA template. It is therefore possible to
translate between the two representations and to develop them in
parallel in the PROPEL process, as described in Section 4. It is
hoped that a DNL property instantiated from a DNL template will
improve accessibility, while the corresponding FSA property
provides a rigorous and unambiguous representation.

Like FSA templates, DNL templates are designed to elucidate the
decisions associated with a property pattern. Therefore, the same
options that must be decided in the FSA template are options in
the DNL template representation. A DNL template for a particular
property pattern consists of a Core phrase and perhaps one or
more subsidiary phrases. We made the decision to have multiple
phrases based on our sense of what is understandable; some of the
instantiated DNL properties would have resulted in long and
unwieldy sentences if confined to a single phrase. The Core
phrase is used to express the basic meaning of the property
pattern, and may itself be parameterized, to express one or more
of the options. For customization, we introduce synonymous

choices for most of the phrases so that specifiers can select the
synonym that seems most natural to the particular property that
they are trying to represent.

3.2.2 The Response DNL Template
The Response DNL template consists of four phrases: the Core
phrase, the Nullity phrase, the Precedency phrase, and the
Repetition phrase. We provide six synonymous ways of
expressing the Core phrase. In addition, the Core phrase has three
options to be determined within it: Pre-Arity, Post-Arity, and
Immediacy. In the cases of Pre-Arity and Post-Arity, the options
have multiple synonyms associated with them. The Nullity phrase
has two options, and within those there are two synonyms apiece.
The Precedency phrase and the Repetition phrase have two
options each and no synonyms. Figure 3 provides a full
description of the four phrases and their available choices. In this
figure, bold lines are used to separate options and non-bold lines
are used to separate synonyms.

The Pre-Arity option provides a choice between stating that
action can occur only once before response does or stating that
action can occur multiple times before response does. The
Immediacy option is a choice between "immediately" and
"eventually," concerning whether or not action must be
immediately followed by response or if other events may
intervene in the sequence. The Post-Arity option is structured with
exactly the same content as the Pre-Arity option, but it is placed at
the opposite end of the Core phrase sentence. The Nullity phrase
option provides a choice between stating that action must occur
during the program execution or stating that action is not required
to occur during the program execution. The Precedency phrase
option is concerned with whether or not response is permitted to
occur before the first action does. Finally, the Repetition phrase
option determines whether or not the behavior described by the
above phrases is repeatable. The DNL templates for the
Precedence, Existence, and Absence property patterns are similar
in structure to the Response DNL template.

A fully-instantiated DNL template results in a paragraph of
natural language text that is grammatically correct, readable, and
maps to one, and only one, fully-instantiated FSA property. The
relationship between the options in a pattern's DNL template and
those in a pattern's FSA template is not necessarily one-to-one,
however, since some DNL options affect the FSA templates in
more than one location. Once an option has been decided, it does

enable action

¬¬¬¬(enable,action)

enable

¬¬¬¬action
or

enable
or

¬¬¬¬(enable,action)

¬¬¬¬action
or

¬¬¬¬enable
or

¬¬¬¬(enable,action)
or
.

(a) Precedence

action

¬¬¬¬action ¬¬¬¬action
or
.

(b) Existence

action

¬¬¬¬action .

(c) Absence

enable action

¬¬¬¬(enable,action)

enable

¬¬¬¬action
or

enable
or

¬¬¬¬(enable,action)

¬¬¬¬action
or

¬¬¬¬enable
or

¬¬¬¬(enable,action)
or
.

enable action

¬¬¬¬(enable,action)

enable

¬¬¬¬action
or

enable
or

¬¬¬¬(enable,action)

¬¬¬¬action
or

¬¬¬¬enable
or

¬¬¬¬(enable,action)
or
.

(a) Precedence

action

¬¬¬¬action ¬¬¬¬action
or
.

(b) Existence

action

¬¬¬¬action .

(c) Absence

Figure 2. The Other Property Patterns' FSA Templates

 5

not matter which of the synonyms for that particular choice are
selected for the final DNL property. The synonyms are available
so that the specifier can customize the DNL.

Requirements documents written using PROPEL property templates
can be used to produce natural language descriptions as well as
FSA representations of the properties and, thus, provide rigor and
precision in addition to accessibility.

4. HELPING THE SPECIFIER WRITE
PROPERTIES
PROPEL provides an environment for specifying properties based
on the property pattern templates. Specifiers are shown both the
FSA template and the DNL template for each pattern and can
select the pattern that seems most appropriate. When specifying
the property alphabet or the parameters or instantiating the
options, the specifier can use either the FSA or DNL template, or
can change back and forth between the two representations.
PROPEL keeps track of how the options in the two representations
relate to each other; once an option in one representation is
resolved the corresponding options in the alternative
representation are also resolved. The specifier can choose to
resolve the options in any order.

Suppose that the specifier has in mind the statement first shown in
Section 3.1.2:

After the elevator button is pushed, the elevator
closes its doors.

As noted earlier, this is an example of a Response pattern, so the
specifier would indicate this and then be presented with both the
Response FSA template and the Response DNL template. The
specifier must then determine what events the action and
response pattern parameters map to in the alphabet of this
property. The actual event names depend upon the event
annotation mechanism for the finite-state verification system that
is being used. For simplicity, let us assume that we have identified
two events in the artifact that correspond to pushing a button and
closing the doors, respectively. Let the alphabet of this property
be button-push, door-close, and any other events of interest in the
system. The specifier needs to explicitly state which of the events
corresponds with which of the pattern parameters. Figure 4a
shows the initial Response FSA template with the pattern
parameters replaced by their respective events.

The next step for the specifier might be to select how to express
the basic stimulus-response concept in DNL. For instance, the
specifier could select the Core phrase synonym "action results in
response" (see Figure 3 for the full list of Core phrase
possibilities). The following sentence would then be displayed as
the Core phrase in the partially-instantiated DNL property:

occurrences of response follow occurrences of action .

occurrences of action result in occurrences of response.

occurrences of response respond to occurrences of action.

occurrences of action cause occurrences of response .

occurrences of action lead to occurrences of response .

The behavior above is not repeatable.

The behavior above is repeatable.

Response may occur before the first action occurs.

Response cannot occur before the first action occurs.

Action must occur at least once.

Action may occur zero tim es.

Action must occur one or more times.

Action may never occur.

negative

positive

Pre-arity Im mediacy Post-arity

one or m ore

exactly one

only one

plural

singular

one or more

exactly one

only one

plural

singular
eventually

immediately

Pre-arity Immediacy Post-arity

Pre-arity

Pre-arity

Pre-arity

Immediacy

Immediacy

Immediacy

Post-arity

Post-arity

Post-arity

(a) Core Phrase

(d) Repetition Phrase

(c) Precedency Phrase

(b) Nullity Phrase

occurrences of response follow occurrences of action .

occurrences of action result in occurrences of response.

occurrences of response respond to occurrences of action.

occurrences of action cause occurrences of response .

occurrences of action lead to occurrences of response .

The behavior above is not repeatable.

The behavior above is repeatable.

Response may occur before the first action occurs.

Response cannot occur before the first action occurs.

Action must occur at least once.

Action may occur zero tim es.

Action must occur one or more times.

Action may never occur.

negative

positive

Pre-arity Im mediacy Post-arity

one or m ore

exactly one

only one

plural

singular

one or more

exactly one

only one

plural

singular
eventually

immediately

Pre-arity Immediacy Post-arity

Pre-arity

Pre-arity

Pre-arity

Immediacy

Immediacy

Immediacy

Post-arity

Post-arity

Post-arity

(a) Core Phrase

(d) Repetition Phrase

(c) Precedency Phrase

(b) Nullity Phrase

Figure 3. Response DNL Template

 6

Pre-Arity occurrences of button-push Immediacy
result in Post-Arity occurrences of door-close.

The options in the boxes in the Core phrase need to be
determined, and at this point the specifier could change the setting
of the options by either manipulating the associated FSA template
or by choosing between the DNL options available. Let us assume
that the specifier decides to use the FSA template to determine the
Pre-Arity and the Post-Arity of the property. Figure 4b shows the
partially-completed FSA template where Pre-Arity has been
determined such that button-push may occur one or more times
before door-close is required to occur, and Post-Arity has been
determined such that after button-push has occurred, door-close
may occur only once. For the Pre-Arity option, the FSA template
has been changed such that the multi-label on the second state's
self-loop no longer contains the ¬(button-push, door-close)
possibility. For the Post-Arity option, the FSA template cannot
allow door-close to occur on the third state's self-loop, and thus
the ¬button-push and "." possibilities are removed from the multi-
label on that transition. At this point, the DNL Core phrase looks
like this:

One or more occurrences of button-push
Immediacy result in only one occurrence of door-
close.

In Figure 4c, the specifier has decided to make the property
repeatable and indicated that setting in the FSA template by
making the transition from the third state to the second state on
button-push a solid line. This change also has an effect on the
multi-label on the self-loop of the third state, since button-push
cannot be allowed to occur on that transition. Therefore, the
multi-label on that self-loop is resolved to the label ¬(button-
push, door-close). PROPEL reflects this change in the DNL
representation by resolving the Repetition phrase to "The behavior
above is repeatable."

To finish the Core phrase in the DNL, the specifier could decide
to determine the Immediacy option by choosing "eventually" for
the DNL option there. This affects the FSA template in two ways.
First, intervening events are now allowed to occur between
button-push and door-close, so the self-loop on the second state
becomes a solid-line transition. Second, the multi-label on that
self-loop is resolved to the one label, ¬door-close, because
button-push is now allowed to occur on this transition, since the
Pre-Arity was set to be "one or more times" in a previous step,
and because using the set complement operator allows intervening
events other than button-push to occur on this transition. Two
phrases in the Response DNL template have now been completed:
the Core phrase and the Repetition phrase. The DNL template
now looks like this:

One or more occurrences of button-push eventually
result in only one occurrence of door-close.
Nullity phrase
Precedency phrase
The above behavior is repeatable.

Assume the next option selected is the question of Nullity; that is
whether or not button-push must occur in the program execution.
The specifier decides to set this option by making the optionally-
accepting state in the FSA template an accepting state. PROPEL
reflects this change in the DNL representation by resolving the

Nullity phrase to "button-push may occur zero times." The DNL
template provides a synonym to this choice, and the specifier can
later decide whether or not to change which synonym is used.

The last option set is Precedence, and the specifier decides to use
the FSA template to make the choice. The multi-label on the first
state's self-loop is resolved to be ¬(button-push,door-close),
which does not allow door-close to occur until button-push has
occurred at least once. The accompanying DNL option results in
the statement, "door-close cannot occur before the first button-
push occurs," being added to the DNL template.

After fully-instantiating all the options, the FSA template is
resolved to an FSA property and the DNL property is resolved to
a completed natural language paragraph. The final FSA property
for the elevator example is shown in Figure 4d and the final DNL
property could be:

One or more occurrences of button-push eventually
result in only one occurrence of door-close. button-
push may occur zero times. door-close cannot occur
before the first button-push occurs. The behavior
above is repeatable.

Any option in a property in PROPEL can be unset and reselected if
the option needs to be changed, and the DNL can be customized
by choosing a different synonym at any time. Thus, the process is
designed to help specifiers ask questions about their assumptions
and elucidate the meaning of a property. The specifier could go
through this process in a different order than has been described
above and could make different decisions about when to use the
FSA and DNL representations.

button-push door-close

¬¬¬¬button-push
or

¬¬¬¬(button-push,
door-close)

button-push

¬¬¬¬door-close
or

button-push
or

¬¬¬¬(button-push,
door-close)

¬¬¬¬door-close
or

¬¬¬¬button-push
or

¬¬¬¬(button-push,
door-close)
or
.

(a)

(b)

(c)

(d)

button-push door-close

¬¬¬¬button-push
or

¬¬¬¬(button-push,
door-close)

button-push

¬¬¬¬door-close
or

button-push

¬¬¬¬door-close
or

¬¬¬¬(button-push,
door-close)

button-push door-close

¬¬¬¬button-push
or

¬¬¬¬(button-push,
door-close)

button-push

¬¬¬¬door-close ¬¬¬¬(button-push,
door-close)

button-push door-close

¬¬¬¬(button-push,
door-close)

button-push

¬¬¬¬door-close ¬¬¬¬(button-push,
door-close)

button-push door-close

¬¬¬¬button-push
or

¬¬¬¬(button-push,
door-close)

button-push

¬¬¬¬door-close
or

button-push
or

¬¬¬¬(button-push,
door-close)

¬¬¬¬door-close
or

¬¬¬¬button-push
or

¬¬¬¬(button-push,
door-close)
or
.

(a)

(b)

(c)

(d)

button-push door-close

¬¬¬¬button-push
or

¬¬¬¬(button-push,
door-close)

button-push

¬¬¬¬door-close
or

button-push

¬¬¬¬door-close
or

¬¬¬¬(button-push,
door-close)

button-push door-close

¬¬¬¬button-push
or

¬¬¬¬(button-push,
door-close)

button-push

¬¬¬¬door-close ¬¬¬¬(button-push,
door-close)

button-push door-close

¬¬¬¬(button-push,
door-close)

button-push

¬¬¬¬door-close ¬¬¬¬(button-push,
door-close)

Figure 4. An Example of the PROPEL Process

 7

5. INCORPORATING SCOPES
So far, we have discussed how to develop the intent (the structure
of the behavior specified) of a property. In this section, we discuss
the definition of a scope and how it is applied to the property
pattern template. As mentioned above, the patterns of Dwyer et al.
have scopes that describe the extent of system execution over
which the pattern must hold. For example, a specifier might want
to say:

Between pushing the button and arriving at the
requested floor, the elevator does not change
direction.

A scope can be used to specify when it is important that the
property holds.
Dwyer et al. identified five basic scopes and defined whether the
scope was closed or open on either end for each pattern. Most
event-based formalisms use some version of an interleaved model
of concurrent computation. In such formalisms, two events cannot
coincide. In the property patterns system, therefore, event-
delimited scopes are open at both ends; an event that occurs
within the scope cannot occur at the same time as an event that
marks the beginning or end of the scope. We make the additional
restrictions that the set of delimiter events defining the scope is
disjoint from the alphabet of the FSA defining the intent and that,
if the scope has both starting and ending delimiters, these are
distinct. These restrictions seem reasonable and greatly simplify
the application of a scope to an intent.

With these restrictions, a scope may be characterized by three
attributes: the starting delimiter, the ending delimiter, and whether
or not the scope may occur repeatedly within the system
execution. We represent the starting delimiter as the pattern
parameter Q, and the ending delimiter as the pattern parameter P.
Thus, the five basic scopes become:

• Global, which is over the entire system execution. This
scope does not have delimiters, and it is not repeatable.

• Before P, which is concerned with the event sequence up
to the first occurrence of P. This scope only has a ending
delimiter, and it is not repeatable.

• After Q, which is concerned with the event sequence after
the first occurrence of Q. This scope only has an starting
delimiter, and it is not repeatable.

• Between Q and P, which is concerned with the event
sequence after an occurrence of the starting delimiter, Q,
and before an occurrence of the ending delimiter, P. P is
required to occur for this scope to exist. This scope may
occur repeatedly over the course of the system execution.

• After Q Until P, which is concerned with the event
sequence after an occurrence of the starting delimiter, Q,
and before an occurrence of the ending delimiter, P. P is
not required to occur for this scope to exist. This scope
may occur repeatedly over the course of the system
execution.

With the restrictions noted above, there is limited interaction
between the intent and the scope. Thus, these restrictions allow us

action response

¬¬¬¬(action,P)
or

¬¬¬¬(action,response,P)

action

¬¬¬¬(action,response,P)
or

¬¬¬¬(response,P)
or

action

¬¬¬¬(response,P)
or

¬¬¬¬(action,P)
or

¬¬¬¬(action,response,P)
or

¬¬¬¬P

.

P

P

(a) Before P

action response

¬¬¬¬(action,response)
or

¬¬¬¬action

action

¬¬¬¬(action,response)
or

¬¬¬¬response
or

action,Q

¬¬¬¬response
or

¬¬¬¬action
or

¬¬¬¬(action,response)
or

.

Q

¬¬¬¬Q

(b) After Q

(c) After Q Until P

action response

¬¬¬¬(action,response,P)
or

¬¬¬¬(action,P)

action

¬¬¬¬(action,response,P)
or

¬¬¬¬(response,P)
or

action,Q

¬¬¬¬(response,P)
or

¬¬¬¬(action,P)
or

¬¬¬¬(action,response,P)
or

¬¬¬¬P

Q

¬¬¬¬Q

P

P

(d) Between Q and P

action response

¬¬¬¬(action,response,P)
or

¬¬¬¬(action,P)

action

¬¬¬¬(action,response,P)
or

¬¬¬¬(response,P)
or

action,Q

¬¬¬¬(response,P)
or

¬¬¬¬(action,P)
or

¬¬¬¬(action,response,P)
or

¬¬¬¬P

Q

¬¬¬¬Q

P

P

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

.5

P

.5

P

action response

¬¬¬¬(action,P)
or

¬¬¬¬(action,response,P)

action

¬¬¬¬(action,response,P)
or

¬¬¬¬(response,P)
or

action

¬¬¬¬(response,P)
or

¬¬¬¬(action,P)
or

¬¬¬¬(action,response,P)
or

¬¬¬¬P

.

P

P

(a) Before P

action response

¬¬¬¬(action,response)
or

¬¬¬¬action

action

¬¬¬¬(action,response)
or

¬¬¬¬response
or

action,Q

¬¬¬¬response
or

¬¬¬¬action
or

¬¬¬¬(action,response)
or

.

Q

¬¬¬¬Q

(b) After Q

(c) After Q Until P

action response

¬¬¬¬(action,response,P)
or

¬¬¬¬(action,P)

action

¬¬¬¬(action,response,P)
or

¬¬¬¬(response,P)
or

action,Q

¬¬¬¬(response,P)
or

¬¬¬¬(action,P)
or

¬¬¬¬(action,response,P)
or

¬¬¬¬P

Q

¬¬¬¬Q

P

P

(d) Between Q and P

action response

¬¬¬¬(action,response,P)
or

¬¬¬¬(action,P)

action

¬¬¬¬(action,response,P)
or

¬¬¬¬(response,P)
or

action,Q

¬¬¬¬(response,P)
or

¬¬¬¬(action,P)
or

¬¬¬¬(action,response,P)
or

¬¬¬¬P

Q

¬¬¬¬Q

P

P

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

.5

P

.5

P

Figure 5. Four Scopes Applied to the Response FSA Template

 8

to propose a rather straightforward way to apply scopes to
property pattern templates. We now describe how the templates
can be extended to take scopes into account.

5.1 Applying Scopes to the FSA Templates
A scope can be applied to an intent by adding additional states
that we call "scope states" and by adding transitions between the
scope states and the states of the FSA that represent the intent.
These transitions are labeled by the scope delimiters, Q and P. We
add these scope delimiters to the alphabet, Σ. A scope state that
has a self loop for every event in the alphabet is called a trap
state. Figure 5 shows the Before P, After P, After Q Until P, and
Between Q and P scopes added to the Response FSA template.
The Global scope is not shown since it makes no visible changes
to the FSA template. We have added numbers to the states in
Figure 5 for easy reference. For the sake of brevity, instead of
separately showing the self-loops on the states in the intent that
are added for occurrences of the delimiters, we have changed the
multi-labels on the existing self-loops to reflect these additions
where possible. We have also not shown the transitions that go to
a non-accepting trap state; when a transition is not provided that
explicitly allows a delimiter to occur, it should be assumed that an
occurrence of that delimiter puts the FSA into a non-accepting
trap state. In the remainder of this section, we explain the
additions needed to apply each scope to the Response pattern.
Scopes are added to the intents of the other property patterns in
much the same way.

5.1.1 The Before P Scope
We interpret the Before P scope to mean that the scope begins at
the start of the program execution, so there is no starting
delimiter, and that the ending delimiter is the first occurrence of P
in the program execution. Subsequent occurrences of P are
ignored since this scope is not repeatable. When we apply the
Before P scope to the intents, we must determine at each state
what the effect will be of encountering the ending delimiter at that
point in the sequence. Recall that the intent of the Response
property is that an occurrence of action must be followed by an
occurrence of response.
In the first state, labeled "1" in Figure 5a, an occurrence of P
results in a scope that has been ended before the intent of the
property has been entered. This is called an empty scope. An
empty scope is handled differently for each of the property
patterns. For instance, the Absence property holds if the scope is
empty, since that is actually the meaning of the Absence property
pattern. Whether or not a Response property holds if the scope is
empty, however, depends on the setting of the Nullity option,
which determines whether or not action must occur at all. If
action is not required to occur, then the first state, which is also
the start state, will be an accepting state. If P occurs at this point
and action is not required to occur, then this sequence is not a
violation of the property and the empty scope does not prevent the
property from holding. The optional transition that goes to the
accepting trap state, labeled "4", would become a regular
transition. If action is required to occur, then that first state will
not be an accepting state. In this case, the occurrence of P when
the FSA is in the first state puts the FSA into a non-accepting trap
state because the scope would be ended before the intent's first
requirement was met; this sequence would be a violation of the
property. The optional transition that goes to the accepting trap

state would not exist. As noted above, we do not show the
transitions that go to a non-accepting trap state.
When the FSA is in the second state, an action has occurred that
is not yet followed by a response. At this point, response must
occur before a P ends the scope, or the property is violated. An
occurrence of P when the FSA is in the second state therefore puts
the FSA into a non-accepting trap state.
The third state is an accepting state and an occurrence of P at that
point in the sequence could not violate the property. From this
state, action is not required to occur and there is no occurrence of
action that is waiting for an occurrence of response. If the scope
is ended when the FSA is in the third state, the property holds.
Since the Before P scope is not repeatable, we add a transition on
an occurrence of P that goes from the third state to an accepting
trap state.
Applying a scope to the Response FSA template also affects the
multi-labels. Because the set complement operator means that
everything that is not in the set specified by the label choice is
accepted, P needs to be added to each of those labels in which the
set complement operator is used. Note that the final label choice
in the multi-label on the third state's self-loop is changed from the
whole set of events (".") to the set of events excluding P ("¬P").

5.1.2 The After Q Scope
We interpret the After Q scope to mean that the scope is not
started until the first occurrence of the starting delimiter, Q, in the
system execution. Subsequent occurrences of Q are ignored since
this scope is not repeatable. The scope is not ended until the
execution ends, so there is no ending delimiter. As with the
Before P scope, when we apply the After Q scope to the intents,
we must determine at each state what the effect will be of
encountering the ending delimiter at that point in the sequence.
The first state in Figure 5b is a scope state that is added to the
Response FSA template. An occurrence of Q at this state would
begin the scope and after this point the intent of the property
would be required to hold. As is shown with the self-loop that is
labeled "¬Q" on state 1, all events that occur before the starting
delimiter are ignored. An occurrence of Q at any of the other
states would have no effect on the property, because after the
occurrence of the starting delimiter all subsequent occurrences of
Q are ignored. Therefore, all of the transitions on an occurrence
of Q from states 2, 3, and 4 are self-loops on those states. As was
stated in Section 5.1, instead of separately showing the self-loops
on the states in the intent that are added for occurrences of the
delimiters, we have changed the multi-labels on the existing self-
loops to reflect these additions where possible. Because the set
complement operator means that everything that is not in the set
specified by the label choice is accepted, the only place that Q
must be explicitly added is the multi-label on the self-loop on
state 3. It is added to the label choice that only accepted
occurrences of action, and that label choice becomes "action, Q".

5.1.3 The After Q Until P Scope
We interpret the After Q Until P scope to mean that the starting
delimiter is an occurrence of Q and the ending delimiter is an
occurrence of P. This scope can be repeated; whether or not it is
repeatable is an option for the specifier to determine. For now,
consistent with Dwyer et al., we assume that a scope with multiple
occurrences of Q is ended by a single occurrence of P. An

 9

occurrence of P that is not preceded by an unended scope is
ignored. Given this interpretation, when we apply the After Q
Until P scope to the intents we must determine at each state what
the effect will be of encountering the ending delimiter at that point
in the sequence.
The first state in Figure 5c is a scope state that is added to the
Response FSA template. An occurrence of Q at this state would
start the scope and after this point the intent of the property would
be required to hold. As is shown with the self-loop that is labeled
"¬Q" on state 1, all events that occur before the starting delimiter
are ignored. An occurrence of P at state 1 would also be ignored,
since an occurrence of Q has not yet started the scope.
In the second state, an occurrence of Q is ignored, because the
scope has not yet been ended by an occurrence of P. An
occurrence of Q is on a self-loop on this state and it is therefore
incorporated into the multi-label on the self-loop that already
exists on this state. Q does not need to be explicitly shown in
either of the label choices on this multi-label because they are
both expressed with a set complement operator.
An occurrence of P in state 2 again brings up the issue of what to
do with an empty scope, as was discussed in section 5.1.1. If state
2 is accepting, then the optional transition from state 2 to state 1
will be a regular transition. If state 2 is not accepting, then the
transition on an occurrence of P from state 2 will go to a non-
accepting trap state.
In the third state, an occurrence of Q is ignored, because the
scope has not yet been ended by an occurrence of P. An
occurrence of Q is on a self-loop on this state and it is therefore
incorporated into the multi-label on the self-loop that already
exists on this state. The only place in which Q must be explicitly
added to the multi-label on the self-loop on state 3 is the label
choice that only accepted occurrences of action. That label choice
becomes "action, Q".

When the FSA is in state 3, an action has occurred that is not yet
followed by a matching response. At this point, response must
occur before a P ends the scope, or the property is violated. An
occurrence of P when the FSA is in state 3 therefore puts the FSA
into a non-accepting trap state.
In the fourth state, an occurrence of Q is ignored, because the
scope has not yet been ended by an occurrence of P. An
occurrence of Q is on a self-loop on this state and it is therefore
incorporated into the multi-label on the self-loop that already
exists on this state. Q does not need to be explicitly shown in any
of the label choices on this multi-label because they are all
expressed with a set complement operator.
Figure 5c shows two optional transitions on an occurrence of P in
state 4. If the specifier makes this scope repeatable, then an
occurrence of P in state 4 would end the scope and allow the
scope to be restarted by a subsequent occurrence of Q. The
optional transition between state 4 and state 1 would then become
a regular transition and the optional transition between state 4 and
state 5 would not exist. If the specifier makes this scope not
repeatable, then an occurrence of P in state 4 would put the FSA
into the accepting trap state, labeled "5." In this case, the
transition between state 4 and state 5 would become a regular
transition and the optional transition between state 4 and state 1
would not exist.

5.1.4 The Between Q and P Scope
The Between Q and P Scope is identical to the After Q Until P
scope except for one important difference. Figure 5d shows the
difference: state 3 is accepting. The reason for this change is that
the definition of the Between Q and P scope requires that both
delimiters occur, whereas the After Q Until P scope does not. The
Between Q and P scope does not exist unless both of its delimiters
occur. What this means is that if P does not occur, the intent of
the property could be violated and yet the property as a whole
would not be violated because it is not within an existing scope

T h is p ro p e r ty m u s t a lw a y s h o ld .

T h is p ro p e r ty m u s t h o ld a t a l l t im e s .

T h is p ro p e r ty m u s t h o ld b e tw e e n th e f i rs t o c c u r re n c e o f Q a n d
th e f i rs t s u b s e q u e n t o c c u r re n c e o f P , P m u s t o c c u r fo r th is s c o p e
to e x is t , a n d th is s c o p e is n o t re p e a ta b le .

T h is p ro p e r ty m u s t h o ld b e tw e e n th e f i rs t o c c u r re n c e o f Q a n d
th e f i rs t s u b s e q u e n t o c c u r re n c e o f P , P m u s t o c c u r fo r th is s c o p e
to e x is t , a n d th is s c o p e is re p e a ta b le .

n o t
r e p e a ta b le

r e p e a ta b le

(a) G lo b a l

(d) A f te r Q U n ti l P

(c) A f te r Q

(b) B e fo r e P

(e) B e tw e e n Q a n d P

T h is p ro p e r ty m u s t h o ld b e tw e e n th e f i rs t o c c u r re n c e o f Q a n d
th e f i rs t s u b s e q u e n t o c c u r re n c e o f P , P i s n o t re q u ire d to o c c u r
fo r th is s c o p e to e x is t , a n d th is s c o p e is n o t re p e a ta b le .

T h is p ro p e r ty m u s t h o ld b e tw e e n th e f i rs t o c c u r re n c e o f Q a n d
th e f i rs t s u b s e q u e n t o c c u r re n c e o f P , P i s n o t re q u ire d to o c c u r
fo r th is s c o p e to e x is t , a n d th is s c o p e is re p e a ta b le .

n o t
r e p e a ta b le

r e p e a ta b le

T h is p ro p e r ty m u s t h o ld b e fo re th e f i rs t o c c u rre n c e o f P .

T h is p ro p e r ty m u s t h o ld a f te r th e f ir s t o c c u rre n c e o f Q .

Figure 6. Scope Phrase DNL Options

 10

when the violation happens. This is a "look-back" scope, where
once a P occurs, the sequence of events up to that point must
conform to the sequence required by the property, and only then
can a violation of the property be determined. Applying this scope
also affects the internal structure of the FSA templates for each of
the other patterns.

5.2 Applying Scopes to the DNL Templates
For DNL templates, applying a scope to the intent of a property is
relatively straightforward: we add another phrase to the template:
the Scope phrase. Therefore, the complete Response DNL
template is:

Core phrase
Nullity phrase
Precedency phrase
Repeatability phrase
Scope phrase

The Scope phrase can be resolved to one of the five scopes.
Figure 6 shows the choices available for each scope in the DNL.
The only option to be addressed for scopes is whether or not they
are repeatable. Scope repeatability determines whether or not an
occurrence of Q after the first occurrence of P is required to be
followed by another occurrence of P for the scope to be closed.
The Global, Before P, and After Q scopes cannot be made
repeatable. This option is expressed in the DNL template by the
choices provided for the After Q Until P scope and the Between Q
and P scope.

5.3 Using Scopes in PROPEL
The example in Section 4 showed how PROPEL would be used
without taking scopes into account. Actually, the specifier must
select a scope as well an intent and must then resolve any options
associated with their combination.

6. RELATED WORK
The PROPEL approach described in this paper builds directly on
the property patterns [8]. That work identified commonly-
occurring types of specifications and attempted to provide users of
finite-state verification tools with high-level, formalism-
independent abstractions for dealing with those types. This work
has been extended in a number of directions. For instance, these
patterns form the basis of the extensible specification language in
the Bandera system [5, 6], and Paun and Chechik [23] have
extended the patterns to deal with events in a state-based
formalism. A number of other researchers have used templates or
patterns in the construction of both requirements and properties
for finite-state verification. For instance, van Lamsweerde and his
co-authors [7, 20] have suggested using a library of refinements to
construct detailed requirements from goals. The correctness of
these refinements is verified in a formal logic. The Attempto
Controlled English project [13, 14] offers annotated templates to
guide non-expert users, and the Cico/Circe [1] tool includes
suggested phrases for expressing relationships between artifacts.
The FormalCheck [12] finite-state verification tool uses templates
to formulate the properties to be checked.
Other techniques, such as various tabular notations, have been
aimed at providing requirements that are both accessible and
suitable for formal analysis. For example, Heninger and her co-

authors' work on the A-7E project [17] focused on expressing
properties with condition- and event-tables. Heitmeyer and her co-
authors (e.g., [16]), have built a variety of tools for checking
consistency, completeness, and safety properties of requirements
expressed in the tabular SCR notation. The Requirements State
Machine Language [19], which provides a tabular notation for the
guarding conditions of transitions to help make the requirements
accessible to domain experts, supports similar analyses [15].
These approaches are general formalisms for expressing
requirements, while the PROPEL approach aims at elucidating
common properties that arise in finite-state verification.
Some research, such as the Attempto Controlled English project,
Cico/Circe, NLIPT [22], and the work of Bryant [2], attempt to
construct formal specifications from natural language
requirements. The use of natural language in the work described
here is much less ambitious. PROPEL provides both disciplined
natural language and FSA representations, and allows the
specifier to move back and forth between them in order to help
make the formal specifications more understandable and
accessible, but this work does not attempt to understand natural
language, even in restricted domains.

7. CONCLUSIONS
With PROPEL, users are provided with templates for the most
common property patterns described in Dwyer et al. These
templates are presented in an extended finite-state automaton
notation and as natural language phrases, both of which explicitly
indicate the options that must be considered. We hypothesize that
this two-pronged approach will help specifiers elucidate the
precise meaning of the properties that they are expressing. We are
currently implementing the PROPEL system so that specifiers are
presented with both notations and can move between them while
instantiating the property templates incrementally. We believe that
this approach is an effective way to achieve both accessibility and
rigor in property specifications.
There are a number of interesting directions that we intend to
explore in future work. We want to study compositions of
specification patterns, including arbitrary compositions and
restricted compositions such as chaining. We intend to investigate
new ways of composing scopes, such as nested scopes, and the
possibility of loosening the restrictions on their alphabets. We
also plan to extend the templates to include state-based and mixed
event- and state-based notations. Although we have shown
specific natural language phrases, one could argue that the
resulting properties could be stated better. It would be reasonable
to have natural language experts help define the phrases
associated with each property. Another possible direction to
explore is developing these properties in a non-interleaved model
of concurrent computation. Most importantly, we plan to evaluate
this approach by applying it to some industrial applications.
Although we have applied this approach to several properties and
been pleased with the results, we need to undertake a careful
evaluation.

8. ACKNOWLEDGEMENTS
We thank Jamieson M. Cobleigh for his helpful comments.

This research was partially supported by the U.S. Department of
Defense/Army and the Defense Advance Research Projects
Agency under Contract DAAH01-00-C-R231, by the National

 11

Science Foundation under Grant CCR-9708184, by the U.S.
Army Research Laboratory and the U.S. Army Research Office
under Agreement DAAD190110564, and by IBM Faculty
Partnership Awards. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied,
of the Defense Advanced Research Projects Agency, the Air
Force Research Laboratory/IFTD, the U. S. Army, the U.S. Dept.
of Defense, the U.S. Government, the National Science
Foundation, or of IBM.

9. REFERENCES
[1] Ambriola, V. and Gervasi, V. "Processing Natural

Language Requirements," in 12th Int. Conference on
Automated Software Engineering. 1997. Lake Tahoe,
NV. p.36-45.

[2] Bryant, B. "Object-Oriented Natural Language
Requirements Specification," in ACSC 2000, the 23rd
Australasian Computer Science Conference. 2000.
Canberra, Australia.

[3] Clarke, E.M., Grumberg, O., and Peled, D.A., "Model
Checking." 2000: MIT Press.

[4] Corbett, J.C. and Avrunin, G.S., "Using Integer
Programming to Verify General Safety and Liveness
Properties." Formal Methods in System Design, 1995.
6: p. 97-123.

[5] Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach', S.,
Pasareanu, C.S., Zheng, R., and Zheng, H. "Bandera:
Extracting finite-state models from Java source code,"
in 22nd Int. Conference on Software Engineering.
2000. Limerick, Ireland. p.439-448.

[6] Corbett, J.C., Dwyer, M.B., Hatcliff, J., and Robby. "A
Language Framework for Expressing Checkable
Properties of Dynamic Software," in SPIN Software
Model Checking Workshop. 2000. Stanford, CA.
p.205-223.

[7] Darimont, R. and van Lamsweerde, A. "Formal
Refinement Patterns for Goal-Drive Requirements
Elaboration," in 4th ACM SIGSOFT Symp. on the
Foundations of Software Engineering. 1996. San
Francisco, CA. p.179-190.

[8] Dwyer, M.B., Avrunin, G.S., and Corbett, J.C.
"Patterns in Property Specifications for Finite-State
Verification," in 21st Int. Conference on Software
Engineering. 1999. Los Angeles, CA. p.411-420.

[9] Dwyer, M.B., Avrunin, G.S., and Corbett, J.C.
"Property Specification Patterns for Finite-state
Verification," in 2nd Workshop on Formal Methods in
Software Practice. 1998. Clearwater Beach, Florida.
p.7-15.

[10] Dwyer, M.B., Avrunin, G.S., and Corbett, J.C.
"Specification Patterns Web Site."
http://www.cis.ksu.edu/santos/spec-patterns/.

[11] Dwyer, M.B. and Clarke, L.A. "Data Flow Analysis for
Verifying Properties of Concurrent Programs," in 2nd
ACM SIGSOFT Symp. on the Foundations of Software
Engineering. 1994. New Orleans, LA. p.62-75.

[12] FormalCheck. "Web Site."
http://www.cadence.com/datasheets/formalcheck.html

[13] Fuchs, N.E., Schwertel, U., and Schwitter, R.
"Attempto Controlled English -- Not Just Another
Logic Specification Language," in 8th Int. Workshop
on Logic-Based Program Synthesis and Transformation
(LOPSTR'98). 1998. p.1-20.

[14] Fuchs, N.E. and Schwitter, R. "Attempto Controlled
English (ACE)," in CLAW 96, the 1st Int. Workshop
on Controlled Language Applications. 1996.

[15] Heimdahl, M.P.E. and Leveson, N.G., "Completeness
and Consistency in Hierarchical State-Based
Requirements." IEEE Transactions on Software
Engineering, 1996. 22(6): p. 363-377.

[16] Heitmeyer, C.L., Jeffords, R.D., and Labaw, B.G.,
"Automated Consistency Checking of Requirements
Specifications." ACM Transactions on Software
Engineering and Methodology, 1996. 5(3): p. 231-261.

[17] Heninger, K., Parnas, D.L., Shore, J., and Kallander, J.,
"Software Requirements for the A-7E Aircraft." 1978,
Tech. Rep. 3876. Naval Research Laboratory:
Washington, D.C.

[18] Holzmann, G.J., "The Model Checker SPIN." IEEE
Transactions on Software Engineering, 1997. 23(5): p.
279-294.

[19] Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., and
Reese, J.D., "Requirements Specification for Process-
Control Systems." IEEE Transactions on Software
Engineering, 1994. 20(9): p. 684-707.

[20] Massonet, P. and van Lamsweerde, A. "Analogical
Reuse of Requirements Frameworks," in RE '97 – 3rd
Int. Conference on Requirements Engineering. 1997.

[21] McMillan, K.L., "Symbolic Model Checking: An
Approach to the State Explosion Problem." 1993,
Boston, MA: Kluwer Academic Publishers.

[22] Michael, J.B., Ong, V.L., and Rowe, N.C. "Natural-
Language Processing Support for Developing Policy-
Governed Software Systems," in 39th Int. Conference
on Technology for Object-Oriented Languages and
Systems. 2001. Santa Barbara, CA, USA.

[23] Paun, D.O. and Chechik, M. "Events in Linear-Time
Properties," in 4th Int. Conference on Requirements
Engineering. 1999. Limerick, Ireland.

