Tapir: the Evolution of an Agent Control Language

Gary W. King
University of Massachusetts
140 Governor’s Lane
Amherst, MA 01003

gwking@cs.umass.edu

ABSTRACT

Tapir is a general purpose, semi-declarative agent control language
that extends and enhances the Hierarchical Agent Control (HAC)
architecture [1]. Tapir incorporates the lessons learned from de-
veloping HAC and makes it easier and faster to create reusable
and understandable actions. Tapir has been used in a battalion
level war-game simulation, a robot simulator, a simulation of cel-
lular dynamics and a simulation of rodent behavior. The language
is built around constructs that define agents, sensors, actions, and
messages. It has mechanisms for handling multiple agents, a flexi-
ble resource model, and multiple means for structuring concurrent
actions. This paper provides an overview of HAC and its short-
comings and then explains how Tapir extends and improves upon
1t.

1. INTRODUCTION

Building on previous work in simulation and agent control [1, 7,
19] we have created Tapir: an expressive agent control language
with a simple syntax. Tapir has been used in multiple systems by
experienced and novice agent programmers and has fostered dra-
matic increases in productivity. Tapir constructs are self-contained
and modular, making them human-understandable and machine-
parsable. Tapir is a semi-declarative, general purpose agent control
language implemented in Common Lisp. Tapir has constructs for
defining agents, sensors, actions, and messages:

Agents Agents are viewed primarily as resources for actions. They
connect actions to the physics of the real or simulated do-
main. As resources, agents come in many different types.
For example, they can be serializably reusable, sharable, com-
posite, consumable and so on. Individual resources may exist
in a hierarchy. For example, a robot is an agent consisting of
motor resources, camera resources and a gripper.

Sensors Sensors tie actions to the world. They can be “primitive”,
connecting to the world directly, or they can be abstract,
amalgamating and processing data from multiple sources.
Sensors can be shared by multiple actions.

Marc S. Atkin
University of Massachusetts
140 Governor’s Lane
Amherst, MA 01003

atkin@cs.umass.edu

David L. Westbrook
University of Massachusetts
140 Governor’s Lane
Ambherst, MA 01003

westy @cs.umass.edu

Actions Actions use resources and sensors to carry out their tasks.
Each action exists in the context of a control hierarchy and
may extend the hierarchy by creating children of its own.
This hierarchy is grounded in “primitive” actions that use
resources to achieve their ends. Tapir has many constructs
for structuring control, including sequential, parallel and re-
peated execution.

Messages Actions, sensors, and resources communicate via mes-
sages. For example:

t sensors send actions messages when events in the world
occur.

t child actions send their parent messages when they com-
plete or when they need to communicate some change
in status.

t parents send their children messages when they wish to
stop or redirect their activities.

t resources send their actions messages when they change
or are destroyed.

Each message is an instance of a particular class and can
carry additional information. For example, a FAILURE mes-
sage carries the reason for its failure and a CHANGE-SPEED
message carries the value of the desired speed.

Tapir is built upon and extends the Hierarchical Agent Control
(HAC) architecture [4, 1]. The rest of this paper provides a brief
overview of HAC (section 2), describes Tapir’s main constructs
(section 3), and compares Tapir with existing languages (section
4). We conclude by discussing current applications and our future
work.

2. THE HAC ARCHITECTURE

HAC is a framework for controlling agent behavior. HAC takes
care of the mechanics of executing the code that controls an agent,
passing messages between actions, coordinating multiple agents,
arbitrating resource conflicts between agents, and updating sensor
values. HAC structures agent control into three hierarchies: con-
trol, sensor and context. These determine what to do, what is hap-
pening, and how to interpret it. The last is especially important in
planning since the correct response to an event depends on the goals
and interests of an action’s ancestors. HAC is action-centered, not
agent-centered. Rather than specifying what an agent is to do, one
specifies what is to be done. Actions then use whatever resources
are available to accomplish their ends. We found that this inversion
of the usual framework made it easier to incorporate both planning
and multi-agent control into the architecture.



Domain-

. A Mobile Offense
specific
actions l
- Harass
1) -
1IE
% =
Ph}{sical é S Follow
Schemas AlE /\ Attack
o —
5 g Move-to-Point
o
Primitive
Actions v Move Move Apply-Force

Figure 1: Actions form a hierarchy; control information is
passed down, messages are passed up. The lowest level are
agent effectors.

2.1 Agent control in HAC

HAC executes actions by scheduling them on a queue. The queue
is sorted by the time at which the action will execute. Actions are
taken off the queue and executed until no more actions are sched-
uled to run at the current time step. Actions can reschedule them-
selves, but in most cases, they will be rescheduled when woken
up by messages from their children, sensors or resources. Action’s
execute their code during their do phase. More deliberative ac-
tions will tend to execute their do phase only intermittently whereas
more reactive ones may execute theirs almost continuously.

HAC is a supervenient architecture [18]. It abides by the principle
that higher levels should provide goals and context for the lower
levels, and lower levels provide sensory reports and messages to the
higher levels (“goals down, knowledge up”). A higher level action
cannot overrule the sensory information provided by a lower level,
nor can a lower level interfere with the control of a higher level. Su-
pervenience structures the abstraction process; it allows us to build
modular, reusable actions. HAC simplifies this process further by
enforcing that every action’s implementation (its do phase) take the
following form:

1. Respond to messages coming in from children.

2. Update state.

3. Schedule new child actions or use resources as effectors to
alter the world.

4. Send messages up to parent.

Figure 1 shows a small part of an action hierarchy. The FOLLOW
action, for example, relies on a MOVE-TO-POINT action to reach
a specified location. MOVE-TO-POINT will send status reports to
FOLLOW if necessary; at the very least a completion message (fail-
ure or success). The only responsibility of the FOLLOW action is
to issue a new target location if the agent being followed moves.
HAC is an architecture; other than enforcing a general form, it does
not place any constraints on how actions are implemented. Every
action can choose which messages it will respond to. Although ac-
tions lower in the hierarchy will tend to be more reactive, whereas
those higher up tend to be more deliberative, the transition between
them is smooth and completely up to the designer. Unlike other
architectures [14, 7, 12], we do not prescribe a preset number of
behavioral levels. Parents can run in parallel with their children or
only when the child completes.

A vulnerable
Abstract position
Sensors
: / \
5]
=
28
s £ | enemy (other
by . .
0 E presence constriction factors)
EE
5 2
=
25
Primitive o Toci
Sensors positions velocities

Figure 2: Raw sensor data is transformed into more complex
concepts via the abstract sensor hierarchy.

2.2 The Sensor Hierarchy

The sensor hierarchy provides a principled means of structuring
the complexity of reading and transforming sensor information. It
functions analogously to the HAC action hierarchy and reduces the
complexity of sensor fusion. The sensor hierarchy is grounded by
the low level primitives available from the physics of the world
(real or simulated). These primitive sensors include the location
of terrain features, the current speed and location of agents in the
world, the status of a robot’s bump sensors and so forth.

Each level in the hierarchy integrates and extends the level below
it by compiling the available information and providing additional
structure. We call these higher levels abstract sensors, since they
do not sense anything directly from the world. For example, enemy
location information can be combined into a sensor that specifies
overall enemy presence; terrain information can be combined into a
sensor that specifies passes and movement corridors. Furthermore,
these two sensors can be combined to show enemy vulnerability:
areas where enemy units are concentrated and cannot move quickly
(see Figure 2).

The sensor hierarchy shares the control hierarchy’s syntax and struc-
ture. Each sensor is analogous to a HAC action. It sends and re-
ceives messages and performs sensor computation during its do
phase. One advantage of this is that the same principles learned
in building actions carry over directly when building sensors. This
linkage also makes it easy for actions to use sensors as part of their
control mechanism. An action can react to sensor messages the
same way it reacts to those from child actions. Each sensor is as-
sociated with the set of actions that request it and completes when
this set becomes empty.

Like actions, sensors abide by the principle of supervenience. Higher-
level sensors integrate and interpret lower-level ones but they do
not change the lower-level information. Lower-level sensors pro-
vide information to the higher-level ones but they do not tell them
what to say. One advantage of this is that each level of the hierar-
chy can be viewed independently without worrying about the levels
coming into it or the levels that are using it.

In summary, HAC provides a simple and flexible architecture for
agent control and sensor fusion. Tapir extends the HAC framework
by codifying standard idioms, supporting complex action constructs,
simplifying resource use, adding declarative meta-information and
making actions easier to build, modify and debug.



(defaction move-to-random-point ()
:documentation "Move an agent to a randomly
selected location."
:resources (agent)
:do
(move-to-point
:target-geom (find-random-location-for-agent
the-simulation agent))
:on-message (message
(stop-children)
:restart))

i

(defaction swarm ()

:documentation "Move any number of agents to
random locations repeatedly."
:resources ((agents :count :all))
:do
(:foreach agent in agents :in-parallel
(move-to-random-point :agent agent))

:ignore-messages)

Figure 3: Implementation of multi-agent “swarm” behavior in
Tapir.

3. TAPIR ARCHITECTURE

Tapir gains some of its power and simplicity by limiting the flexi-
bility of the underlying HAC framework and clearly specifying the
model that it implements. In particular, Tapir specifies a simple
process model, a resource description language, and a limited but
powerful set of control constructs. Tapir also adds support for de-
bugging, data collection, interactive design and an extended syntax
that helps clarify the action writer’s intent. Each of these will be
discussed in turn after we first provide examples of some simple
Tapir actions.

Actions are defined with defaction, a Lisp macro that defines a
CLOS class [20, 15] and the methods that implement it. Actions
can be used as building blocks for the creation of further actions.
For example, figure 3 shows how MOVE-TO-RANDOM-POINT can
be used to build SWARM. SWARM’s clauses specify that it should
bind all of the resources available to it in its agents slot and create a
MOVE-TO-RANDOM-POINT action for each of them in its do phase.
The :FOREACH control construct is expanded at run-time and al-
lows an unlimited number of children to be executed in parallel or
sequentially. MOVE-TO-RANDOM-POINT’s clauses specify that it
should bind only a single resource (the default) to its agent slot and
that its do phase consists of starting a single MOVE-TO-POINT ac-
tion with a random destination. Finally, the :ON-MESSAGE clause
indicates that MOVE-TO-RANDOM-POINT should restart whenever
it receives any kind of message.! This might be a message from the
MOVE-TO-POINT child action or one from the agent it is using as a
resource.’

3.1 Process Flow in Tapir

Figure 4 displays a schematic of an action’s life cycle. In brief: an
action is created, enters its do phase(perhaps many times) and then
completes. The details of this simplified description are filled in by
special initialization and finalization code, sensors, process moni-
tors, child actions, resource utilization and more. Figure 4 provides

Messages are typed and MESSAGE is the root superclass for all
other message types.

2Tt is instructive to compare the Tapir version of SWARM with its
HAC counterpart in [2]. The Tapir version is significantly simpler
and shorter.

Created
slot initialization (initial values)

!

Scheduled
resource binding (:resources)

First run Strt sensors (:sensors)
N start monitors (:wake-if)
:initially
Run Phase
Tests
d

:do-send-if
'

from any stage Interrupted

Run p

xecute the main action (:do or :code)

:period

Actions can be rescheduled

if someone calls restart-action
a7 S
Rescheduled \
Actions are rescheduled
when they handle a message ;
unless they :sleep ;
Actions wake up
when they get a message
Handle Message ’,'1
:on-message Cleaning “finally
free resources
notify sensors
interrupt children
unschedule

Figure 4: Process Flow in Tapir.

messages from
outside sources
(:wake-if, :sensors, children,
parents and so on)

both a schematic of the process flow and the Tapir language con-
structs that can be used to influence and describe what an action
should do. We summarize the phases below.

Initialization Actions maintain internal state in their slots; they
also may require resources to do their job. When an action is
created, its slots are initialized and any required resources are
found and bound. Created actions do not do anything until
they are actually scheduled to be run and the time for their
activation arrives.

The Do Phase When activated, the action enters its do phase. Ac-
tions may execute special code at the beginning of the very
first do phase; any sensors required by the action are also
found or created at this time. The do phase itself consists
of pre-checks to see if any messages should be sent to the
action’s parent (this may possibly complete the action with-
out it ever having executed); the actual execution; and then
post-checks to see if any messages should be sent.

Sleeping Once an action executes, it will go to sleep unless it has
been rescheduled. A sleeping action remains asleep until it
is explicitly rescheduled (perhaps by a parent) or until it re-
ceives a message.

Message Handling Actions specify how to respond to each mes-
sage type. These responses include: running code, re-entering
the do phase, sending the message on up to the action’s par-
ent, and ignoring the message completely.

Completion and Cleaning When an action is sleeping and it has
no sensors or children that can wake it up, it automatically
completes. Actions can also be interrupted at any time. In
both cases, the action enters a cleaning phase where resources
are unbound, finalization code is run, children are interrupted



and so on.

As mentioned above, messages are used to control the flow of exe-
cution between parents and their child actions. Children can com-
plete themselves explicitly by sending a message of type comple-
tion (e.g., success or failure) to their parents. If a child completes
for some other reason (e.g., a required resource is destroyed) then
it will automatically send a completion message during its clean-up
phase. Message passing is the only means of control transfer.

Group ‘Whole-Composite

Composite-Component

‘Whole
Value

Resource-Container Composite
Component

Free-Resource-Container

Figure 5: Tapir Resource Classes.

3.2 Resource control

Resources are the connections from an action to its domain. They
can be agents or parts of agents. At the lowest level, “primitive”
resources have values that alter the physics of the domain (real or
simulated). For example, setting the wheel speed of a robot causes
it to move, and setting the target-region of an artillery unit causes it
to fire into that area. The Tapir resource model consists of two over-
lapping ontologies: one of individuals and groups, and one of parts
and wholes (see figure 5). Depending on the domain, one or both of
these ontologies may be more important. For example, in the Cap-
ture the Flag wargaming simulation [2] the individual agents are
brigade and battalion sized military units (wholes). Some actions
find it convenient to group these units into larger forces (groups).
Furthermore, no unit can be used by more than one action at a time
(the resources are serializably reusable). On the other hand, the
agents in the robot domain are robots (wholes and composites) each
with a movement system, vision system, gripper and other low-
level effectors (components). Actions in this domain may require
an entire robot or even a group of robots. It is also possible for an
action to need only the wheels or only the gripper. Furthermore, it
is possible for multiple actions to share parts of a robot at the same
time.

Each domain therefore requires a different model for its agents,
each with their own properties. Tapir uses the defresource macro
to specify how the resources of a domain behave. This includes
indicating whether a resource is primitive, its composite structure,
whether it can be shared, whether it can be grouped, whether it is
consumed and so on. Given a resource model, each action can then
specify which resources it requires using its :RESOURCES clause.
When a parent action starts a child, it can specify exactly how the
child should bind its resources or it can simply specify which re-
sources are available and leave the binding decisions to the child.
Each resource specification in the :RESOURCES clause may in-
clude information about the type of the desired resource, the de-
sired count and a predicate which each resource must satisfy. Tapir
uses these specifications to validate parent specified bindings and
as inputs to a greedy resource binding algorithm for child deter-

mined ones. Finding optimal resource bindings is a full fledged
scheduling problem which Tapir does not attempt to solve.

3.3 Child Control Constructs

An action’s :DO clause specifies the potential sub-tasks of an ac-
tion. It describes both the sub-tasks and how they will be executed.
The :DO specification is grounded in the sub-tasks which can be
either Lisp code (using the :CODE construct) or an action specifi-
cation consisting of the child action’s name and any of its param-
eters. The sub-tasks can be joined together using the following
constructs:

:case This is analogous to the case or switch statements found in
many languages. A form is evaluated and the result is used
to determine which action specification to execute.

:foreach Dynamically creates a list of children and runs then. The
children may be run using any of the child combination types
(e.g., in parallel, in sequence and so on).

:in-parallel Runs a list of children in parallel. Each child in the
list is started at the same time and runs independently. The
order in which the children are initially started is unspecified.

:in-sequence Runs a list of children in sequence. Only one child
at a time is active.

:repeat Runs a child action repeatedly for a count or until some
predicate becomes true.

:one-of This is Tapir’s version of a the Lisp cond form. It takes a
list of predicates and action specifications. ONE-OF runs the
first action specification whose predicate evaluates to true.
An optional :OTHERWISE clause can be included to run a
specification when none of the other clauses is applicable.

:unordered Runs a list of children in some arbitrary sequence.
Like :IN-SEQUENCE, only one child is active at a time but
the order of activation is unknown.

:when Each when clause consists of a predicate and an action-
specification. If the predicate evaluates to true, the action-
specification is run.

Simple actions are easy to build because of Tapir’s straightforward
syntax. The action combination mechanisms mean that it is also
easy to build complex actions out of these building blocks. Control
hierarchies that would have been difficult to build in raw HAC can
be written easily in Tapir.

34 Miscellaneous
Tapir provides many facilities that speed action creation, debugging
and use.

34.1 Superclass inference

Action behavior is specified in part by the HAC infrastructure classes
from which it inherits. For example, there are classes for child ac-
tions, parent actions, agent using actions, agent managing actions,
periodic actions and so on. Part of defining an action in HAC is de-
termining its proper superclasses. This is often a non-trivial prob-
lem due to the number of superclasses and the interactions between

? Although the mechanisms which Tapir uses are available for use
in a planner.



them. Tapir removes this problem entirely by automatically infer-
ring the proper HAC superclasses based on the action specifica-
tion. Tapir still supports action inheritance, however, which makes
it possible to build generic action pieces. These pieces tend not to
be complete actions but instead add functionality such as shared
parameters or resource specifications.

34.2 Parameter checking and type coercion

Tapir’s slot syntax (in the :PARAMETER and :LOCAL clauses) lets
action writers explicitly describe slot properties that could be in-
cluded only as comments in HAC. For example, slots can be marked
as :READ-ONLY or :REQUIRED. Furthermore, writers can specify
a slot’s :TYPE and define type coercion functions. These last can
be generally applicable or applicable to only a specific action. Co-
ercions exist to convert lists of agents into a group agent, to con-
vert 2-dimensional geometries into their locations and so on. By
making the slot types explicit and providing a framework for prin-
cipled coercion, Tapir makes the semantics of each action clearer
and makes it easier for action users because they can let Tapir take
care of the details.

34.3 Documentation and Consistency tools

Tapir’s :DOCUMENTATION clause provides a place for writers to
describe the intent of an action and its parameters. Tapir combines
all of this documentation into a single form and makes it immedi-
ately accessible (via the Lisp documentation facility). Tapir also
maintains a tree of sensors and actions and the sensors and actions
that they use (in the :SENSORS and :DO clauses) along with the
parameters passed to them. This tree allows Tapir to do compile-
time consistency checks whenever a parent or child is defined or
changed. Both of these tools make it easier to find the parameters
of actions and sensors and to ensure that child actions and sensors
are called correctly.

344 Interfacing with a simulation

Tapir is a general purpose agent control language and can be used
in a myriad of ways. Because each simulator or real world environ-
ment has a different set of primitives and functions, Tapir includes
a simple translation facility so that it can be customized to fit. This
feature makes it easier to adapt Tapir to new environments and,
perhaps more importantly, makes it easier for action writers. For
example, we can translate simulator functions into new constructs
that are more uniformly named, contain additional error checking
and hide common parameters.

The facility itself capitalizes on Lisp’s macro abilities and can parse
elements of an action definition in arbitrary ways. For example, the
translation for stop-child converts (stop-child attack-action) into

(when attack-action
(interrupt-action the-simulation
attack-action child))

and (:announce ’units-in-area) converts into

(send-response-message-to-actions
the-simulation the-action ’units-in-area)

The THE-SIMULATION and THE-ACTION arguments are transla-
tions themselves and expand into code that references the current
simulation environment and the current action respectively.

34.5 Debugging and Instrumentation

Tapir’s :DEBUG and :INSTRUMENT clauses make it easy to add de-
bugging code to an action and to collect information while an action
is running. Each :DEBUG clause creates switchable code or print
statements. By default, the name of the debug switch is the same as
that of the action although the :DEBUG-NAME clause makes it pos-
sible to change this. Debugging switches can be turned on and off
with the debug and undebug commands. When the switch for an
action is on, the debug code and print statements will be executed.
This low-level facility makes it very easy to see exactly what is
going right—or wrong—during an action’s execution.

Action instrumentation relies on the EKSL CLIP package [21].
CLIP allows data to be collected from running systems by hook-
ing metaphorical alligator clips onto variables just as one can clip
wires onto an electric circuit. The :INSTRUMENT clause adds CLIP
instrumentation to individual action variables (:PARAMETERS and
:LOCALS) or to the action as a whole. The author can specify how
often the CLIP’s should be collected (for example periodically or
only when a certain trigger condition obtain). This facility makes
it easy to build hooks into a system for later experimentation and
analysis.

3.5 An extended example

We conclude our discussion of Tapir’s architecture with a substan-
tive example (figure 7). The MOVE-IN-FORMATION action is used
in the Capture the Flag wargaming simulator to move a group of
agents in formation. Like SWARM, this action binds all of the re-
sources available to it. It uses the :INITIALLY clause to determine
which agent would make the best leader (using select-leader) and
makes the rest of the agents followers. The :DO clause creates
two parallel hierarchies—one for the leader and one for the fol-
lowers. The former runs a leader move whereas the later deter-
mines formation criteria and then creates a separate move action
for each follower and runs all of these in parallel. The action com-
pletes either when the leader move completes or if all of the agents
are destroyed. The :ON-MESSAGE clause handles resources-gone
messages from the agents of the action. A resources-gone mes-
sage is generated when a resource is destroyed. The MOVE-IN-
FORMATION action handles this message by selecting a new leader,
stopping all of its children and restarting. A portion of the action
hierarchy created by this action is shown in figure 6. For compar-
ison, the original HAC code for MOVE-IN-FORMATION required
more than three times the number of lines! Furthermore, the HAC
code was spread out over four classes and seven methods.

4. RELATED WORK

Although motivated largely by its HAC underpinnings, Tapir shares
much with other agent control architectures. For example, ESL
[11], DAML-S [6] and PDDL [17, 16] roughly match Tapir’s ex-
pressive power (see [5] for a comparison). But whereas ESL adds
an action language to Common Lisp, Tapir wraps an action lan-
guage around it. This difference is motivated in part by our desire
to craft a simpler language usable by non-programmers but it also
tends to make Tapir actions more modular and comprehendible.

PDDL and DAML-S are more concerned with describing services
than actually implementing them. They tend towards the declara-
tive whereas Tapir is more procedural in nature. We see these two
poles as complementary and hope to weave some of DAML-S’s
ontologies into Tapir’s executable model.

The APEX architecture also attempts to manage multiple tasks in



O

Action browser

Commands

*4FRIENDLY-INTELL IGENCE-SENSOR 2 ®<157569E6>
#:MOVE-IN-FORMATION 4 #x15612306>

Friendly-Inte | ligence-Sensor-1

Meve-To-Point-23: Bhue-3
Follow-5: Blue-3 <

Formation-Follower—Hove-7: Elue-2
Follow-Monitor

Formation-Follower-Mowe-Monitor

Move-To-Paint-21: Blue-2
Mavwve-In—Farrnation-2 : Nil

Fallow-5: Blue-2
Formation-Follower—-Move-5: Blue-2
Follow-Monitor

Formation-Follower-Move-Monitor

Merve-To-Point-27: Blue-1 Move-w ith-waype
Formation-Leader-Move-3 : Blue-1 i

Formation-Leader-Move-Monitor

Fove—To-Paint-Cr teria-29 Blue—% —FPrim it ive-Hove-To-Pai
—Mave-with-Waypaintz-29: Blue-Z <

Move-W ith-Waypoints-Monitor

Move-To-Paint-Cr iteriz-31 : Blue-Z —Frimitive-Move-To-Fai
—Move-ith-Waypoints-31 : Blue-2 <

Move=W ith-waypoints-Ionitor,

Tur
Maove-Ta-Paint-Criteria-27: Blue-1 —Primitive-Move-Ta-Paint-539 : Blue-1 <
Pres

nts-27 Blue-1 <

Mave=With-Waypointe-Honitar

Figure 6: HAC Action Browser showing a portion

complex, uncertain environments, placing particular emphasis on
the problem of resolving resources conflicts [10]. The current ver-
sion of Tapir is less concerned with planning and scheduling and
more concerned with letting authors tell agents what to do. Future
versions of Tapir will add a planning language superset.

Like PRS [13], Tapir allows for the specification of blocking and
non-blocking children (child actions that run in sequence with their
parents or in parallel), and like later versions of RAP [8], success
and failure are treated like any other message, and do not implicitly
determine the flow of control between actions.

Tapir and HAC use the same representation for actions at all levels
of the hierarchy, and also for sensors. Contrast this with the major-
ity of current agent control architectures, e.g. CYPRESS [22] and
RAP [9], which distinguish between procedural low-level “skills”
or “behaviors” and higher level symbolic reasoning. Different sys-
tems are often used to implement each level (CYPRESS combines
SIPE-2 and PRS, for example). Tapir does not conceptually dif-
ferentiate between discrete actions and continuous processes, nor
does it limit the the language used to describe them.

5. CONCLUSION AND FUTURE WORK

Tapir has achieved many of its initial design goals: it is a simple,
flexible and intelligible agent control language that is easy to use
and understand. Even so, Tapir remains a work in progress. We
are investigating three extensions: planning, real robot control and
better programming environments.

Part of the Tapir vision is to build a language clear enough for non-
Al Subject Matter Experts (SMEs) to learn and use. Although Tapir
is a relatively simple language it is not simple enough. There are at
least three reasons for this:

1. Tapir is a programming language and, as such, is particular
about its syntax,

2. Tapir is only an agent control language and does not have
constructs for talking about the domain in which the agents
function,

3. Agent control is inherently difficult.

of MOVE-IN-FORMATION’s control hierarchy

We cannot do anything about the last item but we do hope to find
partial solutions to the first two by extending the language so that
it can talk about domains and by extending the Tapir programming
environment so that it does more for the action writer. We call this
project Visual Tapir.

5.1 Visual Tapir

Programming is replete with syntax, keywords, options, flags and
clauses that are difficult for non-programmers to remember. Like
other visual tools, Visual Tapir will add scaffolding to the program-
ming environment so that authors can focus on their goals and not
on minutia. Visual Tapir will be divided into a core environment
and domain specific extensions. The former will focus on agent
control proper whereas the later will add domain knowledge and
functionality (for example, selecting locations on a map or specify-
ing the features of a robot environment).

5.2 Tapir for planning

Tapir is an agent control language but it is not a planning lan-
guage. We intend to extend Tapir with constructs for pre- and post-
conditions, invariants, temporal reasoning and goal specification by
merging it with HAC’s GRASP Planner [3]. Doing so will make
Tapir significantly more powerful and more useful. The difficulty
will be to keep it simple enough for SMEs to use productively.

5.3 Tapir for real robots

We have used Tapir to control simulated robots and our goal is to
extend it (and the HAC substrate) so that actions can control real Pi-
oneer II robots. The current HAC engine uses a centralized queue
and imposes no constraints on the CPU time used by an action.
Future engines will be operating in a real-time, decentralized en-
vironment, and will need to deal with widely varying time scales,
from microseconds to days.

54 Conclusion
This paper has introduced Tapir, an agent control language built on
top of the supervenient HAC architecture. Tapir highlights include:

t A simple and consistent syntax for the specification of ac-
tions, sensors, process monitors, message handlers, slots, and
resources.



(defaction move-in-formation ()
(:resources ((agent :count :all
:group-type group-blob)))
(:parameters ((formation-shape :required)
(distance 1.0)
(target :required)))
(:locals ((leader nil)
(followers nil)
(assignments nil)))
(:initially
(:code
(setf leader (select-leader the-simulation
the-action)
followers (remove leader (resources agent)))))
(:on-message
(resources-gone
(:debug "MIF: "A died" (name leader))
(setf leader (select-leader the-simulation
the-action)
followers (remove leader (resources agent)))
(stop-children)
:restart))
(:do
(:debug "MIF: Moving to "A with "A leading"
target leader)
(:in-parallel
(:in-sequence
(formation-leader-move :agent leader
:target target
:followers followers)
(:generate completion)))

(:in-sequence
(:code
(setf assignments
(assign-followers-to-criteria
the-simulation leader followers
(create-criteria formation-shape
leader followers))))
(:foreach (follower . assignment)
in assignments :in-parallel
(formation-follower-move
tagent follower
starget-agent leader
:distance (distance assignment)
tangle (angle assignment)
:final-target target
:use-follow-if-further-than
(* 2.0 distance))))))
:send-messages-to-parent)

Figure 7: Multi-agent formation movement in Tapir.

t A powerful action combination facility that makes it easy to
build complex actions out of simpler building blocks.

t A flexible resource ontology, description language, and spec-
ification language.

t A set of helpful tools include debugging aids, syntax cus-
tomization, and documentation facilities.

Tapir has been used to control units in a simulated war game, simu-
lated robots and cellular dynamics. No controlled studies have been
run to validate its utility but informal evidence indicates that Tapir
users enjoy the language and are significantly more productive *

Acknowledgments

This research is supported by DARPA/USAF under contract num-
bers F30602-01-1-0589,N66001-00-C-801/34-000TBD, DASG60-
99-C-0074, F30602-99-C-0061, and F30602-00-1-0529. The U.S.

*Using the admittedly imprecise Lines of Code metric, Tapir ac-
tions require from two to four times less effort.

Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright notation hereon.
The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the
official policies or endorsements either expressed or implied, of the
Defense Advanced Research Projects Agency/Air Force Materiel
Command or the U.S. Government.

6.

ADDITIONAL AUTHORS

Additional authors: Paul R. Cohen (University of Massachusetts,
email: cohen@cs.umass.edu

7.
(1]

(2]

(3]

(4]

(5

—

[6

—_

(7]

(8

—_—

[9

—

(10]

REFERENCES

M. Atkin, D. Westbrook, and P. Cohen. HAC: A unified view
of reactive and deliberative activity. In Working Notes of
Fourteenth European Conference on AI Workshop on
Balancing Reactivity and Social Deliberation in Multi-Agent
Systems. ECAI, 2000.

M. S. Atkin, G. King, D. Westbrook, B. Heeringa,
A.Hannon, and P. R. Cohen. SPT: Hierarchical agent
control: A framework for defining agent behavior. In
Proceedings of the Fifth International Conference on
Autonomous Agents. Autonomous Agents, 2000.

M. S. Atkin, D. L. Westbrook, and P. R. Cohen.
Domain-general simulation and planning with physical
schemas. In Proceedings of the 2000 Winter Simulation
Conference, pages 1730-1738, 2000.

M. S. Atkin, D. L. Westbrook, P. R. Cohen, and G. D.
Jorstad. AFS and HAC: Domain-general agent simulation
and control. In Working Notes of the Workshop on Software
Tools for Developing Agents, AAAI-98, pages 89-95, 1998.

J. Blythe. Mappings between SADL and other action
languages (available at
http://www.isi.edu/expect/rkf/sadl-mapping.html). Technical
report, University of Southern California, November 2001.

M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. Mcllraith,
S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and

H. Zeng. DAML-S 0.5 draft release (available at
http://www.daml.org/services/daml-s/2001/05/). Technical
report, DARPA, May 2001.

P.R. Cohen, M. L. Greenberg, D. M. Hart, and A. E. Howe.
Trial by fire: Understanding the design requirements for
agents in complex environments. Al Magazine, 10(3):32-48,
Fall 1989. also Technical Report, COINS Dept, University of
Massachusetts.

R.J. Firby. Task networks for controlling continuous
processes. In Proceedings of the Second International
Conference on Artificial Intelligence Planning Systems,
pages 49-54,1994.

R.J. Firby. Modularity issues in reactive planning. In
Proceedings of the Third International Conference on
Artificial Intelligence Planning Systems, pages 78-85, 1996.

M. Freed. Managing multiple tasks in complex, dynamic
environments. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pages 921-927,
Madison, WI, 1998.



(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

E. Gat. ESL: a language for supporting robust plan execution
in embedded autonomous agents. In Proceedings of the IEEE
Aerospace Conference, pages 319-324, Snowmass at Aspen,
CO, USA, 1997.

E. Gat. On three-layer architectures. In D. Kortenkamp, R. P.
Bonnasso, and R. Murphy, editors, Artificial Intelligence and
Mobile Robots. AAAI Press, 1997.

M. P. Georgeff and F. F. Ingrand. Decision-making in an
embedded reasoning system. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence,
pages 972-978, Detroit, Michigan, 1989. AAAI Press,
Menlo Park, CA.

M. P. Georgeff and A. L. Lansky. Reactive reasoning and
planning. In Proceedings of the Sixth National Conference
on Artificial Intelligence, pages 677-682. MIT Press, 1987.

S. E. Kleene. Object-Oriented Programming in Common
Lisp: A Programmer’s guide to CLOS. Addison-Wesley,
1988.

D. McDermott. The 1998 Al planning systems competition.
The Al Magazine,21(2):35-55, 2000.

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins. The PDDL planning
domain definition language (available at
http://www.cs.yale.edu/). Technical report, Yale Computer
Science Department, 1998.

L. Spector and J. Hendler. The use of supervenience in
dynamic-world planning. In K. Hammond, editor,
Proceedings of The Second International Conference on
Artificial Intelligence Planning Systems, pages 158-163,
1994.

R. St. Amant. A Mixed-Initiative Planning Approach to
Exploratory Data Analysis. PhD thesis, University of
Massachusetts, Amherst, 1996. Also available as technical
report CMPSCI-96-33.

G. L. Steele Jr. Common Lisp: The Language. Digital Press,
second edition, 1990.

D. L. Westbrook, S. D. Anderson, D. M. Hart, and P. R.
Cohen. CLIP: Common lisp instrumentation package.
Technical Report 94-26, University of Massachusetts at
Amberst, Computer Science Department, Amherst,
MA 01003, 1994.

D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P.
Wesley. Planning and reacting in uncertain and dynamic
environments. Journal of Experimental and Theoretical Al,
7(1):197-227, 1995.



