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Abstract. Since most multi-agent systems consist of decentralized agents, it is
necessary to provide the agents with decentralized policies instead of centralized
ones. While the centralized policies specify the decision of the agents accord-
ing to the global state of the multi-agent system, the decentralized policies must
assume only a partial knowledge of the system, and have to specify a communica-
tion policy to obtain additional information. This does not mean that centralized
policies are invalid, but we need to be able to provide ways of implementing a
centralized policy in a decentralized system. Also, it is important to derive de-
centralized policies from centralized ones because of the complexity involved in
designing decentralized policies. In this paper, we present a systematic transfor-
mation method based on the decentralized multi-agent Markov decision process
framework, provide a representation for discussing decentralized communication
decisions, and introduce a set of strategies. Also, we connect and compare this
method to traditional multi-agent planning work, and provide some insights from
a decision-theoretic perspective.

1 Introduction

When dealing with cooperative multi-agent problem solving, there are generally two
classes of views, and as a result, two types of solutions. One is the centralized view,
such as the Multi-Agent Markov decision process (MMDP) model proposed in [2],
where the focus is on the behavior of the system as a whole. The starting point of the
the centralized model is the global state, which consists of local states of the agents in
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the system. A solution, or policy, for a problem under this model, describes the joint
action to take, i.e., the local action each agent should take, when the system is in any
global state . After the joint action nishes, the system would be in one of all possible
next states, since the outcome of the joint action may not be deterministic. Typically, a
global utility function denes the reward the system will receive when the system is in
state , taking joint action , and results in state . Thus, the policy can be evaluated
based on the expected total utility the system would receive. Figure 1 shows how the
problem solving is carried out under such a policy (in a two-agent system with agents
X and Y).

next global
state

next global
state

next global
state

global
state

joint action:
X’s action
Y’s action .

.

.centralized policy

Fig. 1. Centralized View and Policy

A different class of view, the decentralized view, focuses on the behavior of each
agent, taking the view of a situated agent in the system [9]. In this view, an agent only
sees its own local states, and has to decide the next local action on its own. Here, the
agent each has only a partial view of the system’s global state. Furthermore, an agent
can choose to expand its partial view, by communicating with each other to share infor-
mation. A theoretical model must represent each agent’s local knowledge, which would
consist of local state and other information such as past communications. A policy un-
der this model would then have to dene, for each agent, the local action to take when
the agent has local knowledge , including whether to communicate or not. Note that
each time when a local action nishes (and hence local action outcome is observed), or
when communication happens, the local knowledge is updated. The global state is not
automatically observed by the agents, but can be uniquely identied given the set of lo-
cal knowledge in all agents. Furthermore, the global state can be uniquely identied by
the agents when the agents communicate. The collection of individual policies dene
the total system policy, which can be used to determine how the actual global state may
evolve under this decentralized policy. Then, the policy can also be evaluated by cal-
culating the expected total utility based on the same utility function mentioned earlier.
Figure 2 shows how the problem solving progresses under a decentralized policy.

Decentralized view is certainly much more complex, but since most multi-agent
systems are distributed in nature, and agents are generally autonomous — meaning
that each agent is a decision maker on its own, taking a centralized view in such a
system would often oversimplify the problem (e.g. assuming the agents see the global
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Fig. 2. Decentralized View and Policy

view instead of the partial view), and a centralized policy would not be implementable
by situated agents without imposing some strong assumptions, constraints, or special
mechanisms. Therefore it is very important to develop decentralized policies so that it
is possible for agents with partial views to effectively perform cooperative problem-
solving strategies.

Clearly, decentralized policies are quite different from centralized ones. The key dis-
tinction is that the centralize policy (CP) is working on the global level, with all agents
knowing the global system status at all times. However, for decentralized policy (DP),
each agent is limited as its own (limited) view of the global system, and has to rely on
communication in order to obtain non-local information. Each agent will have its own
local policy, which decides its actions and communications. Thus, each local policy has
to be based on its local information set, which is different from each other. Obviously,
if all the agents choose to communication at every stage of the problem solving, they
can maintain the same global state at all time, which is equivalent to the CP case. But,
when the cost of communication, or the availability of communication, is an issue to
be considered in the problem solving, agents may have to consider that if the commu-
nication is worthwhile. If, an agent chooses not to communicate at a certain stage, then
the local decision making at that stage has to rely on previous information, which in-
clude previous communications and local state/action history. Therefore, it is easy to
see that DP is, in general, history dependent. In other words, while in the centralized
view, the system can be modeled by a standard, “memoryless” Markov decision pro-
cess (MDP) — and the CP is simply a standard MDP policy, in the decentralized view,
the system has to be modeled by a decentralized, history-dependent decision process,
and the DP is a decentralized, history-dependent policy. This casts a serious impact on
the complexity of obtaining an optimal DP for a multi-agent problems: the complexity
becomes nondeterministic exponential-time (NEXP) [1], whereas obtaining an optimal



CP, which involves solving a standard MDP optimally, is polynomial-space (PSPACE)
[5], a lower complexity class.

Thus, heuristic approaches and approximation methods for developing DPs are ex-
tremely important. However, due to the infancy state of this research subject, only a
number of simple heuristic approaches have been studied so far [9]. Needless to say,
these approaches are often quite domain-specic and therefore cannot be easily applied
to develop DPs for multi-agent problem solving. On the other hand, signicant pro-
gresses have been recently made in the area of developing heuristic and approximate
CPs for multi-agent problem solving. Thus, it is quite desirable that we can benet
from there by nding ways to deduct DPs directly from CPs. This way we can also
provide insight and feedback to the research on CPs, and be able to tell how feasible
or effective a CP is when it is to be implemented in decentralized systems, which we
believe the bulk of multi-agent systems must be.

This transform is illustrated in Figure 3. Note that the decentralized policy is con-
sisted of several per-agent parts (known as local policies) - in our case, two local poli-
cies, one for agent X (DP ) and one for agent Y (DP ). Together they form a single
DP.

CP DP
DP

Fig. 3. Centralized Policy to Decentralized Policy

There are several challenges in this transforming process. First of all, there are many
DPs that may be derived from a single CP, as the agents can choose a number of com-
munication policies. The simplest one is the DP that let all agents communicate at all
stages. This DP would often result in excessive communication, so we are interested
at nding DPs that uses a little communication as possible, yet still follows the ex-
act CP (and therefore the same expected utility value as the expect utility of the CP,
provided that the communication cost is zero), or allows only limited degradation of
expected utility compared to the CP. Ideally, we want to be able to provide a spectrum
of DPs that have different amount of communication and expected utility, and therefore
enable us to choose a DP that best reects the tradeoff between communication costs
and expected utility values. However, the choice of communication policies cannot be
arbitrary: it has to follow the fact that the agents only have local observations and past
communication before making the communication decision. In this paper, we discuss
our approach which is based on the use of common belief states. Note this is not the
same belief states often used in the POMDP context, since our theoretic model is the
decentralized multi-agent MDP model, which is not standard MDP or POMDP. In fact,
communication introduces another type of observability: the agents can decide whether
to observe the nonlocal information or not by deciding whether to communicate or not.



2 Transform CP to DP

Now we discuss our approach of transforming a centralized multi-agent policy (CP)
to decentralized ones (DP). Suppose we are given a CP for a particular multi-agent
cooperation problem.

As mentioned before, a CP is often described in terms of a policy for a standard
Markov decision process (MDP). The policy consists of a mapping from the set of
states (global system states) in the MDP to the actions (joint agent actions) set, telling
the joint action to be performed at each global state . We use and to
represent the X’s and Y’s local action part in the joint action, respectively. Note that the
mapping only need to cover the reachable states. For unreachable states, the mapping
is totally irrelevant. This can reduce the size of a CP considerably.

For DP, however, the policy is not to be described by a standard MDP policy, nor any
of its local policies. For each agent, its local policy cannot be based on the global state
because it is not known to the agent. To describe a DP, we introduce three concepts: (a)
common belief state, (b) local belief set, and (c) local history set. Roughly speaking,
an agent’s local policy can be described through a mapping between local belief sets
to local actions, and a mapping between local history sets to communication decisions.
However, the common belief state, which describes the consensus of the agents, is the
key to the computation of local belief sets and local history sets.

Based only on local information (include the history as it sees), an agent only knows
that the current global state belongs to a set of possible global states. We call this set
the agent’s local belief, or set. Obviously, if an outsider sees current local beliefs
of all agents, it can uniquely decide the current global state of the system (which is the
one and only one state appearing in the local beliefs of all agents), i.e., the current local
beliefs of all agents contains enough information to identify the current global state (by
calculating the joint set of all local beliefs).

Typically, one agent’s local belief is different from the other’s, since the agent sees
some local information (namely the outcome of local methods) that other agents cannot
see. Also, local belief changes from one episode to another. Therefore, local beliefs
cannot be the consensus of the agents, which is the set of possible global states that
each agent can derive without using any information the other agents do not know.
Note that once the agents communicate, they will observe the global state, and thus the
local beliefs in each agent are the same – containing just the global state observed –
for all agents. In this case the new consensus equals the local belief. In other words,
communication synchronizes the agents with consensus global states. However, if the
agents do not perform communication, the new consensus is going to cover all non-
communicated next states of any state in the current consensus.

2.1 Common Belief States

The consensus of the agents is what we call the common belief states, or simply belief
states, noted as the set. Common belief states are sets containing the global states.
They are called common because they are common knowledge to all agents, i.e., they
can be independently calculated in each agent. The denition is an iterative one: at the



beginning of the problem solving, the common belief state contains only the starting
global state, which is known to all agents (i.e., synchronized).

Given a CP, each agent’s local action is uniquely dened (and also known to all
agents). Thus, each agent knows the possible local outcomes of the local actions in any
agent, although it only observes its own local outcome.

For any common belief state, there are a set of possible next belief states, each cor-
responds to sets of next local beliefs. Basically, given a CP, each agent’s local action is
uniquely dened (and also known to all agents). Thus, each agent knows the possible
local outcomes of the local actions in any agent, although it only observes its own local
outcome. Each agent then decides if it needs communication to decide the next local ac-
tion. The results of all agents’ communication actions will decide how the next common
belief states are formed: when agents communicate and the global states is discovered,
the common belief state contains the global state only. Otherwise, the common belief
state of the next stage would be the set that contains all the non-communicated next
states of every global state in the previous common belief states.

In other words, suppose the current common belief state is , and for any state
, the set of next states (according to the centralized policy CP) is , and let

, then if is the subset of that are discovered based on the communication
among the agents, then there will be common belief states (if ) at the
next stage, and they are:

– the set (containing all states that incurs no communication), and
– for each state in , the set contains only ( is the global state synchronized via

communication, so local beliefs are updated).

Now it is easy to see the relationship between common belief state and local
belief ( ) sets. Common belief state is either the local belief itself (when the global
state is synchronized), or the union of possible local belief sets in each agent (for the
states not discovered via communication). Finding the mapping from local belief ( )
sets to local actions is trivial since local actions for each global state is already dened
by the CP. However, the necessary condition for such mapping to be meaningful is to
make sure all states in a local belief set must share the same local action. This is the key
for deciding communication, which will be discussed shortly.

As an example, let’s assume that agent X performs action and agent Y performs
action , and resulting in four possible states (distinguished by the outcome of and ),
which forms a common belief state, depicted in Figure 4, assuming both agents choose
not to communicate regardless the local outcomes:

This gure illustrates how the common belief state is partitioned into local belief
sets for each agent: for some episodes, X would have local belief (for outcome

=1), for others episodes, . Similarly, Y’s local belief would be either or
. Clearly, in this belief state, each agent knows the next local action without the

need of communication: X chooses for both and , and Y chooses if in
and if in . This is a valid mapping from LB sets to actions in each agent.

To add some intuition, common belief states are the beliefs of an outside observer
who sniffs all communication messages among the agents, but does not have the local
information of any agent in the system. Such an observer will discover the global state if
the agents communicate (and hence the singleton belief states), but otherwise can only



local belief
sets of X

LB
X
2

LB
Y
1 LB

Y
2

LB
X
1

local belief
sets of Y

a=1
b=1

d
c a=1

b=2
e

c

a=2
b=1

d
c a=2

b=2
e

c

a=1
b=1

d
c

history local action

Y’s nextY’s local

X’s local X’s next

local actionhistory

Common Belief State

Local History Set

Local Belief Set

Global State

LEGEND

c

c

d e

Fig. 4. Common Belief State

conclude that the global state is one of the non-communicating next states ( ).
It naturally follows that the common belief is the union of possible local belief sets,
since the only additional information an agent has is its local outcomes, which uniques
decides the local belief set of the agent.

Since the belief states are common and can be calculated by all agents indepen-
dently, the common belief states form the basis of mutual understanding among the
agents. In decision theory terms, that means that common belief state summarizes the
history information that is known to all agents. The agents therefore need not keep
records of any historic event happened before the last time the common belief state was
updated. For a situated agent, its current local belief is a subset of the common belief
state, which uniquely denes the whole local history of the agent, since information
known to this agent only is used to calculate the local belief, i.e., the difference be-
tween the local belief and the common belief state symbolizes the information known
to this agent only.

An immediate result from this is that when the common belief state is a singleton
state, the local belief must equals the common belief state. In this case the system is
synchronized, since all agents now understand what the current global state is. Also, the
belief state does not contain any historic information in this case, therefore the agents
need not keep history information (memory) other than the current state.

2.2 The Calculation of Belief State

In the above discussion we introduced the concept of the (common) belief states. How-
ever, we have not elaborate exactly how the belief states is calculated from current stage
to the next stage. We stated before that this process depends on the particular communi-
cation policy to be used by the agents. The decision of communication is not arbitrary,
however. As mentioned before, for each state in a local belief set of an agent, its
next local action must be the same for the agent. In other words, either

1. the local belief contains only one (global) state, and hence the next local action is
the local part of the joint action specied by the CP, or,

2. the local belief state contains several global states, but the local actions for all of
them (according to the centralized policy CP) are the same.



Since the common belief state is the union of several local beliefs in each agent, this
no-ambiguity condition must be satised for each of the local belief sets in the common
belief state. This becomes a constraint for common belief states:

1. the common belief contains only one (global) state, or,
2. the belief state contains several global states, but for each agent, the local actions

for any two of them are different only when they belong to different local belief
sets of the agent.

This tells us that knowing only the belief states and not the exact global state does
not bother the agent as long as the agent has no ambiguity toward the choice of its next
local action. Thus, if choosing not to communicate does not introduce ambiguity toward
the local action, the agent can decide not to communicate at the current stage (after the
previous action nishes).

Thus, we need to make sure that this no-ambiguity rule holds during the process of
deriving the set of common belief states in the next stage. In turn, this means that we
need to apply communication decisions so that the set satises this no-ambiguity
rule (the states in are synchronized, so no-ambiguity rule holds automatically). Note
that the communication decisions are applied to the next states (which has not begin
yet), not the states in . This means that we need to consider all possible outcome of
current actions.

To do this, for each agent, we divide the set of next states (the set – calculated
according to the CP) of the current common belief state into sets of states that share the
same local history. We call these sets and , for agents X and Y, respectively.
The states in each one of these sets are indistinguishable by the agent’s local information
(including local action and outcome history, plus all previous communications). Let

and . Thus, for each state , we can obtain the
and index for . As a result, we obtain a matrix — a matrix

whose elements are — that lists the state that is in both and . Note that
some states may be non-existent, in this case we will write as the matrix elements
(see the Appendix for explanations). This is illustrated in Figure 5.

...
...

...
. . .

...

Fig. 5. Local History Set Matrix

For each (and ), we can check the ambiguity of local actions for agent X
( and agent Y), and accordingly decide the communication policy, which simply decides
if agent X (or agent Y) wants to communicate when the local history set is (or

).



Based on X and Y’s communication policies, the calculation of the set is straight-
forward: for each , if its matrix index is , then if agent X chooses to com-
municate for or agent Y chooses to communicate for , then belongs to
(synchronized). Thus, we obtained the next common belief states.

Figure 6 (using the same legend as in Figure 4) shows an example of this process,
where the common belief state is illustrated in Figure 4. The set has 9 states, and
is partitioned into 3 LH sets for each agent. and have ambiguous next local
actions, so one communication strategy is to communicate when agent X sees itself in

or when agent X sees itself in , otherwise not to communicate. This results
in a set containing 5 states, and therefore 6 common belief states in the next stage.
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Fig. 6. Next Common Belief States

Clearly, we can see that the key here is to decide the communication policies, which
is simply a mapping from (and ) to a yes or no. The constraint is to make
sure that the no-ambiguity rule holds for all next belief states. Clearly, for the
singleton states the constraint holds automatically. So the task is to make sure the set

meets the constraint.
Intuitively, choosing to communicate on (or ) can be symbolized by

crossing out all matrix elements on row (or column ). So, after applying all commu-
nicating ’s and ’s, the remaining matrix is the set. The no-ambiguity
constraint for the belief node , therefore, is to make sure that for each row (and
column) of the remaining matrix, there is no ambiguity about the next local action for
X (or for Y).

To summarize the above discussion, we list the steps for calculating the next belief
states from a given belief state (in a two-agent system). Since the initial belief state –
the starting global state — is known to both agent, this calculation allows us to iter-
atively enumerate all belief states that might occur during the process solving. Figure
7 summarizes the process of calculating next belief states. Essentially, this is a 6-step
process:



decide communication
policy on LH(X)

decide communication
policy on LH(Y)

Com(Y)

constraint holds
check if no!ambiguity

divide N into LH
sets for Y

divide N into LH
sets for X

local history
set matrix M

LH(X) LH(Y)

set of next
states N

find the remaining
matrix N!K

next singleton
belief states

next belief
state N!K

constraint holds
check if no!ambiguity

current belief
state B

Com(X)

find next states
X’s local decision Y’s local decision

communicating

calculate K:

LH(X)s, LH(Y)s

cross out
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1. Given a current belief state , the rst step is to nd the next global states: for each
global state , each agent can calculate the next possible global states next
according to the centralized policy (CP), which is known to both agents. The set of
next states is simply next .

2. Once is computed, each agent can then divide the set into local history sets
(and also ). This is done by analyzing the different local history path

of each state , and putting the states having the exact same local history
path (e.g. taking the same local action sequence and having the same local outcome
sequence) into the same history set. In other words, (or ) sets group the
global states that are indistinguishable by agent X (and Y).

3. Now we can construct the local history matrix : the matrix element
( and ). Clearly, is either

the global state that is uniquely identied by X’s and Y’s local histories, or a non-
existent state that is impossible to reach given X’s and Y’s local histories.

4. Decide a mapping Com from to yes,no and also a mapping Com from
to yes,no , i.e., the communication policy of each agent at belief node .

5. Based on Com and Com , do the following operations on : if Com
is yes (meaning to communicate), cross out the ’th row (the set) of ;



and similarly, if Com is yes, cross out the ’th column (the set) of
. The crossed-out elements form the set and the remaining matrix is the set

. The no-ambiguity rule requires that the remaining matrix maintains
the following property: X’s actions ( , according to the CP) for all elements in
each row must be the same; and Y’s actions ( ) for all elements in each column
must be the same. If this constraint is not met, a different Com and Com must
be chosen.

6. If Com and Com are legal and the remaining matrix meets the no-
ambiguity constraint, the next belief states for is simply the set (if non-
empty) and singleton belief states, one for each . The sets for
is simply (for X) and (for Y.)

This process is the core of constructing a DP from a CP. By using belief states, a
DP can be described in two parts: the local action part and communication decision
part. In the above process we already see how belief state is used in constructing
the communication decision part: from , we get , and then the sets, and the
Com and Com based on the sets. The local action part is also derived from ,
but not using the set but the sets. The set is directly divided into local belief

( ) sets. For singleton belief states (i.e., synchronized), equals , and the
local action is directly specied by CP. For other belief states, the above process also
determines the states in the next belief states: they are simply
(or ), e.g, the rows and columns of the remaining matrix .
Due to the no-ambiguity constraint, there is only one unique next local action for any
global state in a local belief set in . In other words, the no-ambiguity constraint
requires that (if is not empty),
and (if is not empty). Hence,
the mapping from sets to local actions is also determined by the CP, with the help
of the above process of calculating next belief states. Figure 8 shows how the DP is
calculated:
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Fig. 8. Constructing a DP



Once the DP is determined, the multi-agent problem solving process is quite simple.
Since all the above calculation happens within an agent, every agent in the system can
independently perform the same reasoning and obtain the same DP. Thus, during the
actual problem solving process, each agent rst decides the current common belief state
( ), then determines its local belief ( ) based on the actual local history, thus nd the
local action to perform (the no-ambiguity rule guarantees the same local action for all
states in local belief). Once the local action nishes, the agent calculates the next states
( ), and decides the local history set ( ), and according to the communication policy,
decide whether to communicate or not. After the communication, the agent decides if
it is in one of the singleton next belief state, or the non-communicated next belief state
( ), and the process repeats from then on. Clearly, this process reects the exact
nature of decentralized problem solving — information sharing through communication
and decentralized decision making.

2.3 Choosing the Communication Policies

It is easy to see that in the process of constructing a DP based on a CP, the only place that
involves some freedom of choice is when deciding the communication policy Com
and Com . The rest of calculation is quite mechanical and does not offer any choice.
Furthermore, the choice of Com and Com is not arbitrary. It has to adhere to the
no-ambiguity constraint. As explained before, the choice can be illustrated as selecting
and deleting rows and columns of the history set matrix , and the constraint then
translates to the uniqueness of local actions for each row and column (X’s actions for
each row and Y’s actions for each column) of the remaining matrix ( ). In the
following we denote this remaining matrix as .

Obviously, if the local actions are unique for a row (or column) of , the same must
be true for the same row (or column) of , no matter what the selections are. Thus, one
strategy is to simply select (and delete) the rows not having unique X’s actions, and the
columns not having unique Y’s actions. The resulting must satisfy the no-ambiguity
rule. We call this strategy the default strategy:

The Default Strategy:
If X’s actions of are not unique (i.e. ), then we have
Com = yes. Similarly, Com = yes if Y’s actions of are not
unique. Otherwise, Com and Com = no.

Figure 9 shows an example of the default strategy. For simplicity, the matrix ele-
ments shown are the joint actions for the states rather than the states. The selected row
and column in the matrix is shown as boldface. It is easy to see that the remaining
matrix satises the no-ambiguity constraint.

The default strategy is clearly not the only strategy. For example, selecting extra
rows (and/or columns) in addition to the ones selected in the default strategy would
also generate legal strategies. But since we are mostly interested at reducing communi-
cations, we focus on the strategies that might use less communication than the default
one. It is quite easy to see that this problem belongs to the family of constraint satisfac-
tion problems, which are NP-hard and often solved by approximation methods. In the



Fig. 9. Example: the Default Strategy

following we also describe a hill-climbing algorithm that is based on heuristic search
methods. We call this the hill-climbing strategy: it evaluates a matrix by heuristic value
— the sum of the number of ambiguous rows and the number of ambiguous columns.
Given a matrix, it selects the row or column that would best reduce the heuristic value
(hence the hill-climbing algorithm), then applies the best selection and produces the
next matrix, and applies the same method on the next matrix. When the heuristic value
is zero (no-ambiguity constraint satised), the search stops and the current matrix is the
result:

The Hill-Climbing Strategy:
1. Let = .
2. For each un-selected column or row of , calculate the heuristic value of

, which is with selected.
3. Choose the such that produces the smallest heuristic value .
4. If = 0, = ; otherwise, let = , and go back to step 2.
5. If row (or column ) of is selected, Com (or Com ) is
yes, otherwise no.

Figure 10 shows an example of the hill-climbing strategy, using the same matrix in
Figure 9. Instead of selecting both and in Figure 9, here only needs
to be selected (alternatively we can also just select , depending on the implemen-
tation of the hill-climbing algorithm).

Fig. 10. Example: the Hill Climbing Strategy

3 Evaluation of DP

Once a DP is constructed, the next question is about its performance. Since the DP
exactly follows the centralized policy CP, i.e., if an observer can observe the global
state and the joint action, it would nd that the problem solving behaves exactly as the



CP prescribed. Thus, the expected utility (EU) of the system of such a DP shall not be
different from the EU of the CP. However, since in DP the reasoning is not based on
global states but on belief states, it is necessary for us to examine how the expected
utility is calculated for a DP.

3.1 Expected Utility

Let us rst recall how the EU of a CP is calculated. In typical dynamic programming,
the calculation is based on the computation of the value of each state [6]. The value of
a state is simply the expected utility of the system when the problem solving reaches
that state. For a terminal state, its value equals the terminal reward. For other states, the
value of a state is to be calculated through its next states:

(1)

Here is a next state of , and is the conditional probability of reaching the
state from . (Typically the transition probability is written as , where is

the action, but since the CP species for each , we do not need to include ).
If we use to note the probability of reaching state given the CP, then, if is

one of the next states of ,
(2)

Thus, combined with Equation 1, we have,

next
(3)

For the starting state , Thus the EU of the CP is simply , and
can be viewed as the contribution of the state toward total EU.

For a DP, we would like to similarly dene the value function and probability
of a belief state . Clearly,

(4)

Since the contribution of is the sum of contributions of all states in , in the style
of Equation 3, we can dene

(5)

(6)

This tells us that, given a DP, the value of a belief state is simply the weighted value
of its member states. And, because the next states of are the states of next belief
states,

next
(7)



Equation 7 is identical to Equation 3 except that belief states are used in place of global
states. Thus the dynamic programming method use in CPs can be applied to DPs as
well.

3.2 The Amount of Communication

The above formula also give us hints about how to calculate the total amount of com-
munication (AoC for short) for a given policy. For a CP, although communication is
not specied, the agents need to be able to observe global states, which means syn-
chronization among the decentralized agents. Thus, this means that the agents need to
communicate at all states. Assuming that each synchronization count as 1, then for each
reachable state , its contribution toward total amount of communication is the prob-
ability of reaching that state, i.e., . Thus, we can dene , the total expected
amount of communication at and after state (i.e. how much more communication is
needed when the system reaches state ):

(8)

However, for the starting state , since no synchronization is needed at that state, the
above denition is changed: is simply . If is a terminal state, ,
since the agents do not need to communicate to realize the current state is a terminal
state.

For a DP, we can dene the , the total expected amount of communication at
and after belief state . Note that some belief states are synchronized via communica-
tion (the singleton belief states computed from ), and others are not communicated
( belief states and starting state ):

if B is communicated;

otherwise. (9)

The total expected amount of communication of a DP is simply , where is
the starting belief state, which just contains the starting global state . Obviously
is common knowledge to the agents and hence not communicated. Also, if every state

is a terminal state, , since the agents would realize that the global state
is a terminal state without communication. Such a belief state is called a terminal
belief state.

Thus, we have dened the value function and amount of communication of a belief
state, and the way to calculate the EU and expected total amount of communication of
a DP. This gives us the way to evaluate a DP.

4 Non-Conforming DPs

Up to this point we are only describing conforming DPs derived from a given CP, i.e.,
the DPs that follow the CP exactly (as seen by an outside observer that observes the



global state and joint action). As a result the EU of such DPs equals the EU of the CP,
but the expect total amount of communication could be much less than the AoC of the
CP. In other words, the conforming DPs offers no degradations of the EU but reduces
AoC. This property of the conforming DPs is highly desirable, but it may also be quite
limiting.

The problem is that it limits the kinds of DPs that might be derived from a given
CP. Later we will show some ways to create non-conforming DPs from a CP. These
non-conforming DPs may not follow the exact CP as seen by an observer. As a result,
the EU of these DPs may change. In other words, they may degrades the EU of the CP.
However, they also have the potential of further reducing AoC to the extent not possible
by conforming DPs. This offers a tradeoff between EU and AoC when selecting DPs,
which the conforming DPs lack. This is why it is interesting to study non-conforming
DPs: it offers a wider selection of DPs and offers tradeoff choices.

a

b

c

e

d

Fig. 11. The Tree View of a Centralized Policy

In order to derive non-conforming DPs from a given CP, we rst examine how to
derive new CPs from a given one. We are mostly interested at domain-independent tech-
niques, which modies the given CP based on its structure, not on domain knowledge.
Specically, since a policy can be viewed as a directed tree with each node representing
a state, and the outgoing edges representing the next states, as in Figure 11. Note that
the label of the outgoing edge represents the action to be taken at that state, and the ac-
tion result may be non-deterministic, resulting in multiple resulting states from a single
action.

One domain-independent technique for derive a new CP from an existing one is ter-
minating: to mark one or more non-terminal states in the original policy to be terminal
states in the new policy. This technique is illustrated in Figure 12. The resulting policy
would then terminate when reaching the marked states. Clearly, the new policy may not
receive any reward beyond the marked states, therefore the expected utility of the new
policy is different from the original policy’s. For sequential decision-making processes,
marking a state terminal simply means not to perform any further tasks, so any state can
be marked terminal.

Another domain-independent technique is merging. Illustrated in Figure 13, this
technique marks one state to be merged: grafting the subtree beyond another state (tar-
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Fig. 12. Terminating a State

get state) onto this state, replacing the original subtree of the merged state. Such merg-
ing operation would require that the merged state is compatible to the target states, so
that the subtree grafted is both complete and conict-free. Here, being complete means
that the grafted subtree covers all reachable states based on the series of the actions pre-
scribed in the subtree; and conict-free means that each state represented by the grafted
subtree is valid (i.e. exists in the state space).

b d
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Fig. 13.Merging a State

Typically, the part of state space beyond the merged state should be topologically
identical to the part of state space beyond the target state, so that the complete and
conict-free constraints are met. Usually, merging happens between sibling states: two
states correponds to the different outcomes of an action. The merged state is identical
to the target state except the minor difference that differentiate them.

For example, an action produces two possible outcomes and (and ends in state
and ), but the only difference between them is that produces utility 10 and

produces utility 5, and otherwise they are exactly the same in the problem solving. This
means that for any episode containing , we can replace with (and vice versa),
and the resulting episode is also valid. Thus, the structures of the state spaces beyond

and must be the same.



Since utility value is typically a function of the outcomes, the calculation of the
value of the merged state is straightforward: simply use the same process of calculating
the utility value of the targeted state, but replace any occurrance of outcome with
(assuming is merged to ). This technique is used in our calculation when dealing
with merged states. The calculation of AoC is even simpler: it is simply the AoC of
multiplied by the factor — to account for the fact that the probabilities of
getting and are different.

4.1 Generating Non-Conforming DPs

Given the above discussion, one method of generate non-conforming DPs would be to
generate new CPs by applying various combinations of the aforementioned techniques,
and to create conforming DPs for the new CPs. However, this method is not tied to
the communication issue, and therefore may not be efcient in our search for DPs that
reduce communication. Therefore, we introduce a method that ties the choice of tech-
niques with communication, by putting the process of selecting the non-conforming
technique into the process of generating next belief states. Specically, during the pro-
cess of deciding the mapping of Com and Com according to the local history matrix

, we can create alternative strategies of generating next belief states. Previously we
have dened the default strategy, and an alternative, the hill-climbing strategy. Now
we would like to perform the terminating and merging operations on these alternatives
and thus producing new alternatives. Similarly, these operations are translated into the
matrix representation used in previous discussions.

First we discuss the terminating operations. We identify two strategies for applying
this operations:

Terminating 1 (T1) : For a given belief state , one strategy is to mark all of its next
states (i.e. any state in ) terminal. In this case all next belief states are terminal,
and as a result no more communication is needed. This corresponds to marking all
states in terminal and therefore the next joint action (in the form of )
for each state in is , where means no action. In this case automatically
satises the no-ambiguity condition, thus is empty (by default).

Terminating 2 (T2) : We notice that the above method may result in drastic changes
— it eliminates all further communications, but also eliminates all further activities.
As a result, the expected utility may suffer. So an alternative method is to keep the

belief state intact (based on the conforming alternatives) and mark only a
subset of the rest of the next states. Thus, the communication decision remains the
same as the conforming alternatives, but some of the synchronized next belief states
would be terminal. This may reduces communication if communication is needed
in the further stages for those belief states according to the conforming strategies.
And since it only marks a subset of the next states, the degradation of utility is more
limited compared to T1.

Now we study the merging operations. Since communication decisions are based on
local history sets ( and ) rather than individual states, we focus on merging



between LH sets. The goal is to merge communicating LH sets to non-communicating
LH sets, so that the communication on the merged sets can be saved. Thus, the merging
happens in the local history level rather than the state level: it replaces one local history
with another one.

Merging : for a given belief state , examine the LH sets (the rows and columns of
). For example, if a row is ambiguous (not counting elements already marked or

merged), we try to nd another row which is compatible to it but is unambiguous. If
such a row exists, we can then merge each element in the original row to the same
column element in the target row. The same can be applied to columns as well.

4.2 Putting Things Together

So far we introduced the default communication strategy, the hill-climbing strategy, and
3 methods (T1, T2, Merging) for generating non-conforming alternatives. Thus, for a
given belief state , we can generate several alternatives, which lead to different sets
of next belief states. By choosing different alternatives at these belief nodes, we can
obtain a great number of DPs. Of course, except for the default strategy, all strategy
and methods are not applicable to each belief state. Furthermore, we can add criteria to
limit the number of alternatives generated by these methods. These criteria may involve
the calculation of EU and AoC, and therefore the selection of DPs represents a rea-
soning process — a criteria based constraint optimization process — for deciding what
alternatives to take. Since the value of a policy is generally unknown unless it is fully
explored, these criteria have to rely on currently available information and estimations,
not the exactly value. One of the available data comes from the default policy, i.e. the
policy that chooses the default strategy at all belief states. Hence we dene the default
value of a belief state to be the value of the belief state when the default strategy is
applied at the beyond this point, and similarly the default amount of communication.

Clearly, there might be many alternatives for a given belief state, but it is only fea-
sible for us to consider a few of them due to the computational complexity involved.
In our experiments, we choose the following algorithm for nding the alternatives for a
given belief state :

1. Apply the default strategy, which generates the default alternative. If no communi-
cation is needed under the default alternative, stop here.

2. Apply the hill-climbing strategy. If the result is not identical to the default, add
this hill-climbing alternative. In our experiments these are the only conforming
alternatives.

3. The rst non-conforming alternative is obtained by applying the T1 operation, i.e.,
let the problem solving stop at the current belief state, if the difference between
the current stopping reward and the default value is small then the default AoC
times a constant (the cost of communication). Intuitively, this criteria means that it
is not worthwhile to continue the problem solving when the cost of communication
outweighs the potential utility gain by further actions.

4. Next, apply the T2 operations on the conforming nodes generated so far — marking
a communicating next belief state terminal if its default AoC is greater than the



probability of reaching it, and its default value is below the default value of the
current belief state.

5. Finally, apply the merging operations on the conforming nodes. In our case, for
each communicating LH row (or column), merge the row (column) to the compat-
ible row (column) with the best default value, if such a compatible row (column)
exists.

Thus, our algorithm of generating DPs from a given CP is a search-and-explore pro-
cess that constructs a bipartite graph consisting of belief states and alternatives (choices
of generating next belief states), illustrated in Figure 14. The edges from a belief state
to alternatives reect the strategy used, and the edges from an alternative to belief states
reect the next belief states after applying the alternative. The process nishes when all
belief nodes are explored. Using such a representation, a DP is then simply a mapping
from each (non-terminal) belief state to one of its alternatives. Since not all belief states
are reachable under such a mapping, the size of DP can be limited to reachable belief
states only.

... ...

...

...

...

...

...
...

Belief State

Alternative

Fig. 14. A Bipartite Tree of Belief States and Alternatives

Furthermore, we notice that for any non-terminal belief state, the default strategy is
always applicable, but other strategies such as hill-climbing and non-conforming strate-
gies, may not be always applicable. Thus, to describe a DP, we just need to list the non-
default alternatives for the reachable belief states. Thus, an algorithm that tries the valid
combinations of the the non-default alternatives in the bipartite tree can enumerate all
possible DPs in the tree.

The DPs generated in this process would then have different EU and AoC char-
acteristics, and therefore help us understand the tradeoff between them, which is very
important for the design of coordination policies. In the next section we shall study how
this decision-theoretic approach relates to mainstream multi-agent planning methodolo-
gies and how this work complements them.

5 Multi-Agent Planning

Although tools such as MDPs are commonly used in decision-theoretic planning re-
search, they are yet to be used extensively in multi-agent system research. Typically, in
the area of multi-agent planning, a hierarchical task model is often used, which divides



tasks into subtasks and species the relationships of the tasks (subtasks). A search pro-
cess that involves constraint optimization or satisfaction, is often used to nd solutions.
This is different from the state-based models used in decision-theoretic planning, for ex-
ample the decentralized MDP model of multi-agent decision process framework used
in this work. In order to connect the multi-agent decision process approach discussed
in this work to those types of multi-agent planning work, we need to construct a state
space representation for the hierarchical task models. In this paper we used the TAEMS
model [4] as an example to show how our approach relates to multi-agent planning.

5.1 The TAEMS Task Model

TAEMS is a typical example of a hierarchical task model. A graphical representa-
tion of a TAEMS task structure for a PC build-to-order process is illustrated in Fig-
ure 15. TAEMS describes high-level tasks (task nodes) and lower-level tasks (method
nodes), the outcomes of methods (the q,c,d distributions), and the composition of utility
from subtasks to higher-level tasks (the quality accumulation functions such as q max,
q sum, q min, etc.) It also allows interrelationships (such as enables, which is a prece-
dence relationship) between tasks. Typically, there is also a deadline associated with a
TAEMS task, meaning that the problem solving must nish before that time.

The ability of representing uncertainty - in terms of the uncertain method outcomes
described by the ( ) distributions - and interrelationships allows TAEMS to specify
complex task structures. Another important feature of TAEMS is its ability to represent
multi-agent tasks, by specifying separate TAEMS tasks of each agent, and combine the
root tasks of the agents into a global root node via a sum quality accumulation function.

Figure 16 shows a multi-agent task for agents A and B, with nonlocal interrela-
tionships (such as A2 enables B2) between the tasks in different agents. Thus, TAEMS
gives us the ability to model non-local effects (NLEs) in the agent planning process. In
this paper we will be using this task as our example in our experiments.

5.2 Agent Task Scheduling and Coordination

Before we try to make a mapping from a TAEMS multi-agent task to an MDP (per the
centralized view), we would like to examine how agent task scheduling and coordina-
tion is done, and how it is done in a decentralized fashion, so that we can correspond
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Fig. 15. A TAEMS Task Structure for Building PC to an Order
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Fig. 16. A Multi-Agent Task

that with the problem solving in a decentralized decision model, and therefore make the
mapping a natural one.

The TAEMS agent (i.e. the agents adopting the TAEMS model of task based prob-
lem solving) typically has a scheduler module, which formulates a local plan for the
agent, and a coordination module, which interacts with other agents’ coordination mod-
ule to coordinate the agent activities. The scheduler and the coordination module also
interacts within the agent.

From a communication perspective, the coordination module sends and receives
control messages to and from other agents, thus performs the communication actions
in the decision-theoretic view. This corresponds to the communication decision part of
the local policy of the agent. On the other hand, the scheduler does not communicate
with the counterparts in other agents. Although the scheduling approach used in the
scheduler could be very complex, from a decision-theoretic view the function of the
scheduler is simply to decide what next local action to perform. Thus, this corresponds
to the action part of the local policy in our framework.

To illustrate our points, let us study some details of the scheduling and coordina-
tion activities using the problem in Figure 16. For example, under the design-to-criteria
(DTC) [7] scheduling framework, each agent tries its best to construct a local schedule
that meets the criteria (actually, DTC produces not one, but several alternative sched-
ules, and evaluates them according to the criteria, and suggests the best one). A schedule
tells the local action sequence of the agent, therefore it usually has a linear structure.
However, when unexpected events happens, the agent may re-invoke the scheduler to
produce a new schedule during the course of problem solving. These unexpected events
may include task failures, changes of agent commitments, etc., that make the current
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Fig. 17. Schedules

schedule unfeasible or undesirable. Thus, a complete schedule may have branching
structures that reects the effects of rescheduling. Figure 17 shows an example of agent
schedules (using the deadline of 160), with the top part showing the linear schedule in
each agent (i.e. the initial schedule of each agent, without any rescheduling), and the
bottom part showing the actual schedule taking into account the effects of rescheduling,
(i.e. how each agent’s schedule responds to the events in the system.)

Figure 17 also shows the events need to be communicated between the agents in
order to understand which branch of the schedule to take in actual problem solving. In
the bottom part of the gure, we see that B’s schedule has a branching structure after
the outcome of A3 (event 1 and 2). Since A3 is a non-local task, its outcome is not
observable to B and therefore communication is needed. Under the framework of the
Generalized Partial Global Planning (GPGP) [3] coordination, a coordination frame-
work is often used for TAEMS agents, agent communication is tied to the dynamics of
the commitments between the agents [8], which in turn is tied to the outcome of tasks.
In our case, agent A has a commitment to complete task A4 before time 60. This com-
mitment can be viewed as mutual knowledge at the beginning of the episode. However,
when task A3 fails (in TAEMS, that means the quality outcome is 0), the commitment
is not feasible any more, since task A4 has to be enabled by A3 (i.e. need a positive
quality outcome from A3.) Thus, a message would be sent to agent B indicating that
the commitment could not be kept. This is the only communication needed for B to
follow the schedule, so the amount of communication needed here is the probability A3
fails, which is 0.1. Also it is easy to calculate the expected total utility of the agents,
which is 6.948: for A, the expected utility of its schedule is 2.448, and for B, 4.5.

From the above example we notice that the branching structures of the schedules
clearly resemble a MDP policy representation. The action sequence indicates the order
of tasks, and the branching structure indicates the need for synchronization (where non-
local outcomes are required), so that there is no ambiguity toward the choice of the next
action. Thus, our model of a decentralized policy does correspond very well to the
actual problem solving in typical planning agents. This important characteristic allows
us to interpret the a DP via the planning language, and vice versa.



5.3 Constructing Centralized MDP from TAEMS

The rst step of constructing a centralized MDP from a TAEMS multi-agent task struc-
ture is to decide how to dene stages, i.e. what signal the transition to new states. It is
easy to see that the completion of a task (as depicted in Figure 17) leads to the execution
of the next task, but since we are dealing with concurrent schedules, the completion of
a task in either agent signals a change in the state of the system. Thus, to reduce the size
of the resulting MDP, the stages are set according to the completion of any task in both
agents, not based on time (the discrete time model in TAEMS, which may cause a very
large state space when the time frame is large).

Under such a stage model, the agent actions lead to the state transitions are as the
following:

– when agent X’s task nishes and agent Y’s task is still running, X’s possible next
local actions include to start an eligible task, or to wait until Y’s action completes,
and Y’s next local action is to continue running the unnished task.

– when Y’s task nishes and X’s task is still running, X’s next local action is to
continue running the unnished task, and Y’s possible next local actions include to
start an eligible task, or to wait until X’s action completes.

– otherwise — e.g. at the starting state, when both X’s and Y’s task nish at the same
time, or when one agent’s task nishes while the other agent is waiting — X may
start any of its eligible task (or idle), and so may Y, however they cannot both be
idle.

In other words, each agent’s local actions now include wait and continue (note that
we treat idle the same as wait), but as dened above, only a subset of the joint actions
is legal.

For each legal joint action, there might be a number of resulting states that reect
the uncertain task outcomes in TAEMS. Thus, a state represents a complete history
of the problem solving (according to the path leading to the state), which denes the
actions in each agent and the outcomes of the actions. The transition probabilities are
calculated based on the probabilities of the outcomes, which is specied in TAEMS.

Since the quality calculation in TAEMS is complex, we dene the reward of the
states to be 0 for all non-terminal states, and dene the reward of the terminal states by
applying the quality calculation process according to the task outcomes indicated in the
states. In addition, we can apply the same quality evaluation process on the non-terminal
states and the results are called the stopping rewards of the states, i.e. the reward if the
problem solving stops at a state.

The interrelationships specied in TAEMS are incorporated in the construction pro-
cess through the calculation of the eligible tasks. For example, if task enables , then
is an eligible task only when the state contains the history of a positive quality outcome
of task .

Since there is a deadline for the TAEMS task, a state becomes a terminal state
if there is no time for performing any additional task, or if there is no further action
available.

This completes our TAEMS to MDP mapping and we now obtain a MDP repre-
senting the global view of the problem solving. The next step is to obtain a centralized



policy for the MDP. This can be done through many ways, including using dynamic
programming for solving the optimal policy, standard value iteration or policy iteration
methods, learning techniques, or other approximation methods.

In actual implementation, the state space may still be too large to t in the computer
memory. However, since not all states are reachable given a policy, and the most of
the states in the state space are only visited during the process of obtaining a policy,
we can save the space (at the cost of additional computation time) by saving only the
reachable part of state space for the policy, and generate the other states on-the-y
when computing a policy (for example, when using dynamic programming to compute
the optimal policy.)

In our experiments we use the TAEMS task structure depicted in Figure 16 and
construct the MDP using the above method. We obtain the optimal policy for the MDP
by using dynamic programming. The optimal policy has 278 states, with an EU of
7.27425 and AoC of 5.5425, according to the evaluation method described in section 3.

In Figure 18 we show the sequences of joint actions that might occur in an episode
when this policy is used, by analyzing the policy graph. As listed, there are ve possible
sequences. Sequences 2-4 differ from sequence 1 after the end of the fourth stage (the
rst 4 stages of sequences 2-4 are the same as those of sequence 1, therefore are omitted
in the gure). Similarly, sequence 5 differs from sequence 1 after the end of the second
stage. Note sequence 3 is identical to sequence 2 except the last stage.
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Fig. 18. Joint Action Sequences of the Optimal CP

It is easy to see that each sequence represents a concurrent schedule that consists of
the local schedule in each agent, without any branching structure. The difference among



the sequences represents the branching of the CP graph. Thus, the key for deriving DPs
from a CP is to understand when and how to switch from one sequence to another. In
between the switchings, the local schedule of each agent is linear, meaning that no com-
munication is needed in order to decide the local actions to be performed in each agent
(i.e. no ambiguity). In other words, one possible communication policy is to communi-
cate at the end of the stages that are followed by branching structures. This policy can
be further rened by looking at the branching structures of local action sequences rather
than joint action sequences (and hence make local decisions of switching to a different
sequence), with the goal of identifying unambiguous local action sequences and thus
lead to reduction of communication.

Translating to the languages of our decentralized multi-agent decision process, the
linear part of an action sequence means that the common belief state simply “grows”
from one stage to the next, without the need of communication; while the switching
among the sequences indicates ambiguity toward next action and thus lead to multiple
belief states in the next stage. The switchings are based on local beliefs, and communi-
cation is needed in order to obtain the information for deciding which branch to take.
In our model, this is formalized by the the choice of communication and the process of
deciding the formation of the next beliefs states based on communication decisions.

6 Experimental Results

To evaluate our approach, we implemented our CP to DP method, applied the method
on the optimal CP generated above, and evaluated the expected utility and average total
communication of each DP. Again, the TAEMS task structure is illustrated in Figure
16, with a deadline of 160, and the CP is the optimal policy illustrated in Figure 18. We
obtained 160 different DPs from the CP and Figure 19 shows how their EU and AoC
values are scattered.

To give a comparison and also some details about the results, the following table
lists the EU and AoC of various policies:

EU AoC comment
Centralized Policy (CP) 7.27425 5.5425

Heuristic Planning DP (DTC/GPGP) 6.948 0.1 see section 5.1
Default DP 7.27425 1.07

Conforming DPs 7.27425 0.996 – 1.07 total 12 DPs
All DPs 2.7 – 7.27425 0 – 1.07 total 160 DPs

Immediately, we notice that even the default DP (EU=7.27425, AoC=1.07) reduces
communication greatly compared to the AoC of the centralized policy (5.5425). This is
done without any loss to EU. But the AoC can be further reduced, even to 0, while still
having good EU (the rightmost data point on the EU axis has a EU of 6.228). However,
the conforming DPs offer only a limited very range of AoC compared to nonconforming
DPs, which reduce AoC but degrade the EU.

Compared to the DP obtained through traditional multi-agent planning, e.g. the
heuristic planning approach using DTC and GPGP, we observe that the heuristic DP
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is a very good one, with only 0.1 AoC but EU of 6.948, very close to the optimal pol-
icy. In comparison, with the same or less AoC, our best generated DP has a EU of
6.228. This tells us that in general, our method cannot replace the role of traditional
multi-agent planning, which typically generates good performance, and are easy to un-
derstand. Even though we used the optimal CP as our input, there is no guarantee that
we obtain a DP that dominates heuristic DPs (i.e. having better EU and less AoC at the
same time).

However, the good performance of the heuristic policy can give us hints about how
to reduce communication. For example, typically DTC/GPGP has the notion of fail-
ure, i.e., task quality outcome equals 0. A simple form of GPGP will communicate
when commitment fails (due to the failure of the task), and not communicate otherwise
(positive quality). Since failure is often a low probability event, and the dichotomy of
failure/success in fact groups all positive quality outcomes into one outcome category
(hence to the effect of merging in our model), the heuristic DP is well positioned to
reduce AoC. Similar techniques can also be applied in our method to generate low AoC
DPs.

Another interesting pattern shown in Figure 19 is that the data points are somewhat
“clustered”. The points can be roughly divided into 3 clusters: top-right, lower-right,
and lower-left. Note the AoC gap from 0.4 to 0.9, and EU gap from 4.5 to 5.5. By
looking at the details of the DPs we notice that gaps are largely due to the effect of some
non-conforming operations, such as marking some belief states terminal, i.e., to stop the
problem solving at an earlier stage and therefore abandon all further communications,
or the merging of one local outcome to another, therefore causes a gapping change of
AoC and EU. Since conforming alternatives typically have less variance of AoC (and
no EU variance at all), it is natural that these points are clustered.

As an example, let us examine the DP corresponding to the data point (EU=6.228,
AoC=0).

– At the beginning of the rst stage (time 0), A starts task A3 and B starts task B1.
The next stage will begin at time 40, and will have 3 states. By default strategy
there is no communication needed, so the next belief state contains these 3 states.

– A3 nishes (at time 40), and the second stage begins. A starts task A1 and B con-
tinue B1. Next stage will have 9 states. Merging is applied to B1’s q=0 outcome
(which contains 3 states). The rest 6 states — the next belief state — need no com-
munication.

– B1 nishes (at time 60), and stage 3 begins. A continue A1 and B starts B3. From
the current belief state there are 12 next states, and by default strategy they become
the next belief state. The next stage begins at time 90, when B3 nishes.

– When B3 nishes, the current belief state contains 12 states and 36 next states.
During this stage (stage 4), A will continue A1 and B waits. The merging operation
is applied to 8 of the next states, and the rest of 28 states become the next belief
state. The next stage will start at time 100, when A1 nishes.

– During this stage (stage 5), agent A would choose either A2 to A4, depending on
the previous outcome of A3 and A1: if the q(A1) = 6 or if q(A1) = 2 and q(A3) = 0,
— in other words, if q(A1) q(A3) — choose A2, otherwise A4. Clearly this is a
local decision. B simply waits (idle). The next stage will have 56 states, and 50 of



them are merged, so the next belief state contains only 6 states, all of them terminal
states. So the problem solving nishes at the end of the stage.

– No matter what outcome A’s action in the last stage is, the problem solving ends,
since all other states (the 50 next states of the previous belief state) are merged to
the terminal states.

Essentially, this DP contains 3 merging nodes, and as a result the agents choose not
to report any unexpected local outcomes, by merging these outcomes to other ones. As
mentioned before, merging requires compatible states, but in our case it is not satised
because of the interrelationships, i.e., the state space following the q=0 outcome of
an enabler will not be the same as that of the q 0 outcome. But since we calculate
the reward of states based on the whole history of action outcomes, we can articially
create the same state space follows a q 0 outcome for a q=0 outcome, and ignore the
outcome of the enablees (i.e., pretending perform the enablee task but performing no-op
instead) when calculating the rewards. Thus, we can safely apply merging operations
for q=0 outcomes.

7 Summary

In this paper we propose a method for deriving decentralized multi-agent policies from
centralized ones. In the past, the design of decentralized policies has been limited to the
use of ad hoc heuristic methods, and the results are often domain-specic. By using this
method, we now have a domain-independent, systematic way of developing decentral-
ized policies. Furthermore, this method provides a bridge between centralized policies
and decentralized policies, thus allow us to connect the research in these areas and often
more insights.

Another use of this method is to provide ways of implementing a centralized multi-
agent policy to a decentralized system. Since most multi-agent systems are inherently
decentralized, with each agent sees only a partial view of the system and has to commu-
nicate with other agents to exchange information, this method allows a policy which is
based on a centralized (i.e. global) view to be adopted by the decentralized agents. The
use of non-conforming policies also can be viewed as changes to the centralized policy,
therefore provides insights and feedback for the design of centralized policies.

Also, this method explores the possibility of making tradeoffs between the expected
total utility and the amount of communication to be used in multi-agent cooperation.
The underlying research question is how to balance the cost of communication and the
amount of uncertainty in the system. Communication in multi-agent systems can be
viewed as the dynamic process of obtaining (exchange) information, which reduces un-
certainty in the system but may incur a cost. Thus, it belongs to one of the fundamental
domain in articial intelligence — the question of the value of information. The DPs
generated by this method allows the agents to select from several alternatives each with
different EU and AoC, therefore can respond to different situations where the amount
of uncertainty and the cost of communication may differ.

By connecting the decision-theoretic approach to the traditional multi-agent plan-
ning research, this method also offers insights toward the problem of uncertainty han-
dling when designing multi-agent plans. There, communication can be viewed as the



way of monitoring and acting to the dynamics of the commitments. Thus, the commu-
nication decisions correspond to the agents’ decisions regarding the commitments, and
therefore the study of communication policies gives important hints on how to deal with
commitments in multi-agent planning.

The problem of designing good decentralized policies is a very complex problem,
in terms of both its computational complexity and the complexity of the model itself,
since we have to understand exactly what information is available to an agent and what
is not. However, we believe that, when the focus of computation shifts from the cen-
tralized perspective to the decentralized perspective (due to the advancement and the
ever-increasing popularity of networked computing and multi-agent systems), to un-
derstand reasoning, planning, and decision-making in a decentralized, situated agent
would be more and more important. One important direction of our future work to fur-
ther enforce the assumption of decentralization. Specically, in this paper we assume
that the knowledge of the global state space is available to every agent in the system.
In the future, we would relax this assumption and examine how to generate decentral-
ized policies when each agent only has its own, partial view of the global state space -
apparently a much more realistic reection of actual systems.

8 Appendix

Although decentralized agents decide their local actions independently, it should not be
taken for granted that the distribution of their joint outcomes is simply the product of
their local outcome distributions. There is a different between the independency of the
decision making in each agent and the independency of the local outcomes (a factual
distribution regardless of the decisions). A joint outcome is an interpretation of the local
outcomes in each agent, not an equivalence. In fact, the outcome distribution of a local
action may be affected by the actions in other agents, or the outcome of the actions in
other agents. Thus, the observation of local outcome may allow an agent to infer the
outcome of tasks in some other agents. In decision theoretic planning terms, this means
that the local outcome is a partial observation of the global state.

For example, let us examine the following scenario: two robots, A and B, roam in
a grid world, and their current positions are depicted in Figure 20. Suppose each robot
takes a random move to a neighboring block. If the joint goal of the robots is to meet (to
be in the same block), then in some cases (A moves to the right and B up, or A moves
down and B to the left) the robots meet — therefore enter a terminal conguration.
Here we assume that each agent is able to observe the meeting event, i.e., recognize the
meeting locally. Thus, the decision of A moving to the left block may have different
observed outcomes depending on B’s move. It is easy to see that the combination of
local outcomes have different interpretations.

Using a Markov decision process representation, consider the policy trees illustrated
in Figure 21. There, the joint action is (a b) and the outcome distribution for action a
is 60% a=1 and 40% a=2. Similarly 60% b=1 and 40% b=2 for action b. So when the
outcomes of a and b are independent, there are 4 joint outcomes (see part (1) of Figure
21.) The same local outcome distributions are to be observed for the policy tree depicted
in part (2), however there are only 2 joint outcomes. In this case the local outcomes in
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Fig. 20. An Example of Joint Outcome Interpretation

each agent are not independent any more. Each agent can infer the outcome of the other
agent’s action.

Furthermore, in (3), the policy tree lists a belief state containing two states, one with
joint outcome (a b) and on with (a c). Now the same local action produces different
outcomes when belongs to different joint actions.

a=1 b=1 (36%)

a=1 b=2 (24%)

a=2 b=2 (16%)

a=2 b=1 (24%)(a|b)

a=2 b=2 (40%)

a=1 b=1 (60%)(a|b)

a=1 b=1 (60%)

a=1 b=2 (40%)

a=2 c=1 (100%)

(a|b)

(a|c)

(2)

(3)

(1)

Fig. 21. Various Types of Joint Outcomes

Using the method mentioned earlier, let us compute the local history matrix for
the starting node in each policy tree lists in Figure 21. Again, the rows reect local
history sets for agent X, and columns for Y:

a=1 b=1 a=1 b=2
a=1 b=2 a=2 b=2
a=1 b=1

a=2 b=2
a=1 b=1 a=1 b=2

a=2 c=1

In some task models, such as TAEMS, local outcomes distributions are independent
to the actions in other agents. Under such models, the state space typically has some



symmetrical structures: the subspace after one outcome is identical to that of another
outcome, hence allows operations such as merging to be easily applicable to a MDP
policy. But we should be aware that these models are not the only models, and therefore
these operations may not be applicable under other models. However, the treatment
of communication decisions, and the transformation method discussed in this paper is
applicable to all MDP policies, no matter how the outcomes are correlated.
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