
Towards Bounded-Rationality in Multi-Agent Systems: A
Reinforcement-Learning Based Approach

Anita Raja and Victor Lesser

November 13, 2001

Abstract

Sophisticated agents operating in open environments must make complex real-time control decisions on schedul-
ing and coordination of domain activities. These decisions are made in the context of limited resources and uncertainty
about outcomes of activities. The question of how to sequence domain and control activities without consuming too
many resources in the process, is the meta-level control problem for a resource-bounded rational agent. Our approach
is to design and build a meta-level control framework with bounded computational overhead. This framework will
support decisions on when to accept, delay or reject a new task, when it is appropriate to negotiate with another agent,
whether to renegotiate when a negotiation task fails and how much effort to put into scheduling when reasoning about
a new task.

1

1 Introduction
Sophisticated agents operating in complex environments must reason about their local problem solving activities,
interact with other agents, plan a course of action and carry it out. All these have to be done in the face of limited
resources and uncertainty about action outcomes in real-time. Furthermore, new tasks can be generated by existing
or new agents at any time, thus an agent’s deliberation must be interleaved with execution. The planning, scheduling
and coordination of tasks are non-trivial, requiring either exponential work, or in practice, a sophisticated scheme that
controls the complexity. In this paper, we describe a framework which will provide effective allocation of computation
resulting in improved performance of individual agents in a cooperative multi-agent system.

In this framework, agent activities are broadly classified into three categories - domain, control, and meta-level
control activities. Domain activities are executable primitive actions which achieve the various high-level tasks.
Control activities are of two types, scheduling activities which choose the high level tasks, set constraints on how
to achieve them and sequence the detailed domain level activities which achieve the selected tasks; and coordination
activities which facilitate cooperation with other agents in order to achieve the high-level tasks. Meta-level control
activities optimize the agent’s performance by choosing and sequencing domain and control activities.

Agents perform control activities to improve their performance. Many efficient architectures and algorithms that
support these activities have been developed and studied[1, 9, 11]. Agents receive sensations from the environment
and respond by performing actions that affect the environment using the effectors. The agent chooses its domain level
activities and this might involve invoking the scheduling and coordination modules. Classic agent architectures either
overlook the cost of control activities or they assume a fixed and negligible cost and do not explicitly reason about the
time and other resources consumed by control activities, which may in fact degrade an agent’s performance. An agent
is not performing rationally if it fails to account for the overhead of computing a solution. This leads to actions that
are without operational significance [12].

Consider an administrative agent which is capable of multiple tasks such as answering the telephone, paying bills
and writing reports. It usually takes the agent a significant amount of time to sort out the bills. Suppose the agent does
not perform any meta-level reasoning about the importance or urgency of the tasks. It will then spend the same amount
of time deciding whether to pick up a ringing phone as it does on deciding which bills to pay. If the agent is equipped
with meta-level reasoning capabilities, it will recognize the need to make quicker decisions on whether to answer the
phone than on sorting bills since there is external constraint on the ringing phone, namely that the caller could hang up.
The agent will make better decisions on answering calls as well as completing its other tasks by dynamically adjusting
its decision based on its current state and the incoming task.

Figure 1 describes our architecture which will support this dynamic adjustment process by introducing resource-
bounded meta-level reasoning in agent control. The classic architecture is augmented with a meta-level control com-
ponent and there are various options for invoking the scheduling and coordination components. These options differ in
their resource usage and performance. The meta-level control component will decide if, when and how much control
activity is necessary for each event sensed by the agent.

Meta-level control activities include allocating appropriate amount of processor and other resources at appropriate
times. To do this an agent would have to know the effect of all combinations of actions ahead of time, which is
intractable for any reasonably sized problem. The question of how to approximate this ideal of sequencing domain
and control activities without consuming too many resources in the process, is the meta-level control problem for
a resource bounded rational agent. In this paper, the approximation is done using a case-base of hand-generated
heuristics which are described in detail in Section 3. The assumptions made in our solution approach are enumerated
in Section 2. In Section 5, we provide a review of meta-level control research. Experimental results illustrating the
strength of meta-level control in agent reasoning are discussed in Section 4.

2 Assumptions
The following assumptions are made in the framework described in this paper: The agents are cooperative and will
prefer alternatives which increase social utility/quality even if it is at the cost of decreasing local utility. An agent may
concurrently pursue multiple high-level goals and the completion of a goal derives quality for the system or agent. The

2

Problem Solver

 Meta-level Control
Component

Scheduler
1

Negotiation
Protocol n

Negotiation
Protocol 1

Coordination
ComponentScheduling

Component

Scheduler
 m**** ****

AGENT

Sensors

ENVIRONMENT

Effectors

Figure 1: New architecture of a bounded rational agent

overall goal of the system or agent is to maximize the quality generated over some finite time horizon. The high-level
goals are generated by either internal or external events being sensed and/or requests by other agents for assistance.
These goals must often be completed by a certain time in order to achieve any quality. It is not necessary for all
high-level goals to be completed in order for an agent to derive quality from its activities. The partial satisfaction of
a high-level goal is sometimes permissible while trading-off the amount of quality derived for decrease in resource
usage. The agent’s scheduling decisions involve choosing which of these high-level goals to pursue and how to go
about achieving them. There can be non-local and local dependencies between tasks and methods. Local dependencies
are inter-agent while non-local dependencies are intra-agent. These dependencies can be hard or soft precedence
relationships. Coordination decisions involve choosing the tasks which require coordination and also which agent to
coordinate with and how much effort much be spent on coordination. Scheduling and coordination activities do not
have to be done immediately after there are requests for them and in some cases may not be done at all. There are
alternative ways of completing scheduling and coordination activities which trade-off the likelihood of these activities
resulting in optimal decisions versus the amount of resources used. We also make the simplifying assumption that
negotiation results are binding and we assume that the agents will not decommit from their contract at later stages.

3 Agent Architecture
In this section, we provide an overview of our architecture which provides effective meta-level control for bounded
rational agents. Figure 2 describes the control flow within this proposed architecture. The number sequences describe
the steps in a single flow of control. At the heart of the system is the Domain Problem Solver(DPS). It receives
tasks and other external requests from the environment(Step 1). When an exogenous event such as arrival of a new
task occurs, the DPS sends the corresponding task set, resource constraints as well constraints of other tasks which
are being executed, and performance criteria to the meta-level controller(Step 2). The controller computes the corre-
sponding state and determines the best action prescribed by the hand-generated heuristic policy for that particular task

3

Meta-Level Control
Component

1

Domain Problem
Solver

Coordination
Component

Execution and
Monitoring
Component

*Action/
Schedule

*Domain Tasks
2

* Neg.
Constraints

*Commitments

 *Constraints
*Goal Criteria

*Goal
 Criteria

*Schedule

*Best action

*Feedback

*New tasks

3 4

2a

4a
3a 3 3a

*Goal Criteria

Complex Domain
Scheduler

Simple domain
scheduler

3*Goal
 Criteria

3a*Schedule

Environment

Figure 2: Control-flow in a bounded rational agent

environment. The best action can be one of the following: to call one of the two domain schedulers on a subset of
tasks; to gather more information to support the decision process; to drop the new task or to do nothing. The meta-level
controller then sends the prescribed best action back to the DPS(Step 2a).

The DPS, based on the exact nature of the prescribed action, can invoke the complex scheduler, simple scheduler
or coordination component(Step 3) and receives the appropriate output(Step 3a). If the action is to invoke the
complex scheduler, the scheduler component receives the task structure and objective criteria as input and outputs the
best satisficing schedule as a sequence of primitive actions. The complex scheduler can also be called to determine the
constraints on which a coordination commitment is established. If the meta-level or the domain scheduler prescribe
an action that requires establishing a commitment with a non-local agent, then the coordination component is invoked.
The coordination component receives a vector of commitments that have to be established and outputs the status of
the commitments after coordination completes. The simple scheduler is invoked by the DPS and receives the task
structure and goal criteria. It uses pre-computed abstract information of the task to select the appropriate schedule
which fits the criteria.

The DPS can invoke the execution component either to execute a single action prescribed by the meta-level con-
troller or a schedule prescribed by the domain-level scheduler(Step 4). The execution results are sent back to the
DPS(Step 4a) where they are evaluated and if the execution performance deviates from expected performance, the
necessary measures are taken by the DPS.

This work accounts for the cost at all three levels of the decision hierarchy - domain, control and meta-level control
activities. The cost of domain activities is modeled directly in the task structures which describe the tasks. The cost of
domain activities are reasoned about by control activities like negotiation and scheduling.

The cost of control activities are reasoned about by the meta-level control activities. Negotiation costs are reasoned
about explicitly in this framework since they can be modeled as part of the domain activities needed to complete a
high-level goal. The negotiation tasks are split into an information gathering phase and a negotiating phase, with
the outcome of the former enabling the latter. The negotiation phase can be achieved by choosing a member from a
family of negotiation protocols[15]. The information gathering phase is modeled as a MetaNeg method in the task
structure and the negotiation methods are modeled as individual primitive actions. Thus, reasoning about the costs
of negotiation is done explicitly, just as it is done for regular domain-level activities. The MetaNeg method belongs

4

T1

M4M3

sum

Agent A:

T0

M2M1

D 100% 8
Q 100% 6

D 90% 10 10% 12
Q 90% 10 10% 12

D 100% 8
Q 100% 12 Q 90% 10 10% 12

D 90% 10 10% 12

enables to
 N4

enables from
N5

sum

Figure 3: Tasks that can be performed by agent A

to a special class of domain actions which request an external agent for a certain set of information and it does not
use local processor time. It queries the other agent and returns information on the agent’s expected quality from its
tasks, expected completion time of its tasks and flexibility of its schedule. This information is used by the meta-level
controller to determine the relevant control actions.

However, reasoning about the cost associated with scheduling activities is implicit. A fixed cost is associated
with each of the two schedulers and these costs affect the subsequent choice of domain activities made by the control
activities. The earliest start time of domain activities are determined by the latest finish times of their corresponding
control activities.

Meta-level control activities in this framework are modeled as inexpensive activities. The cost for meta-level
control in this framework are incurred by the computation of state features which facilitate the heuristic decision-
making process. The state features and their functionality are described in greater detail later on in this section.

The domain level scheduler depicted in the architecturewill be an extended version of the Design-to-Criteria(DTC)
scheduler[14]. Design-to-Criteria (DTC) scheduling is the soft real-time process of finding an execution path through a
hierarchical task network such that the resultant schedule meets certain design criteria, such as real-time deadlines, cost
limits, and quality preferences. It is the heart of agent control in agent-based systems such as the resource-Bounded
Information Gathering agent BIG [8]. Casting the language into an action-selecting-sequencing problem, the process
is to select a subset of primitive actions from a set of candidate actions, and sequence them, so that the end result is an
end-to-end schedule of an agent’s activities that meets situation specific design criteria.

We also introduce a simple scheduler based on the use of abstractions of agent task structures. This will support
reactive control for highly constrained situations. Abstraction is an offline process where potential schedules and
their associated performance characteristics for achieving the high level tasks are discovered for varying objective
criteria. This is achieved by systematically searching over the space of objective criteria. Also multiple schedules
could potentially be represented by the same abstraction. The abstraction hides the details of these potential schedules
and provides only the high level information necessary to make meta-level choices. When an agent has to schedule
a task but doesn’t have the resources or time to call the complex domain-level scheduler, the generic abstraction
information of the task structure can be used to provide the approximate schedule.

Taxonomy of meta-level control decisions
We now describe a taxonomy of the meta-level decisions in a multi-agent system using a simple example scenario.
Consider a multi-agent system consisting of 2 agents A and B. The discussion will focus only on the various meta-level
questions that will have to be addressed by agent A. Figure 3 describes T0 and T1, which are the tasks performed by
agent A. They are described using TÆMS, a domain independent framework for describing task structures.

In this example, each top-level task is decomposed into two executable primitive actions. In order to achieve the
task, agentA can execute one or both of its primitive actions within the task deadline and the quality accrued for the task

5

will be cumulative (denoted by the sum function). Methods are primitive actions which can be scheduled and executed
and are characterized by their expected quality, cost and duration distributions. For instance, the quality distribution
of method M2 indicates that it achieves quality value of 10 with probability 0.9 and quality of 12 with probability 0.1.
Quality is a deliberately abstract domain-dependent concept that describes the contribution of a particular action to
overall problem solving. The enables relationship from method M1 of task T0 to a non-local method N4 of task S1
belonging to agent B (agent B’s task structure is not shown) implies that successful execution ofM1 is a precondition
for executing N4.

In the remainder of this section, we enumerate the features computed when the meta-level control component
is invoked. The cost of computing and reasoning about these state features reflect the cost of meta-level control
reasoning. We then enumerate the various meta-level control decisions and the case-base of heuristics used to make
the decisions.

The following are some simple state features which are used in the heuristic decision making process of the meta-
level controller.

F0: Current status of system This feature is represented as a 3-tuple
where each entry in the tuple contains the number of items on the corresponding stack. The new

items are the tasks which have just arrived at the agent from the environment. The agenda stack is the set of tasks
which have arrived at the agent but whose reasoning has been delayed and they have not been scheduled yet. The
schedule stack is the set of tasks currently being scheduled. Eg. means there are two new items which
have arrived from the environment and there is one task being scheduled.

F1: Relation of quality gain per unit time of a particular task to that of currently scheduled task set: The
of a task is the ratio of to of that task.

This feature compares the utility of a particular task to that of the existing task set and helps determine whether the
new task is very valuable, moderately valuable or not valuable in terms of utility to the local agent.

F2: Relation of deadline of a particular task to that of currently scheduled task set: This feature compares
the deadline of a particular task to that of the existing task set and helps determine whether the new task’s deadline is
very close, moderately close or far in the future.

F3: Relation of priority of items on agenda to that of currently scheduled task set: This feature compares the
average priority of the existing task set to the priority of the new task and helps determine whether the new task is very
valuable, moderately valuable or not valuable in terms of utility to the local agent. Priority is a function of the utility
and deadlines of the tasks. Computing the average priority of a task set is a more complicated function than computing
the priority of a single tasks since it involves recognizing dominance of individual tasks.

The following are some of the specific meta-level issues that will be addressed by any individual agent.

1. Arrival of a new task from the environment: When a new task arrives at the agent, the meta-level control
component has to decide whether to reason about it later; drop the task completely; or to do scheduling-related
reasoning about an incoming task at arrival time and if so, what type of scheduling - complex or simple.
Heuristic Rule: If the new task has very low or negligible priority and high opportunity cost with respect to
taking resources away from future higher priority tasks, then it should be discarded. If the incoming task has
very high priority, in other words, the expected utility is very high and it has a relatively close deadline, then
the agent should override its current schedule and schedule the new task immediately. If the deadline is very
tight the agent will uses the abstraction-based simple scheduler; else, it will use the more complex scheduler. If
the current schedule has average utility that is significantly higher than the new task and the average deadline of
the current schedule is significantly closer than that of the new task, then reasoning about the new task should
be postponed till later. If the new task is scheduled immediately, the scheduling action costs time, and there
are associated costs of dropping established commitments if the previous schedule is significantly revised or
completely dropped. These costs are diminished or avoided completely if the task reasoning is postponed to
later or completely avoided if the task is dropped.

2. Decision on whether to negotiate: The meta level controller will decide to negotiate based on the information
returned by the MetaNeg action. It queries the other agent and returns information on the agent’s expected
quality from its tasks, expected completion time of its tasks and flexibility of its schedule. In Figure 3, method
M4 in agent A is enabled by method N5 belonging to agent B. The benefit from including method M4 in agent

6

A’s schedule is that it increases its total utility. However, it also requires agent A and B to negotiate over the
completion time of method N5 by agent B and this negotiation has an associated cost as well as there is a
resource cost to the agent which agrees to the contract
Heuristic Rule: If the other agent’s current expected utility is much lower than the results of the negotiation,
then the local agent will initiate negotiation. Negotiation is also initiated if the other agent’s tasks have high
utility but the deadlines are far enough in the future to permit the other agent to execute the enabling task. If the
other agent’s tasks have higher priority than the local task, then the negotiation option is dropped.

3. Choice of negotiation protocol: When an agent decides to negotiate, it should also decide whether to negotiate
by means of a single step or a multi-step protocol that may require a number of negotiation cycles to find an
acceptable solution or even a more expensive search for a near-optimal solution. The single shot protocol is
quick but has a higher chance of failure where as a more complex protocol takes more time and has a higher
chance of success.
Heuristic Rule: If the agent receives high utility from the results of the negotiation, then the agent should choose
the more effective albeit more expensive protocol. The protocol which has a higher guarantee of success require
more resources, more cycles and more end-to-end time in case of multi-step negotiation and higher computation
power and time in case of near-optimal solutions. (The end-to-end time is proportional to the delay in being able
to start task executions). If the agent does not have too much resources to expend on the negotiation or if there
is a very slight probability that the other agent will accept the contract, then the local agent should choose the
single shot protocol.

4. Failure of a negotiation to reach a commitment If the negotiation between two agents using a particular negoti-
ation protocol fails, the initiating agent should decide whether to retry the negotiation; whether to use the same
protocol or an alternate protocol with the same agent or alternate agents and how many such retries should take
place?
Heuristic Rule: If negotiation is preferred (the agent will receive high utility as result of the negotiation), then
a more complex negotiation protocol is chosen since it has a higher probability of succeeding. Since resources
have already been spent on figuring out a solution to the negotiation, it may be profitable to put in a little more
effort and achieve a solution. If there is a very slight or no probability of finding an acceptable commitment,
then resources which can be profitably spent on other solution paths are being wasted and the agent might find
itself in a dead-end situation with no resources left for an alternate solution. So the negotiation option should be
dropped.

4 Experimental Results
Effective meta-level control is a complex process. It involves taking into account a number of factors, including
task relationships, deadlines, the availability of alternatives, client design criteria (i.e., quality, cost, duration, and
certainty trade-offs) and the execution state of other agents in the multi-agent system. In this section, we evaluate the
performance of the meta-level control enhanced agent architecture by comparing it to the standard agent architecture
which does not do explicit meta-level reasoning. It is possible to characterize the types of task environments that
are amenable to meta-level reasoning, i.e., those for which dynamic allocation of appropriate amount of resources
to domain and control activities at appropriate times is beneficial from a cost/benefit perspective. As part of the
evaluation process, we have partially determined the characteristics of tasks, arrival models and design criteria that
indicate a problem instance for which explicit meta-level control is advantageous. The general characteristics include:

1. Tasks arrive dynamically at the agent and have non-deterministic execution characteristics. If the agent knows
the exact task arrival model as well as execution characteristics ahead of time, then real-time meta-level control
is dispensable since a near-optimal policy can be built offline.

2. There are alternative ways of completing scheduling and coordination activities which trade-off the likelihood
of these activities resulting in optimal decisions versus the amount of resources used. The meta-level controller
will be able to dynamically adjust the computational resources only if such alternatives are available.

7

Row # Agent TS Arrival Deadline Control Quality
Name ID Time Activity Run1 Run2 Run3 Run4 Run5 Run6 Run7

1 A T0 1 1 40 NTCS 17.50 19.50 17.50 17.50 17.50 17.50 16.30
2 A T0 2 10 28 Drop 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 A T1 3 21 75 ATCS, NM1 45.60 51.19 55.20 45.60 45.60 12.00 43.41
4 A T0 4 55 80 ATCS 16.00 16.00 16.00 16.00 16.00 16.00 18.00
5 A T0 5 61 100 ATCS 6.00 6.00 6.00 6.00 6.00 6.00 6.00
6 B NX 3 37 47 SS 10.00 10.00 10.00 10.00 10.00 - 10.00

Total Quality 96.10 102.69 104.70 95.10 95.10 51.50 93.77
Col. # 1 2 3 4 5 6 7 8 9 10 11 12

Table 1: Experimental Results for agents capable of meta-level reasoning: Agent Name is name of the agent being
considered; TS ID is the name of the task being considered; Arrival Time and Deadline are the arrival times and
deadlines for that particular task; Control Activity is the control action chosen by the meta-level controller; Columns
5-11 describe the quality accrued for each of the individual tasks in seven different runs; Row 6 describes the total
quality of all tasks completed by both agents for each run

3. Methods should be interruptible. When one of the five exogenous events described in Section 3 occurs, the
system state is immediately saved, execution of primitive actions is halted and control is shifted to the meta-
level controller.

4. The system state as defined by feature F0 should be accessible to the local agent. When cooperation with other
agents is necessary, the local agent should have access to high level information on the status of other agents via
theMetaNegmethod.

The following are the design criteria characteristics which augment meta-level control.

1. The objective function should be to maximize overall quality over a given finite horizon. The hard deadline and
other such hard resource constraints voids the possibility of simply rescheduling at failure points or initiating
negotiation exchanges which are bound to fail. They instead require the high-level analysis of the meta-level
control component which will decide whether it is worth while to invest the resources into such control actions.

2. The deadline should also provide enough time for control actions, since the scheduling and negotiation costs are
factored into the equation. If the deadlines are too tight, then there can be no reasonable way of performing the
relevant control actions and achieving quality for the tasks.

The experiments in this section are preliminary results to establish the plausibility of the theory described in
this paper. Further experiments are in progress. For the purposes of this paper, we selected a randomly generated
environment which adheres to the above mentioned characteristics. This produced tasks and arrival models amenable
to meta-level control. The particular environment described here is simple and consists of two agents Agent A and
Agent B. There are three possible tasks in the environment - task T0, task T1 and task NX. The former two tasks
can only be performed by agent A and task NX can only be performed by agent B. Task T1 requires a non-local
enablement from taskNX. The maximum possible quality from task T0 is 23.00 and minimum is 17.00; the maximum
from task T1 is 56.00 and minimum quality is 12.00,NX has a deterministic quality of 10.00. We make the simplifying
assumption that task NX arrives at agent B only as a result of a successful negotiation with agent A. There are four
possible meta-decisions upon arrival of a new task: NTCS, New Task Complex Scheduling invokes the complex DTC
scheduler on the new task only and has a time cost of 2;Drop, this causes the agent to drop the new task and not reason
about it ever again has a time cost of 0; ATCS, All Task Complex Scheduling invokes the complex DTC scheduler on
the new task as well as all other tasks which are on the agenda or in partial execution and has a time cost of 3; and SS,
Simple Scheduling invokes the simple abstraction based analysis on the new task only and has a time cost of 1. There
are two possible options for Negotiation: NM1, Negotiation Mechanism 1 which is the simple single-shot protocol
and NM2, Negotiation Mechanism 2 which is the more complex multi-shot protocol.

8

Row # Agent TS Arrival Deadline Control Quality
Name ID Time Activity Run1 Run2 Run3 Run4 Run5 Run6 Run7

1 A T0 1 1 40 ATCS 22.80 24.00 23.00 22.00 22.00 22.00 18.26
2 A T0 2 10 28 ATCS 10.00 12.00 10.00 10.00 10.00 10.00 10.00
3 A T1 3 21 75 ATCS, NM1 12.00 12.00 12.00 12.00 12.00 12.00 12.00
4 A T0 4 55 80 ATCS 10.00 10.00 10.00 10.00 10.00 10.00 12.00
5 A T0 5 61 100 ATCS 10.00 10.00 12.00 12.00 10.00 10.00 10.00
6 B NX 3 39 53 ATCS 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Total Quality 74.80 78.00 77.00 76.00 74.00 74.00 72.26
Col. # 1 2 3 4 5 6 7 8 9 10 11 12

Table 2: Experimental Results for agents with no meta-level reasoning: Control Activity is the fixed control action
used by the agent

The design criteria in these experiments is to maximize overall quality over a finite horizon. Individual tasks have
hard deadlines associated with them. It is assumed that if a task has not accrued quality by its deadline, it receives a
quality of zero. This simple design criteria setting is one that lends itself to meta-level control as the existence of a
hard deadlines (in contrast to a soft preference, e.g., soft deadline or no deadlines) make processor and other resources
valuable commodities requiring a the non-myopic reasoning provided by the meta-level control component.

The results for the experiments on agents which have meta-reasoning capabilities are shown in Table 1 and the
results on agents which have no meta-level reasoning capabilities are shown in Table 2. The above described scenario
is used in both cases. All domain, control and meta-level actions have a time cost associated with them which are
reflected in the results.

Consider Table 1. Each row in the table represents a specific task arriving at the specified agent at the associated
arrival time with a deadline. The task names are augmented with the arrival count to differentiate between various
instances of the same task. For eg. Row 4 describes task TO arriving at agent A as its fourth task at time 55 with
a deadline of 80. Column 5, titled Control Action describes the various decisions made by the meta-level controller
upon arrival of the new task. Columns 6-12 describe the quality accumulated by each of the tasks for seven different
runs.

In Row 1,task T0 1 arrives at time 1. Since the meta-level controller is aware that no other tasks are in execution,
it invokes NTCS on the task which is a cheaper option than ATCS which would be the choice of an agent with no
meta-reasoning capabilities.

In Row 2, task T0 2 arrives at time 11 while the previous task is still in execution and a meta-level decision to
drop task T0 2 is made. This is because the previous task T0 1 has the exact same characteristics as the current task
and has a tight deadline. The task also has a tight deadline and interrupting the already executing tasks might result in
missing the deadlines on both Task T0 1 and task T0 2.

In Row 3, Agent A decides to do a complete reschedule of all tasks and chooses to negotiate with agent B over task
NX using negotiation mechanism NM1. In this case, it is willing to reschedule task T0 1 since the expected quality
from the newly arrived task is much higher than that of the current task. Also, the fact that the agent dropped task T0 2
although it was unaware of the arrival of a highly preferred task in the near-future works to agent A’s advantage since
it has more time to perform the higher valued task. In five out of six runs, the agent’s decision to drop the previous
task T0 2 and perform task T1 3 with the negotiation option results in very high quality values. In Run 6, task T1 3
receives a very low quality because negotiation fails with agent B and the task receives the minimum quality. However
on average, agent A’s meta-level decision works to its benefit.

In Row 6, we see that agent B chooses the simple scheduling option to execute task NX 3 because of its tight
deadline.

Consider Table 2. Here the agent does not reason about the characteristics of the tasks at the meta-level. This
results in the agent choosing the same control action, namely ATCS for all tasks independent of the status of other
tasks in execution. This results in the most expensive control action being invoked independent of the current state of

9

the system. This results the choice of domain activities with shorter durations and lower qualities as reflected by the
quality values in columns 6-12.

The total qualities accumulated by five of the six runs in Table 2 is significantly lower than the corresponding run
in Table 1. This supports our hypothesis that meta-level control is generally advantageous.

5 Related Work
Meta-level control has also been called meta-level planning [13]. As this term implies, an agent can plan not only the
physical actions that it will take but also the computational actions that it will take. The method for performing this
planning can range from simple heuristics to recursive application of the full planner. Stefik’s Molgen planner uses
the base level planner to create meta-level plans. Molgen considers two levels of meta-level planning, in addition to
base-level planning. The actions at each of these meta-levels create plans for the next lower level. In contrast, our
approach uses only a single layer of meta-level control and uses algorithms and heuristics tailored to making particular
meta-level control decisions. Additional layers of meta-level control have a diminishing rate of return since each layer
adds additional overhead and there is a limit on how much meta-level control can improve performance.

In order to make the tradeoffs necessary for effective meta-level control, the meta-level controller needs some
method for predicting the effect of more computation on the quality of a plan. One method for doing this is to use
a performance profile. The idea comes from the study of anytime algorithms that can be interrupted at any point
to return a plan that improves with more computation [2]. The performance curve gives the expected improvement
in a plan as a function of computation time. Anytime algorithms can also be combined to solve complex problems.
Zilberstein and Russell look at methods for combining anytime algorithms and performing meta-level control based
on multiple performance curves [16]. Combining anytime algorithms produces new planning algorithms that are also
characterized by a performance curve.

[4] extends previous work on meta-level control of anytime algorithms by using a non-myopic stopping rule. It
finds an intermediate strategy between continuous monitoring and not monitoring at all. It can recognize whether or
not monitoring is cost-effective, and when it is, it can adjust the frequency of monitoring to optimize utility. This work
has significant overlap with the foundations of the approach described in this paper. However, it is in a multi-agent
non-anytime setup with interacting agents which makes the decision-making process more complex.

The partial global planning [3] approach is a flexible framework for coordination where nodes can balance their
needs for predictability and responsiveness differently for different situations. In this framework, nodes exchange
information about their tentative local plans and develop partial global plans(PGPs) to represent the combined activities
of some part of the network that is developing a more global solution. To dampen their reactions to deviations, nodes
need to know when deviations are negligible and should be ignored. The PGPlanner considers a deviation between
actual and predicted times to be negligible if that difference is no larger than the time-cushion. The time-cushion is
a user-specified parameter that represents negligible time and balances predictability and responsiveness. In the work
presented here, we make similar decisions on predictability and responsiveness. Our approach is more general since
we do not have preset parameters to handle each of the decisions. The agent can dynamically adjust its response based
on its current state.

[10] presents a learning system called COLLAGE that uses meta-level information in the form of abstract charac-
terization of the coordination problem instance to learn to choose the appropriate coordination strategy from among
a class of strategies. They provide empirical evidence for the benefits of learning situation-specific coordination. [7]
proposes a meta-level control mechanism for coordination protocols in a multi-agent system. AgenTalk, a coordina-
tion protocol description language, is extended to include primitives for the meta-level control. The meta-level control
mechanism allows agents to detect and handle unexpected situations by switching between coordination protocols.
These two systems deal with similar issues as this work. They choose a situation-specific strategy from a number of
options. However they do not account for the cost of meta-level control. They also limit their work to coordination
protocols and don’t consider control activities.

An opportunistic control model that can support different control modes expected of an intelligent agent with
multiple goals, limited resources, and dynamic environments is described in [5]. Their goal is similar to ours in that
they are concerned with the fact that in dynamic environments, it is often necessary to make decisions that may not

10

be optimal, but satisfactory under the current conditions. [6] discuss an experimental intelligent agent called Guardian
for monitoring patients in a surgical ICU. It is based on the BB1 blackboard architecture developed by Hayes-Roth.
Advantages claimed over traditional patient monitoring systems include multiple reasoning skills and the ability to
operate under time pressure. The meta-level controller in GUARDIAN controls the amount of information fed to the
input buffer at varying rates depending on the current situation.

6 Conclusions and Future Work
In this paper we present a novel meta-level control agent framework for sophisticated multi-agent environments. The
meta-level control has limited and bounded computational overhead and will support reasoning about scheduling and
coordination costs as first-class objects.

We have shown in Section 4, using a simple example, that meta-level control is beneficial. The heuristics described
in this paper, although very simple, enable the meta-level controller to make accurate decisions in simple scenarios.
We plan to introduce more complex features which will make the reasoning process more robust. Some such features
include relation of slack fragments in local schedule to new task. This would enable an agent to fit a new task in its
current schedule if it is possible and avoid a reschedule. Another feature would be to estimate the decommitment cost
for a particular task. This will enable us to consider environments in which agents can decommit from tasks which
they have previously agreed to complete.

We will be extending the detailed domain level scheduler(DTC) to handle scheduling effort, slack and horizon as
first-class objects. The extended DTC will accept parameters which constrain the effort spent on scheduling which
in turn will affect the overhead of the scheduler. It will also be extended to deal with slack as a schedulable element
which can be quantified and valued as any other primitive action. We hope that augmenting the domain level scheduler
will provide the meta-level controller with more options, hence making it more versatile.

We also plan to compare our heuristic based meta-level controller to a quasi-optimal policy which is built assuming
there is complete knowledge of performance characteristics of the actions and exogenous events ahead of time for a
specific scenario. The quasi-optimal policy will provide a performance upper-bound to our system and will help us
study the strengths and weaknesses of our approach..

7 Acknowledgments
We thank Bryan Horling for his assistance in extending the JAF framework and Mass simulator to satisfy the require-
ments of the meta-level control component.

References
[1] Craig Boutlier. Sequential Optimality and Coordination in Multiagent Systems. In Proceedings of the Sixteenth

International Joint Conference on Artificial Intelligence, 1999.

[2] Thomas Dean and Mark Boddy. An analysis of time-dependent planning. In Proceedings of the Seventh Na-
tional Conference on Artificial Intelligence (AAAI-88), pages 49–54, Saint Paul, Minnesota, USA, 1988. AAAI
Press/MIT Press.

[3] E. Durfee and V. Lesser. Predictability vs. responsiveness: Coordinating problem solvers in dynamic domains.
In Proceedings of the Fifth National Conference on Artificial Intelligence, pages 66–71, St. Paul, Minnesota,
August 1988.

[4] Eric A. Hansen and Shlomo Zilberstein. Monitoring anytime algorithms. SIGART Bulletin, 7(2):28–33, 1996.

[5] B. Hayes-Roth. Opportunistic control of action in intelligent agents. In IEEE Transactions on Systems, Man and
Cybernetics, pages SMC–23(6):1575–1587, 1993.

11

[6] B. Hayes-Roth, S. Uckun, J.E. Larsson, D. Gaba, J. Barr, and J. Chien. Guardian: A prototype intelligent agent
for intensive-care monitoring. In In Proceedings of the National Conference on Artificial Intelligence, pages
1503–1511, 1994.

[7] Kazuhiro Kuwabara. Meta-level control of coordination protocols. In Proceedings of the Third International
Conference on Multi-Agent Systems (ICMAS96), pages 104–111, 1996.

[8] Victor Lesser, Bryan Horling, Frank Klassner, Anita Raja, Thomas Wagner, and Shelley XQ. Zhang. BIG:an
agent for resource-bounded information gathering and decisionmaking. In Artificial Intelligence Journal, Special
Issue on INternet Applications, 1999.

[9] David J. Musliner. Plan Execution in Mission-Critical Domains. InWorking Notes of the AAAI Fall Symposium
on Plan Execution - Problems and Issues, 1996.

[10] M V Nagendra Prasad and Victor Lesser. The use of meta-level information in learning situation specific coor-
dination. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, 1997.

[11] Anita Raja, Victor Lesser, and Thomas Wagner. Toward Robust Agent Control in Open Environments. In
Proceedings of the Fourth International Conference on Autonomous Agents, pages 84–91, Barcelona, Catalonia,
Spain, July,. ACM Press.

[12] H. Simon. From substantive to procedural rationality, 1976.

[13] M. Stefik. Planning and meta-planning, 1981.

[14] Thomas Wagner, Alan Garvey, and Victor Lesser. Criteria-Directed Heuristic Task Scheduling. International
Journal of Approximate Reasoning, Special Issue on Scheduling, 19(1-2):91–118, 1998. A version also available
as UMASS CS TR-97-59.

[15] XiaoQin Zhang, Rodion Podorozhny, and Victor Lesser. Cooperative, multistep negotiation over a multi-
dimensional utility function. In IASTED International Conference, Artificial Intelligence and Soft Computing
(ASC 2000), Banff,Canada, pages 136–142. IASTED/ACTA Press, July 2000.

[16] Shlomo Zilberstein and Stuart J. Russell. Efficient resource-bounded reasoning in AT-RALPH. In James Hendler,
editor, Artificial Intelligence Planning Systems: Proceedings of the First International Conference (AIPS 92),
pages 260–268, College Park, Maryland, USA, 1992. Morgan Kaufmann.

12

