Secure Leader Election in Wireless Ad Hoc Networks

Sudarshan Vasudevan', Brian DeCleene?, Jim Kurose!, Don Towsley*

' Department of Computer Science, 2TASC, Inc.
University of Massachusetts, 55 Walkers Brook Drive
Ambherst, MA 01003 Reading, MA 01867

{svasu kurose towsley } @cs.umass.edu btdecleene@tasc.com

UMass Computer Science Technical Report 01-50

Abstract

The problem of secure leader election in wireless ad hoc networks is considered and two cheat-proof elec-
tion algorithms are proposed: Secure Extrema Finding Algorithm (SEFA) and Secure Preference-based Leader
Election Algorithm(SPLEA). SEFA assumes that all elector-nodes share a single common evaluation function that
returns the same value at any elector-node when applied to a given candidate-node. When elector-nodes can
have different preferences for a candidate-node, the scenario becomes more complicated. Our Secure Preference-
based Leader Election Algorithm (SPLEA) deals with this case. Here, individual utility functions at each elector-
node determine an elector-node’s preference for a given candidate-node. We formally specify and prove correct-
ness and security properties of SEFA and SPLEA using temporal logic. Their message complexity and signa-
ture/verification costs are evaluated.

Keywords : wireless ad hoc networks, secure leader election, network protocols, formal specification and
verification.

1 Introduction

Leader election algorithms find many applications in both wired and wireless distributed systems. In group com-
munication protocols, for example, a new coordinator must be elected when a group coordinator crashes or departs
the system. The problem of leader election in distributed systems has been well-studied and there is a large body
of literature for this problem; a good survey can be found in [1]. Most of these works describe extrema finding
algorithms that elect a node with the maximum identifier from among a set of candidate-nodes.

Recently, there has been considerable interest in using leader-election algorithms in wireless environments for key
distribution [3], routing coordination [8], sensor coordination [13], and general control [6, 5]. Here, user mobility
may result in frequent leader election, making the process a critical component of system operation. Security is also
of particular concern in any wireless environment. Existing leader-election algorithms implicitly assume complete
trust among the nodes participating in the leader election process, and consequently are vulnerable to a variety of
attacks.

In this paper, we thus consider the problem of secure leader election in ad hoc networks. We present two algo-

rithms that use a round-based hierarchy-building approach towards leader election:

e Our Secure Extrema Finding Algorithm (SEFA) belongs to the category of extrema finding algorithms.
SEFA assumes that all elector-nodes share a single, common evaluation function that returns the same “value”
at any elector-node when applied to a given candidate-node. A candidate-node’s identifier (name), battery life,
or certified level-of-trust within the system are examples of values for which all nodes might well hold such a
common view of a candidate node.

e The leader-election problem is more complicated when nodes can have different preferences for a leader. For
example, if topological distance is taken as a metric for determining a node’s preference among candidate-
nodes, each elector-node might well have a different view of the “value” of each candidate. Our Secure
Preference-based Leader Election Algorithm (SPLEA) deals with this case. Here, individual utility func-
tions at each elector-node determine the elector-node’s preference for a given candidate-node, and (loosely
speaking) SPLEA serves to aggregate individual elector-node preferences into a single, system-wide choice
of a leader.

We formally specify these two algorithms and prove their correctness and security properties, using linear time
temporal logic as the formal tool for this purpose. We also analyze their message complexity and the number of
digital signature and verification operations required.

The remainder of the paper is organized as follows. In Section 2 we discuss related work. Section 3 describes our
assumptions and algorithms and messaging in detail. Section 4 formally describes the various properties we prove.
In Section 5 we present an analysis of our algorithms. Section 6 discusses our conclusions and agenda for future
work. Finally the appendix includes pseudo-code for SPLEA and detailed proofs of its correctness and security

properties.

2 Related Work

Many algorithms for leader election, clustering, and hierarchy construction have been proposed. Leader election
algorithms for mobile ad hoc networks have been proposed in [5, 6]. In [5], an algorithm is proposed to elect a
leader for each connected component of an ad hoc network. This algorithm is based on TORA [14] (Temporally
Ordered Routing Algorithm), which in turn is based on the Gafni-Bertsekas algorithm for constructing a destination-
oriented directed acyclic graph[15]. The algorithm uses the mechanism in TORA to detect partitions, with the node
detecting a partition being elected as a leader. The leader election algorithms proposed in [6] are classified into
two categories, Non-Compulsory protocols (which do not affect the motion of nodes) and Compulsory protocols
(which determine the motion of some or all of the nodes). The Non-Compulsory protocols require mobile nodes to
move in order to meet and exchange information. If nodes do not meet , the protocol may not elect a unique leader.
The mobile nodes are assumed to move in such a way that the number of elector-nodes that participate in protocol
execution decreases with time. When there is only one participant left, that node becomes the leader. In order
to elect a unique leader (with a high probability of success), the Compulsory protocols require nodes to perform a
random walk on the graph.

The multicast operation of the Ad Hoc On-Demand Distance Vector Routing Algorithm [8] elects a leader for
its multicast group. Here, the first member to join the group becomes the leader. When the group partitions, a
leader is elected for each group; when partitions merge, the protocol ensures that only one of the group leaders takes

leadership of the reconnected partitions.

The top-down hierarchy construction scheme in [10] elects a leader by a simple bully algorithm, where each mem-
ber broadcasts advertisements to all other members. The Multicast Archie Server Hierarchy (MASH) [9] organizes
nodes into a two-level hierarchy of parents and children. Certain nodes choose to become parents and invite other
nodes to become their children. A node chooses the nearest parent that is willing to accept it as a child.

The clustering/hierarchy construction proposals in [7, 11, 12, 13] use a bottom-up approach that we have adapted
for SEFA and SPLEA. The algorithm in [7] constructs a hierarchy in a sensor network of low power devices by
promoting nodes with higher energy up the hierarchy. A Landmark hierarchy is constructed in a bottom-up fashion
in [11] for routing purposes. In [12], a structure called an AC Hierarchy is constructed that logically organizes
processors into various levels. In [13], sensors organize themselves into clusters and cluster heads are elected based
on localized coordination and control. In addition, cluster heads are randomly rotated, with each node serving as a
head only for a fixed duration. In order to minimize energy spent in communicating with the remote base station,
cluster members communicate to the base station through their cluster heads.

As we will see, our leader election algorithms use the idea of bottom-up hierarchy construction, and are similar
to the clustering proposals in that respect. However, none of the algorithms described above consider the the notion
of secure leader election. Indeed, it is not clear whether security can easily be built into their protocols. The main
contribution of our work is the development of secure leader-election algorithms, the proof of their correctness and

security properties, and the analysis of their overheads.

3 Secure Distributed Leader Election Algorithms

In this section, we describe two algorithms, SEFA and SPLEA, for secure leader election. Each of these algorithms
adopts a hierarchical round-based approach in which a leader is elected in a bottom-up fashion. During round one,
candidate-nodes compete with their one-hop neighbors. During the second round, the winners from the first round
compete with the other round-one winners that are two-hops away. These rounds continue until a single leader is
elected.

The fundamental difference between our two algorithms is that SEFA assumes that all elector-nodes share a single,
common evaluation function that returns the same “value” at any elector-node when applied to a given candidate-
node. SEFA also requires that the parameters used to select the leader in each round remain constant. Thus, the
“goodness” of a node is independent of time. SPLEA supports a heterogeneous decision model in which different
elector-nodes may have different preferences for a leader. For example, if topological distance is taken as a metric
for determining a node’s preference among candidate-nodes, each elector-node might well have a different view
of the “value” of each candidate-node. In SPLEA, individual utility functions at each elector-node determine the
elector-node’s preference for a given candidate-node, and (loosely speaking) SPLEA serves to aggregate individual

elector-node preferences into a single, system-wide choice of a leader.

3.1 Objectives, Constraints, and Assumptions

In developing our secure election algorithms for wireless networks, we must first define the security objectives and

related assumptions. Foremost, we assume that malicious nodes have the capacity to “snoop” on a conversation

and potentially corrupt messages. However, they cannot delete messages from the network. That is, message loss
can be detected. The goal of the proposed algorithms is to efficiently elect a leader without enabling a malicious
node to change or disrupt the election process. We make the following assumptions about the nodes and the system

architecture:

1. Unique and Ordered Node IDs: All nodes have unique identifiers. These are used to construct certificates
and establish secure communications. They are also used to identify participants during the election process.
Also, node IDs are ordered and therefore useful in breaking ties during election.

2. Clock Synchronization: The clocks of all nodes in the network are synchronized. This is used to prevent
replay attacks.

3. Secure Node-to-Node Communications: Each node i has a (public-key,private-key) pair (£7,K;) that can be
used to securely establish a communication link between any two nodes. The public key is considered shared
information and is available to all members of the domain.

4. Reliable Node-to-Node Communications: The ad hoc network is modeled as a discrete time system where
a node takes one time unit to deliver a packet reliably to its immediate neighbor.

5. Node Certificates: Each node has two certificates. The first certificate is a one-time certificate that binds the
node’s identity with its public key and static characteristics such as its trust-level ,processing capabilities etc.
This certificate is available from a Trust Authority (TA) that is well known to all nodes. The second certificate
is shorter-term, and binds dynamic characteristics of a node (e.g., the density of nodes in its region) to the
node’s identity. This certificate is obtained from a trusted Group Authority (GA), as described later. These
latter certificates may change from one election to the next, but remain constant (and valid) during a given
election.

6. Reliability and Survivability: Participating nodes are reliable and do not fail during the election process.
Furthermore, no messages are lost or delayed due to buffering or other performance problems at the receiver.

7. Asymmetric links: The communication links in the ad hoc network may or may not be bi-directional.

8. Network Topology: Although, nodes can be mobile before and after the election, it is assumed that the
network topology remains static for the duration of election.

3.2 Secure Extrema Finding Algorithm(SEFA)

SEFA is an extrema-finding algorithm in which all nodes use a Common Election Algorithm (CEA) to determine
their respective votes. Specifically, we define the CEA as a mapping from m decision factors, X;, that are associated
with node ¢ into the real numbers (f(X;), f: R™ — R) such that the larger the CEA value, the more “desirable”
the node is as a leader. Decision factors might include node identity, battery life, or level-of-trust. It is important to
note that since all elector-nodes use the same CEA, all elector-nodes will compute the same CEA value for a given
candidate node. As we will see, SEFA securely elects the node with the maximum CEA value as the leader. We
emphasise that the list of decision factors is defined based on the selected algorithm (or class of algorithms in the
case of SPLEA) and the number/format of decision factors is chosen accordingly and agreed upon by all nodes prior

to the start of election.

The various actions and states taken by an elector node are shown in the finite state machine in Figure 1. Each of

the states is described below:

o [Initialization State: At the start of the election process, node i initializes Winner, a boolean variable, to true.

This variable reflects i’s candidacy status and is true as long as i is still a candidate during algorithm execution.

o Election State: The Election state corresponds to the beginning of an election. During round £, when in the
Election State, each node broadcasts an ELECTION message to all nodes that are k-hops or less from node
¢ and starts a timer 7, that is proportional to k. This timer interval ensures that node i collects ELECTION
messages from all other candidates whose distance to i is k or less. Node 2’s ELECTION message contains the
values of the decision factors that are needed by the CEA to calculate node :’s CEA value. Note that the values
for all decision factors used in CEA must be provided by the node in its ELECTION message. If a decision
factor is not available, its value is taken to be 0. Before sending an ELECTION message, the entire message is
hashed and the hash is signed using #’s private key to protect message integrity. On expiration of L, i enters

state the Parent Nomination state.

e Parent Nomination State: On receiving advertisements from other candidate nodes, a node must determine
the node that it prefers from among those from whom it has received an ELECTION message. This is done
via the TOP function in Figure 1. This function computes the CEA value of every node from which it received
an ELECTION message using the transmitted decision factors, and returns a node w with maximum CEA
value. If w is a node different from i, i accepts w as its parent and sends an OK message to i. If i itself is the
maximum CEA-value node, then i does not have to choose a parent and therefore enters the Adoption State. In
the event of a tie, a tie-breaking mechanism such as node with maximum identifier, is used. The OK message
originated by 7 contains a certificate that binds i’s identity with that of its parent. This certificate is signed
using i’s private key. As before, a hash of the message is computed and signed using i’s private key. Since i is
no longer a candidate in the election, it sets its variable Winner to false. Even though i is no longer a candidate,
i could have been chosen as the parent of some other node. In order to receive their OK messages, i enters the

Adoption State.

e Adoption State: In this state, a node waits for OK messages from its children-to-be. All parent-child relation-
ships in the hierarchy are established in this state. Every node i maintains a list, , of its immediate children

in the hierarchy and adds nodes in this list as it receives OK messages from them.

Node i starts a timer T; on entering this state, waiting for OK messages from its potential children. Upon
receipt of an OK message, i adds the originator of the OK message to the set of its immediate children, f. On

expiration of Ty, i enters Parent/Decision State.

o Parent/Decision State: In this state, i sends a PARENT message to every node from which it received an OK
message. It starts a timer 7, for its PARENT message to reach its children and also for receiving a PARENT
message from its parent. Following expiry of 7;,, i evaluates its candidacy status and decides an appropriate

course of action. If the boolean variable Winner is still true and if L rounds of election are not yet over, it

Initialization State

Winner <- True
k=0

Election State

Parent
k=k+1 e Nomination State
" " t t
send "ELECTION" — V; k & timeou W = TOP(Buff)
start timer T_e = A¥k if (i <> W) send "OK"= W
Rcv "ELECTION" from .
other nodes in Buff Winner < False
T_p timeout
and
Winner = True
and
k<L
Parent/Decision State _ Adoption State
T_o timeout

start timer T_o =B*k
Rcv "OK" from children—to—be

Add children to set I_i of
its immediate children

send "PARENT" to all nodes from
which "OK" received
start timer T_p =C*k

T_p timeout
and
Winner = False

Wait State
Wait for "LEADER" message

Leader State

send "LEADER" to every
node in I_i

On receiving "LEADER", forward to
every node in I_i , if no exceptions

Wait for all nodes to receive
"LEADER" message.

Terminal State

End of election

Figure 1: Finite State Machine diagram of SEFA. V] ; denotes the set of all nodes k hops away or less from node i

means that i is still a candidate in the election and so i loops back to Election State to participate in the next
round. If Winner has already been set to false, i goes to Wait State. If L rounds are over and the boolean

variable Winner is still true for i, it enters the Leader State.

o Leader State: This state marks the end of all the rounds of election. Node i first verifies that all nodes with
which it competed in round L have sent an OK message, accepting i as their parent. If this is not the case, i
broadcasts an exception message to ensure that some other node does not maliciously declare itself the leader
after the Lth round.

Following this, i sends a LEADER message to all other nodes, declaring itself the leader. This is done either
distributing the LEADER message down the parent/child hierarchy, or by a broadcast to all nodes. In the
former case, i sends the LEADER message to its immediate children in J, when in turn forward the LEADER
message to their immediate children, and so on, until all nodes in the hierarchy receive the LEADER message.
If none of the recipients of the LEADER message report an exception after a finite time interval, i becomes the

leader of the group.

e Wait State: In this state, i simply waits for a LEADER message from the eventual leader. Upon receipt
of a LEADER message, i checks to see if the proclaiming leader is not already its child and only forwards
the LEADER message to its immediate children if it is not. If the proclaiming leader is a child of i, then
broadcasts an exception alerting other members of a malicious attack. After entering the Wait State, if i does

not hear a LEADER message for a finite time interval, i will broadcast an exception.

To illustrate the operation of SEFA, consider the network shown in Figure 2. Each node has a unique identifier
followed by a bracketed number indicating its CEA value, and links are assumed to be bi-directional. During the
first round, node C receives decision factors from nodes A, B, and D. Calculating their corresponding CEA values
and comparing, node C selects node B as its parent, and send an OK message to B. Similarly, A and B also select
B as their parent. The final hierarchy resulting from execution of SEFA on graph of Figure 2 is shown in Figure 3.
At the end of round 1, nodes B,E,I and K are eligible to compete in round 2. At the end of round 2, I is the only

surviving node.

B(7) F(d) G@®) fan M(1)

Figure 2: An example graph of an ad hoc network. Circles represent the mobile nodes and the edges between nodes
indicate that the two nodes can directly talk to each other.

Round 2

OO OO OOH EO

Figure 3: Hierarchy constructed on execution of SEFA

Note that a node i may receive OK messages from other nodes, but itself have sent an OK message to some
other node. In this case, i sends an PARENT message to the nodes that sent an OK message to it, but does itself
not participate futher in the election, since it has already sent an OK message to another node. This situation is
illustrated in Figure 3 - node B sends an OK messages to node E, while node E itself sends an OK message to node
I. According to the algorithm, node E will send a PARENT message to node B, but will not participate any further in
the election.

SEFA elects the node with the maximum CEA value as the leader, a result discussed in Section 4 and proven in
Appendix B. Intuitively, at every round high CEA-value nodes are propagated up the hierarchy. It is easy to see that
the CEA value of any node is greater than all of its descendants. Since the leader is the root of the hierarchy, its CEA
value is the highest of all of its descendants. We also prove that this algorithm prevents malicious nodes, that do not

send the required OK messages but continue to participate in the election process, from being elected leader.

3.3 Secure Preference-based Leader Election Algorithm (SPLEA)

Recall that SEFA assumes that all elector nodes share a common CEA, and thus view the “desirability” of a candidate
node identically. Our second leader election algorithm, SPLEA, allows each elector node to have different view of
the “desirability” of a candidate node. We define elector node ¢’s utility function for a candidate node, j, as a mapping
from the m decision factors of node j to the real numbers (fi(X;) = u;;, f : R™ — R). We assume, without loss

of generality, that the node j with the largest utility value from among a set of candidate nodes is the preferred leader
from the perspective of node :.

We note that +’s utility function is general in that no assumption is made about the decision factors, X;, that j
passes to 7. For example, one of the decision factors that j might pass to ¢ is the number of nodes for which it is
currently the parent in the SPLEA algorithm. This is a value that will change as j is promoted up the leader-election
hierarchy.

We note that while SEFA elects the leader with the largest CEA value (and in that sense might be termed an

“optimal” leader), SPLEA does not elect an optimal leader. Indeed, no global system-wide objective function has

been defined and hence the issue of optimality is itself not meaningful. A utility function simply represents the
preferences of the individual nodes, and allows elector nodes to vote for a candidate node that they prefer (via
their utility function) over other candidate nodes. The voting process serves to aggregate individual elector node
preferences into a system-wide decision for the elected leader. The extent to which the elected leader is “good”
(from a performance standpoint) or close to optimal (according to some meaningful system-wide objective function)
remains an open question for future research.

The finite state machine diagram of SPLEA is shown in Figure 4. The pseudo-code for the algorithm has also

been provided in Appendix A. Each state in the state diagram is described below:

o Initialization State: This state is identical to the SEFA Initialization State described earlier.

o Election state: This state is similar to the SEFA Election State described earlier, with the following modi-
fication. Each ELECTION message in SPLEA also contains the list of descendants of node i as of round &,
maintained by i in the form of a list denoted by I); .. The list of descendants is in the form of a set of certifi-
cates - one for each of its descendants, thus allowing ¢ to prove to others that it is indeed an ancestor for each
of its descendants. The inclusion of the list of 7’s descendants in the ELECTION message allows other nodes

to consider this information in their evaluation of the utility of <.

e Voting State: In this state, every node chooses a node other than itself (from the set of candidate nodes
from whom it has received an ELECTION message) that has the highest utility, and then votes for that node.
Informally, the goal of voting is to allow candidates with a large number of votes to proceed on to the next

round of the election.

Upon entering the Voting State, i executes a function TOP that computes the utility of every node (from whom
it has received an ELECTION message) with respect to i, using i’s utility function, f;. If node w has the highest
utlity, i sends a VOTE message indicating w as the choice for its parent. This message is to be broadcast by i
to all members from whom it received an ELECTION message, to assure them that it has made a choice for its
parent. This rule is enforced in order to prevent nodes from refusing to cast their votes. The VOTE message
contains a digital signature that binds i with its choice. A timer 7, is started to allow other competitor’s VOTE

messages to reach i. Following the expiration of this timer, i enters the Announce Votes State.

e Announce Votes State: In this state, i first reports an exception if it has not heard a VOTE from any of its
competitors, thus forcing nodes which refrained from voting to cast their vote. Node i announces the votes it
has received from its competitors (i.e., those nodes who chose 7 as their parent). An ANNOUNCE message is
broadcast to all members from which i received an ELECTION message, indicating the votes it has received.
The absence of an ANNOUNCE message from a competitor indicates that the competitor has received no votes.
Again, a timer 7, is started by i to collect ANNOUNCE messages from other competitors. The expiration of

timer 7, causes a transition to the Parent Nomination State.

e Parent Nomination State: As in SEFA, each node i chooses its parent based on the vote count of each of its

competitors, choosing as its parent the node with the maximum number of votes. i sends an OK message to

Initialisation State

Winner =— true
k=0

Election State
k=k+1

send "ELECTION" —= Vi

start timer T_e = A*k

Rcv "ELECTION" from

other nodes in Buff

Voting State
W = TOP(Buff)
send "VOTE(W)" —= Ri Kk

start timer T _v = B¥*k
Rcv "VOTE" from other
nodes

T_e timeout

T_p timeout
and
Wmne; =True Adoption State
an
k<L start timer T _o = D*k T_v timeout

Rcv "OK" from other nodes
Add the originators of "OK" to
D, and L_i

T_o timeout

T_a timeout

arent Nomination
State
W = Majority(Buff)
send "OK" — W
Winner <— false

Parent/Decision
State

send "PARENT" to all nodes from

which "OK" received

start timer T_p =E*k

Announce Votes
State

send "ANNOUNCE" —= Rjx

start timer T_a =C*k

Rcv "ANNOUNCE" from

other nodes in Bu

T_p timeout
and
Winner = False

Leader State

send "LEADER" to every
node in I_i

Wait State
Wait for "LEADER" message

On receiving "LEADER", forward it
to every node in I_i, if no
exceptions

Wait for all nodes to receive
"LEADER" message

Terminal State

End of election

Figure 4: Finite State Machine diagram of SPLEA.V; ;. denotes the set of all nodes k hops away or less from node i
and R; ; denotes the set of all nodes from which i received ELECTION message in round k

10

that node accepting it as its parent and starts a timer I,. As in the case of the VOTE message, the OK message
is sent to all of its competitors. Upon expiration of 7, a competitor j of node i that has received more votes
than i will report an exception if it does not hear an OK from i. Once an OK is sent, the Winner variable is set

to false and a transition to Adoption State is made.

o Adoption State: This state is identical to the SEFA Adoption state described earlier. The only difference from
SEFA is that upon receipt of an OK message from node j, i adds node j and all of j’s descendants (which it
knows from the ELECTION message) to the list D; j of its descendants.

e Parent/Decision State: This state is identical to the SEFA Parent/Decision State described earlier.
o Wait State: This state is identical to the SEFA Wait State described earlier.

o Leader State: This state is identical to the SEFA Leader State described earlier.

An important feature of SPLEA is that it is robust against incomplete lists of descendants in the ELECTION
message. To illustrate why, let consider the following example. Suppose, that in a certain round k, a node i chooses
Jj as its parent which in turn chooses another node [as its parent in the same round. In the following round, [only
knows about j and does not know that i is its descendant, since j does not forward this information to /. This has
important security implications, as the node i, which is potentially malicious, can now compete with / in the next
round and get elected as the parent if / chooses i. With some luck, i could survive round L as well. This would result
in a loop in parent-child relationships. Should this occur, however, i will be exposed when its LEADER message is
received by j, which had earlier received an OK message from i.

In Appendix B, we formally prove that a node that sends an OK message in a round cannot become the leader.

This result forms the basis of a cheat-proof leader election.

3.4 Message Security

Secure leader election must ensure that no node can usurp the election by providing false credentials. In this section,
we describe the details of the messages formats used in the SEFA and SPLEA algorithms and how they prevent such
false results.

Let (Pra, Kra) and (Pga, Kga) be the (public key,private key) pairs of TA (Trust Authority) and GA (Group
Authority) respectively. In general, (F,, K,,) represents the (private key,public key) pair of node n and K, (x) means

that data x is encrypted using n’s private key.

As outlined previously, SEFA requires four messages: ELECTION,OK, PARENT and LEADER. SPLEA involves
two additional messages, viz. VOTE and ANNOUNCE and, in addition, modifications to ELECTION and OK mes-

sages have been made.

11

Election Message

The SEFA ELECTION message is used by a node to initiate a new round of the election process. In this message,

the node advertises its characteristics to other competitors, and has the following fields:

e Node i’s identity
e current time

e round number

o Kra(i,x1,xo,...,Tm ;)

o Koa(iZm/+1, Tm/ 42, - - - , Ty CULTENL tiME)
® KTA(GA,:L‘l, L2y v vy Tyt ,PGA)

® Tm/41s-++yTm

e K;(Hash)

The current time and round number fields indicate the time and the round in which messages are generated. The
fourth field in the message is the one-time certificate of i that is signed by TA using its private key KAy 4. This
certificate binds i’s identity with its public key and its static decision factors such as trust level, battery life, node
identifier, etc. Note that these characteristics are assumed to be fixed throughout the node’s lifetime. Hence it is
certified along with the node’s public key in the one-time certificate. Since the public key H4 of the TA is well
known to all members of the domain, every node inside the domain can decrypt the certificate signed by the TA.
Note that 7’s one-time TA-signed certificate cannot be tampered with as it is signed using the TA’s private key.

The next field is the certificate that i has obtained from the GA. The GA is co-located with the group leader and
hands out certificate to every group member when a leader is elected. When the leader departs with the GA, every
member uses the certificate of the last GA. This certificate is shorter-term and binds i’s identity with its dynamic
characteristics. This certificate can change from one election to next but remains constant during an election. In
order to prevent this certificate from being replayed, the GA also includes the time of signature in the certificate.
Since clocks of nodes are assumed to be synchronized, a recipient of the certificate can determine whether the
certificate is recent or old. Since the GA’s public key might not be known to the recipient, i includes the one time
certificate of GA signed by the 7A in the message. This field is followed by the values of the factors in X; that have
to be taken on trust.

Finally, to protect the message integrity, i computes a hash over the entire message using a well-known algorithm
such as MD5 [16]. The hash serves two purposes, viz. (i) protects the integrity of the message and (ii) reduces the
length of the message to be encrypted. In the absence of the hash, i will have to sign every field of the ELECTION
message with its private key. Encryption/Decryption using a public key/private key can be expensive and depends
on the length of the message being encrypted/decrypted. Since a hash is very easy (computationally) to compute
and potentially much smaller in length in comparison with the actual message itself, i encrypts only the hash with
its private key.

The SPLEA ELECTION message incorporates descendant information and has the following fields:

e /’s identity

e current time

12

e round number
o Krali,x1,xo,...,Tm ;)
o Kaa(iZm/4+1,Tm/+2, - - ., Ty cUrrent time)
o Kra(GAx1,x9,..., Ty Paa)
® Tinil,..., Ty
e For each node ¢ in D; . :
— K(cparent(c),OK.d(parent(c),c) round number,current time)

- KTA(C,xl, Ly ooy Lyt ,Pc)

Ki (Hash)

Note that D; . denotes the list of descendants of node i as of round k. For every descendant in the list 1) ;, i
produces a certificate signed by the descendant. This certificate is signed by the issuer in its OK message. The
public key of the descendant is also included to allow i’s competitors verify that i is indeed an ancestor of that
descendant. The certificate also includes information about a parent’s distance to the child, d(p(c).c), for a child
c. Since a node i contains the certificate of each node in D), i’s distance to each of the nodes in D ;, can be
computed by i’s competitors. This information can be used to evaluate i’s regional density i.e. the ratio of number
of descendants of i to the average distance of i to any of its descendants. If a node i chooses node j as its parent,
then j adopts i and all of its descendants as its own descendants and adds each of those nodes to the list I} ;.. Thus

information about a node’s descendants gets aggregated and propagated up the hierarchy as rounds go by.

OK Message

An OK message is used by SEFA to accept the results of a round and to select its parent. The OK message has the
following fields:

e /’s identity

e current time

e round number

e identity of i’s parent

o Kra(i,x1,T9,..., Tms ;)

o K,(i,parent(i),round number,current time)

e K;(Hash)

A node i accepts a node as its parent, denoted by parent(i), by signing a certificate that binds its identity with

that of its parent. To prevent the certificate from being replayed, the time of signing the certificate is recorded. In

case exceptions occur at a later time, the round number field provides information about the round in which the

signature operation was carried out.

13

Parent Message

A PARENT message is used by both the SEFA and SPLEA algorithms and is issued by a node to its proposed
children (i.e. those that issued the OK message) that they have been assigned as its children. The PARENT message
has the following fields:

e /’s identity

current time

round number

a list of nodes

KTA(iywla L2y ey T/ JDZ)
K;(Hash)

Leader Message

After L rounds of election are over, the leader (under both SEFA and SPLEA) sends out a LEADER message to every
node in I;. The nodes in I; in turn forward the LEADER message to their immediate children and the process repeats
until all nodes in the hierarchy receive the LEADER message. The LEADER message has the following fields:

e /’s identity

e current time

o Kra(i,x1,Z2,...Tm ;)
e K;(Hash)

Each recipient of this message checks to see if the proclaiming leader is not already its immediate child and
broadcasts an exception if it is. Otherwise, it waits for a finite timer interval to see if any other node reports an
exception to the result of the election. If no exceptions are reported, then the originator of the LEADER message is

accepted by all other members of the group as the new leader.

Vote Message

A VOTE message is unique to SPLEA and used by a node to announce its “choice” of a leader other than itself.
Each vote is signed by the issuer. The choice of leader is indicated as j in the certificate. The VOTE message has the

following fields :

e /’s identity

current time

round number

KTA(Z’J/‘I? 1‘27 Tt 7$m’ ’-F)Z)

K;(ij,VOTE round number,current time)
K;(Hash)

14

The third argument in the certificate is used to indicate that it is the certificate used in the VOTE message and
hence different from the certificate used in the OK message. This is done in order to prevent a node from using
VOTE message certificates in an ELECTION message in future rounds. The remaining fields are for purposes of
message integrity and replay protection, as already discussed.

As with the VOTE message, the SPLEA OK message carries a certificate that makes the SPLEA OK message
different from the SEFA OK message. The certificate in a node i’s OK message also includes shortest path distance
of parent node j to itself, d(j,i). This information will be helpful in computation of regional density of its ancestors
in future rounds. The OK message in SPLEA is thus:

e /’s identity

e current time

e round number

e identity of i’s parent

o Kra(i,x1,T2,... Ty, P;)

e K,(i,j,OK d(j,i),round number,current time)
e K;(Hash)

Announce Message

This message is also unique to SPLEA . Node i announces the set of votes it has received in the ANNOUNCE message.
Each vote in the ANNOUNCE message is signed by the issuer (in its VOTE message) to prevent the announcing node
from spoofing the results and making it appear as if it has received more votes than were actually issued.

Let G, 1 (t) = {x| x sends a VOTE message in round k with i as its choice for its parent }. Node i’s ANNOUNCE

message has the following fields :

e /’s identity
e current time

e For each node c in G (1) :

1. K.(c,i,VOTE round number,current time)
2. Kralcxi,z9, ..., Tm,Pp)

L4 Kz (Hash)

15

4 Formal Specification and Verification of Properties

In Section 3, we described our secure election algorithms. An important contribution of this paper is to formally
specify and verify the correctness and security properties of our algorithms. We use linear time temporal logic as the
tool for doing so. The authors in [17] have used this tool in proving properties for their Leader Election algorithms.
[19] provides an extensive introduction to the use of temporal logic for communication protocols while [18] also
discusses the use of temporal logic.

A temporal formula consists of predicates, boolean operators (V, A, -,=, <=) and quantification operators
(V, J) and temporal operators. We make use of only 2 temporal operators for our proofs, viz. O which means ’at
every moment in the future’ and & which means at ’some moment in the future’. If ¢ is any arbitrary formula, then
Oy means ¢ is true at every moment in the future and &g means ¢ will be true at some moment in the future.

Before formally specifying the properties of our algorithm, we introduce some notation. Let [; be a predicate
that evaluates to true if i is a leader and SEN Dik(j, msg) be a predicate that evaluates to true if node i sends msg
to node j in round %.

The properties of our algorithms have been divided into two classes: correctness properties and security prop-
erties. Correctness properties include those properties that are required of a leader election algorithm regardless of
security aspects; the security properties specify the security claims that our algorithms satisfy.

The properties (C1-C3 and S1-S2) are proved in Appendix B and have been included for review. The correctness
properties C1,C2 and C3 hold for both algorithms. Although while proving them we have used some specific details
of SPLEA, the proof procedures will remain exactly the same and will differ only in minor details when applied to
SEFA. We leave it to the reader to see how proofs for P1,P2 and P3 can be applied to SEFA as well. The properties
C3 and S2 are specific to SEFA.

4.1 Correctness Properties

o The election algorithms elect a unique leader, under the assumption that the number of rounds (L) in the

election is at least as large as the diameter of the network.
Cl: (Vi L= (Vj:i#j:~Lj)) (1)

The proof shows that at the end of L rounds of election, if there is a surviving candidate then every other node

is in the failed state i.e., is no longer in contention to become the leader.

o The algorithms satisfy the liveness property that eventually there is a node i that is elected as the leader. More
formally, we prove that :
C2:O(Fi i Ly) 2)

The liveness property is proved by showing that at the end of L rounds of election there is at least one surviving

candidate and in conjunction with property C1, we infer that the algorithm indeed terminates electing a leader.

16

4.2

SEFA elects a node with the maximum CEA value as the leader. We show that :
C3: (Vi L= (Vj:i#j:u; > uy)) 3)

This property is proved using a very similar reasoning as for property C2. We show that at the end of L
rounds, the maximum CEA-value node is still in contention and every other node is in the failed state. Hence

the leader is indeed the maximum CEA-value node.

Security Properties

The algorithms that we propose are for secure election and the biggest challenge in designing such an algorithm is

to ensure a cheat-proof election mechanism across a distributed system of nodes. In this section, we state the various

security properties of our algorithms. Some of these properties are formally proved, while the others are obvious

(though no less important) and we state them for sake of completeness.

o The algorithms guarantee integrity of every message. This is facilitated by hashing the message contents and

signing the hash using the sender’s private key. This allows the recipient of the message to verify the signature
by using the sender’s public key which is also sent in the message. Hence if a malicious intervening node tries
to corrupt a message from some other node, it will be detected by the recipient. Also if the integrity of the
message is verified, then the source of the message is also verified. This is because only the source knows its

private key and hence the signature must have been generated by the source only and no one else.

o All messages in the algorithms are replay protected. In each message, the sender is required to include the

time when the message is originated. Since all nodes have synchronized clocks, a recipient of a message can

determine whether a message is recent or not.

The election algorithms are cheat-proof. We show that a node i that sends an OK message in any round k can
never get elected as the leader. This property means that our algorithms prevent nodes from cheating once

they lose in a round.
S1: (Vi,j, k : SEND;*(j,OK) = O-L;) 4)

This property is proved by showing that if a node that sent an OK message in a certain round &, but competes
in the Lth round and survives that round, its LEADER message will reach all nodes in the hierarchy including

its parent in round k, which will report an exception.

Moreover, in SPLEA, we make it compulsory for nodes to send an OK message when they encounter com-
petitors with higher number of votes. As described in Section 3, every node monitors its competitor closely

and reports exceptions as and when a malicious behavior is noticed.

Since there is no enforcement mechanism in SEFA for nodes to send OK messages, a malicious node might
not send an OK message even after encountering a node with higher CEA value. We show that if a node i
is not the maximum CEA-value node, then i cannot get elected as the leader even if i competes with higher

utility nodes and does not send OK messages. This forms the basis of a cheat-proof election in SEFA.

17

Message Network
Complexity | Bandwidth
Worst Case O(Ln) O(L’n)
Best Case O(n) O(n)
Fully Balanced O(mn) O(m?Rn)
Hierarchy

Table 1: Complexity analysis of the two algorithms

S2: (Vi,j,k :i#j: COMPETE(i, j, k) A (uj > u;) A ~SEND;(OK) = O-L;) (5)

This property is shown by proving that maximum CEA-value node, say w, will be a candidate in round L and
all nodes have to compete with one another in round L. Hence if the malicious node does not send an OK

message accepting w as its parent in round L, w will report an exception.

5 Complexity Analysis

In this section, we summarize our analysis of the two algorithms in various cases. In addition to message complexity,
we also study the network bandwidth consumed by various messages. The network bandwidth is measured as the
sum of number of hops over all messages in the entire election. Finally, we study signature and verification costs of
our algorithms.

Table 1 shows message complexity and network bandwidth consumed by the messages under various scenarios.
The complexity parameters are number of rounds of election (L), number of nodes in the hierarchy (n) and the
average number of neighbors of any node(R). Three different cases have been considered.

The worst case occurs when every node is L hops away from every other node. We would like to emphasize that
the worst case cannot occur and we are using this hypothetical situation only as an upper bound on the various costs
of our election algorithms. In this case, every node sends an ELECTION message in every round of the election
until round L - 1 but does not hear any one else’s ELECTION message. In round L, every node hears everyone else’s
ELECTION message. The best case is when every node is one hop away from every other node. Finally, a fully
balanced hierarchy is formed when every candidate adopts m - 1 children at every round of the election.

SEFA and SPLEA have the same message complexity, and the same network bandwidth requirements. Their
message complexity is dominated by the ELECTION messages in both algorithms and even though there is additional
messaging in SPLEA, they do not increasse the complexity. The constants subsumed within the O notation are,
however, larger for SPLEA than for SEFA.

The signature and verification costs of the two algorithms are shown in Table 2. The complexity parameters are 4,
the height of a node in the hierarchy, n, the number of nodes competing in the election and in case of a fully balanced
hierarchy, m, the number of children that every non-leaf node in the hierarchy has. The height is 1 for leaf nodes.

Interestingly, in a one hop network (that corresponds to best case in Table 1) every node must perform O(n)
verifications and O(1) signatures. The O(n) verification cost is as a result of competing with every other node.

Similarly in the case when every node is L hops away from every other node (which we refer to as L hop network for

18

SEFA SPLEA

Signature | Verification || Signature | Verification
Cost Cost Cost Cost
One Hop Network o(1) O(n) o(1) O(n)
L Hop Network O(L) O(n) O(L) O(n)
Fully Balanced O(h) O(m.h) O(h) o(m™)
Hierarchy

Table 2: Signature and Verification costs per node of the two algorithms

conciseness), every node has to perform O(n) verifications and O(L) digital signature operations. The table shows
the costs in various scenarios.

For a general fully balanced hierarchy, the higher the node is within the hierarchy, the greater is the cost incurred
by it due to signature generation and verification. It can be seen that the highest cost is always incurred by the leader.

In the case when & = log,, (n), it can be seen that signature cost is O(logn, (1)) and verification cost is O(n).

6 Conclusions and Future Work

In this paper, we have proposed two new algorithms for secure leader election in wireless ad hoc networks. SEFA
assumes that all elector-nodes share a single common evaluation algorithm that returns the same value at any elector-
node when applied to a given candidate-node. We showed that SEFA elects the leader with the maximum CEA value.
The Secure Preference-based Leader Election Algorithm (SPLEA) deals with the case that each elector node has an
individual utility function that determines its preference for a given candidate-node. We formally specified and
proved the correctness and security properties of SEFA and SPLEA using temporal logic. Their message complexity
and signature/verification costs was evaluated.

We note that while SEFA elects the leader with the largest CEA value (and in that sense might be termed an
“optimal” leader), SPLEA has no well-defined system-wide objective function, and hence the issue of optimality is
itself not meaningful. The SPLEA voting process serves to aggregate the individual preferences of elector nodes
(as expressed through their individual utility functions) into a system-wide decision for the elected leader. The
extent to which the elected leader is “good” (from a performance standpoint) or close to optimal (according to some
meaningful system-wide objective function) remains an open question for future research.

Many implementation issues must also be addressed before these algorithms can be used in practice. The algo-
rithms we have described are synchronized and proceed in a lockstep fashion. We plan to investigate the possibility
of making the election process asynchronous. Nodes are also assumed to not fail (or leave the network) during the

election process. Fault tolerance is another important issue that we will address in our future work.

References

[1] G. Tel. Introduction to Distributed Algorithms. Second Edition, Cambridge University Press.

[2] C. Wong, M. Gouda and S. Lam. Secure Group Communication using Key Graphs. In Proceedings of ACM SIGCOMM
’98, September 1998.

[3] B. DeCleene et al. Secure Group Communication for Wireless Networks. To appear in Proceedings of MILCOM 2001,
VA, October 2001.

19

[4]
[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

A

A1

H. Harney and E. Harder. Logical Key Hierarchy Protocol. Internet draft, draft-harney-sparta-lkhp-sec00.txt, March 1999.

N. Malpani, J. Welch and N. Vaidya. Leader Election Algorithms for Mobile Ad Hoc Networks. Fourth International
Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, Boston, MA, August 2000.

K. Hatzis, G. Pentaris, P. Spirakis, V. Tampakas and R. Tan. Fundamental Control Algorithms in Mobile Networks. In
Proceedings of 11th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 251-260, 1999.

D. Estrin,R. Govindan,J. Heidemann and S. Kumar. Next Century Challenges : Scalable Coordination in Sensor Networks.
In Proceedings of ACM MobiComm,August 1999.

E. Royer and C. Perkins. Multicast Operations of the Ad Hoc On-Demand Distance Vector Routing Protocol. In Proceed-
ings of Fifth Annual ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM), pages
207-218, August 15-20, 1999.

A. Rosenstein, J. Li and S. Tong. MASH : The Multicasting Archie Server Hierarchy. ACM Computer Communication
Review, 27(3), July 1997.

D. Thaler and C. Ravishankar. Distributed top-down hierarchy construction. In Proceedings of the IEEE INFOCOMM,
1998.

D. Coore, R. Nagpal and R. Weiss. Paradigms for Structure in an Amorphous Computer. Technical Report 1614, Mas-
sachussetts Institute of Technology Artificial Intelligence Laboratory, October 1997.

P. Tsuchiya. The Landmark Hierarchy : A new hierarchy for routing in very large networks. In Proceedings of the ACM
SIGCOMM, 1988.

W. Heinzelman,A. Chandrakasan and H. Balakrishnan. Energy-Efficient Communication Protocol for Wireless Microsen-
sor Networks. In Proceedings of Hawaiian International Conference on Systems Science, January 2000.

V. Park and M. Corson. A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks. In Proceedings
of IEEE INFOCOM, April 7-11,1997.

E. Gafni and D. Bertsekas. Distributed Algorithms for generating loop-free routes in networks with frequently changing
topology. IEEE Transactions on Communications, C-29(1):11-18,1981.

R. Rivest. The MD5 Message Digest Algorithm. RFC 1320, April 1992.

J. Brunekreef, J. Katoen, R. Koymans and S. Mauw. Design and Analysis of Leader Election Protocols in Broadcast
Networks. Distributed Computing, vol. 9 no. 4, pages 157-171, 1996.

Z.Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems - Specification. Springer-Verlag, New
York,1992.

R. Gotzhein. Temporal logic and its applications - a tutorial. Computer Networks and ISDN systems, 24:203-218, 1992.
APPENDIX

Detailed Algorithm (SPLEA)

Table of Variables and functions

1. Variables of LEADER_ELECTION Algorithm of Node i :

20

Variable Name

Meaning

Domain of Values

RoundNumber .k
Winner
T.,T,,T,,T,, Ty, T;
AB,CD.E
Parent
Event
M _MessageQueue
Vik

R;

D
I;

current round number of election
true if i is still a candidate
Timer Variables
constants
parent of node i
event that caused the interrupt
array of messages of type M
list of nodes each of which is at a distance
of k hops or less from i
list of nodes from which i received
ELECTION message in round k
list of descendants of i as of round &
list of immediate children of i

12,....L
True False
R
R
character string

2. Functions of LEADER_ELECTION Algorithm of Node i :

Function Name

Meaning

StartTimer(7T")
ExpireTimer(T")
send(jm)
recv(m)
check(m)

Top(ELECTION MessageQueue)

Majority(VOTE_MessageQueue)

sets timer value to 7" and starts timer
returns true if timer 7 expires
i sends message m to j
i receives a message m
check the validity and authenticity of message m
returns 1 if valid else returns O
verify signatures of all the messages in
ELECTION MessageQueue and return a VOTE message
verify signatures of all the messages in
VOTE_ MessageQueue and return the parent
of node i

RoundNumber = 1;
Winner = True;

A.2 Pseudo Code for SPLEA
LEADER _ELECTION() at node i :

while (RoundNumber < L) do

if (Winner = True) then
k = RoundNumber;

construct ELECTION packet for the current round;

send(V; x ELECTION);,

T.=Ak;

StartTimer(7T},);

while (1) do
switch(Event)

case recV(ELECTION) : add ELECTION message to the ELECTION_MessageQueue
add the originator of ELECTION message to I; i,

case ExpireTimer(7;) : exit out of while loop;

21

endswitch
endwhile
VOTE = Top(ELECTION MessageQueue);
send(R; 1,,VOTE);
T, =Bk,
StartTimer(7});
while (1) do
switch(Event)
case recv(VOTFE) : add VOT E message to the VOTE_MessageQueue;
case ExpireTimer(7}) : exit out of the while loop
endswitch
endwhile
Broadcast an exception if a node j € R; ;, did not send a VOTE message
send(R?; , ANNOUNCE);,
T, =Ck;
StartTimer('T},);
while (1) do
switch(Event)
case recV(ANNOUNCE) : add ANNOUNCE message to the ANNOUNCE_MessageQueue
case ExpireTimer(7;) : exit out of while loop;
endswitch
endwhile
Parent = Majority(VOTE_MessageQueue);
if (Parent # i) then
Winner = False;
send(R; 1, ,OK);
endif
T,=Dk;
StartTimer(T},);
while (1) do
switch(Event)
case recv(OK) : add OK message to the OK_MessageQueue;
if originator chooses i as its parent then
add the originator of OK message to I;
add the originator of O K message and its descendants to L, ;;

endif
case ExpireTimer(7}) : exit out of the while loop
endswitch
endwhile

Broadcast an exception if a node j € R; j, with fewer votes than i did not send an OK message.
if (not empty(OK_MessageQueue)) then

send(all nodes that accepted i as parent, PARENT);
endif
T, =Ek;
StartTimer(1});
while (1) do

switch(Event)

case recV(PARENT) : check(PARENT);

22

case ExpireTimer(7}) : exit out of the while loop
endswitch
endwhile
RoundNumber = RoundNumber + 1;
else
T — (L(L+1)—k(k+1))2.(A+B+C+D+E)
StartTimer('I});
while (1) do
switch(Event)
case recv(LEADER) : exit out of the while loop;
case ExpireTimer(7;) : exit out of while loop;
endswitch
endwhile
endif
endwhile
if (Winner == True) then
send(l; ,LEADER);
else
Broadcast exception if LEADER not received
if (check(LEADER) == 1)
forward LEADER to every node in [;
else broadcast exception;
endif
endif

B Proofs of Properties

We first introduce some notations and terminology that we will be using while verifying the properties of our algo-

rithm.

1. d(i,7) : shortest path distance from i to j

2. Vi : set of all nodes that are at a distance of k or less from node i

3. C;, : apredicate that evaluates to true if node i is a candidate at the beginning of round .
4. L; : a predicate that evaluates to true if node i is a leader.

5. p(i) : parent of node i in some round that i that participated in.

6. pi(i) : parent of node i in round k.

7. I; ={jlp(j) = i} is the set of i’s immediate children in the hierarchy.

23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. D; . : set of descendants of node i at the beginning of round & and is defined as follows :

Di = (Vj € Vig—15t-ppepp—11(f) =i :(JDjr-1 (6)

Dia(t) = {jlp1(j) =i} (7

. N*(i) : number of votes that node i received in round .

u; . CEA-value of node i.

S, = {i|C; 1 }. In other words, Sy, is the set of surviving candidates at the beginning of round .

DEADC(i) : a predicate that evaluates to true if node i is dead.

SEND;(j,msg) : a predicate that evaluates to true if node i sends msg to node j.

SEND;* (7,msg) : a predicate that evaluates to true if node i sends msg to node j in round k.

RCYV;(j,msg) : a predicate that evaluates to true if node i receives msg from node j.

RCV;* (7,msg) : a predicate that evaluates to true if node i receives msg from node j in round k.

COMPETE(i,j,k) : apredicate that is defined as follows :

(Vi,j,k i # j: CipNCjuANCOMPETE(i, j, k) <~ RCVi*(j, ELECTION)/\RCij(i,ELECTION))
(®)

TIMEOUT(T) : evaluates to true if timer T expires in round k.

EXCEPTION (i, k) : evaluates to true if node i broadcasts an exception.

OK(i,l) : node i chooses node [as its parent.

LEADER(m) : LEADER message originated by node m.

We now formally define some relevant assumptions.

Assumption 5.1

(Vi :: Cjp = O(~DEAD(3)))

Assumption 5.2

Initially (V% :: Cj 1) holds true.

Assumption 5.3

(Vi,j:i#j:0<d(i,j) <L)

Assumption 5.4

For the sake of simplicity of verification and without compromising on generality we assume that:

24

In SPLEA : (Vi,j : i # j : N¥(i) # N*(i))
In SEFA : (Vi,j i # J : u; # uj)
Assumption 5.5
V(1) is finite.
We restate the properties we are about to prove :
1.Cl: (Vi Ly = (Vj i #j:Lj))
2. C2: (T Ly)
3.S1:(Vi,j,k:i#j: SEND¥(j,0K) = (O-L;))
4. C3: For SEFA, (Vi :: Ly = (Vj 1 i # j : u; > uy))
5. S2: For SEFA, (Vi, j,k : i # j : COMPETE(i,j,k) A (uj > u;)) N ~SEND;(OK) = O-L;)
Lemma 5.1
(V'L,],k‘ : (Z ?é]) /\Zvj € Sk-l—l : d(%]) > ka(]alL) > k)
Stated in words, this lemma means that for any pair (i,j) of nodes in S, , either d(i,j) > k or d(j,i) > k. This result
will be used in proving property C1.
Proof : The proof is by induction on the number of rounds k.
Let Qg : (Vi,j,k : (8 #) Ay j € Spar = dli,5) > k V d(j.i) > k)
1. Base Case : k= 1.
S1 = {ilCia}
Since (Vi,7 : 1 # j : d(i,7) > 0), Qg holds for k = 1.
Assume @y, holds for k =m,ie.,(Vi,j,m: (i #j) Ni,j € Sy : d(i,5) > (m —1)Vd(j,i) > (m—1))
2. Inductive step : We shall now prove the following :
Qmt1: (Vi j,m 2 (i # §) Ni,j € Smy 1 d(,5) >mV d(j,i) >m)

From the protocol description of SPLEA we have the following properties :

(Vi,j k=i # jAi,j €Sk : RCVi¥(j, ELECTION) <= d(j,i) < k) C))

A candidate i in round k receives an ELECTION message from another candidate j if and only if d(j,7) < k.

(Vi, g,k k" (i #5) A (i,5 € Sk) AN(K' > k) : COMPETE(i,j, k) =i ¢ SV j & Skr) (10)

The statement (10) indicates that for any pair of nodes (i) for which COM PETE(i, j, k) holds true, at the
end of round k at least one of the 2 nodes must go to the failed state i.e. at least one of the two nodes can no

longer be a candidate at the end of the round.

25

Restating (8),

(Vi,j, k =i # jNi,j € Sy : COMPETE(i, j,k) <= (RCVi*(j, ELECTION)ARCV;* (i, ELECTION)))
(11)

A candidate i competes with another candidate j in round & if and only if each receives the other’s ELECTION

message in that round.

The contrapositive of statement (10) can be written as :
Vi, g,k k' = (i #5) AN (K' > k) A (i,5 € Spr) : "COMPETE(i, j,k)) (12)
Substituting (9) and (11) into (12) we get,

(Vi7jvkvkl : (Z # .7) N (kl < k) N (27] € Sk) : _'(d(.%Z) < kl)) \% _'(d(zvj) < k,)) (13)

(Vi, g, kK 2 (i £ §) AN(K' < k) A (3,7) € Sk : (d(4,7) > k') V (d(i,5) > K')) (14)

Substituting k =m + 1 in (14) we get :

(Vi,j,m, k" : (i) A(K' <m+1)A (5,5 € Smr1) : (d(5,7) > k') Vv (d(3,5) > k') (15)

This proves Lemma 5.1.

We shall now prove the following lemma :
Lemma 5.2
~Vi,j: (@ #j)N(i,j € SL): COMPETE(i,j,L))
Stated in words, every node i that is a candidate at the beginning of round L will compete with every other
candidate j at the beginning of round L.
Proof: Lemma 5.1 states that :

(Vi g, k= (i #) A (0,5 € Seqr) 2 d(iy 7) > kv d(j,4) > k) (16)

Substituting k=L - 1 in (16) gives :

(Vi,j: (0 #4) A (6,5 € Sp) = d(i,j) > L —1Vvd(j,i) > L —1) (17

Substituting Assumption 5.3 in (17) we get:
(Vi,j: (i #) A (6,5 € Sc) = (d(i, j) = LAd(j,1) < L)V (d(j, i) = LAd(,j) < L)) (18)

26

Substituting (9) in (18) we get,

(Vi, 5 : (i # §) A (i,§ € Sg) : ROV;*(i, ELECTION)) (19)
Substituting (11) into (19) we get,

(Vi,j: (i #j) A(i,j € Sp): COMPETE(i, j, L)) (20)

This completes the proof of Lemma 5.2 .

Since a node can either be in the candidate state or in the failed state, we have :

(Vj:5 & SL:~Cjr41) 21)

We can now complete the proof of property C1.

From (10) we get,

(Vi,k i G = (V52 (i # 5) N(COMPETE(i, j,k)) : j & S+1)) (22)

Substituting (20) in (22) we get,

(Vi Ciry1= (Vj: (G #J) AN €SL): Cjr41)) (23)

This predicate states that if there is a node i that is a candidate at the beginning of round L + 1 then every other
node j that is in 57, goes to the failed state.
Predicate (21) states that every node j that is not in Sz, goes to the failed state. Substituting (21) in (23) we get,

(Vi Ly = (Vj:i#j:Lj)) (24)
This states that every node except the leader is in the failed state and completes the proof of property C1.

We now prove that our election algorithm SPLEA satisfies the liveness property. More formally :
C2:O(Fi: Ly)
Proof : Restating the definition of S,

Sk = {ilCix} (25)

Stated in words, Sy, is the set of surviving candidates at the beginning of round &.
Now Sy, is a finite set and must contain at least a candidate j which received maximum number of votes of all

candidates in round k - 1.

27

S, will contain at least the node j such that (Vi : (i # j) A (4,5 € Sp_1) : N¥71(4) > N¥71(4)), since node j

could not have sent an OK message to any other node. Hence,
(VE =2 |Sk| > 1) (26)
Substituting k=L + 1 in (26), we get

|Sp4+1] > 1 27)

Statement (27) indicates that there is at least one surviving candidate at the end of round L. We have already
proved (24) which states that if there exists a surviving candidate at the end of round L, then every other node must
be in the failed state.

From (27) and (24), we can infer that,

time and Lth round results in a leader being elected. This proves the liveness property C2.

Sr+1| = 1 and contains the leader. Every round lasts a finite amount of

We shall now proceed to prove the security properties of SPLEA.
S1:(Vi,j,k,l:i#1: SEND*(j,0K(i,1)) = (O-L;))
Proof : ;From the protocol description, we have
(Fi,j ko 02 (i #5) A (i # 1) - SEND;*(j, 0K (i,1)) = pi(i) = 1) (28)

We shall prove this result by assuming that there is a malicious node m, that continues to participate in the election
process even though it has sent an OK message in an earlier round. Moreover, we also assume that m causes a loop

in ancestor/descendant relationship. More formally :

(Elm7i7j7k7klak” : (IL 75.7 7é m) A (k < kl < k”) : (pk(m) = IL) A (Z € Dj,k’) A (pk”(]) = m)) (29)

If m happens to survive round L, then according to the protocol, before getting elected as the leader it will have to

send a LEADER message to all its immediate children in ,,.
(Fm, i, g, kK E" (i # G #m)AN(E<E <E") :ipp(m)=iNi€Djp Appr(j) =mACppy1 =
Vi:(l#m)AN(l€ly): SEND,(l,LEADER(m))) (30)

The protocol description also states that every node upon receiving a LEADER message checks to see if the orig-
inator of LEADER message is not already its immediate child and forwards the LEADER message to its immediate

children only if it is not the case.
(Vi, g, k,m 210 # j #m: (p(i) = j) A RCVi(j, LEADER(m)) A =(p(m) =1) =

(Vl:(I#i)A(l€L): SEND;(I, LEADER(m))) 31)

28

We have assumed in our network model in Section 3.1 that packets are delivered reliably to their destination.
(Vi,j,msg :i # j : SEND;(j,msg) <= RCVj(i,msg)) (32)

Substituting (32) in (31) we get,
(Vi,j, kym 20 # j # m:pe(i) = j A RCVi(j, LEADER(m)) A (=(p(m) = i)) =
(Vl:(I#i)N(€I): RCV)(i,LEADER(m)))) (33)
Recursive application of (33) yields,
(Viyj,kym :i # j # m < pi(i) = j A RCV(j, LEADER(m)) A (~(p(m) = i) =
(VI,k": (L # 1) A (L € Dige) A(K' < k) : RCVi(p(l), LEADER(m)))) (34)
Substituting (34) in (30)
(Am, i, 5,k K (i £ j#m)AN (k<K <E"):py(m)=iNie€ Djp Appr(j) =mA
Cuni+1 = ROVi(p(i), LEADER(m))) (35)
@m, i g, kK (£ #m) A(k <K <K'):pp(m) =i Ai € Dy App(j) = mA
Cm,i+1 = EXCEPTION(3))) (36)

This statement indicates that a node i upon seeing a LEADER message from one of its immediate children will
immediately broadcast an exception and will thus prevent that node from taking over as the leader. This shows that

a node that has already sent an OK message will be unsuccessful in becoming the leader which proves Property S1.

(Vi, k3j : (i # §) A (6,5 € Sk_1) : TIMEOUT(T,) ACOMPETE(, j,k) A~RCV;(i, VOTE)) =
EXCEPTION (j, k)) 37)

This property means that every node that competes with at least one other node in a round will be forced to send
the VOTE message in that round.

(Vi, k35 : (i #) A (i,j € Sp_1) : TIMEOUT(T,) N\COMPETE(i, j, k) A N¥(j) > N*(3)) =

EXCEPTION(j,k)) (38)

This property ensures that for any pair (i,j) of nodes that compete with each other in a round, if one of the nodes
finds that it has more votes than the other, then it will make sure that the node with fewer votes sends an OK message.

Properties S1, (37) and (38) are the core security properties of SPLEA.

29

We now prove property C3 associated with SEFA. The proof of property C3 is fairly simple.

Sk = {ilCix} (39)

S}, represents the set of surviving nodes at the beginning of round & i.e. nodes which have not sent an OK message
to any other node until the end of round k - 1. This set is finite and therefore must contain the node, say w, with
maximum leadership-value at the end of every round. This is because w could not have sent an OK message to a
node with a lower leadership-value. Thus w € Sy, must hold true.

The above observations can be stated more formally as :

(Fw:we Spp1: (Vi (1 # w) @ uy > u4)) (40)

Hence,
|Sp+1] > 1 (41)

Statement (41) tells that S7,4 contains at least the node with maximum leadership-value. We have already proved
(24) which states that if there exists a surviving candidate at the end of round L, then every other node must be in the
failed state.

From (41) and (24), we can infer that, |S, 41| = 1 and contains the node w with maximum leadership-value.

Thus SEFA elects a node with maximum leadership-value as the leader. This proves property C3.

We turn our attention to proving an important security property offered by SEFA, property S2. This property can
be proved using previously proved results.
(40) states that
(Fw:w e Sp: (Vi: (i #w):uy > u;)) (42)

Since w is the maximum utility node, w could not have sent an OK message to any other node. Lemma 5.2 states
that all candidates in round L compete with each other.

Substituting Lemma 5.2 in (43), we get
(Fw:we Sy :(Vi:(i € SL)N (G #w): (uy >u;)) \COMPETE(i,w, L))) (43)

From the protocol description, all candidates in round L, which follow the protocol, will elect w as their parent
and will send an OK message to w. This is because every node will hear w’s ELECTION message and w is the

maximum CEA value node.

(FGw:weSp: (Vi: (i €Sp)A(F#w): (uy >ui) Apr(i) = w)) (44)

But if a malicious node m, participates in round L and does not send an OK message to w, then w will report an

exception.

30

(3m :m #w: COMPETE(m,w,L) A ~SEND,," (w, 0K (w, L)) = EXCEPTION (w, L)) (45)

This shows that only the maximum CEA value node can become the leader and no one else. Thus a malicious
node could have gotten away by not sending an OK message until round L, but it will be forced to do so in the final

round. This proves property S2.

31

