
TranSquid: Transcoding and Caching Proxy for Heterogenous E-Commerce
Environments

Anuj Maheshwari, Aashish Sharma, Krithi Ramamritham
Center for Intelligent Internet Research

Department of Computer Science and Engineering.
Indian Institute of Technology Bombay

Mumbai, India 400076
anuj@iitbombay.org, ash@ee.iitb.ac.in

krithi@cse.iitb.ac.in

Prashant Shenoy
University of Massachusetts

Amherst, MA 01003
shenoy@cs.umass.edu

Abstract

With the advent of the Wireless Internet, the client space
has become heterogeneous in terms of device capabilities.
To cater to the needs of these devices in E-Commerce appli-
cations, smart intermediateries have been developed to in-
crease the user satisfaction by hiding the inherent weakness
of some of the small although handy devices like the PDAs
and Web-tops. Transcoding has been a popular technique
to render data for small devices that have smaller displays,
and lesser colour capabilities. But transcoding comes at the
cost of caching at the Intermediary.
In this paper, we describe a transcoding and caching

proxy that caches objects for heterogeneous client spaces
by maintaining separate caches for different categories of
clients (PC, PDAs, Mobiles, etc.) and transcoding the lower
fidelity versions from the high fidelity variants at the prox-
ies as opposed to fetching the transcoded variants from the
server. To achieve this, the proxy keeps the server-directed
transcoding information (if provided by the host server) as
part of meta data attached to the cached objects and uses
this information to convert its fidelity and modes or uses
heuristics. Through such an intermediary architecture that
serves a heterogeneous client base, we exploit the avaibility
of cached high-fidelity variants of web resources (brought
in to serve the requirements of high-end devices like PC’s)
to serve low end devices, and thereby decrease latency and
bandwidth.

1. Introduction

With the everyday computer user adopting the Internet,
the opportunity to communicate and interact for business
and personal use has exploded to phenomenal levels. As

traditional business takes its steps into the electronic en-
vironment, the rate of growth of the e-commerce and m-
commerce space has been rapid. The development has gone
a step further with the advent of pervasive devices, such as
cell phones and personal digital assistants (PDA’s). All this
has led to a greater potential to do business and to share
ideas.
As the figures state, the current mobile subscriptions

stand at 170 million. They are forecast to exceed one bil-
lion by 2003. According to a study published by Strategy
Analytics [?] within its strategic advisory service, Wireless
Internet Applications, more than 1.5 billion PDAs, handsets
and Internet appliances are to be equipped with the wireless
capabilities the end of 2004. In money terms, the global mo-
bile commerce market will be worth 200 billion dollars by
then and 130 million customers will be generating almost
14 billion transactions per annum. Taking a look at the mo-
bile devices we can expect 70 percent of the new cellular
phones and 80 percent of all the new PDAs to have some
form of access to the web and further expect 63 percent of
the transactions to be generated by mobile devices [?].
All the above is based on the hypothesis that mobile

phones and small handheld devices would be able to pro-
vide the quality of service and features desired by a com-
mon user to carry out day-to-day business activities. An en-
abling and essential feature for the same is the ease to access
the Internet at a reasonable user satisfaction 1level. But then
one needs to understand that there are several challenges in
making mobility a widespread reality. Many problems like
lower bandwidth, higher error rates, frequent disconnec-
tions, smaller displays are common across mobile phones
and PDAs. Another important issue here is that of hetero-
geneous client space.

1User satisfaction is the perceived experience of a typical user during
Internet surfing.

Heterogeneous client space exists when data is avail-
able to users across a growing number of destinations -
laptops, desktops, kiosks, automobile browsers, cellular
phones, pagers, pocket PCs, Palm OS devices and other
handheld devices. Current trends suggest that the evolu-
tion of the Internet is towards more and more heterogene-
ity. In heterogeneous client environments, each destination
brings its own unique requirements. Devices present dif-
ferent graphical, bandwidth and display requirements, and
may support a variety of data formats (e.g. XML, WML,
cHTML, SVG). They have different processing capabili-
ties and constantly evolving standards. Such a heteroge-
neous client environment is very distinct from the prevailing
homogeneous client environments in which the only client
type is a personal computer. Every response in a heteroge-
neous environment is not only a function of the URL but
also depends significantly on the kind of the device mak-
ing the request. This additional constraint in such envi-
ronments forces a rethink of certain prevalent technologies,
which provided performance benefits in homogeneous en-
vironments completely useless. One such technology is the
caching of web objects.

There is no doubt that caching has increased user satis-
faction tremendously by serving web objects locally from
a proxy that is near the client. We believe, caching can
also provide similar benefits in heterogeneous client envi-
ronments though this requires additional features at the in-
termediary and standard protocols for the end user to com-
municate. One of the fundamental problems that appear in
enabling caching for heterogeneous environments is storing
of multiple variants of the same object generated because of
the transcoding operation at the server side or at an interme-
diary before the caching server. Presently, all transcoding
engines mark transcoded content as un-cacheable. We be-
lieve this is unnecessary and leads to wastage of bandwidth
and increases latency in a response that needs transcoded
data since the content now travels across the Internet when
it could very well be served from a location near the client.

We present a novel caching and transcoding system
called TransSquid that is an extensible and intelligent
intermediary for the heterogeneous client environments.
TransSquid is a modular framework that enables caching in
heterogeneous environments by maintaining a multi-level
cache and linking it with the transcoder.

This paper is structured as follows - we first present
our technique and then discuss its implementation in detail.
Then, we look at related techniques that help in enhancing
the user satisfaction through mobile devices like PDA’s and
mobile phones and compare them with our work. We end
with a discussion on the open issues and also present the
scope of TransSquid.

2. Caching in heterogeneous client environ-
ments
To place things in perspective, we first discuss caching

technology, as it exists today. Cache technology provides
for the three primary characteristics - scalability, availability
and responsiveness. The fundamental principle of a cache is
to provide frequently requested content locally and reduce
the latency for the request to be serviced.
With the advent and the widespread usage of the Internet,

caches have been used to store web objects. They could be
deployed at the end point or as an intermediary between the
client and the server. The essential idea is still the same, to
provide faster access to content. On the whole, all caching
technologies, whether at the end point or at an intermediate
location revolve around reducing latency by avoiding slow
links between client and origin server. They try to make
up for slow connections and network congestion. For ISPs
and Content Providers, caching further reduces the over-
all traffic on the networks and allows them to offer high-
performance distribution at low cost.
For a typical web request, caching functionality is em-

bedded into the HTTP protocol. A HTTP [?] transaction
beginswhen the client sends a request with the URL, using a
series of HTTP header requests. This request is triggered by
an intermediary caching proxy that checks for the presence
of the requested object in the local cache. If the object is
present in the cache, the proxywould append an if-modified-
since request header with the request. The server responds
to the typical request by first sending HTTP response head-
ers that contains information about the requested content eg.
date, content type, last modied, and content length. In
case a if-modified-since request header is present in the re-
quest, the server simply sends a ”304 Not Modified”
reply if the object at the cache is the most recent version
else, the client has to download the web object from the end
server. When the client request is furnished from the cache,
it is termed as a HIT. If the cache does not have the latest
version of the requested object and the object is got from the
end server, it is termed as a MISS. All caching algorithms
try to maximize the probablity of a HIT given the limited
storage space available with the cache.
As discussed earlier, the constraints in a heterogeneous

environment are very different from that of the homoge-
neous environment. In the next couple of paragraphs, we
shall discuss in more detail, the issues and imperatives in
such environments from the angle of caching.
Transcoding and content negotiation lead to multiple

variants of a resource or a web object that differ in modality
and fidelity 2. For example, a typical PDA client would be

2A media resource can be translated to different modalities, such as text
to audio, or video to images. Where as different versions within the same
modality, occurring for example due to, image compressions, text summa-
rizations and video abstractions are the fidelity variants of a resource.

satisfied with a lesser fidelity variant than the variant for the
same resource for a Workstation client that would demand
rich features.

Table 1. Client Capabilities
Client Type Bandwidth Display Size Color Device Storage

PDA (high-end) 14.4 Kbps 320x200 8-bit color 16 Mb
Color PC 56 Kbps 1024x768 24-bit color 10 Gb

Work-Station 10 Mbps 1280x1024 24-bit color 20 Gb
PDA (low-end) 9.6 Kbps 320x200 Greyscale 8 Mb

WAP-enabled Mobile Phone 20 bps 132x176 b/w 2 Mb

Essential requirements for intermediaries, especially
caching proxies in such environments are, recognition and
persistence of the different variants of the same resource.
For the former, standards can help in the identification and
resolution of variants through attached headers. It is the per-
sistence of multiple variants of the same resource that would
require intelligent caches that have a mechanism to catego-
rize them according to one or a set of parameters (namely
fidelity, requesting client, content-type) and store them ac-
cordingly in a way that makes retrieval fast and simple. This
makes the design of such a cache both interesting and chal-
lenging.
For the identification of the client type in an heteroge-

neous environment, it is imperative for the intermediary
proxy and the end server to understand the Client Capabil-
ities and Preference Profiles (CC/PP) [?]. CC/PP is a col-
lection of the capabilities and preferences associated with
user and the agents used by the user to access the WWW.
For an intermediary caching proxy, understanding CC/PP
would help it in the classification of clients so that variants
of the same resource could be appropriately made available
to them. The service and the content provided by a caching
proxy would depend entirely on how well the proxy can un-
derstand the requirements of a client and thereby, on it abil-
ity to deliver the closest possible variant available. CC/PP,
thus gives a standard for such communication.
Intelligent caching proxies in a heterogeneous client en-

vironment could have the functionality to exploit the het-
erogeneity through the conversion of high fidelity variants
of a resource to low fidelity variant to serve clients at the
lower capacities. A typical example of this would be the
conversion of high fidelity JPEG image to a low fidelity GIF
image in reduced colour and half the dimensions to serve a
low resolution PDA client. This would imply that a higher
fidelity variant of a resource could be used to satisfy the
needs of clients that have lower capabilities, through local
transcoding of content at the caching proxy itself.
For this, a transcoding module that is tightly coupled

with the caching engine is needed at the intermediary. The
above discussion highlights the requirements for a caching

proxy in heterogenous client environments. To summarize,
a caching proxy can be designed to:

1. Recognize multiple variants of a resource and catego-
rize them in the cache accordingly.

2. Understand the Clients Capabilities and Preference
Profiles (CC/PP) to facilitate client recognition.

3. Manipulate fidelity or modality (or transcode) of vari-
ants whenever possible to provide better service.

3. TransSquid: Need for a Transcoding and
Caching proxy

Our novel technique is a multi-level caching solution
for the emerging heterogeneous client environments. The
TransSquid architecture is designed as a smart intermedi-
ary that can cache and transcode web objects in an environ-
ment where the client requests have to be serviced intelli-
gently according to the client capabilities. TransSquid tries
to solve the problem of caching in a heterogeneous client
environment by taking a client centric approach for catego-
rizing different variants and then storing them in a multi-
level cache on the basis of fidelity and the modality.
As can be seen in Table ??, there are an ever-increasing

myriad of devices for accessing the web. Given this, it
would not be sensible to provide for caches for each type
of device as the current base of these devices is high and is
increasing because of innovation and newer players. If one
cache were provided for each device and if a cached ob-
ject that serves a Windows CE based iPAQ, it would not be
able to support a Palm device, which could share the same
data given their capabilities. Separate caches for each de-
vice would lead to low and perhaps ineffective HIT rates
in the cache, which defeats the purpose of the cache itself.
TransSquid, therefore provides a limited level caching ar-
chitecture, by dividing the client space into a limited num-
ber of (say three) categories based on the capabilities. A
client device is a member of one and only one of the 3 cate-
gories depending on its capabilities like display size, colors,
storage and bandwidth of connection. All web objects ac-
cessed from a client device are stored in the cache that the
client has membership to.

The 3 major categories that we divide the client space
are:

1. High Capability Clients:
The clients that fall in this category are Personal Com-
puters, Work Stations and Laptop Computers. These
devices have large storage capacities (typically more
than 64 MB RAM and 10 GB or more disk space),
large screen size (640 x 480 pixels or above), multi-
media support, and good processing power. These de-
vices have functionality to view video, audio and high
resolution images. Content available on the Internet is
default for such kind of computing devices.

2. Medium Capability Clients:
Portable Computers like PDA’s and WebTops fall in
the category of Limited Capability clients. Typical ex-
amples of such devices are the Palm Pilots and iPAQ’s.
The demand for such portable and handy devices has
grown exponentially. These devices have smaller
screen size (typically 320 x 200), limited colors, lesser
processing power (100 Mhz) and are connected to the
Internet through slow wireless links. Some devices in
this category also have audio functionality.

3. Limited Capability Clients:
These are very low-end devices that have been used to
surf the internet only for score updates, news headlines
and other text-only or have very low graphics support.
Some models of mobile phones have come up with
larger screens, but inherently the data transfer to these
devices is very slow. SMS - a popular technique for
data transfer to mobile phones has a bandwidth of 20
bytes per second. Though with new Wireless Trans-
fer Protocol (WAP) and other efforts from the research
community this has improved, surfing using a the mo-
bile phone remains slow.

CC / PP

CC / PP

CC / PP

Server
Directed
Transcoding
Information

Host Server ClientsTRANS!SQUID

Cache

Trancoding Module

Policy Engine

Figure 1. Basic scenario for TransSquid

As can be seen, we take a middle path. We justify our
categorization into a limited sets by saying that broadly the
requirements of all clients in a particular category are the
same. Though, certain differences in capacities might exist,
we take a broader view for user satisfaction. The overall
picture is represented in Figure ??. Any necessary modifi-
cation could be done on the fly. Our experiments suggest
that PDA devices with Windows CE and the Palm OS (the
two major players in the small device OS market) give al-
most the same visibility and feel for content. Though dif-
ferent transcoding engines have proprietary techniques for
transcoding, we feel that the difference in the rendering for
these clients that are close to each other in CC/PP is not very
high, and hence the same cached object could provide the
neccesary level of user satisfaction.
If certain transcoding needs to be done on an object in a

cache to suit the requirements of a request made from the
client in the same category - it could be done on the fly
or at the client side, but the performance benefits provided
by giving a Cache HIT would outweigh the less optimal
solution in transcoding.
Intra-cache communication between the different levels

in TransSquid, allow the low end users to benefit from the
availability of high fidelity content. Our assumption is that
normally a high fidelity variant can be converted into a
lower fidelity variant and hence objects of a higher fidelity
cache can respond to a request for a lower fidelity cache
by local transcoding. This is broadly true for images and
HTML data whose fidelity can be changed by decreasing
resolution or by removing unnecessary information. We
term this as Partial HIT and discuss this concept in our pro-
ceeding discussion.

3.1 The Notion of Partial HIT

HIT andMISS are the two primary events that take place
when the client sends a request for a object to the network.
Depending on attributes like if-modified-since and client
preferences, the object is either returned from the cache or
fetched from the server, as seen in our earlier discussion on
caches.
In the TransSquid architecture, when a client with low

fidelity requirements, makes a request, for which the cache
already contains a higher fidelity variant but no object in
the cache that the client maps to exactly, the cache returns
a Partial HIT. In such a case, the cache sends the object
to the transcoding module of the TransSquid architecture,
which uses the information available in the meta-data of
the Object, the Content Type and Characteristics of the Ob-
ject as its input to return a suitable variant of te resource.
If the meta-data contains the directive given by the host
server (based on information semantics) then this informa-
tion is used for transcoding. This is called Server Directed

Transcoding [?].
A Partial HIT is more time consuming than the HIT in

which the object is uploaded from the disk and served to
the client. The additional time is primarily consumed in -
firstly, trying to determine the fidelity and the modality of
the variant from the variant available in the cache, and sec-
ondly, time taken to perform the actual transcoding opera-
tion. This is still an order above the MISS case, in which the
object is fetched from the server, and possibly transcoded at
an intermediary as well. Figure ?? shows the relative times
taken by MISS, HIT and a Partial HIT.

MISS

PARTIAL HIT

HIT

}Transcoding

time

REQUEST

REPLY

CLIENT TRANS!SQUID SERVER

Figure 2. Concept of a Partial HIT
In this section, we saw the TransSquid architecture and

the problem that it tries to solve. Our solution is based on
certain assumptions that are based on our understanding of
the WWW and also the heuristic’s and rules of thumb avail-
able for the Internet in general. In the next section, we dis-
cuss the implementation of TransSquid.

4 Implementation of TransSquid

4.1 Architecture

The TransSquid is designed as a modular framework
where each module has a specific function. The major parts
of the TransSquid are:

1. Multi-level Caching Module

2. Transcoding Module

3. Client Side Module

4. Policy Engine
A schematic representation of the architecture is shown

in the Figure ??. The Multi-level Caching Module is struc-
tured in the form of three caches that store the web objects
according to the requesting client type. Each level functions
as a separate cache though they have a central persistence.
The cache replacement policy for the cache is FIFO. The

 C
LI

EN
T

 I
N

TE
R

FA
C

E

HASH 1

HASH 2

HASH 3

TRANSCODING MODULE

POLICY ENGINE

StoreMetaData

HttpReplyHeader

HttpReplyBody

StoreEntry

CACHE STORE

CACHE
LEVELS

Figure 3. Architecture of our transcoding
proxy.

cache replacement policy by itself in such architecture is an
interesting and unexplored issue for research.
These caches are hierarchical as the caches serving the

high capability clients can also serve requests from de-
vices like mobile phones and PDA’s after passing the ob-
jects through the transcoding module. As discussed later,
the transcoding module renders the objects for lower capa-
bility devices.
The Transcoding Module in our implementation is a

heuristic based web object processor, which recognizes two
types of objects - images and text. For images the transcod-
ing modules applies functions like reducing the dimensions,
decreasing the number of colors and decreasing the quality
factor of JPEG images. The function to be performed on
an image is chosen through the policy engine or by using
any server directed information appended with the web ob-
ject. For text, we apply simple techniques like removing
unwanted parts like advertisements, buttons and unneces-
sary information replacing them by simple text links.
The Policy Engine provides the Transcoding Module

with information about current modality and fidelity of a
web object and also suggests the function that should be
carried out to render it for other devices types. Again, this is
based on heuristics like content-type, size, and dimension,
in the case of images.
The Client Side Module is the interface between the

client and the proxy. It is used for intercepting the client
requests and mapping it to the correct cache. The client
side maintains a client specific state so that a client need
not advertise its capabilities and preferences (CC/PP) every
time it makes a request.

We use the Squid web proxy cache as the basic platform
for our implementation. Squid [?] an open-source, high-
speed, Internet proxy-caching program. We use Squid ver-
sion 2.3.STABLE 4 available freely on the Internet. Our
code is written in C language. We chose Squid as a platform
for its robustness and wide spread usage, and also because
hierarchies of squid proxies, arranged in complex relation-
ships are possible. Our code uses the caching functionality
of Squid for implementing the multi-level cache, though the
Transcoding Module and Policy Engine are written using
some of the commonly available libraries like lib-jpeg [?].
Our contribution thorugh the TransSquid is in the form

of:

Enhanced work-flow of a typical request.

Intelligent storage caches that can communicate with
each other.

Addition of a Transcoding Module and Policy Engine,
to show a proof of concept Caching and Transcoding
Intermediary.

Interaction between the caching related processes and
transcoding related functions for higher optimization.

4.2 Data Structures

This section describes some of the key data structures
that have been changed from existing Squid implementation
or that have been added.
The Data Structures for the caching functionality of the

TransSquid, not only need to keep typical caching informa-
tion but at each point of a typical request-response process,
they need to keep track of the requesting client type. This
information is required to base decisions like which cache
to retrieve or store.
In Squid, the request data and the reply data are linked to-

gether using the httpStateDatawhich contain the request t
data structure. In TransSquid, this data structure is modi-
fied to contain another attribute called device which con-
tains information on the type of client making the request.
Additionally, the StoreEntry that keeps information on the
storage of a web object in the cache, also has an attribute
called device. This attribute is used to keep track of which
cache (store table) should it be linked to as the Squid now
maintains three different caches. Internally the caches store
all the data in the same central cache.
Transcoding information is stored in a data structure

called transcode info and the Policy Engine usually gen-
erates it. The client registers its CC/PP to the proxy and
then uses a unique key throughwhich the TransSquid knows
its CC/PP for the later sessions. The Client Site maintains
persistence storage and has appropriate data structures for
keeping such state information.

4.3 Flow of Typical Request

The flow of a typical request in the Trans-Squid archi-
tecture is as follows.

1. A client connection is accepted by the client-side. The
HTTP request is parsed. The client device is identified
and the clientHttpRequest device flag is set.

2. The access controls are checked. The client-side builds
an ACL (Access Control Layer) state data structure
and registers a callback function for notification when
access control checking is completed.

3. After the access controls have been verified, the client-
side looks for the requested object in the cache. If
it is a cache HIT, then the client-side registers its in-
terest in the StoreEntry. Otherwise, Squid needs
to forward the request, perhaps with an If-Modified-
Since header. If a Partial HIT is encountered, Squid
calls the Transcode Module and transcodes the con-
tent of the HttpReply according to server directed
transcoding information information that is stored in
the Store Meta Data or according to its Policy En-
gine. Once this is done the request is forwarded to the
client, and the new variant of the StoreEntry is added
to the cache (hash table) of that client type, and the
client-side registers its interest in that StoreEntry.

4. The HTTP module first opens a connection to the ori-
gin server or cache peer. If there is no idle persistent
socket available, a new connection request is given to
the Network Communication module with a callback
function.

5. When a TCP connection has been established, HTTP
builds a request buffer and submits it for writing on the
socket. It then registers a read handler to receive and
process the HTTP reply.

6. As the reply is initially received, the HTTP reply head-
ers are parsed and placed into a reply data structure.
As reply data is read, it is appended to the StoreEn-
try. Every time data is appended to the StoreEntry,
the client-side is notified of the new data via a callback
function. Meta information from the server side like
the transcoding details for various devices is added to
the Store Meta Data. This information is used if a
client encounters a Partial HIT as discussed in step 3.

7. As the client-side is notified of new data, it copies the
data from the StoreEntry and submits it for writing on
the client socket.

8. As data is appended to the StoreEntry, and the
client(s) read it, the data may be submitted for writing
to disk.

Figure 4. An GIF image of size 3473 bytes
transcoded into a much smaller sized version
of 1473 bytes as represented below it.

9. When the HTTP module finishes reading the reply
from the upstream server, it marks the StoreEntry as
complete. The server socket is either closed or given
to the persistent connection pool for future use.

10. When the client-side has written all of the object data,
it unregisters itself from the StoreEntry. At the same
time it either waits for another request from the client,
or closes the client connection.

4.4 Transcoding Results

In TransSquid, various transcoding techniques are used
for changing the modality and fidelity of web objects. For
images, some of the transcoding techniques used are based
on:

Size : minify, subsample

Fidelity : JPEG Compress, GIF compress, reduce res-
olution

Colour Content : reduce colors, convert to grey, con-
vert to b/w

The transcoding for a web object is a function of its cur-
rent mode (HTML, jpeg/image, gif/image) and the current
client category it serves and that it would aspire to serve.
For images, it is further a heuristic function of its resolu-
tion, colour, size (in bytes), geometry and priority.
For our analysis, we work on a a total of 9336 images,

which comprise of 51.2 % GIF’s and rest JPEG’s. Further
we classify, images based on size, colour and purpose. Each

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 (%

)

Compression Ratio

Quality=25
Quality=50
Quality=75

Figure 5. Transcoding that converts GIF (size
5 kB) images to JPEG images.

such combination has a function preassigned that will be
used for conversion between category of clients.
A typical transcoding operation is shown in Figure ??.

The transcoding engine converts Original GIF image with
256 colours for PC user into a reduced colour (b/w) GIF
for a Palm V user. The simple function executed by the
transcoding module is the reduce color operation. The size
of the image reduces from 3473 bytes to 1473 bytes without
any significant compromise in quality.

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 (%

)

Compression Ratio

Quality=25
Quality=50
Quality=75

Figure 6. Transcoding that converts GIF (size
5 kB) images to JPEG images.

Some of the other operations like conversion of high
colour GIFs above 50 Kbytes into JPEG’s are based on
analysis done on our sample image collections. Figures 5-7

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 (%

)

Compression Ratio

All JPEG (Size 1/4)
All GIF (Size 1/9)

Figure 7. Transcoding that changes the Spa-
tial Geometry of the images.

show some of the statistical results obtained from transcod-
ing operation performed on images. Here, the resulting im-
age size as a percentage of original image size is plotted as
a cumulative distribution. We see in Figure ??, transcoding
from GIF to JPEG provides atleast 50% decrease in size,
for 90% of large images (above 50 Kbytes). This comes out
at hardly any difference in perceivable quality if the resul-
tant image is viewed through a limited capacity client. On
the other hand, the same function doesn’t work for GIF’s of
smaller size (below 5 Kbytes) as shown in Figure ??. Fig-
ure 7 illustrates that spatial geometry reduction leads to a
image size reduction both for GIF’s and JPEG’s.

5. Related work

The objective of this section is to compare our line of
thought and implementationwith other research efforts. Ex-
amples of commercial products and research prototypes in
this area include Spyglass [?], ProxiNet [?], Intel Quick-
Web [?], and IBM Transcoding Proxy [?]. These products
have a focus towards providing quality of service in het-
erogeneous client environments through transcoding. Our
approach on the other hand has been coupling caching and
transcoding to provide a enhanced service through which
the clients can reap the benefits of the heterogeneity and
also have faster access through caching of static content.
A line of thought that might be of some relevance here

is the Soft Caching Technique [?, ?, ?]. In Soft Caching,
proxies should be able to perform recoding of the images in
the cache so that lower resolution versions of the images can
be stored and made available to the clients. Here, the idea
is to provide a client with a lower resolution of image un-

til the client explicitly asks for a higher resolution. Hence,
if a client wants a high resolution image, it would have to
explicitly ask for it. If we interpolate this to heterogeneous
client environments, it could mean that every client gets the
lowest resolution variant of a image (assuming progressive
compression) until the client specifically asks for its high
resolution variant. The problem with this approach is that it
would be an additional burden on the user to keep request-
ing for higher resolution images until it becomes satisfied.
And besides, it would mean storing multiple variants of a
resource some of which might not be required by any de-
vice.
IBM Transcoding Proxywhich is a part of the IBMWeb-

Sphere EveryPlace Suite Version 1.1 [?] does caching for
transcoded contents by implementing a flat cache that stores
objects. Such a cache would have a low HIT rate since the
number of devices might be large in which case a HIT is
returned if the device requesting is an exact match to the
device that had earlier requested the object in the cache.
Significant recent work for development of e-commerce

over the heterogeneous client space has been done in the
personalization systems like the AvantGo Channels [?].
Another line of work has been in the field of providing
offline browsing support for mobile devices over wireless
channels. The Mowgli System [?] uses its own variant of
the HTTP protocol to communicate over wireless channels
to reduce data flow. All these and many more techniques
are being developed to increase the migration of a user to
using mobile clients like PDA’s, WebTops and Internet over
mobile phones.

5.1 End-To-End Vs. the Intermediary Approach

An interesting point of discussion in the context of het-
erogeneous client environments is the end-to-end approach
vs the intermediary- or proxy based approach. The end-to-
end argument suggests that all the manipulations of a web
object should be done at the end points of the network and
not at the intermediary level. On that other hand, the inter-
mediary based approach suggests the opposite.
The intermediary based approach has its own disadvan-

tages. Firstly, when an intermediary transcodes data it com-
pletely loses the semantic information that the object re-
lated to. This could be corrected through a Server Directed
Transcoding Information appended with the web object in
the form of HTTP headers. Secondly, we have reasons to
believe that the intermediary based approach would not be
very scalable if we increase the myraid of internet devices
since transcoding is a resource intensive process. This could
be offloaded by having intelligent caches at the intermedi-
aries, that reduce the load on the server.
The end-to-end arguments would require all the end

servers to provide for transcoding - this is something that

cannot be assumed. The inherent advantage though of
the end-to-end approach is that the end server could carry
out more optimized and complex transformations based on
client needs. It can do these operations offline and hence
just keep multiple versions of a resource in its cache to serve
different client. Possibly, a point of concern is the increas-
ing variety of access devices. But, our analysis shows that
it is possible to categorize these into a small number (in our
case three) of sets.
Though the functionality provided through the end-to-

end approach is more optimized, it is still not possible to
assume that all end points would have such functionality
in the near future. And hence, it makes sense to keep the
intermediary based transcoding as an option but let the end-
to-end approach take over wherever possible.
The TransSquidmulti-level caching and transcoding end

provides for support of both the end-to-end approach and
the intermediary based approach. If the end servers pro-
vide transcoding support then the TransSquid just behaves
as a caching engine, providing a mechanism to decrease
latency of popular requests by serving them through the
cache. In case the end-to-end approach is not followed, then
TransSquid has the additional task of not only transcoding
but also storing transcoded variants in the Cache. Thus, we
feel that TranSquid is a scalable solution to the emerging
heterogeneous client space.

6. Discussion

In this paper, we have presented a system that sup-
ports caching and transcoding in the heterogeneous client
space. Our system uses a multi-level cache architecture and
caches transcoded versions of web objects which typically
are marked non cachable since the present flat cache ar-
chitecture cannot handle different variants of the same re-
source. Not much work has gone into the field of caching
transcoded web content. Our main focus, has been to in-
crease the perceived user satisfaction through the deliv-
ery and manipulation on content locally rather than going
through interoceanic distances. Our caching architecture
uses the heterogeneity of the client space to provide bet-
ter service to clients with low fidelity through the Partial
HIT. Our system provides support for both the end-to-end
approach of doing trancoding at the host server and for the
intermediary approach where the proxy intercepts the re-
quest and renders data.
In our on going work we try to improve upon the func-

tionality both in terms of the increasing transcoding capa-
bility as well as improving cache design. Our proxy should
be an intelligent entity that can make decisions in various
scenarios such as, if the server has the capability of pro-
viding data in various fidelity versions that the client might
want, and/or the server data might be dynamic and chang-

ing in time. Some issues might need to be worked out in
cases like these. If a server has multiple versions of a media
resource a requirement for a lower fidelity object can either
be serviced by a server fetch or by transcoding from an ap-
propriate higher fidelity version that might be cached.Now
this would be an important decision that the proxy would
have to make based on various factors including reducing
the user latencies, current load on the transcoding engine
and network overheads involved in actually fetching the ob-
ject from the server. We are right now trying to simulate
such conditions and working upon algorithms to base such
decisions on.
We have already discussed the issue of a Partial HIT.

Equally parallel to that could be the case when the cache has
a lower fidelity version than requested. Such a request can
again be serviced by a server fetch followed by transcod-
ing to the appropriate fidelity or the other method could
be to cater the client request with a lower fidelity version
than was requested by it. The latter could serve for reduc-
ing the latencies in instances where the network delays are
very high and server fetch could take time. A transcoding
engine would base such decisions on factors like network
overheads and delays, and on current load on the transcod-
ing engine. Issues like these also need to be addressed.
Besides this, other similar issues can be studied in the

realm of cache replacement policies that would be needed
to refresh and update the a cache with our kind of architec-
ture. Some more immediate issues arise such as, whether
to make the separate cache levels watertight and have dif-
ferent replacement policies for each, or, have a single cache
replacement scheme for all the levels. Scenario one would
need to have efficient intercache communication protocols
for optimization, while the second would have a simpler
structure overall. A plethora of research issues can be stud-
ied on this front.

Acknowledgments

We thank Prof. Abhay Karandikar, Department of Elec-
trical Engineering, Indian Institute of Technology Bombay
for his guidance and encouragement throughout. We are
also grateful for the pleasant and educative work atmo-
sphere at the Center for Intelligent Internet Research, where
all the work is being carried out.

References

[1] Mobile Commerce Market Opportunity Report,
Wireless Internet Applications Division, Strat-
egy Analytics. http://www.strategyanalytics.com/cgi-
bin/greports.cgi?rid=061999120631

[2] IBM Web Intermediaries(WBI), Transcoding Publisher.
http://www.almaden.ibm.com/cs/wbi/

[3] IBM WebSphere Transcoding Proxy. http://www-
4.ibm.com/software/webservers/transcoding/

[4] Composite Capability/Preference Profiles (CC/PP): A user
side framework for content negotiation. W3C Note,
http://www.w3.org/TR/NOTE-CCPP/ (07/1999).

[5] The National Laboratory for Applied Network Research,
A distributed testbed for national information provisioning.
http://ircache.nlanr.net/

[6] T. Lane, P. Gladstone, L. Ortiz, J. Boucher, L. Crocker,
J. Minguillon, G. Phillips, D. Rossi, and G. Weijers,
“The independent jpeg group’s jpeg software release 6b”.
ftp://ftp.uu.net/graphics/jpeg/jpegsrc.v6b.tar.gz.

[7] Masahiro Hori, Go Kondoh, Kouichi Ono, Shin-ichi Hi-
rose, and Sandeep Singhal:Annotation-based Web content
transcoding. Proceedings of the 9th World Wide Web Con-
ference (WWW-9), Amsterdam

[8] Antonio Ortega, Fabio Carignano, Serge Ayer, and Martin
Vetterli, “Soft caching: Web cache management techniques
for images”, in IEEE Signal Processing Society 1997 Work-
shop on Multimedia Signal Processing, Princeton NJ, Jun
1997. Wisconsin, June 1998.

[9] Wessels, D., Intelligent Caching for World-Wide Web Ob-
jects, Proceedings of INET-95, 1995.

[10] M. Liljeberg, M. Kojo, K. Rattikainen Enhanced
services for world wide web in mobile wan
environment,http://www.cs.Helsinki.FI/research/mowgli/mowgli-
papers.html,1995.

[11] Intel Quick Web. http://www.intel.com/quickweb.
[12] SpyGlass Prism. http://www.spyglass.com/products/prism.
[13] Armando Fox, Steven D. Gribble, Eric A. Brewer, and Elan

Amir, “Adapting to network and client variability via on-
demand dynamic distillation”, ACM SIGPLAN Notices, vol.
31, no. 9, pp. 160 170, Sept. 1996, Co-published as SIGOPS
Operating Systems Review 30(5), December 1996, and as
SIGARCH Computer Architecture News, 24(special issue),
October 1996. in Proceedings of the Sixth International
World Wide Web Con-ference, Santa Clara, CA, April 1997.

[14] Surendar Chandra, Ashish Gehani, Carla Schlatter Ellis, and
Amin Vahdat, “Transcoding characteristics of web images”,
Tech. Rep. CS 1999 17, Department of Computer Science,
Duke University, November 1999, (submitted to WWW9).

[15] Tim Berners-Lee, R. T. Fielding, H. Frystyk Nielsen, J. Get-
tys, and J. Mogul, Hypertext Transfer Protocol HTTP/1.1,
January 1997.

[16] John R. Smith, R. Mathur, and Chung-Sheng Li, “Transcod-
ing Internet Content for Heterogenous Client Devices”, Proc.
IEEE Int. Conf. on Circuits and Syst. (ISCAS), May 1998.

[17] Jussi Kangasharju, Younggap Kwon and Antonio Ortega,
“Design and Implementation of a Soft Caching Proxy”, 3rd
Intl. WWW Caching Workshop, Manchester, England, June
1998.

[18] Jussi Kangasharju, Younggap Kwon, Antonio Ortega,
Xuguang Yang and Kannan Ramchandran, “Implementation

of Optimized Cache Replenishment Algorithms in a Soft
Caching System ”, In IEEE Signal Processing Society Work-
shop on Multimedia Signal Processing, Redondo Beach, CA,
Dec 1998.

[19] Brian D. Davison. A survey of proxy cache
evaluation techniques. In Proceedings of the
4th International Web Caching WorkshopApril
1999.http://www.ircache.net/Cache/Workshop99/
Papers/davison2-final.ps.gz.

[20] Anja Feldmann, Ramon Caceres, Fred Douglis, Gideon
Glass, and Michael Rabinovich. Performance of Web proxy
caching in heterogeneous bandwidth environments. In Pro-
ceedings of the INFOCOM ’99 conference, March 99.

[21] Adaptive web caching research homepage, University of
California, Los Angeles http://irl.cs.ucla.edu/AWC/

[22] Jeffrey C. Mogul. Server-Directed Transcoding. In Proc. 5th
International Web Caching and Content Delivery Workshop,
Lisbon, Portugal, May, 2000.

[23] ProxyNet. http://www.proxynet.com
[24] AvantGo. http://www.AvantGo.com

