

Error-Free Garbage Collection Traces:
How to Cheat and Not Get Caught

Matthew Hertz† Stephen M Blackburn† Kathryn S. McKinley‡

J Eliot B Moss† Darko Stefanović§

† Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
hertz,steveb,moss @cs.umass.edu

§ Dept. of Computer Science
University of New Mexico
Albuquerque, NM 87131

darko@cs.unm.edu

‡ Dept. of Computer Science
University of Texas at Austin

Austin, TX, 78712
mckinley@cs.utexas.edu

ABSTRACT
Programmers are writing a large and rapidly growing number of
programs in object-oriented languages such as Java that require
garbage collection (GC). To explore the design and evaluation of
GC algorithms quickly, researchers are using simulation based on
traces of object allocation and lifetime behavior. The brute force
method generates perfect traces using a whole-heap GC at every
potential GC point in the program. Because this process is pro-
hibitively expensive, researchers often use granulated traces by
collecting only periodically, e.g., every 32K bytes of allocation.

We extend the state of the art for simulating GC algorithms in two
ways. First, we present a systematic methodology and results on the
effects of trace granularity for a variety of copying GC algorithms.
We show that trace granularity often distorts GC performance re-
sults compared with perfect traces, and that some algorithms are
more sensitive to this effect than others. Second, we introduce and
measure the performance of a new precise algorithm for generat-
ing GC traces which is almost 100 times faster than the brute force
method. Our algorithm, called Merlin, frequently timestamps ob-
jects and later uses the timestamps of dead objects to reconstruct
precisely when they died. It performs only periodic garbage col-
lections and achieves high accuracy at low cost, eliminating any
reason to use granulated traces.

1. INTRODUCTION
While languages such as LISP and Smalltalk have always used
garbage collection (GC), the recent explosion of people writing
programs in Java and other modern languages has seen a corre-
sponding surge in GC research. A number of studies use object
lifetime traces and simulations to examine the effectiveness of new
GC algorithms [11, 17]. Others use traces to tune garbage collec-
tion via profile feedback [3, 4, 10, 14]. The demand for traces is
sufficient that the GC research community is discussing a standard
file format to enable sharing traces [5].

Producing perfectly accurate traces is currently a very time con-
suming process; for many benchmarks (such as SPEC 202 jess,
SPEC 213 javac, or SPEC 228 jack), the brute force method of
producing traces can require over a month for each trace, since it
performs a whole-heap collection at each allocation point. To re-
duce this cost, people often use granulated traces, which they gen-
erate by collecting after every k bytes of allocation. Unfortunately,
researchers have not studied the effects of granularity on garbage
collection simulations. While there has been research into better
methods of approximating traces [16], the research did not study
what effects these approximations have. We show here that gran-
ulated traces can produce significantly different results. Thus, past
research based on the simulation of granulated traces may be prob-
lematic. This result also suggests a new requirement for any stan-
dard trace format: that it should include information recording the
accuracy/granularity of the trace.

To address the efficiency problems of the brute force method and
the accuracy problems of granulated traces, we propose the Merlin
trace generation algorithm. The Merlin algorithm frequently times-
tamps live objects and later uses the timestamps to reconstruct the
time at which the object died. Because it uses timestamps rather
than collections to identify time of death, the new algorithm does
not require frequent collections. Rather, it makes use of normal
collections to identify which objects have died and then uses times-
tamps to identify when they died. Ordering the dead objects from
the latest timestamp to the earliest, the algorithm works from the
current time backwards. It thus determines when each object was
last alive, saving it from having to process the object further. By
avoiding frequent collections, the Merlin algorithm can run almost
one hundred times faster than the brute force approach. It makes
perfect tracing efficient and removes the need for granulated trac-
ing.

The remainder of this paper analyzes the effects of trace granularity
on GC simulation fidelity on a number of GC algorithms and then
introduces the Merlin trace generation algorithm. Section 2 gives
some background on garbage collection, GC traces, and trace gran-
ularity. Section 3 describes the experimental methodology we used
to analyze the effects of trace granularity. Section 4 presents the
results of our granularity analysis and Section 5 discusses these re-
sults. Section 6 then introduces our new trace generation algorithm
and describes how it improves on the existing algorithm. Section 7
presents and analyzes results from the new tracing algorithm. Fi-
nally, Section 8 presents related studies and Section 9 summarizes

this study.

2. BACKGROUND
Three concepts are central for understanding this research: garbage
collection, garbage collection traces, and garbage collection trace
granularity.

2.1 Garbage Collection
Garbage collection automates reclamation of objects no longer needed
from within the heap. While a wide variety of systems use garbage
collectors, we assume a system that uses an implicit-free environ-
ment to make our explanations simpler, i.e., an explicit new com-
mand allocates objects, but there is no free command. Instead, an
object is removed from the heap during a GC when the collector
determines that the object is no longer reachable.

Since, without additional information, GCs cannot know which ob-
jects the program will use in the future, a garbage collector con-
servatively collects only objects it determines the program cannot
reach and therefore cannot use. To determine reachability, GCs be-
gin at a program’s roots. The roots contain all the pointers into the
heap, such as the program stack and static variables. Any objects
in the heap not in the transitive closure of these pointers are un-
reachable. Since once an object becomes unreachable it is always
unreachable (and cannot be updated or used), these objects can be
safely removed from the heap.

In whole-heap collection, the collector determines the reachability
of every object and removes all unreachable objects. Many col-
lectors (e.g., generational collectors) often collect only part of the
heap, limiting the work at each collection. Because the collector
reclaims only unreachable objects, it must conservatively assume
that the regions of the heap not examined contain only live objects.
If objects in the unexamined region point to objects in the examined
region, the target objects also remain in the heap. Since objects in
the uncollected region are not even examined, collectors use write
barriers to find pointers into the collected region. The write bar-
riers are instrumentation invoked at every pointer store operation.
A write barrier typically tests if the pointer source is in the un-
collected region and the pointer target in the collected region and
records such pointers in some data structure.

We assume that every pointer store is instrumented with a write
barrier. In many systems this assumption is not true for root point-
ers, such as those in the stack. In this case, we enumerate the root
pointers at each potential GC point, which is much less expensive
than a whole-heap collection and can be further optimized using
the techniques of Cheng et al. [4].

2.2 Copying Garbage Collection Algorithms
We use four copying garbage collection algorithms for our evalu-
ation: a semi-space collector, a fixed-nursery generational collec-
tor [13], a variable-sized nursery generational collector [1], and an
older-first collector [11]. We briefly describe each of these here for
the reader who is unfamiliar with the GC literature.

A semi-space collector (SS) allocates into to space using a bump
pointer. When it runs out of space, it collects this entire region by
finding all reachable objects and copying them into a second from
space. The collector then reverses to and from space and contin-
ues allocating. Since all objects in to space may be live, it must
reserve half the total heap for the from space, as do the generational
collectors that generalize this collector.

A fixed-nursery (FN) two generation collector divides the to space
of the heap into a nursery and an older generation.1 It allocates
into the nursery. When the nursery is full, it collects the nursery
and copies the live objects into the older generation. It repeats this
process until the older generation is also full. It then collects the
nursery together with the older generation and copies survivors into
the from space.

A variable-size nursery collector (VN) also divides the to space into
a nursery and an older generation, but does not fix their boundary.
In steady state, the nursery is some fraction of to space and when
it fills up, VN copies live objects into the older fraction. The new
nursery size is reduced by the size of the survivors. When the nurs-
ery gets too small, VN collects all of to space.

The older-first collector (OF) organizes the heap in order of object
age. It collects a fixed size window that it slides through the heap
from older to younger objects. In the steady state and when the
heap is full, OF collects the window, returns the free space to the
nursery, compacts the survivors, and then positions the window for
the next collection over objects just younger than those that sur-
vived. If the window bumps into the allocation point, it resets the
window to the oldest end of the heap. It need only reserve space
the size of a window for a collection.

2.3 Garbage Collection Traces
A garbage collection trace is a chronological recording of every
object allocation, heap pointer update, and object death (object be-
coming unreachable) over the execution of a program. These events
include all the information that a memory manager needs for its
processing. Processing an object allocation requires an identifier
for the new object and how much memory it needs; pointer up-
date records include the object and field being updated and the new
value; object death records define which object became unreach-
able. These events comprise the minimum amount of information
that GC simulations need.2

Simulators use a single trace file to analyze any number of differ-
ent GC algorithms and optimizations applied to a single program
run. The trace contains all the information to which a garbage col-
lector would actually have access in a live execution and all of the
events upon which the collector may be required to act, indepen-
dent of any specific GC implementation. Traces do not record all
aspects of program execution. Thus, researchers can simulate a
single implementation of a garbage collector with traces from any
number of different languages. For these reasons, GC simulators
are useful when prototyping and evaluating new ideas. Since (non-
concurrent) garbage collection is deterministic, simulations can re-
turn exact results for a number of metrics. When accurate trace files
are used as input, results from a GC simulator can be relied upon,
making simulation attractive and accurate traces critical.

Garbage collection trace generators must be integrated into the mem-
ory manager of the interpreter or virtual machine in which the pro-
gram runs. If the program is compiled into a stand-alone exe-
cutable, the compiler back end must generate code for trace gen-
1The obvious generalization to N generations applies.
2While some optimizations and collectors may need additional in-
formation, it can be added to the trace file so that the majority of
simulations do not need to process it. Since most GC algorithms
only use this minimum amount of information, and most traces,
therefore, do not include additional data, here we assume only this
minimal information.

eration instead of ordinary memory management code at each ob-
ject allocation point and pointer update. The trace can log pointer
updates by instrumenting pointer store operations; this instrumen-
tation is particularly easy if the language and GC implementation
use write barriers, since it then simply instruments those write bar-
riers.

A reachability analysis of the heap from the program’s root set de-
termines object deaths. The common brute force method of trace
generation determines reachability by performing a whole-heap garbage
collection. Since the garbage collector marks and processes exactly
the reachable objects, any objects unmarked (unprocessed) at the
end of the collection must be unreachable and the trace generator
produces object death records for them.

For a perfectly accurate trace, we must analyze the program at
each point in the trace at which a garbage collection could be in-
voked. For most GC algorithms, collection may be needed when-
ever memory may need to be reclaimed: immediately before al-
locating each new object, assuming only object allocation triggers
GC. Thus, brute force trace generators have the expense of collect-
ing the entire heap prior to allocating each object. If the simulated
GC algorithms allow more frequent garbage collection invocations,
the reachability analyses must be undertaken more often, as well.
These frequent reachability analyses are also difficult because of
the stress they place on the system. These frequent collections
expose any errors in the interpreter or virtual machine, making it
impossible to perform tracing without having all of the garbage
collection and related code perfect.

2.4 Garbage Collection Trace Granularity
Given the issues that generating perfect traces raises, a common al-
ternative is to perform the reachability analysis only periodically.
Limiting the analysis to every n bytes of allocation makes the trace
generation process faster and easier. It also causes the trace to be
guaranteed accurate only at those specific points; the rest of the
time it may over-estimate the set of live objects. Any simulation
should assume that objects become unreachable only at the accu-
rate points. The granularity of a trace is the period between these
moments of accurate death knowledge.

Although trace granularity is related to time, its most appropri-
ate unit of measurement depends on how GC is triggered. Since
most collectors perform garbage collection only when memory is
exhausted, the most natural measure of granularity is the number
of bytes allocated between accurate points in the trace. While other
measures of granularity are possible (e.g., processor time or num-
ber of allocations), they would make it difficult later to correlate the
granularity with information from the trace as the values would be
expressed in different units.

3. EXPERIMENTAL DESIGN
This section describes our methodology for evaluating experimen-
tally the effect of trace granularity on simulating the four copying
garbage collectors. We start by describing our simulator and pro-
grams. We then describe how to deal with granularity in simulation.

3.1 Simulator Suite
For our trace granularity experiments, we used a GC simulator suite
with a front-end for Smalltalk and Java traces. In our simulator, we
implemented four different garbage collection algorithms: whole-
heap/semi-space (SS), fixed-nursery (FN) generational, varying-
size nursery (VN) generational, and Older-First (OF) collectors, as

described in Section 2.2. The first three collectors are in widespread
use. For each collector we simulated eight different to space sizes
from 1.25 to 3 times the maximum size of the live objects within
the heap at .25 increments. For FN and VN we simulated each heap
size with five different nursery sizes and for OF with five window
sizes. These latter parameters ranged from 1

6 to 5
6 of to space, in 1

6
increments.

3.2 Granularity Schemes
We designed and implemented four different schemes to handle
trace granularity. Each of these schemes works independently of
the simulated GC algorithm. They explore the limits of trace gran-
ularity by affecting when the collections occur.

3.2.1 Unsynced
When we began this research, our simulator used this naive ap-
proach to handling trace granularity: it did nothing; we call this
method Unsynced. Unsynced simulations allow a GC to occur at
any time in the trace; collections are simulated at the natural collec-
tion points for the garbage collection algorithm (such as when the
heap or nursery is full). This scheme allows the simulator to run
the algorithm as it is designed and does not consider trace granular-
ity when determining when to collect. Unsynced simulations may
treat objects as reachable because the object death record was not
reached in the trace, even though the object is unreachable. How-
ever, they allow a GC algorithm to perform collections at their nat-
ural point, unconstrained by the granularity of the input trace.

3.2.2 Synchronized Schemes
Three other schemes, which we call Synced (synchronized), simu-
late garbage collection invocations within the trace only at points
with accurate knowledge of unreachable objects. The schemes
check if a garbage collection is needed, or will be needed soon, only
at the accurate points and perform a collection only at these points.
Figure 1 shows how each of the Synced schemes makes collection
decisions. In each of these figures, the solid line is the natural col-
lection point for the algorithm. The triangles denote points with
perfect knowledge. The shaded region is as large as one granule of
the trace. Each scheme performs the collection at the point in the
trace with perfect knowledge within the shaded region. This point
is shown by the arrow labeled G.

3.2.2.1 SyncEarly
The first scheme we call SyncEarly. Figure 1(a) shows how Sync-
Early decides when to collect. If, at a point with perfect knowl-
edge, the simulator determines that the natural collection point will
be reached within the following period equal to one granule of the
trace, SyncEarly forces a GC invocation. SyncEarly always per-
forms a collection at or before the natural point is reached. Sync-
Early simulations may perform extra garbage collections, e.g., when
the last natural collection point occurs between the end of the trace
and what would be the next point with perfect knowledge. But,
SyncEarly ensures that the simulated heap will never grow beyond
the bounds it is given.

3.2.2.2 SyncLate
The second scheme is SyncLate. Figure 1(b) shows how Sync-
Late decides when to collect. At a point with perfect knowledge,
if SyncLate computes that the natural collection point occurred
within the preceding time of one granule of the trace, SyncLate
invokes a garbage collection. SyncLate collects at or after the nat-
ural point is reached. SyncLate simulations may GC too few times,

e.g., when the last natural collection point occurs between the last
point with perfect knowledge and the end of the trace. SyncLate al-
lows the heap and/or nursery to grow beyond their nominal bounds
between points with perfect knowledge, but enforces the bounds
whenever a collection is completed.

3.2.2.3 SyncMid
The last Synced scheme is SyncMid. Figure 1(c) shows how Sync-
Mid decides when to collect. SyncMid forces a GC invocation at a
point with perfect knowledge if a natural collection point is within
half of the trace granularity in the past or future. SyncMid requires
a collection at the point with perfect knowledge closest to the natu-
ral collection point. Doing this, SyncMid simulations try to balance
the times they invoke collections too early and invoke collections
too late to achieve results close to the average. SyncMid simu-
lations may perform more or fewer garbage collections just like
SyncEarly or SyncLate. Between points with perfect knowledge,
SyncMid simulations may also require the heap and/or nursery to
grow beyond their nominal bounds. However, heap bounds are still
enforced immediately following a collection.

G

N

G

N

(a) SyncEarly

G

N

G

N

(b) SyncLate

G

N

G

N

(c) SyncMid

Figure 1: When Each of the Sync Schemes Decides to Collect.
The triangles denote points in the trace with perfect knowledge.
The natural collection point is shown as the solid line labeled
N. The shaded region is as large as one granule of the trace and
shows the region in which garbage collection is allowed. A GC
is forced at the point in the trace with perfect knowledge within
the shaded region, shown by the arrow labeled G.

4. TRACE GRANULARITY RESULTS
In this section, we present our data analysis and results.

4.1 GC Simulation Metrics
During a garbage collection simulation we measure a number of
metrics: the number of collections invoked, the mark/cons ratio,
the number of interesting stores, and the space-time product. Since
the metrics we consider are deterministic, simulators can quite ac-
curately return these results.

The mark/cons ratio is the number of bytes that the collector copied
divided by the number of bytes allocated. The ratio serves as a mea-
sure of the amount of work done by a copying collector. Higher
mark/cons ratios suggests an algorithm will need more time, be-
cause it must process and copy more objects.

Another metric we report is the number of interesting stores for a
program run. Since many garbage collectors do not collect the en-
tire heap, they use a write barrier to find pointers into the region cur-
rently collected (as we mentioned in Section 2.1). The write barrier
instruments pointer store operations to determine if the pointer is
one of which the garbage collector needs knowledge. The number
of pointer stores, and the cost to instrument each of these, does not
vary in a program run, but the number of pointer stores that must
be remembered varies between GC algorithms at run time and will
affect their performance.

We also measure the space-time product. While this is not directly
related to the time required by an algorithm, it measures another
important resource: space. This metric is the sum of the number of
bytes used by objects within the heap at each time interval (alloca-
tion point) over the program run. Since the number of bytes allo-
cated does not vary between different algorithms, this metric mea-
sures how well an algorithm manages the size of the heap through-
out the program execution.

None of these metrics is necessarily sufficient in itself to determine
how well an algorithm performs. Algorithms can perform better
in one or more of the metrics at the expense of another. The im-
portance of considering the totality of the data can be seen in the
models developed that combine the data to determine the total time
each algorithm needs [11].

4.2 GC Traces
We used 15 GC traces in this study. Nine of the traces are from a
compiler and run-time system for Java in which we implemented
our trace generator. The nine Java traces are: bloat-bloat (bloat [9]
using its own source code as input), two different configurations of
Olden health (5 256 and 4 512), and SPEC compress, jess, raytrace,
db, javac, and jack. We also have six GC traces from a bytecode-
interpreted virtual machine for Smalltalk. The Smalltalk traces
are: lambda-fact5, lambda-fact6, tomcatv, heapsim, tree-replace-
random, and tree-replace-binary. More information about the traces
appears in Table 1.

We implemented a filter that takes perfect traces and a target value
and outputs traces with the targeted level of granularity. We first
generated perfectly accurate traces for each of the programs and
then our filter generated 10 versions of each trace with granular-
ity ranging from 1KB to 64KB and 512KB to 2048KB. Then our
simulator used the perfect and granulated traces as input.

4.3 Analysis
We began by simulating all combinations of program trace, trace
granularity, granularity scheme, GC algorithm, to space and nurs-
ery (window) size. We record the four metrics from above for each

Program Description Max. Live (in bytes) Total Alloc (in bytes)
bloat-bloat Bytecode-Level Optimization and Analysis Tool 98 using its own source code as input 3 207 176 164 094 868
Olden Health (5 256) Columbian health market simulator from the Olden benchmark suite, recoded in Java 2 337 284 14 953 944

(4 512) 1 650 444 9 230 756
SPEC 201 compress Repeatedly compresses and decompresses 20MB of data using the Lempel-Ziv method.

From SPECJVM98.
8 144 188 120 057 332

SPEC 202 jess Expert shell system using NASA CLIPS. From SPECJVM98. 3 792 856 321 981 032
SPEC 205 raytrace Raytraces a scene into a memory buffer. From SPECJVM98. 5 733 464 154 028 396
SPEC 209 db Performs series of database functions on a memory resident database. From

SPECJVM98.
10 047 216 85 169 104

SPEC 213 javac Sun’s JDK 1.0.4 compiler. From SPECJVM98. 11 742 640 274 573 404
SPEC 228 jack Generates a parser for Java programs. From SPECJVM98. 3 813 624 322 274 664
lambda-fact5 Untyped lambda calculus interpreter evaluating expression 5! in the standard Church

numerals encoding
25 180 1 111 760

lambda-fact6 Untyped lambda calculus interpreter evaluating expression 6! in the standard Church
numerals encoding

54 700 4 864 988

tomcatv Vectorized mesh generator 126 096 42 085 496
heapsim Garbage collected heap simulator 549 504 9 949 848
tree-replace-random Builds a binary tree then replaces random subtrees at a fixed height with newly built

subtrees
49 052 2 341 388

tree-replace-binary Builds a binary tree then replaces random subtrees with newly built subtrees 39 148 818 080

Table 1: Traces Used in the Experiment

gc num alloc b alloc o copy b copy o xcopy b xcopy o garbge b garbge o mark/con xcp/cp mut. i/s gc i/s
6 5 221 236 148 532 1 098 480 27 504 268 088 5 558 3 770 048 121 022 0.210 387 0.244 054 14 243 0

10 9 230 756 353 094 1 552 152 48 481 284 404 6 379 6 622 732 278 931 0.168 150 0.183 232 40 675 0

(a) Perfect Trace

gc num alloc b alloc o copy b copy o xcopy b xcopy o garbge b garbge o mark/con xcp/cp mut. i/s gc i/s
6 4 787 328 125 037 1 443 608 32 306 355 768 7 173 2 824 328 92 722 0.301 548 0.246 444 11 644 0

11 9 230 756 353 094 200 7252 58 368 375 464 8 164 6 392 528 290 239 0.217 453 0.187 054 41 949 0

(b) SyncMid With 1KB Granularity

Figure 2: Simulator Output From A Fixed-Sized Nursery Simulation of Health (4, 512). The top lines are the metrics after six
collections, when the differences first become more clear; the bottom lines are the final results of the simulation.

combination. Figure 2 shows an example of the simulator output.
With this large population of data (approximately 600 simulations
for each GC/granularity scheme combination), we perform a de-
tailed statistical analysis of the results. For this analysis, we remove
any simulation that required fewer than 10 garbage collections. In
simulations with few GCs, the addition or removal of a single col-
lection can create dramatically different effects and furthermore the
garbage collector would rarely make a difference in the actual time
required for these actual program runs. For these reasons, these
results would rarely be included in an actual implementation study
either. We also remove any simulation where the trace granularity
equaled 50% or more of the simulated to space size, since trace
granularity would obviously impact these results. We felt secure in
pruning these cases, as the data would only bolster our claims that
granularity is important. In addition, we only include simulations
where both the perfect trace and the granulated trace completed.
Occasionally, simulations of the granulated trace would complete
merely because the simulator expanded the heap and delayed col-
lection until an accurate point. There were also simulations of gran-
ulated traces that were not able to finish because garbage collection
was invoked earlier than normal, causing too many objects to be
promoted. Because any metrics generated from simulations that
did not finish would be incomplete, we did not include them in our
analysis. The number of experiments we used is listed in Table 2.

With the remaining data, we normalize the results of each granu-
lated trace simulation to the results from the same simulation con-
figuration using a perfect trace. Because we are concerned with the
percentage difference, we use the logarithm of this ratio. If gran-
ulated traces have no effect, we would expect all results to equal
0. For each metric and combination of garbage collector and gran-
ularity scheme we performed two-tailed t-tests to see if the results
from perfect and granulated traces were different. The two tailed t-
test determines the confidence that the population mean of a metric
from granulated simulations is different than the population mean
of the metric from simulations using perfect data, assuming the
populations are normally distributed [8]. We considered differences
to be significant only when they existed at the 95% confidence level
or higher (p=0.05). Table 3 shows the smallest granularity, in kilo-
bytes, at which we were able to observe a statistically significant
difference.

Programs with smaller to space and nursery (window) sizes, will
obviously be less able to handle trace granularity. Just as we re-
moved simulations where the granularity was over half of to space
size, we also re-ran our analysis using only those traces that, at
some point, had enough live objects to equal the largest trace gran-
ularity. The excluded programs are small enough that the brute
force algorithm can generate perfect traces in under 8 hours. The

Unsynced SyncLate SyncEarly SyncMid
Granularity SS FN VN OF SS FN VN OF SS FN VN OF SS FN VN OF

1 024 89 244 196 415 89 255 205 433 89 254 205 434 89 255 205 434
2 048 88 240 192 414 89 254 205 434 89 254 205 434 89 254 205 436
4 096 88 241 195 406 89 254 205 431 89 254 205 432 89 255 202 435
8 192 88 246 197 400 89 256 205 433 89 255 204 433 89 256 205 431

16 384 85 217 173 390 89 254 205 429 89 255 204 426 89 255 204 432
32 768 76 198 149 353 81 246 197 405 81 246 197 397 81 246 197 404
65 536 62 175 130 298 64 210 161 331 64 211 162 325 64 211 162 331

524 288 46 130 98 206 46 158 117 228 46 152 116 218 46 159 118 228
1 048 576 43 120 89 182 46 159 118 229 45 155 117 217 46 160 118 228
2 097 152 39 102 72 156 45 151 115 205 45 147 112 197 45 150 115 207

Table 2: Number of Usable Simulations By Granularity, Simulation Method, And Granularity

Unsynced SyncLate SyncEarly SyncMid
SS FN VN OF SS FN VN OF SS FN VN OF SS FN VN OF

Mark/Cons 1 1 1 1 1 8 16 4 1 1 4 4 none 1 none 1
Space-Time 1 1 1 1 1 1 1 2 1 1 1 1 none 1 2 1

Num. of GCs 1 1 16 1 1 1 1 1 1 1 4 4 none 1 16 1
Int. Stores n/a 16 16 1 n/a 2 4 8 n/a 2 8 4 n/a 32 16 none

Table 3: Earliest Granularity (in KB) At Which Each Metric Becomes Significantly Different, By Simulation Method And Collector.

Unsynced SyncLate SyncEarly SyncMid
Granularity SS FN VN OF SS FN VN OF SS FN VN OF SS FN VN OF

1 024 46 141 110 200 46 151 117 219 46 151 117 218 46 151 117 220
2 048 46 141 110 198 46 151 117 220 46 151 117 218 46 151 117 220
4 096 46 140 110 197 46 151 117 220 46 151 117 218 46 151 117 220
8 192 46 141 109 197 46 151 117 220 46 151 116 218 46 151 117 218

16 384 46 140 108 197 46 150 117 219 46 151 116 214 46 151 116 220
32 768 46 137 105 197 46 151 117 220 46 151 117 214 46 151 117 220
65 536 46 135 105 197 46 150 116 220 46 151 117 214 46 151 117 220

524 288 46 123 98 197 46 149 116 219 46 143 115 209 46 150 117 219
1 048 576 43 113 89 177 46 150 117 220 45 146 116 208 46 151 117 219
2 097 152 39 98 72 155 45 147 115 204 45 143 112 196 45 146 115 206

Table 4: Number of Usable Simulations From Traces With A Maximum Live Size of 2MB Or More, By Granularity, Simulation
Method and Collector

Unsynced SyncLate SyncEarly SyncMid
SS FN VN OF SS FN VN OF SS FN VN OF SS FN VN OF

Mark/Cons 1 1 4 32 32 1 1024 16 8 512 none 8 none 512 none 64
Space-Time 4 1 512 1 16 1 512 512 1 1 512 2 1 1 512 32

Num. of GCs 32 1 512 16 16 1 64 8 64 1 512 8 none 1 512 1024
Int. Stores n/a 512 2098 512 n/a 16 1024 16 n/a 32 1 8 n/a 16 1 none

Table 5: Earliest Granularity (in KB) At Which Each Metric Becomes Significantly Different, By Simulation Method And Collector.
This table only considers data from traces with a maximum live size of of 2MB or more

traces remaining in this analysis are those for which brute force
tracing would need to generate granulated traces. The number of
remaining simulations can be seen in Table 4. The results of this
analysis are shown in Table 5.

5. TRACE GRANULARITY DISCUSSION
The data in Table 3 are quite revealing about the effects of trace
granularity and the usefulness of the different schemes in handling
granulated traces. From this data it is clear that the use of granu-
lated traces distorts GC performance results, compared with perfect
traces. For a majority of the metrics, a granularity of only one kilo-
byte is enough to cause this distortion! Clearly, trace granularity
significantly affects the simulator results.

5.1 Unsynced Results
Unsynced collections dramatically distort the simulation results. In
Table 3, two collectors (semi-space and older-first) have statisti-
cally significant differences for every metric at the 1KB granularity.
In both cases, the granulated traces copied more bytes, needed more
GCs, and used more space. For both collectors the differences were
actually significant at the 99.9% confidence level or higher. The
generational collectors did not fare much better. Both collectors
saw granulated traces producing significantly higher mark/cons ra-
tios than the perfect traces. As one would expect, these distortions
grew with the trace granularity. In Unsynced simulations, collec-
tions may come at inaccurate points in the trace; the garbage collec-
tor must process and copy objects that are reachable only because
the trace has not reached the next set of death records. Once copied,
these objects increase the space-time product and cause the heap
to be full sooner, thus require more frequent GCs. This process
quickly snowballs, so that even small granularities produce signifi-
cant differences. Only the number of interesting stores for the gen-
erational collectors and the number of collections required for the
variable-sized nursery collector are not immediately affected. As
There are not significantly more pointers from the older genera-
tion to the nursery because Unsynced collections tend to promote
objects that are truly unreachable and, therefore, do not have any
pointer updates.

We expect simulations using larger heaps to be less affected by
these issues. The results in Table 5 show that this is true. The space-
time product and mark/cons results for the semi-space collector
show that objects are staying in the heap longer. For variable-sized
nursery simulations, however, we do not see a significant increase
in the number of collections; the extra objects require the collector
to perform more whole-heap collections and not just nursery col-
lections. Therefore each collection does more work: the number of
collections remains similar to results with perfect traces by produc-
ing a significantly higher mark/cons ratio. No matter the collection
algorithm, Unsynced simulations clearly distort the results. This re-
sult suggests a new requirement for the trace file format: it should
clearly label the points in the trace with perfect knowledge.

5.2 Synced Results
Synced simulations tend to require slightly higher granularities than
Unsynced before producing significant distortions. However, every
Synced scheme significantly distorts the results for each metric for
at least one collector. Examining the results from Table 3 and Ta-
ble 5, reveals a few patterns. Considering all the traces, SyncEarly
and SyncLate still produce differences from simulations using per-
fect traces, but slightly larger trace granularities may be required
before the differences become statistically significant. SyncMid

has several cases where significant distortions do not appear, but
this result is both collector- and metric-dependent. In addition,
there are still statistically significant distortions at traces with gran-
ularities as small as 1KB. In Table 5, when only considering traces
with larger maximum live sizes, Synced simulations provide better
estimates of the results from simulating perfect traces. But, there
still exist significant differences at fairly small granularities.

Because Synced simulations only affect when the collections oc-
cur, they do not copy unreachable objects because the object dele-
tion record has not been reached. Instead, adjusting the collection
point causes other problems. Objects that are allocated and those
whose death records should occur between the natural collection
point and the Synced collection point are initially affected. De-
pending on the Synced scheme, these objects may be removed from
the heap or processed and copied earlier than in a simulation using
perfect traces. Once the heap is in error (containing too many or
too few objects), it is possible for the differences to be compounded
as the Synced simulation may collect at points even further away
(and make different collection decisions) than the simulation us-
ing perfect traces. Just as with Unsynced simulations, small initial
differences can snowball.

5.2.1 SyncEarly
SyncEarly simulations tend to decrease the space-time products
and increase the number of GCs, interesting stores, and mark/cons
ratios versus simulations using perfect traces. At smaller gran-
ularities, the fixed-nursery generational collector produces higher
space-time products. Normally, this collector copies objects from
the nursery because they have not had time to die before collec-
tion. SyncEarly exacerbates this situation, collecting even earlier
and copying more objects into the older generation than similar
simulations using perfect traces. As trace granularity grows, how-
ever, this result disappears (the simulations still show significant
distortions, but in the expected direction) because the number of
points in the trace with perfect knowledge limits the number of
possible GCs.

5.2.2 SyncLate
In a similar, but opposite manner, SyncLate simulations tend to
decrease the mark/cons ratio and number of collections. As trace
granularity increases, these distortions become more pronounced
as the number of potential collection points begins to limit the col-
lectors as well. Not every collector produces the same distortion on
the same metric, however. The fixed-nursery generational collector
produces significantly higher mark/cons ratios and more garbage
collections at small granularities. While SyncLate simulations al-
low it to copy fewer objects early on, copying fewer objects causes
the collector to delay whole-heap collections. The whole-heap col-
lections remove unreachable objects from the older generation and
prevent them from forcing the copying of other unreachable objects
in the nursery. The collector eventually promotes more and more
unreachable objects, so that it often must perform whole-heap col-
lections soon after nursery collection, boosting both the mark/cons
ratio and the number of GCs.

5.2.3 SyncMid
The best results we found are for SyncMid. From Table 5, the larger
to space sizes produce similar results for SyncMid simulations and
simulations using perfect traces at even large granularities. The de-
sign of SyncMid tries to balance the times that it collects too early
with those times it collects too late. As a result, it tends to balance

collections distorting the results in one direction and collections
distorting results in the other. While this is a benefit, it also makes
the affects of trace granularity hard to predict. Both SyncEarly and
SyncLate showed collector-dependent behavior. While we showed
that it would not be sound to base conclusions for a new or un-
known collector from their results, one could make an assumption
about their effect on the metrics. SyncMid simulations, by com-
parison, produced biases that were dependent upon both the metric
and collector. When significant differences occur, it is not clear
in which way the metric will be skewed. While the results were
very good on the whole, there is still not a single metric for which
every collector returned results without statistically significant dis-
tortions.

5.3 Trace Granularity Conclusion
From this research, it is clear that trace granularity has a significant
impact on the simulated results of garbage collection algorithms.
While Unsynced simulations clearly caused distortions, the Sync-
Mid scheme allowed the use of traces with small granularities to
be simulated without significant differences. However, all of the
Synced simulations suffer from statistically significant deviations
and there are no clear patterns that predict when and how each met-
ric will be distorted. When using traces to compare and measure
new GC algorithms and optimizations, there is not a clear way to
use granulated traces and have confidence that the results are valid.

6. MERLIN TRACE GENERATION
Life can only be understood backwards; but it must be lived for-
wards.
—Søren Kierkegaard We present our new Merlin Trace Generation
Algorithm which generates perfect traces up to one hundred times
faster than the dominant brute force method of trace generation.
Given the speed with which it can generate perfect traces, the Mer-
lin algorithm removes the need to use granulated traces and avoids
the issues that their use can cause.

The Merlin algorithm has other advantages over brute force trace
generation. As discussed in Section 2.4, implementing the latter
algorithm is difficult. For brute force to work, all GC and GC-
affecting code must be completely error-free and the system must
support semi-space garbage collection. Our new trace generator
can work with almost any garbage collection algorithm and stresses
the system less.

According to Arthurian legend, the wizard Merlin began life as an
old man. He then lived backwards in time, dying at the time of his
birth. Merlin’s knowledge of the present was based on what he had
already experienced in the future. The Merlin tracing algorithm
works in a similar manner. Because it computes when each object
died backwards in time, the first time the Merlin trace generation
algorithm encounters an object in this calculation is the time of the
object’s death; any other possible death times would be earlier in
the running of the program (but later in Merlin’s processing), and
need not be considered. Merlin, both the mythical character and
our trace generator, works in reverse chronological order so that
each decision, once made, never has to be revisited.

This section describes the Merlin trace generation algorithm in more
detail. It begins by explaining how objects become unreachable and
how this information can be used to compute object death times.
We then give the pseudo-code for Merlin’s death time computa-
tions. The method of finding object allocations and pointer updates

A

E

F

CB

D

Figure 3: Objects A and B each become unreachable when
their last incoming reference is removed. Object C becomes
unreachable when a pointer update removes an incoming ref-
erence, even though it has others. Objects D, E, and F become
unreachable without losing an incoming reference.

does not change much, but we describe how this works with the
Merlin algorithm.

6.1 Object Deaths
The advantage of working backward in time is that object deaths
are easier to discover. As discussed in Section 2.3, finding which
objects are dead requires computing a reachability analysis. Our
new algorithm cannot change this requirement. Instead, it improves
on the previous brute force method by doing only a small amount
of work at each point where the trace must be accurate and allowing
less frequent GCs during trace generation. As we will see, it still
determines object deaths and death times in periodic batches, but
the death times that it computes are accurate.

6.1.1 How Objects Become Unreachable
To understand how the Merlin algorithm is able to delay death time
computation, it is important to understand how objects become un-
reachable. Table 6 is a series of generalizations about how objects
within the heap become unreachable.

1. An object transitions from one to zero incoming references
via a pointer update. Objects A and B in Figure 3 are exam-
ples of this case.

2. An object transitions from n to n 1 incoming references via
a pointer update, where all n 1 references are from unreach-
able objects. An example of this case is object C in Figure 3.

3. An object’s number of incoming references does not change,
but all the reachable objects pointing to it become unreach-
able. The objects labeled D, E, and F in Figure 3 are exam-
ples of this case.

Table 6: How Objects Become Unreachable

Entries 1 and 2 of this table describe an object becoming unreach-
able due to an action involving that object; entry 3 describes an ob-
ject becoming unreachable without it being involved in an action,
but because the objects that point to it become unreachable. These
objects may in turn have become unreachable by this third method.
At the beginning of this process though, an object must become un-
reachable because of a pointer store. Clearly, not all pointer stores

lead to the death of an object; any object that does become unreach-
able because of a pointer store must be in the transitive closure set
of the object that lost an incoming reference.

6.1.2 Object Death Time
Using knowledge of how objects become unreachable allows trace
generators to separate finding when objects become unreachable
from whether an object is unreachable. This division potentially
saves trace generators substantial amounts of work, but requires
the introduction of time into trace generation. In brute force trace
generation, a death record is appended to the trace when an ob-
ject is found to be unreachable. Therefore whenever objects could
be dead, the trace generator must find which objects are unreach-
able. Separating object death time from finding which objects are
unreachable removes the need for this constant processing. It also
means that objects’ death times often will not be the current point
in the trace. Where in the trace to add these death records is speci-
fied by the object’s death time. Time is related to trace granularity;
time must advance wherever object death records are expected: at
the points in the trace with perfect knowledge.

6.1.3 Finding Potential Object Death Times
Knowing how objects become unreachable and using the concept
of time, is is now possible to find object death times. Since it is
not always clear if a pointer store leaves an object unreachable (if
a pointer update leaves an object with no incoming references, it is
clear the object is unreachable; if an update leaves an object with n
remaining incoming references, it may not be clear if the object is
unreachable), we devise an algorithm that finds death times without
knowing which event actually causes an object to become unreach-
able. We consider below the different methods by which objects
become unreachable.

6.1.3.1 Instrumented Pointer Stores
Most pointer stores will be instrumented by a write barrier. Objects
may become unreachable when a pointer store, caught by a write
barrier, removes an incoming reference. To find these object death
times, the pointer store instrumentation must know which object is
losing an incoming reference (the old target of the pointer). The
Merlin trace generator stamps the old target object with the cur-
rent time. Time increases monotonically; each object will therefore
be stamped with the final time it loses an incoming reference. If
the last incoming reference is removed by an instrumented pointer
store, the code shown in Figure 4 stamps the object with its death
time.

6.1.3.2 Uninstrumented Pointer Stores
For objects that become unreachable in other ways more work is
required. Pointer stores within the heap need to be instrumented
(e.g., using a write barrier) for accurate tracing. As discussed in
Section 2.1, root pointers may not have their pointer stores instru-
mented in write barriers, and an object may become unreachable in
a manner the prior method could not discover. Just as a normal GC
begins with a root scan, each time the trace must be accurate, our
trace generator performs a modified root scan. This modified root
scan still enumerates the root pointers, but merely stamps the root-
referenced object with the current time. While root-referenced, ob-
jects are always stamped with the current time; when the object is
no longer root-referenced, the timestamp will hold the last time it
had an incoming reference from the root set. If the last incoming
reference is removed by an uninstrumented pointer store, the ob-

ject will be stamped with its death time. Figure 5 shows Merlin’s
pseudo-code executed whenever the root scan finds a pointer.

6.1.3.3 Referring Objects Become Unreachable
Even more work is required to determine the death time of an object
that becomes unreachable when the objects pointing to it become
unreachable (entry 3 of Table 6). This case requires us to know
when each of the objects holding pointers to it became unreach-
able. The possibility that these other objects became unreachable
by the same means exacerbates this difficulty. Since there could
exist cycles of these objects, updating the death time for one ob-
ject can require recomputing the death times of objects to which it
points. By computing the transitive closure set for each object, we
can find the object with the latest death time pointing to each of
these objects.

Because the Merlin algorithm is concerned with when an object
became unreachable and cannot always determine how the object
became unreachable, the issue is to find a single method that com-
putes every object’s death time. The methods from Paragraphs 6.1.3.1
and 6.1.3.2 will stamp objects that become unreachable as described
in entries 1 and 2 of Table 6 with their death time. As each object
is a member of its own transitive closure set, Merlin can determine
the death time of every object by combining the two timestamping
methods with computing death times by membership in transitive
closure sets.

No object points to an object that became unreachable as described
by entry 1 of Table 6 when the latter object becomes unreachable.
Thus, the latter object will only be a member of its own transitive
closure set and the death time is its timestamp. The death time
computed for an object that becomes unreachable via entry 2 of
Table 6 will also be the time with which it is stamped. Immediately
after its timestamp was last updated, the object was unreachable.
Since any object that pointed to the initial object must also have
been unreachable, the pointing objects could not have later death
times. Thus, the transitive closure computation will determine the
object died at the time with which it is already stamped. Since
we shown above that this combined method computes death times
for objects that become unreachable by entry 3 of Table 6, Merlin
can compute every object death time and need not know how each
object becomes unreachable.

6.1.4 ComputingWhenObjects BecomeUnreachable
Computing the full transitive closure is a time consuming process,
requiring O n2 time. But finding an object’s death time requires
knowing only the latest object containing the former object in its
transitive closure set. Rather than formally computing the transi-
tive closure sets, Merlin performs a depth-first search from each
object, propagating the death time forward to the objects visited
in the search. To save time, Merlin begins by ordering the objects
from the earliest timestamp to the latest and then pushing them onto
search’s stack. Figure 6(a) shows this initialization. Upon remov-
ing an object from the stack, the Merlin algorithm analyzes its fields
to find pointers to other objects. If a pointed-to object could be un-
reachable and is stamped with an earlier time than the referring ob-
ject, then the pointed-to object is stamped with this later time and
pushed onto the stack (e.g., Figure 6(b) and 6(c)). If a pointed-to
object’s time were equal to that of the referring object, then either
we have found a cycle (e.g., Figure 6(d)) or the pointed-to object is
already on the stack to propagate this time. Either way, the pointed-
to object does not need to be pushed on the stack. If a pointed-to
object’s time were later, then the object remained reachable after

void PointerStoreInstrumentation(ADDRESS source, ADDRESS newTarget)
ADDRESS oldTarget getMemoryWord(source);
if (oldTarget null)
oldTarget.timeStamp = currentTime;

addToTrace(pointerUpdate, source, newTarget);

Figure 4: Code for Merlin’s Pointer Store Instrumentation

void ProcessRootPointer(ADDRESS rootAddr)
ADDRESS rootTarget getMemoryWord(rootAddr);
if (rootTarget null)
rootTarget.timeStamp = currentTime);

Figure 5: Code for Merlin’s Root Pointer Processing

t0

DA

B

C

t

t

t

2

3

Stack

Object D

1

Object A
Object C
Object B

(a) Before Processing Object A

t0

DA

B

C

t

t

t

2

3

Stack

Object D

Object C
Object B

Object B

3

(b) Before Processing Object B

t0

DA

B

C

t

t

t

3

3

Stack

Object D

Object C
Object B

3

Object C

(c) Before Processing Object C

t0

DA

B

C

t

t

t

3

3

Stack

3

Object C
Object B
Object D

(d) After Processing Object C

Figure 6: Computing Object Death Times, where ti ti 1. Since Object D doesn’t have any incoming references, Merlin’s com-
putation cannot change its timestamp. Although Object A became unreachable at its timestamp, case is needed not to change this
incorrectly via its incoming reference. In (a), Object A is processed finding the pointer to Object B. Object B’s timestamp is earlier,
so Object B is added to the stack and death time set. We process Object B and find the pointer to Object C in (b). Object C has an
earlier timestamp, so it is added to the stack and timestamp updated. In (c), Object C is processed. Object A is pointed to, but it does
not have an earlier timestamp and is not added to the stack. In (d), the cycle has finished being processed. The remaining objects in
the stack will be examined, but no further processing is needed.

void ComputeObjectDeathTimes()
Time lastTime = !
sort unreachable objects from the earliest timestamp to the latest;
push each unreachable object onto a stack in sorted order;
while (!stack.empty())
Object obj = stack.pop();
Time objTime = obj.timeStamp;
if (objTime <= lastTime)
lastTime = objTime;
for each (field in obj)
if (isPointer(field) && obj.field null)
Object target = getMemoryWord(obj.field);
Time targetTime = target.timeStamp;
if (isUnreachable(target) && targetTime < lastTime)
target.timeStamp = lastTime;
stack.push(target);

Figure 7: Code of Merlin Trace Generation Object Death Computation

the time being propagated and this possible death is unimportant.
Pushing objects onto the stack from the earliest stamped time to
the latest means each object is processed only once. The search
proceeds from the latest stamped time to the earliest; a repeat visit
to an object is computing an earlier death time! This method of
finding death times requires only " n logn time, the sorting of the
objects now being the limiting factor. Figure 7 shows the code the
Merlin algorithm uses for this modified depth-first search.

6.2 The Merlin Trace Generator
As described so far, Merlin is able to reconstruct when objects be-
come unreachable. However, it is unable to determine which ob-
jects are unreachable; it still needs a reachability analysis. The
Merlin algorithm uses two simple solutions to overcome this. When-
ever possible, it delays computation until immediately after garbage
collection. Before any memory is cleared, the trace generation al-
gorithm has access to objects within the heap and the garbage col-
lector’s reachability analysis. This piggy-backing saves a lot of
duplicative analyses. At other times (e.g., when a program termi-
nates), garbage collection may not be invoked but the algorithm
needs a reachability analysis. We first stamp the root-referenced
objects with the current time and then compute the death times of
every object in the heap. Objects with a death time equal to the
current time must be reachable from the program roots and there-
fore are still alive. All other objects are unreachable and their death
records are added to the trace. This method of finding unreachable
objects enables the Merlin algorithm to work with any garbage col-
lector. Even if the garbage collector cannot guarantee that it will
collect all unreachable objects, when the program terminates Mer-
lin performs the combined object reachability/death time analysis
to find any remaining unreachable objects and their death times.

As stated in Section 2.1, we rely upon a couple of assumptions
about the host GC. First, that any unreachable object the GC is
treating as live will have the objects it points to treated as live, as is
common among many GC algorithms. Thus no object is removed

from the heap until all objects pointing to it are removed. Sec-
ond, the Merlin algorithm assumes that there are no pointer stores
involving an unreachable object. Therefore, we assume that once
an object becomes unreachable, its incoming and outgoing refer-
ences are constant. Both of these preconditions are important for
our transitive closure computation, and languages such as Java and
Smalltalk satisfy them.

The order in which the Merlin trace generator adds information to
the trace is an issue. As discussed in Section 6.1.2, our trace gener-
ator needs the concept of time to determine where in the trace each
object death record should be placed. The object death records
either must be added back into chronological order before writ-
ing the trace to disk or can be appended to the trace and a post-
processing step places the trace into proper order. Holding all the
trace records in memory until all object deaths are found is a diffi-
cult challenge; with larger traces holding these records can require
significant amounts of memory. Our implementation of the Merlin
algorithm uses a post-processing step that sorts and integrates the
object death records. This solution creates a different problem, that
of splitting and recreating the trace, but this latter problem is much
easier to solve. Either way of handling this issue has advantages
and disadvantages, but adds very little time to trace generation.

6.3 Object Allocations and Pointer Updates
Trace generation is already efficient at finding and reporting ob-
ject allocations and pointer updates. As discussed in Section 2.3,
even the brute force method of trace generation can find and record
these actions in linear time. Our new algorithm, like those before
it, instruments the host system’s memory manager to determine
when memory is allocated for new objects. At those times, Mer-
lin records the ongoing object allocation.

Finding and reporting pointer updates also does not change. Like
brute force trace generation, the Merlin algorithm instruments the
heap pointer store operations (preferably by augmenting existing

write barriers). Our new trace generation algorithm does add an
additional requirement, the reasons for which are explained in Sec-
tion 6.1.3. Unlike brute force, our trace generator requires access
to the object being updated, the new value of the pointer, and the
old value of the pointer. As many write barriers are already im-
plemented to access these values (e.g., a write barrier capable of
reference counting), this additional requirement is not a hardship.
Allowing our trace generator to work with almost any garbage col-
lector (rather than requiring a semi-space collector) makes the in-
strumentation to record pointer updates easier to add. While a semi-
space collector does not require a write barrier (although different
languages/systems may), many algorithms (e.g., generational and
OF collectors) do. Combining our trace generator with these algo-
rithms allows the use of the preexisting write barriers, enabling the
Merlin trace generator to leverage already existing code.

7. EVALUATIONOFTHEMERLINTRACE
ALGORITHM

We implemented both Merlin and the brute force trace algorithm
within a Java virtual machine. We then performed some initial
timing runs on a Macintosh Power Mac G4, with two 533 MHz
processors, 32KB on-chip L1 data and instruction caches, 256KB
unified L2 cache, 1MB L3 off-chip cache and 384MB of memory,
running PPC Linux 2.4.3. We used only one processor for our ex-
periments, which were run in single-user mode with the network
card disabled. We built two versions of the JVM, one for each of
the algorithms. Whenever possible we used identical code for the
two JVMs, so Merlin used a semi-space collector.

We generated traces at different granularities across a small range
of programs. Because of the time required for brute force trace gen-
eration, we limited some traces to only the initial few megabytes of
data allocation. Working with common benchmarks and generat-
ing traces of identical granularity, Merlin achieved speedup factors
of up to 94. In the time that brute force needed to generate traces
with 4 to 16KB of granularity, Merlin generated perfect traces. Fig-
ure 8 shows the speedup Merlin, generating perfect traces, achieves
over the brute force algorithm generating traces at different levels
of granularity.

Clearly, Merlin can greatly reduce the time needed to generate a
trace. However, as seen in Figure 8, the speedup is less as gran-
ularity increases. The time required depends on the time needed
to generate object death records and, therefore, on trace granular-
ity. Brute force limits object death time processing to only when
the trace must be accurate; as the granularity increases the time
needed greatly diminishes. While Merlin needs to perform only
periodic collections, it also must perform a small set of actions at
each pointer update and location in the trace with perfect knowl-
edge. Even with brute force performing more frequent GCs, the
cost of Merlin’s frequent root enumerations and updating times-
tamps becomes too great.

These results are promising, but we can speed up performance of
the Merlin tracing algorithm even more. As program’s memory
footprint grows, and as more accurate points are needed, the Merlin
algorithm is far less affected than brute force. Using larger traces
would better show these differences. We also have not implemented
several known GC optimizations. Because Java only allows func-
tions to access their own stack frame, repeated scanning within
the same method always enumerates the same objects below this
method’s frame. Using a write barrier that is called when frames
are popped off the stack would enable Merlin to scan the stack less

and further reduce the time needed for Merlin tracing [4].

8. RELATED WORK
We do not know of any previous research into the effects of trace
granularity or different methods of generating garbage collection
traces. In this section, we discuss the research from which this
study draws its roots.

Using Knowledge of the Future
Belady’s [2] optimal virtual memory page replacement policy, MIN,
decided which blocks should not be paged to disk by analyzing fu-
ture events. At each decision point, the MIN algorithm considers
future memory accesses, stored within an available file, until it de-
termines the single block to evict. Because the algorithm did not
cache results, at each decision point the MIN algorithm begins a
new analysis. While Belady’s algorithm used knowledge of future
events to perform optimally, it processes events in chronological
order. Each time it is invoked, the MIN algorithm only looks far
enough into the future as is necessary to make the current decision.

Cyclic Reference Counting
One of the earliest methods of garbage collection was to use ref-
erence counts: each object has a count of its incoming references
so, when the count reaches 0, the object can be freed [6]. Mc-
Beth was the first to appreciate that this approach cannot collect
cycles of objects, since the reference counts would never reach
zero [7]. Many different schemes have been developed to deal with
cycles. Trial deletions [15] collects cycles of objects by removing
a pointer thought to be within a cycle. After removing the pointer,
trial deletion updates the reference counts. If, in updating the ref-
erence counts, the source object for the removed pointer is found
unreachable, then a cycle exists and the objects are dead. Otherwise
a dead cycle may not exist, the deleted pointer is reestablished and
the original reference counts restored. This method can handle and
detect cycles, but it may incorrectly guess that some objects are
in a cycle and cannot take advantage of other object reachability
analyses.

Lifetime Approximation
To cope with the cost of producing GC traces, there has been pre-
vious research into approximating the lifetimes of objects. These
approximations model the object allocation and object death be-
havior of actual programs. One described mathematical functions
that model object lifetime characteristics based upon the actual life-
time characteristics of 58 Smalltalk and Java programs [12]. Zorn
and Grunwald compare several different models one can use to ap-
proximate object allocation and object death records of actual pro-
grams [16]. Neither study attempted to generate actual traces, nor
does either study consider the effects of pointer updates; rather,
these studies attempted to find ways other than trace generation to
produce input for memory management simulations.

9. SUMMARY
The use of granulated traces for garbage collection simulation raises
a number of issues. We first develop a method by which any vari-
able that affects garbage collection simulations can be statistically
tested. We then use this method to show that over a wide range
of variables, granulated traces produce results that are significantly
different from those produced by perfect traces. Additionally, we
show that there are ways of simulating granulated traces that are
better at minimizing these issues. With these results, we propose
several changes to the trace format standard.

0.01

0.1

1

10

100

Perfect 1024 4096 16384 65536 2097152

Sp
ee

du
p

of
 P

er
fe

ct
 M

er
lin

 T
ra

cin
g

(lo
g)

Granularity of Brute Force Trace (log)

Speedup of Perfect Merlin Tracing v. Brute Force Tracing

SPEC Compress
First 4MB of SPEC Javac

First 8MB of SPEC Jess
First 8MB of Health (5 256)

Figure 8: The speedup of Merlin versus Brute Force trace generation. Note the log-log scale.

Finally, we introduce and describe the Merlin Trace Generation Al-
gorithm. We show that the Merlin algorithm can produce traces al-
most one hundred times as fast as the common brute force method
of trace generation. By generating traces with Merlin, we can gen-
erate perfect traces in less time than previously required for gran-
ulated traces. Thus, the Merlin algorithm makes trace generation
quick and easy and eliminates the need for granulated traces.

10. REFERENCES
[1] APPEL, A. W. Simple generational garbage collection and

fast allocation. Software Practice and Experience 19(2)
(1989), 171–183.

[2] BELADY, L. A. A study of replacement algorithms for a
virtual-storage computer. IBM Systems Journal 5(2) (1966),
78–101.

[3] BLACKBURN, S. M., SINGHAI, S., HERTZ, M.,
MCKINLEY, K. S., AND MOSS, J. E. B. Pretenuring for
Java. In Proceedings of SIGPLAN 2001 Conference on
Object-Oriented Programming, Languages, & Applications
(Tampa, FL, Oct. 2001), vol. 36(10) of ACM SIGPLAN
Notices, ACM Press, pp. 342–352.

[4] CHENG, P., HARPER, R., AND LEE, P. Generational stack
collection and profile-driven pretenuring. In Proceedings of
SIGPLAN 1998 Conference on Programming Language
Design and Implementation (Montreal, Canada, June 1998),
vol. 33(5) of ACM SIGPLAN Notices, ACM Press,
pp. 162–173.

[5] CHILIMBI, T., JONES, R. E., AND ZORN, B. Designing a
trace format for heap allocation events. In ISMM 2000
Proceedings of the Second International Symposium on
Memory Management (Minneapolis, MN, Oct. 2000),
vol. 36(1) of ACM SIGPLAN Notices, ACM Press,
pp. 35–49.

[6] COLLINS, G. E. A method for overlapping and erasure of
lists. Communications of the ACM 3(12) (Dec. 1960),
655–657.

[7] MCBETH, J. H. On the reference counter method.
Communications of the ACM 6(9) (Sept. 1963), 575.

[8] NATRELLA, M. G. Experimental Statistics. US Department
of Commerce, Washington, DC, 1963.

[9] NYSTROM, N. Bytecode-level analysis and optimization of
Java classfiles. Master’s thesis, Purdue University, West
Lafayette, IN, May 1998.

[10] SHAHAM, R., KOLODNER, E. K., AND SAGIV, M. On the
effectiveness of GC in Java. In ISMM 2000 Proceedings of
the Second International Symposium on Memory
Management (Minneapolis, MN, Oct. 2000), vol. 36(1) of
ACM SIGPLAN Notices, ACM Press, pp. 12–17.

[11] STEFANOVIĆ, D., MCKINLEY, K. S., AND MOSS, J. E. B.
Age-based garbage collection. In Proceedings of SIGPLAN
1999 Conference on Object-Oriented Programming,
Languages, & Applications (Denver, CO, Oct. 1999),
vol. 34(10) of ACM SIGPLAN Notices, ACM Press,
pp. 379–381.

[12] STEFANOVIĆ, D., MCKINLEY, K. S., AND MOSS, J. E. B.
On models for object lifetimes. In ISMM 2000 Proceedings
of the Second International Symposium on Memory
Management (Minneapolis, MN, Oct. 2000), vol. 36(1) of
ACM SIGPLAN Notices, ACM Press, pp. 137–142.

[13] UNGAR, D. M. Generation scavenging: A non-disruptive
high-performance storage reclamation algorithm. In
Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development

Environments (Pittsburgh, PA, Apr. 1984), vol. 19(5) of ACM
SIGPLAN Notices, ACM Press, pp. 157–167.

[14] UNGAR, D. M., AND JACKSON, F. An adaptive tenuring
policy for generational scavengers. ACM Transaction of
Programming Languages and Systems 14(1) (Jan. 1992),
1–27.

[15] VESTAL, S. C. Garbage Collection: An Exercise in
Distributed, Fault-Tolerant Programming. PhD thesis,
University of Washington, Seattle, WA, Jan. 1987.

[16] ZORN, B., AND GRUNWALD, D. Evaluating models of
memory allocation. Tech. Rep. CU-CS-603-92, University of
Colorado at Boulder, Boulder, CO, July 1992.

[17] ZORN, B. G. Comparative Performance Evaluation of
Garbage Collection Algorithms. PhD thesis, University of
California at Berkeley, Berkeley, CA, Mar. 1989.

