Autonomic Heap Sizing: Taking Real Memory Into Account

Ting Yang Emery D. Berger Matthew H. Hertz Scott F. Kaplant J. Eliot B. Moss

tingy @cs.umass.cdu emery @cs.umass.edu

hertz@cs.umass.edu

sfkaplan@cs.amherst.edu moss @cs.umass.edu

Department of Computer Science ftDepartment of Computer Science

niversity of Massachusetts
Ambherst, MA 01003

ABSTRACT

The selection of heap size has an enormous impact on the perfor-
mance of applications that use garbage collection. A heap that barely
meets the application’s minimum requirements will result in exces-
sive garbage collection overhead, while a heap that exceeds physical
memory will cause paging. Choosing the best heap size a priori is im-
possible in multiprogrammed environments, where physical memory
allocated to each process constantly changes. This paper presents an
autonomic heap-sizing algorithm that one can apply to different un-
derlying garbage collectors with only modest modifications. It relies
on a combination of analytical models and detailed information from
the virtual memory manager. The analytical models characterize the
relationship between collection algorithm, heap size, and footprint.
The virtual memory manager tracks recent reference behavior, and re-
ports the current footprint and allocation to the collector. The garbage
collector then uses those values as inputs to its model to compute a
heap size that maximizes throughput while minimizing paging. We
show that by using our adaptive heap sizing algorithm, we can reduce
running time over fixed-sized heaps by as much as 90%.

1. INTRODUCTION

Java and C# have helped to make garbage collection (GC) readily
available to programmers working on a wide variety of development
projects. While GC provides many useful advantages to its users, it
also carries a potential liability: page swapping. When collection oc-
curs, the process rapidly traverses nearly all of its pages in a stagger-
ing display of poor locality. If those pages are not cached, garbage
collection will cause extensive page swapping. Since disks are 5to 6
orders of magnitude slower than RAM, even modest amounts of page
swapping can ruin application performance. It is therefore important
that all of the process’s pages—its foorprint—be cached to avoid page
swapping overhead.

The footprint of a garbage-collected process is largely determined
by one parameter: its heap size. A sufficiently small heap size reduces
the footprint so that no paging occurs during garbage collection. How-
cver, a heap size that is too small causes frequent collections. A pro-
cess that is collecting too often is not making progress on its intended
task and is harming overall system performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

Ambherst College
Ambherst, MA 01002-5000

Ideally, the user would choose the largest heap size for which the
entire footprint is cached. Such a heap size would trigger garbage
collection just often enough to prevent the footprint from expanding
beyond the capacity of main memory. The CPU time consumed by
collection would be reduced as far as possible without incurring the
overhead of page swapping.

Unfortunately, from the standpoint of a single process, the capacity
of main memory is not constant. In a multiprogrammed environment,
the operating system’s virtual memory manager (VMM) must dynam-
ically allocate main memory to each process and to the file system
cache. Therefore, the amount of space allocated to one process will
change over time in response to memory pressure—the demand for
main memory space exhibited by the current workload. Even in sys-
tems with large main memories, uses of even larger file systems will
bring about memory pressure. Disk accesses, whether caused by vir-
tual memory paging or explicit I/O requests, slow system performance
equally.

Currently, the user of a garbage-collected application must select a
heap size when the process is started. That heap size will not change
for the duration of the execution. Even if the user has sufficient in-
formation about the state of the system to choose a good initial heap
size, the memory pressure may change during execution and cause the
choice to become a poor one. Since memory pressure changes dynam-
ically with the system’s workload, the heap size of a garbage-collected
application should also change in response.

Contributions. We present an adaptive heap-sizing algorithm. It
relies on the virtual memory system to provide periodically the cur-
rent main memory allocation. It then selects a heap size that corre-
sponds to a footprint that just fits the given allocation. This heap size
does not induce page swapping at collection time, but fully utilizes
the allocated main memory space to reduce CPU time consumed in
collection.

In order to map each possible heap size to its footprint, our algo-
rithm relies on an analytic model of the garbage collection algorithm
itself. This model uses measurements of the footprint that VMM pro-
vides, and calculates the relationship between heap size and footprint
experienced thus far in the execution. It then uses this relationship,
along with its current allocation size, to select a heap size that will
yield an appropriate footprint. We have developed models for both
the semi-space and Appel garbage collectors, and we show that these
models generate accurate predictions.

We also present the design for a VMM that can gather the reference
distribution data necessary to calculate the current footprint and pro-
vide it to the model. This VMM tracks references only to less recently
used pages, and thus does not interfere with the vast majority of ref-
erences that are made to more recently used pages. The VMM adjusts
dynamically and online the number of recently used pages whose ref-



erences the VMM does not track, so that the total overhead does not
exceed a threshold. Thus, the VMM can gather reference distribution
information that is sufficient for our predictive models while adding
only 1% to the total running time.

In exchange for this 1% overhead in the VMM, our algorithm dy-
namically selects a heap size on-line, reducing garbage collection time
and nearly eliminating paging. Hence it reduces the total running time
by as much as 90%, and typically by 10% to 40%. We show, for a va-
riety of benchmarks, using both semi-space and Appel collectors, that
our algorithm selects good heap sizes for widely varying main mem-
ory allocations.

2. RELATED WORK

The problem of heap size selection has received surprisingly little at-
tention, despite its enormous potential impact on application perfor-
mance. We know of only three papers on the topic. We discuss these,
and then turn to existing interfaces to virtual memory managers.

2.1 Heap Sizing

Kim and Hsu use the SPECjvm98 benchmarks in examining the pag-
ing behavior of garbage collection [11]. They execute each program
with a variety of heap sizes on a system with 32MB of RAM. They
observe that performance suffers when the heap does not fit in real
memory, and when the heap is larger than real memory it is often bet-
ter to grow the heap than to collect. Kim and Hsu conclude that there
is an optimal heap size for each program for a given real memory.
While this may be true, selecting optimal heap sizes a priori does not
work in the context of multiprogrammed systems where the amount
of available memory changes dynamically.

The most similar work to our own is by Alonso and Appel, who also
exploit information from the virtual memory manager to adjust heap
size [1]. Their garbage collector periodically queries the virtual mem-
ory manager to find the current amount of available memory, and then
adjusts heap size in response. Our work differs from theirs in several
key respects. While their approach can also shrink the heap to avoid
paging when memory pressure is high, they do not address the prob-
lem of expanding heaps when memory pressure is low. Such heap
expansion is crucial in order to reduce the cost of frequent garbage
collections. Further, they rely on standard interfaces to virtual mem-
ory information, which provides at best a coarse estimate of memory
pressure. Our virtual memory management algorithm captures de-
tailed reference information that allows us to calculate the appropriate
heap size given available memory.

Brecht et al. adapt Alonso and Appel's approach to control heap
growth, but rather than interact with the virtual memory manager, they
propose ad hoc rules for two given memory sizes [7]. These memory
sizes cannot change, that is, this technique works only if the applica-
tion is the only program in the system and the user provides the right
memory size. Also, their study relied on the Boehm-Weiser mark-
sweep collector [6], which can grow its heap but cannot shrink it.

2.2 Virtual Memory Interfaces

Systems typically offer a way for an application to communicate de-
tailed information to the virtual memory manager, but expose very
little information in the other direction. Many UNIX and UNIX-like
systems support the madvise system call, by which applications
may communicate detailed information about their reference behav-
ior to the virtual memory manager. An application can indicate that
a range of pages will be referenced in a sequential, random, or “nor-
mal” manner, will or will not be used soon, or contains no data. No
standard dictates how a VMM should respond to these hints.

‘We know of no systems that expose more detailed information about
an application’s virtual memory behavior beyond memory residency.

.

The mincore system call takes as input a range of memory ad-
dresses, and returns an array where each entry is 1 if and only if the
corresponding page is resident (“in core™). In the work reported here
we use an even simpler interface: the VMM conveys to the program
two values: the amount of memory the application needs in order to
avoid significant paging (derived from the application’s recent ref-
erence behavior), and the amount of memory it has available at the
present time. The application’s memory management code (garbage
collector) uses this information to adjust the heap size accordingly.

3. GCPAGING BEHAVIOR ANALYSIS

To build robust mechanisms for controlling paging behavior of garbage
collected applications it is important first to understand those paging
behaviors. Consequently, we studied those behaviors by collecting
and analyzing memory reference traces for a set a benchmark pro-
grams, when executed under each of several collectors, for each of
a number of heap sizes. The goal was to reveal, for each collector,
the regularities in the reference patterns and the relationship between
heap size and footprint.

Methodology Overview: We used an instrumented version of Dy-
namic SimpleScalar (DSS) [8] to generate memory reference traces.
We pre-processed these with the SAD reference trace reduction algo-
rithm [9, 10]. (SAD stands for Safely Allowed Drop, which will make
sense when we explain below our extensions to it.) For a given reduc-
tion memory size of m pages, SAD produces a substantially reduced
trace that will trigger the same exact sequence of faults for a simu-
lated memory of at least m pages, managed with least-recently-used
(LRU) replacement. SAD drops most references that hit in memories
smaller than m, keeping only the few such reference necessary to en-
sure that the LRU stack order is the same for pages in stack positions
m and beyond. We then processed the SAD-reduced traces with an
LRU stack simulator to obtain the number of faults for all memory
sizes no smaller than m pages.

Estimating time: We also obtained a rough estimate of execution
time. DSS outputs a count of instructions simulated and a count of
memory references (including instruction fetches). We simply charge
a fixed number of instructions for each page fault to estimate total ex-
ecution time. We further assume that writing back dirty pages can be
done asynchronously so as to interfere minimally with application ex-
ecution and paging. We ignore other operating system costs, such as
application I/O requests. These modeling assumptions are reasonable
because we are interested primarily in order-of-magnitude compar-
ative performance estimates, not in precise absolute time estimates.
The specific values we used assume that a processor achieves an aver-
age throughput of 1 x 10° instructions/sec and that a page fault stalls
the application for Sms = 5 x 106 instructions.

SAD and LRU Extensions: Because our garbage collectors make
calls to mmap (to request demand-zero pages) and munmap (to free
regions evacuated by GC), we needed to extend the SAD and LRU
models to handle these primitives sensibly. Since SAD and LRU both
treat the first access to a page not previously seen as a compulsory
miss, mmap requires no special handling. We do not charge for com-
pulsory misses. Because the program image and initial heap of the
Java system are likely to be contiguous on disk, common OS prefetch-
ing mechanisms will fetch this data at far lower cost than normal page
faults. Furthermore, the size of this data is orthogonal to the chosen
heap size, and thus all heap sizes incur the same amount of I/O to read
this initial heap and system.! Finally, in a multiprogrammed system,
this initial data is liked to be shared mmap space, and therefore may

IThere is also little difference in the size of initial data across col-
lectors because the dynamically allocated heap starts empty; the only
difference is the collector code and initial data structures.



(b) Touching a page not in the LRU stack

Figure 1: LRU Stack Handling of Unmapped Pages

already be resident. We do not change for compulsory references to
demand-zero pages either, since they incur only a minor page fault—
one that does not require a disk access—to allocate and zero a new
page.

We do need to hardle munmap events specially, however. First
we describe how to model unmapping for the LRU stack algorithm,
and then describe how to extend the SAD trace reduction algorithm
accordingly. Consider the diagram in Figure 1(a). The upper configu-
ration illustrates the state of the stack after the sequence of references
a,b,c,d,e,f,q,h, i, 3, k, 1, followed by unmapping of ¢ and 3.

Note that we leave place holders in the LRU stack for the unmapped
pages. Now suppose the next reference is to page e. We bring e to
the front of the stack, and move the first unmapped page place holder
to where e was in the stack. Why is this correct? For memories of
size 2 or less, it reflects the page-in of e and the eviction of k. For
memories of size 3 through 7, it reflects the need to page in e, and
that, because there is a free page, there is no need to evict a page. For
memories of size 8 or more, it reflects that there will be no page-in or
eviction. Note that if the next reference had been to k or 1, we would
not move any place holder, and if the next reference had been to a, the
place holder between k and i would move down to the position of a.
When a place holder reaches the old end of the stack (the right as we
have drawn it), it may be dropped.

Now consider Figure 1(b), which shows what happens when we
reference a page not in the LRU stack (a compulsory miss, which
may be to a page never before seen, or to a page that was unmapped
and then mapped demand-zero). In this case the reference is to page
c. We push c onto the front of the stack, and slide the previously
topmost elements to the right, until we consume one place holder (or
we reach the end of the stack). This is correct because it requires a
page-m for all memory sizes, but requires eviction only for memories
of size less than 3, since the third slot is free.

One might be concerned that the place holders can cause the LRU
stack structure to grow without bound. However, because of the way

compulsory misses are handled (Figure 1(b)), the stack will in fact
never contain more elements than the maximum number of pages
mapped at one time by the application.

To explain the modifications to SAD, we first provide a more de-
tailed overview of its operation. Given a reduction memory size m,
SAD maintains an m-page LRU stack as well as a window of refer-
ences from the reference trace being reduced. Critically, this window
contains references only to those pages that are currently in the m-
page LRU stack. Adding the next reference from the source trace to
the front of this window triggers one of two cases. The first case ap-
plies if the reference does not cause eviction from the LRU stack (i.e.,
the stack is not full or the reference is to one of the m most recently
used pages). For this case, the reference is added to the window. Fur-
thermore, if the window contains two previous references to the same
page, SAD deletes the middle reference, since the absence of that ref-
erence does not affect the evicting and fetching of that page from an
m-page memory (and hence from any larger memory).

The second case occurs when the reference causes an eviction from
the m-page LRU stack. If p is the evicted page, then SAD removes
references from the back of the window, emitting these references to
the reduced trace file, until no references to p remain in the window.
This step preserves the window’s property of containing references
only to pages that are contained in the m-page LRU stack. At the
end of the program run, SAD flushes the remaining contents of the
window to the reduced trace file.

An unmapped page will affect SAD only if it is one of the m most
recently used pages. If this case occurs, it is adequate to update the
LRU stack by dropping the unmapped page and sliding other pages
towards the more recently used end of the stack to close up the gap.
Since that unmapped page no longer exists in the LRU stack, refer-
ences to it must be removed from the window. Our modified SAD
handles this case as it would an evicted page, emitting references from
the back of the window until it contains no more references to the un-
mapped page.2” -

Application platform: We used Jikes RVM version 2.0.1 [3, 2] built
for the PowerPC architecture as our Java platform. We optimized
the system images to the highest optimization level and included all
rormal run-time system components in the images, to avoid run-time
compilation of those components. The most cost-effective mode for
running Jikes RVM is with its adaptive compilation system, which
compiles application code first with a quick non-optimizing compiler,
and then detects frequently executed (“hot”) code and: optimizes it
at progressively higher levels if it stays hot. Because the adaptive
system uses timer-driven sampling to invoke optimization, it is non-
deterministic. We desired comparable non-deterministic executions to
make our experiments repeatable, so we took compilation logs from a
number of runs of each benchmark in the adaptive system, determined
the median optimization level for each method, and directed the sys-
tem to compile each method to that method’s median level as soon
as the system loaded the method. We call this the pseudo-adaptive
system, and it indeed acl'ueves the goals of determinism and high sim-
ilarity to typical adaptive system runs.

Collectors: We considered three collectors: mark-sweep (MS), semi-
space copying collection (SS), and Appel-style generational copying
collection (Appel) [4]. MS is one of the original “Watson” collec-
tors written at IBM. It uses segregated free lists and separate spaces
and GC triggers for small versus large objects (where “large” means
more than 2KB). MS allows allocation until either the small or large
space fills, and then it does marking and sweeping of both heaps, re-
turning freed space to the segregated lists. SS and Appel come from
the Garbage Collector Toolkit (GCTK), developed at The University

2This approach also maintains SAD’s guarantee that the window
never holds more than 2m + 1 entries.



of Massachusetts Amherst and contributed to the Jikes RVM open
source repository. They do not have a separate space for large ob-
jects. SS is a straightforward copying collector that triggers collection
when a semi-space (half of the heap) fills, copying reachable objects
to the other semi-space. Appel adds a nursery, where it allocates all
new objects. Nursery collection copies survivors to the current old-
generation semi-space. If the space remaining is too small, it then
does an old-generation semi-space collection. In any case, the new
nursery size is half the total heap size allowed, minus the space used
in the old generation. Both SS and Appel allocate linearly in their
allocation area. .

Benchmarks: We use a representative selection of programs from
SPECjvm98. We also use ipsixql, an XML database program,
and pseudojbb, which is the SPECjbb2000 benchmark modified
to perform a fixed number of iterations (thus making time and GC
comparisons more meaningful). We ran all these on their “large” (a
size of 100) inputs.

3.1 Results and Analysis

We consider the results for jack and javac under the SS collec-
tor. The results for the other benchmarks are strongly similar, and
50 we present these two benchmarks as representative of the others.
Figure 2 shows the number of page faults for varying main memory
allocations. Each curve in each graph comes from one simulation run
of the benchmark in question at a particular main memory allocation.
Note that the vertical scales are logarithmic. Notice that the final drop
in each curve happens in order of increasing heap size, i.e., the small-
est heap size drops to zero page faults at the smallest allocation.

We notice that each curve has three regions. At the smallest mem-
ory sizes, we see extremely high amounts of page swapping. Curi-
ously, larger heap sizes perform better for these small memory sizes!
This happens because most of the paging occurs during collection,
and a larger heap size yields fewer collections, and thus less page
swapping.

The second region of each curve is a broad, flat region representing
substantial page swapping. For a range of main memory allocations,
the program repeatedly allocates'in the heap until the heap is full, and
the collector then walks over most of the heap, copying reachable ob-
jects. Both steps are similar to looping over a large array, and require
an allocation equal to a semi-space to avoid paging.’

Finally, the third region of each curve is a sharp drop in faults that
occurs once the allocation is large enough to capture the “looping”
behavior. The final drop occurs at an allocation that is near to half of
the heap size plus a constant (about 30MB for jack). This regularity
suggests that there is a base amount of memory needed for the Jikes
RVM system and the application code, plus additional space for a
semi-space from the heap.

We further notice that for most memory sizes, GC faults dominate
mutator (application) faults. Furthermore, mutator faults have a com-
ponent that depends on heap size. This dependence results from the
mutator’s allocation of objects in the heap between collections.

The behavior of MS strongly resembles the behavior of SS, as
shown in Figure 3. The final drop in the curves tends to be at the
heap size plus a constant, which is logical in that MS allocates to its
heap size, and then collects. MS shows other plateaus, which we sus-
pect have to do with their being some locality in each free list, but the
page swapping experienced on even the lowest plateau gives a sub-
stantial increase in program running time. It is important to select a
heap size whose final drop-off is contained by the current main mem-
ory allocation.

The curves for Appel (Figure 4) are also more complex than those

3The separate graphs for faults during GC and faults during mutator
execution support this conclusion.

for S8, but show the same pattern of a final drop in page faulting at
1/2 the heap size plus a constant.

3.2 Proposed Heap Footprint Model

These results lead us to propose that the minimum real memory R
required to run an application at heap size h without substantial paging
is approximately @ h+ b, where a is a constant that depends on the
GC algorithm (1 for MS and 0.5 for SS and Appel) and b depends
partly on Jikes RVM and partly on the application itself. The intuition
behind the formula is this: an application repeatedly fills its available
heap (1/2-h for Appel and SS; A for MS), and then, during a full heap
collection, copies out of that heap the portion that is live (b).

In sum, we suggest that required real memory is a linear function of
heap size. We tested this hypothesis using results derived from those
already presented. In particular, suppose we choose a threshold value
t, and we desire that the estimated paging cost not exceed ¢ times the
application’s running time with no paging. For a given value of ¢, we
can plot the minimum main memory allocation required for each of a
range of heap sizes such that the paging overhead not exceed .

Figure S shows, for jack and javac and the three collectors,
plots of the main memory allocation necessary at varying heap sizes
such that paging remains within a range of thresholds. What we see
is that the linear model is excellent for MS and SS, and still good for
Appel, across a large range of heap sizes and thresholds. For Appel,
beyond a certain heap size there are nursery collections but no full
heap collections. At that heap size, there is a “jump” in the curve, but
on each side of this heap size there are two distinct regimes that are
both linear.

For some applications, our linear model does not hold as well. Fig-
ure 6 shows results for compress under Appel and SS. For smaller
threshold values the linear relationship is still strong, modulo the shift
from some full collections to none in Appel. While we note that larger
threshold values ultimately give substantially larger departures from
linearity, users are most likely to choose small values for ¢ in an at-
tempt nearly to eliminate page swapping. Only under extreme mem-
ory pressure would a larger value of ¢ be desirable. The linear model
appears to hold well enough for smaller ¢ to consider using it to drive
an adaptive heap-sizing mechanism.

4. DESIGN AND IMPLEMENTATION

The model that correlates heap size and memory footprint, described
in Section 3.2, allows one to take as input the current footprint of the
application and the current allocation to the process, and then to select
a good heap size. To implement this algorithm, we therefore modi-
fied two garbage collectors as well as the underlying virtual memory
manager (VMM). Specifically, we changed the VMM to collect infor-
mation sufficient to calculate the footprint, and changed the garbage
collectors to adjust the heap size on the fly. Furthermore, we altered
the VMM to communicate to the collectors the information necessary
to perform the heap size calculation.

We implemented the modified garbage collectors within the Jikes
RVM (3, 2] Java system, which we ran on Dynamic SimpleScalar [8].
This is much the same setup we used to generate the traces we dis-
cussed in Section 3.2. However, rather than generating traces, we
used a differently extended version of DSS, which models an operat-
ing system’s VMM. We now proceed to describe this VMM emulator
and the modifications to the collectors.

4.1 Emulating a Virtual Memory Manager

DSS is an instruction-level CPU simulator that emulates the execution
of a process under PPC Linux. Since the process requires the services
of the underlying operating system, DSS emulates those services, but
does so without implementing a full OS kernel. We enhanced the



SemiSpace _228_jack Total faults (log)

(a) SS total faults for jack

SemiSpace _213_javac Total fautts (log)

(d) SS total faults for javac

Number of page faults

Number of page faults

-:ﬁigggg

Mamory (megabytes)

(b) SS GC faults for jack

SemiSpace _213_lavac GC faults (log)

(e) SS GC faults for javac

Number of page faults

_zﬁiég;g

Number of page fauts

SemiSpace _228_|ack Mutator faults (log)

A
Memory (megabytes)

(c) SS mutator faults for jack

(f) SS mutator faults for javac

Figure 2: SS: Faults and estimated time according to memory size and heap size



Number of pago faults

(a) MS total faults for jack

MarkSweop _213_javac Total faults (log)

—~

1

1
1
I
i
1
S

]ilii ‘!

(e

Number of page faults
-=§§§§:§

B,

1; we t ol
Memory (mogabytes)

(d) MS total faults for javac

Number of page faults

-ﬁ

S b BN
SLTTTTLR.

guun-—-

0006 0000 T o 0 (L U0
1
i

B

L . R
10 e 19

Mamory (mogabytes)
(b) MS GC faults for jack

\
1
t
i
i
i
i

i

Ly
i
i
i
i
'
i
'
[
i
t

Mamory (mogabytes)
(e) MS GC faults for javac

'Ma.rRSwoop' _223_{8& Mutator faults (log)

Number of page faults

(c) MS mutator faults for jack

MarkSwoep _213_javac Mutator faults (log)

BERE

Number of page faults
g

3

100 l;ﬁ 0
Memory (megabytas)

(f) MS mutator faults for javac

Figure 3: MS: Faults and estimated time according to memory size and heap size



Appe! _228_lack Tota! fautts (log) Appel _228_jack GC fautts (log)
12M8 —

10008 ] Mgt—j o8
5"”"’ B—:T' g weomo
s H
g g6mB —— 1 § -
120MB —
B wo B 1w
g w0 'E "0
z | z
w i 1
A
'

Memoty (megabytes)

(a) Appel total faults for jack (b) Appel GC faults for jack (c) Appel mutator faults for jack
Appel _213_javac Total fauts (log) Appel _213_javac GC fauhts (log) Appel_213_javac Mutator faults (log)
tou07 ) ] — 007 o7
oucs %B E 2 [ g Toucs
\econ 160MB —— oor0 1000
1] FaomB — ] g
g - N i \*v g = z -
) IR . .
» mw? 1w )m “w w
(d) Appel total faults for javac (¢) Appel GC faults for javac (f) Appel mutator faults for javac

Figure 4: Appel: Faults and estimated time according to memory size and heap size



2
§egeeese.

° » © ©

L]
Heep Ss (M)

(a) Memory needed for jack under MS

o £ © © 10 120

o
Heep S53 M8)

(b) Memory needed for jack under SS

Momcry Noeded (NI}

38 8 8 3 8 3 3 3

o © ©
oy Se (VD)

(c) Memory needed for jack under Ap-
pel

Markdweep _312_jevec SemiSpace 13 jeves Arpel_213_jwvee
Ed u AL 10
"o wl
0
1o m}
)
i § 100 i wo b
i 130 l ” l ©
; r j © j L]
hd 1
13 v ot ©
08 —o-
wl T po
2 3 - 0
Gy —a—
° ° i A
° ° © 100 10 0 ] °

(d) Memory needed for javac under
MS

(e) Memory needed for javac under SS

(f) Memory needed for javac under
Appel

Figure S: (Real) memory required across range of heap sizes to obtain given paging overhead



100
0
80
n
1,
i-
E “
E 4
2
Ria g
. . . . 95 —s--
oﬂ 4 60 0 100 120 140 100
Heap Size (M3)
(a) Memory needed for compress under Appel

100
[ J
®
70
iw
i.
E ®

0 |

0.8 ~~ctte

08 - ttee

2 05 —o0—

04 —~o~

03 o~

10 02 ~-o-

04 —s—

. N N N N P —o

°N 4 ] 80 100 120 140 160

Heap Size (MB)

(b) Memory needed for ipsixql under Appel

Figure 6: (Real) memory required to obtain given paging over-
head

emulation of the VMM provided by DSS so that it more realistically
modeled a real VMM, Since our algorithm relies on a VMM that com-
municates both the current allocation and the current footprint to the
garbage collector, it is critical that the emulated VMM be sufficiently
realistic to approximate the overhead that our methods would impose
on areal VMM.

Information collection vs. overhead. The primary respon-
sibility of a VMM is to implement a page replacement policy. It is
important that the replacement policy evict to disk pages that will not
be used soon; otherwise, performance will suffer due to heavy page
swapping. To select such pages, the VMM must keep some amount
of information about past memory references in order to predict fu-
ture reference patterns. However, it is also important that the VMM
impose minimal run-time overhead in obtaining this information.

Consequently, real VMMs do not record information about the vast
magjority of memory references. Instead, they use one or both of the
following methods to collect sufficient information with low over-
head:

1. Hardware reference bits: When the program references a page,
the CPU automatically sets a bit associated with that page. Only

the VMM can clear the bit, and so it can periodically check it to
determine whether the page has been referenced recently. The
CLOCK algorithm, which approximates the common least re-
cently used (LRU) algorithm, relies on reference bits.

2. Page protection: The VMM can remove all access permissions
to a page. When that page is next referenced, it will cause a mi-
nor page fault (i.e., a fault, but one that does not require disk ac-
cess to service), thus allowing the VMM to record information
when the reference happens. The Segmented Queue (SEGQ)
technique [5], which also approximates LRU, uses page pro-
tections.

A low cost replacement policy. We combine these methods
in our emulated VMM. Specifically, we use a SEGQ structure; that
is, main memory is divided into two segments where the more re-
cently used pages are placed in the first segment—a hot set of pages—
while less recently used pages are in the second segment—the cold
set. When a new page is faulted into main memory, it is placed in the
first (hot) segment. If that segment is full, one page is moved into the
second segment. If the second segment is full, one page is evicted to
disk, thus becoming part of the evicted set.

‘We use the CLOCK algorithm for the hot set. This use of hardware
reference bits allows pages to be moved into the cold set in an order
that is close to true LRU order. Our model keeps (in software) 8 ref-
erence bits. As the CLOCK passes a particular page, we shift its byte
of reference bits left by one position and or the hardware referenced
bit into the low position of the byte. The rightmost one bit of the ref-
erence bits determines the relative age of the page. When we need to
evict a hot set page to the cold set, we choose the page of oldest age
that comes first after the current CLOCK pointer location.

‘We apply page protection to pages in the cold set, and store the
pages in order of their eviction from the hot set. If the program refer-
ences a page in the cold set, the VMM restores the page’s permissions
and moves it to the hot set, potentially forcing some other page out
of the hot set and into the cold set. Thus, the cold set behaves like a
normal LRU queue.

‘We modified DSS to emulate both hardware reference bits and pro-
tected pages. Our emulated VMM uses these capabilities to imple-
ment our CLOCK/LRU SEGQ policy. For a given main memory size,
it records the number of minor page faults on protected pages and
the number of major page faults on non-resident pages. We can later
ascribe service times for minor and major fault handling and thus de-
termine the running time spent in the VMM.

Handling unmapping. As was the case for the SAD and LRU
algorithms, our VMM emulation needs to deal with unmapping of
pages. The cold and evicted sets work essentially as one large LRU
queue, so we handle unmapped pages for those portions as we did
for the LRU stack algorithm. As for the hot set, suppose an unmap
operations causes k pages to be unmapped in the hot set. Our strategy
is to shrink the hot set by & pages and put k place holders at the head
of the cold set. We then allow future faults from the cold or evicted
set to grow the hot set back to its target size.

4.2 Virtual Memory Footprint Calculations

Existing real VMMs lack capabilities critical for supporting our
heap sizing algorithm. Specifically, they do not gather sufficient infor-
mation to calculate the footprint of a process, and they lack a sufficient
interface for interacting with our modified garbage collectors. We de-
scribe the modifications required to a VMM—modifications that we
applied to our emulated VMM—to add these capabilities.

We have modified our VMM to measure the current footprint of



a process, where the footprint is defined as the smallest allocation
whose page faulting will increase the total running time by more than
afractiont over the non-paging running time. When t = 0, the corre-
sponding allocation may be wasting space to cache pages that receive
very little use. When ¢ is small but non-zero, the corresponding allo-
cation may be substantially smaller in comparison, and yet still yield
only trivial amounts of page swapping, so we think non-zero thresh-
olds lead to a more useful definition of footprint.

LRU histograms. In order to calculate this footprint, the VMM
records an LRU histogram [12, 13]. Imagine maintaining an LRU
queue, where the positions are numbered starting at 1. Also imagine
maintaining a count of the references to pages found at each queue
position—that is, for each reference to a page found at position i, we
increment a count H([i]. This histogram allows the VMM to calculate
the number of page faults that would occur with each possible allo-
cation to the process. The VMM finds the footprint by finding the
allocation size where the number of faults is just below the number
that would cause the running time to exceed the threshold ¢.

Updating a true LRU queue would impose too much overhead in a
real VMM. Instead, our VMM uses the SEGQ structure described in
Section 4.1 that approximates LRU at low cost. Under SEGQ, we do
not collect histogram information on references to pages in the hot set.
Instead, we maintain histogram counts only for references to pages in
the cold and evicted sets. Such references incur a minor or major fault,
respectively, and thus give the VMM an opportunity to increment the
appropriate histogram entry. Since the hot set is much smaller than
the footprint, the missing histogram information on the hot set does
not harm the footprint calculation.

In order to avoid large space overheads, the VMM also does not
maintain one histogram entry per queue position. Instead, we group
positions together into bins, Specifically, we use one bin for each
64 pages (256KB given our page size of 4KB). This granularity is fine
enough to provide a sufficiently accurate footprint measurement while
reducing the space overhead substantially.

Mutator vs. collector referencing. The mutator and garbage
collector are likely to exhibit drastically different reference behaviors.
Furthermore, when the new heap size is chosen, the reference pattern
of the garbage collector will change accordingly, while the reference
pattern of the mutator will likely remain similar (in general not exactly
the same, since the collector may have moved objects the mutator will
reference).

Therefore, the VMM relies on notification from the garbage collec-
tor when collection begins and when it ends. One histogram records
the mutator’s reference pattern, and another histogram records the col-
lector’s. When the heap size changes, we clear the collector’s his-
togram, since the previous histogram data no longer provides a mean-
ingful projection of future memory needs.

When the VMM calculates the footprint of a process, it combines
the counts from both histograms, thus incorporating the page faulting
behavior of both phases.

Unmapping pages. A garbage collector may elect to unmap a
virtual page, thereby removing it from use. As we discussed previ-
ously, we use place holders to model unmapped pages. They are cru-
cial not only in determining the correct number of page faults for each
memory size, but also in maintaining the histograms correctly, since

4 Footprint has sometimes been used to mean the total number of
unique pages used by a process, and sometimes the memory size at
which no page faulting occurs. Our definition is taken from this sec-
ond meaning. We choose not to refer to it as a working set because
that term has a larger number of poorly defined meanings.

the histograms indicate the number of faults one would expenence at
various memory sizes.

Histogram decay. Programs exhibit phase behavior: during a
phase, the reference pattern is constant, but when one phase ends and
another begins, the reference pattern may change dramatically. There-
fore, the histograms must refiect the referencing behavior from the
current phase. During a phase, the histogram should continue to accu-
mulate. When a phase change occurs, the old histogram values should
be decayed rapidly so that the new reference pattern will emerge.

Therefore, the VMM periodically applies an exponential decay to
the histogram, Specnﬁcally, it multiplies each histogram entry by a
decay factor a0 = 33, ensuring that older histogram data has dimin-
ishing influence on the footprint calculation. Previous research has
shown that the decay factor is not a sensitive parameter when using
LRU histograms to guide adaptive caching strategies {12, 13).

To ensure that the VMM applies decay more rapidly in response to
a phase change, we must identify when phase changes occur. Phases
are memory size relative: a phase change for a hardware cache is not
a phase change for a main memory. Therefore, the VMM must re-
spond to referencing behavior near the main memory allocation for
the process. Rapid referencing of pages that substantially affect page
replacement for the current allocation indicate that a phase change
relative to that allocation size is occurring [12, 13].

The VMM therefore maintains a virtual memory clock (this is quite
distinct from, and should rot be confused with the clock of the CLoCK
algorithm). A reference to a page in the evicted set advances the clock
by 1 unit. A reference to a page in the cold set, whose position in the
SEGQ system is i, advances the clock by f(i). If the hot set contains A
paEes. and the cold set contains ¢ pages, then s < i < h+cand f(i) =

The contribution of the reference to the clock’s advancement
mcreases linearly from O to 1 as the position nears the end of the
cold set, thus causing references to pages that are near to eviction to
advance the clock more rapidly.

Once the VMM clock advances -f-é units for an M-page allocation,
the VMM decays the histogram. The larger the memory, the longer the
decay period, since one must reference a larger number of previously
cold or evicted pages to constitute a phase change.

Hot set size management. A typical VMM uses a large hot
set to avoid minor faults. The cold set is used as a “last chance” for
pages to be re-referenced before being evicted to disk. In our case,
though, we want to maximize the useful information (LRU histogram)
that we collect, so we want the hot set to be as small as possible,
without causing undue overhead from minor faults. We thus set a
target minor fault overhead, stated as a fraction of application running
time, say 1% (a typical value we used). Periodically (described below)
we consider the overhead in the recent past. We calculate this as the
(simulated) time spent on minor faults since the last time we checked,
divided by the total time since the last time we checked. For “time” we
use the number of instructions simulated, and assume an approximate
execution rate of 10° instructions/sec. We charge 2000 instructions
(equivalent to 2us) per minor fault. If the overhead exceeds 1.5%,
we increase the hot set size; if it is less than 0.5%, we decrease it
(details in a moment). This simple adaptive mechanism worked quite
well to keep the overhead within bounds, and the 1% value provided
information good enough for the rest of our mechanisms to work.

SIf the cold set is large, the high frequency of references at lower
queue positions may advance the clock too rapidly. Therefore, for a

total allocation of M pages, we define ¢’ = max(c, % ), &' =min(h, % )
and (i) = S



How do we add or remove pages from the hot set? Our technique
for growing the hot set by k pages is to move into the hot set the k
hottest pages of the cold set. To shrink the hot set to a target size, we
run the CLOCK algorithm to evict pages from the hot set, but without
updating the reference bits used by the CLOCK algorithm. In this way
the oldest pages in the hot set (insofar as reference bits can tell us age)
end up at the head of cold set, with the most recently used nearer the
front (i.e., in proper age order).

How do we trigger consideration of hot set size adjustment? For
the case where we might want to grow the hot set, we count what
we call hot set ticks. Given the LRU stack position numbering given
above, we associated a weight with each queue position from &+ 1
through A + ¢, such that position s+ 1 has weight 1 and h+c+ 1 has
weight 0, i.e., the weight w = (h+c+ 1~ i) /c. (This weighting works
oppositely to that used for the VMM clock that drives in histogram
aging.) For each minor fault that hits in the cold set, we increment the
hot set tick count by the weight of the position of the fault. When the
tick count exceeds 1/4 the size of the hot set (representing somewhat
more than 25% turnover of the hot set), we trigger a size adjustment
test. Note that we count faults near the hot set boundary more than
ones far from it. The reasoning here is that if we have a high overhead
that we can fix with reasonable hot set growth, we will find it more
quickly; conversely, if we have many faults from the cold end of the
cold set, we may be encountering a phase change in the application
dnd should be careful not to adjust the hot set size too eagerly.

To handle the case where we should consider shrinking the hot set,
we consider the passage of (simulated) real time. If, when we han-
dle a fault, we find that we have not considered an adjustment within
< seconds, we trigger consideration. We use a value of 16 x 10 in-
structions, corresponding to T = 16ms.

When we want to grow the hot set, how do we compute a new size?
Using the current overhead, we determine the number of faults by
which we exceeded our target overhead since the last time we con-
sidered adjusting the hot set size. We multiply this times the average
hot-tick weight of minor faults since that time, namely hot ticks / mi-
nor faults; we call the resulting number N:

W = hot ticks/minor faults
target faults = (At x 1%) /2000

N =W x (actual faults — target faults)

Multiplying by the factor W avoids adjusting too eagerly. Using recent
histogram counts for pages at the hot end of the cold set, we add pages
to the hot set until we have added ones that account for N minor faults
since the last time we considered adjusting the hot set size.

When we want to shrink the hot set, how do we compute a new size?
In this case, we do rot have histogram information, so we assume that
{for changes that are not too big) the number of minor faults changes
lipearly with the number of pages removed from the hot set. Specifi-
cally, we compute a desired fractional change:

fraction = (target faulis — actual faults) [target faults

'}';;'hen. to be conservative, we reduce the hot set size by only 20% of
this fraction:

reduction = hot set size X fraction x .20
We found this scheme to work very well in practice.

VMM/GC interface. The GC and VMM communicate with sys-
tém calls. The GC initiates communication at the beginning and end-
1g of each collection. When the VMM receives a system call mark-
itig the beginning of a collection, it switches from the mutator to the
collector histogram. It returns no information to the GC at that time.

When the VMM receives a system call for the ending of a collec-
tion, it performs a number of tasks. First, it calculates the footprint
of the process based on the histograms and the threshold ¢ for page
faulting. Second, it determines the current main memory allocation
to the process. Third, it switches from the collector to the mutator
histogram. Finally, it returns to the GC the footprint and allocation
values. The GC may use these values to calculate a new heap size
such that its footprint will fit into its allocated space.

4.3 Adjusting Heap Size

In Section 3 we described the virtual memory behavior of the MS, SS,
and Appel collectors in Jikes RVM. We now describe how we mod-
ified the SS and Appel collectors so that they modify their heap size
in response to available real memory and the application’s measured
footprint. (Note that MS, unless augmented with compaction, cannot
readily shrink its heap, so we did not modify it and drop it from fur-
ther consideration.) We consider first the case where Jikes RVM starts
with the heap size requested on the command line, and then adjusts
the heap size after each GC in response to the current footprint and
available memory. This gives us a scheme that at least potentially can
adapt to changes in available memory during a run. Next, we aug-
ment this scheme with a startup adjustment, taking into account from
the beginning of a run how much memory is available at the start.
We describe this mechanism for the Appel collector, and at the en
describe the (much simpler) version for SS. '

Basic adjustment scheme. We adjust the heap size after each
GC, so as to derive a new nursery size. First, there are several cases
in which we do not try to adjust the heap size:

¢ When we just finished a nursery GC that is triggering a full GC.,
We wait to adjust until after the full GC.

o On startup, i.e., before there are any GCs. (We describe later
our special hardling of startup.)

e If the GC was a nursery GC, and the nursery was “small”,
meaning less than 1/2 of the maximum amount we can allocate
(i.e., less than 1/4 of the current total heap size). Footprints
from small nursery collections tend to be misleadingly small.
We call this constant the nursery filter factor, which controls
which nursery collections heap size adjustment should igrore.

Supposing none of these case pertain, we then act a little differently
after nursery versus full GCs. After a nursery GC, we first compute
the survival rate of the just completed GC (bytes copied divided by
size of from-space). If this survival rate is greater than any survival
rate we have yet seen, we estimate the footprint of the next full GC.
This estimate is: ‘

current footprint + 2 X survival rate x old space size

where the old space size is the size before this nursery GC. We call
this footprint estimate the eStimated future footprint, or eff for short.
If the eff is less than available memory, we make no adjustment. The
point of this whole calculation is to prevent over-eager growing of the
heap after nursery GCs. Nursery GC footprints tend to be smaller
than full GC footprints; hence our caution about using them to grow
the heap.

If the eff is more than available memory, or if we just performed a
full heap GC, we adjust the heap size, as we now describe. Our first
step is to estimate the slope of the footprint versus heap size curve

SThe factor 2 X survival rate is intended to estimate the volume of old
space data referenced and copied. It is optimistic about how densely
packed the survivors are in from-space. A more conservative value for
the factor would be 1 4 survival rate.



(corresponding to the slope of the lines in Figure 5. In general, we use
the footprint and heap size of the two most recent GCs to determine
this slope. However, after the first GC we have only one point, so in
that case we assume a slope of 2 (for Aheap size/Afootprint). Further,
if we are considering growing the heap, we multiply the slope by 1/2,
to be conservative. We call constant the conservative factor and use it
to control how conservatively we should grow the heap. In Section 5,
we provide a sensitivity analysis for the conservative and nursery filter
Jactors.

Using simple algebra, we compute the target heap size from the
slope, current and old footprint, and old heap size. (“Old” means after
the previous GC; “current” means after the current GC.) Here is the
equation:

target size = old size + slope x (current footprint — old footprint)
We use that target size, subject to two constraints:

1. We will not grow the heap beyond the maximum that Jikes
RVM currently supports (256MB).

2. We will not adjust the heap size if the target is less than that
required for “reasonable operation”. That amount is the size of
old space after the current collection, plus the size of the allo-
cation request that triggered GC, plus 1/8 of the target usable
heap size. The usable heap size is 1/2 the heap size, so the final
addend is 1/16 of the target heap size. It is intended to represent
the minimum acceptable nursery size to prevent GC from being
called outrageously often.

Finally, we note that our calculation is done in terms of 128 KB
blocks, not bytes, and is rounded down, which makes it slightly con-
servative.

Startup heap size. We found that the heap size adjustment algo-
rithm we gave above work well much of the time, but has difficulty
if the initial heap size (given by the user on the Jikes RVM command
line) is larger than the footprint. The undeslying problem is that the
first GC causes a lot of paging, yet we do not adjust the heap size until
after that GC. Hence we added a startup adjustment. From the cur-
rently available memory (a value supplied by the VMM on request),
we compute an maximum acceptable heap size:

max heap size = 2 x (available — 20MB)

If the requested heap size exceeds this maximum, we use the com-
puted maximum in its place. Thereafter we adjust the heap as de-
scribed above.

Heap size adjustment for SS. SS in fact uses the same adjust-
ment algorithm as Appel. The critical difference is that in SS there
are no nursery GCs, only full GCs.

S. EXPERIMENTAL EVALUATION

To test our algorithm we ran each benchmark described in Section 3
using the range of heap sizes used in Section 3.2 and a selection of
fixed main memory allocation sizes. We used each combination of
these parameters with both the standard garbage collectors (which use
a static heap size) and our dynamic heap-sizing collectors. We chose
the real memory allocations to reveal the effect of using large heaps
in small allocations as well as small heaps in large allocations. In
particular, we sought to evaluate the ability of our algorithm to grow
and to shrink the heap, and to compare its performance to the static
heap collectors in both cases. ,

We compare the performance of the collectors by measuring their
estimated running time, derived from the number of instructions sim-
ulated. As mentioned in Section 3, we attribute 2,000 instructions to

each minor page fault and 5 million instructions to each major page
fault. For our adaptive semi-space collector, we use the threshold
t = 5% for computing the footprint. For our adaptive Appel collec-
tor we use = 10%. (Appel completes in rather less time overall and
since there are a number of essentially unavoidable page fauits at the
end of a run, 5% was unrealistic for Appel.)

5.1 Adaptive vs. Static Semi-space

Figure 8 shows the estimated running time of each benchmark for
varying initial heap sizes under the SS collector. We see that for nearly
every combination of benchmark and initial heap size, our adaptive
collector changes to a heap size that performs at least as well as the
static collector. The left-most side of each curve shows initial heap
sizes and corresponding footprints that do not consume the entire al-
location. The static collector under-utilizes the available memory and
performs frequent collections, hurting performance. Our adaptive col-
lector grows the heap size to reduce the number of collections without
incurring page swapping. At the smallest initial heap sizes, this ad-
justment reduces the running time by as much as 70%.

At slightly larger initial heap sizes, the static collector performs
fewer collections as it better utilizes the available memory. On each
plot, we see that there is an initial heap size that is ideal for the
given benchmark and allocation. Here, the static collector performs
well, while our adaptive collector often matches the static collector,
but sometimes increases the running time a bit. Only pseudojbb and
-209.db experience this maladaptivity. We believe that fine tuning our
adaptive algorithm will likely eliminate these few cases.

When the initial heap size becomes slightly larger than the ideal,
the static collector’s performance worsens dramatically. This initial
heap size yields a footprint that is slightly too large for the allocation.
The resultant page swapping for the static allocator has a huge impact,
slowing execution under the static allocator S to 10 fold compared to
modestly smaller initial heap sizes. Meanwhile, the adaptive collec-
tor shrinks the heap size so that the allocation completely captures
the footprint and little page swapping occurs. By performing slightly
more frequent collections, the adaptive collector consumes a modest
amount of CPU time to avoid a significant amount of disk access time,
thus reducing the running time by as much as 90%.

When the initial heap size grows even larger, the performance of
the adaptive collector remains constant. However, the running time
with the static collector decreases gradually. Since the heap size is
larger, it performs fewer collections, and it is those collections and
their poor reference locality that cause the excessive page swapping.
Curiously, if a static collector is going to use a heap size that causes
page swapping, it is better off using an excessively large heap size!

Observe that for these larger initial heap sizes, even the adaptive
allocator cannot match the performance achieved with the ideal heap
size. This is because the adaptive collector’s initial heap sizing mech-
anism cannot make a perfect prediction, and the collector does not
adjust to a better heap size until after the first full collection.

A detailed breakdown. Table 1 provides a breakdown of the
running time shown in one of the graphs from Figure 8. Specifically,
it provides the results for the adaptive and static semi-space collectors
for varying initial heap sizes with 213_javac. It indicates, from left
to right: the number of instructions executed (billions); the number
of minor and major faults; the number of collections; the percentage
of time spent handling minor faults; the number of major faults that
occur within the first two collections with the adaptive collector; the
number of collections before the adaptive collector learns (“warms-
up”) sufficiently to find its final heap size; and the running time with
the adaptive collector as a percentage of the running time with the
static collector.



‘We see that at small initial heap sizes, the adaptive collector adjusts
the heap size to reduce the number of collections, and thus the number
of instructions executed, without incurring page swapping. At large
initial heap sizes, the adaptive mechanism dramatically reduces the
major page faults. Our algorithm found its target heap size within
two collections, and nearly all of the page swapping occurred during
that “warm-up” time. Finally, it controlled the minor fault cost well,
approaching but never exceeding 1%.

5.2 Adaptive vs. Static Appel

Figure 9 shows plots of the running time for each of our benchmarks
using both the original, static, Appel collector and our modified, adap-
tive, Appel collector, over varying initial heap sizes and fixed alloca-
tions. The results are qualitatively similar to those for the adaptive and
static semi-space collectors. For all of the benchmarks, the adaptive
collector yields significantly improved performance for large initial
heap sizes that cause heavy page swapping with the static collector. It
reduces running time by as much as 90%.

For approximately half of the benchmarks, the adaptive collector
improves performance almost as dramatically for small initial heap
sizes. However, for the other benchmarks, there is little or no im-
provement. The Appel algorithm uses frequent nursery collections,
and less frequent full heap collections. For our shorter-lived bench-
marks, the Appel collector incurs only 1 or 2 full heap collections.
Therefore, by the time that the adaptive collector “warms-up” to se-
lect a better heap size, the execution ends.

Notice also that, for the static collector, there are sometimes two
local minima—heap sizes that provide improved performance when
compared to adjacent heap sizes. The larger of these two heap sizes
occurs when the nursery collections remove enough dead objects to
prevent any full heap collections. This situation occurs for bench-
marks with higher live sizes, such as 213_javac, -228_jack, and pseu-
dojbb; it does not obtain for benchmarks with lower live sizes, such
as 202 _jess and 205_raytrace. Since a nursery collection visits much
less of the heap, it does not exhibit the poor locality of a full heap
collection, and thus does not cause large footprints that lead to page
swapping.

Furthermore, our algorithm is more likely to be maladaptive when

its only information is taken from nursery collections. Consider -228_jack

dtan initial heap size of 36MB. That heap size is sufficiently small that
the static collector incurs no full heap collections. For the adaptive
collector, the first several nursery collections create a footprint that is
larger than the allocation, so the collector reduces the heap size. This
Heap size is small enough to force the collector to perform a full heap
collection that references far more data than the nursery collections
did. Therefore, the footprint suddenly grows far beyond the alloca-
tion and incurs heavy page swapping. The nursery collection leads
the adaptive mechanism to predict an unrealistically small footprint
for the select heap size.

_Although the adaptive collector then chooses a much better heap
size following the full heap collection, execution terminates before the
$ystem can realize any benefit. In general, processes with particularly
ghiort running times may incur the costs of having the adaptive mech-
;ii;ism find a good heap size, but not reap the benefits that follow. Un-
fartunately, most of these benchmarks have short running times that
ttigger only 1 or 2 full heap collections with pseudo-adaptive builds.

Parameter sensitivity. 1t is important, when adapting the heap
size of an Appel collector, to filter out the misleading information pro-
duced during small nursery collections. Furthermore, because a mal-
adaptive choice to grow the heap too aggressively may yield a large
fobtprint and thus heavy page swapping, it is important to grow the
hieap conservatively. The algorithm described in Section 4.3 employs

two parameters: the conservative factor, which controls how conser-
vatively we grow the heap in response to changes in footprint or al-
location, and the nursery filter factor, which controls which nursery
collections to ignore.

We carried out a sensitivity test on these parameters. We tested
all combinations of conservative factor values of {0.66, 0.50, 0.40}
and nursery filter factor values of {0.25, 0.5, 0.75}. Figure 7 shows
213_javac under the adaptive Appel collector for all nine combina-
tions of these parameter values. Many of the data points in this plot
overlap. Specifically, varying the conservative factor has no effect on
the results. For the nursery filter factor, values of 0.25 and 0.5 yield
identical results, while 0.75 produces slightly improved running times
at middling to large initial heap sizes. The effect of these parameters
is dominated by the performance improvement that the adaptivity pro-
vides over the static collector.

Dynamically changing allocations. The results presented so
far show the performance of each collector for an unchanging alloca-
tion of real memory. Although the adaptive mechanism finds a good,
final heap size within two full heap collections, it is important that
the adaptive mechanism also quickly adjust to dynamic changes in
allocation that occur mid-execution.

Figure 10 shows the result of running -213_javac with the static and
adaptive Appel collectors using varying initial heap sizes. Each plot
shows results both from a static 60MB allocation and a dynamically
changing allocation that begins at 60MB. The left-hand plot shows the
results of increasing that allocation to 7SMB after 2 billion instruc-
tions (2 sec), and the right-hand plot shows the results of shrinking to
45MB after the same length of time.

When the allocation grows, the static collector benefits from the re-
duced page faulting that occurs at sufficient large initial heap sizes.
However, the adaptive collector matches or improves on that perfor-
mance. Furthermore, the adaptive collector is able to increase its
heap size in response to the increased allocation, and thus reduce the
garbage collection overhead suffered when the allocation does not in-
crease.

The qualitative results for a shrinking allocation are similar, The -
static collector’s performance suffers due to the page swapping caused
by the reduced allocation. The adaptive collector’s performance suf-
fers much less from the reduced allocation. When the allocation shrinks,
the adaptive collector will experience page faulting during the next
collection, after which it selects a new, smaller heap size at which it
will collect more often.

Notice that when the allocation changes dynamically, the adaptive
allocator dominates the static collector—there is no initial heap size
at which the static collector matches the performance of the adaptive
allocator. Under changing allocations, adaptivity is necessary to avoid
excessive collection or page swapping during some phases of execu-
tion.

We also observe that there.are no results for the adaptive collector
for initial heap sizes smaller than SOMB. When the allocation shrinks
to 45MB, page swapping always occurs. The adaptive mechanism
responds by shrinking its heap. Unfortunately, it selects a heap size
that is smaller than the minimum required to execute the process, and
the process ends up aborting. This problem results from the failure of
our linear model, described in Section 3.2, to correlate heap sizes and
footprints reliably at such small heap sizes, .

We believe we can readily address this problem in future work (pos-
sibly in the final version of this paper). Since our collectors can al-
ready change heap size, and since it is simpler for a collector to ex-
pand its heap than to contract it, we believe that a simple mechanism
can grow the heap rather than allowing the process to abort. Such
a mechanism will make our collectors even more robust than static



collectors that must abort if the heap size is too small.

Appel _213_javac with 60MB Sensitivity Analysls

180 v
FiX ISty ——t—
25 cortme
X 0.66x0.50 ---xe-r
160 g
5050.25 -~
.50x0.50 ------
140 | 0.50x0.75 ~~a— 1
 40X0.25 =--¥-e
=  40X0.50 ---se-n
E 120 04Q0.75 —a—
§ ol
I |
g el J
QF
» P e "
o . ;
0 50 100 150 200 250

Haap (MB)

Figure 7: _213_javac under the Appel collectors given a 60MB
initial heap size. We tested the adaptive collector with 9 differ-
ent combinations of parameter settings, where the first number of
each combination is the conservative factor and the second num-
ber is the nursery filter factor. The adaptive collector is not sen-
sitive to the conservative factor, and is minimally sensitive to the
nursery filter factor.

6. FUTURE WORK

Our adaptive collectors demonstrate the substantial performance ben-
efits possible with dynamic heap resizing. However, this work only
begins exploration in this direction. We are bringing our adaptive

mechanism to other garbage collection algorithms such as mark-sweep.

We seek to improve the algorithm to avoid the few cases in which it
is maladaptive. Finally, we are modifying the Linux kernel to provide
the VMM support described in Section 4.2 so that we may test the
adaptive collectors on a real system.

Other research is exploring a more fine-grained approach to con-
trolling the page swapping behavior of garbage collectors. Specifi-
cally, the collector assists the VMM with page replacement decisions,
and the collector explicitly avoids performing collection on pages that
have been evicted to disk. We consider this approach to be orthogo-
nal and complementary to adaptive heap sizing. We are exploring the
synthesis of these two approaches to controlling GC page swapping.

Finally, we are developing new strategies for the VMM to select
allocations for each process. A process that uses adaptive heap sizing
presents the VMM with greater flexibility in trading CPU cycles for
space consumption. By developing a model of the CPU time required
for garbage collection at each possible allocation (and thus heap size),
the VMM can choose allocations intelligently for processes that can
flexibly change their footprint in response. When main memory is in
great demand, most workloads suffer from such heavy page swapping
that the system becomes useless. We believe that garbage collected
processes whose heap sizes can adapt will allow the system to handle
heavy memory pressure more gracefully.

7. CONCLUSION

Garbage collectors are sensitive to heap size and main memory allo-
cation. Too small a heap size will incur frequent collections while
under-utilizing the available memory. Too large a heap size will cause
the process to suffer from heavy page swapping as full heap collec-
tions rapidly reference nearly all of the process’s pages. Somewhere

between these extremes is an ideal heap size for a given allocation that
collects just often enough to avoid page swapping.

Users cannot a priori select a heap size that is near that ideal. Fur-
thermore, main memory allocations are not constant—they change
dynamically as the multiprogrammed workload places varying de-
mands on the VMM. Therefore, a collector must change heap size
in response to changing allocations.

We present a dynamic adaptive heap sizing algorithm. We apply it
to two different collectors, semi-space and Appel, requiring only min-
imal changes to the underlying collection algorithm to support heap
size adjustments. For static allocations, our adaptive collectors match
or improve upon the performance provided by the standard, static col-
lectors in the vast majority of cases. The reductions in running time
are often tens of percent, and as much as 90%. For initial heap sizes
that are too large, we drastically reduce page swapping, and for initial
heap sizes that are too small, we avoid excessive garbage collection.

In the presence of dynamically changing allocations, our adaptive
collectors strictly dominate the static collectors. Since no one heap
size will provide ideal performance when allocations change, adap-
tivity is necessary, and our adaptive algorithm finds good heap sizes
within 1 or 2 full heap collections.

8. ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under grant number CCR-0085792. Any opinions, find-
ings, conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
NSF. We are also grateful to IBM Research for making the Jikes RVM
system available under open source terms, and likewise to all those
who developed SimpleScalar and Dynamic SimpleScalar and made
them similarly available.

9. REFERENCES

[11 R. Alonso and A. W. Appel. An advisor for flexible working
sets. In Proceedings of the 1990 SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages
153-162, Boulder, CO, May 1990.

[2] B. Alpem, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng,
J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S.F.
Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo,

V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C.
Sreedhar, H. Srinivasan, and J. Whaley. The Jalepeiio virtual
machine. IBM Systems Journal, 39(1), Feb. 2000.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi, S. F.
Hummel, D. Lieber, T. Ngo, M. Mergen, J. C. Shepherd, and
S. Smith. Implementing Jalepefio in Java. In Proceedings of
SIGPLAN 1999 Conference on Object-Oriented Programming,
Languages, & Applications, volume 34(10) of ACM SIGPLAN
Notices, pages 314-324, Denver, CO, Oct. 1999. ACM Press.

[4] A. Appel. Simple generational garbage collection and fast
allocation. Software: Practice and Experience, 19(2):171-183,
Feb. 1989.

[S] O. Babaoglu and D. Ferrari. Two-level replacement decisions in
paging stores. IEEE Transactions on Computers,
C-32(12):1151-1159, Dec. 1983.

[6] H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Software: Practice and
Experience, 18(9):807-820, Sept. 1988.

[7] T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling
garbage collection and heap growth to reduce the execution
time of Java applications. In Proceedings of the 2001 ACM
SIGPLAN Conference on Object-Oriented Programming,



Seriipace _30V_serprons wih KB X - Senilpace I3 jese whh 40MD » Soniipase S8 _reywass wit S0MS
[TEEE= - RS N EESES Y
. /}/ \\\ wob ) o _.“--\ © :r"—_—(. \»_\
] / =t I 1" /
i / i wl { M {- /
i, ,"/ i ’/ i, ‘l'
» - . ',1! Wl \ /
[ -
0” - « ~.~_M w “w "w L] -] « ~ﬁn = L] ° » o - hé” o w w o
(a) 201 _compress 60MB (b) 202_jess 40MB (c) 205_raytrace SOMB
Sorcioace 200 win 00 . Sonilpace 113 s wih 63 Somipnes 713 jock ot &38
Team== === - RmE= "
- r/ \\s_‘_“ w ',/' > “ = e,
o / ey w ’/’ N N . ’r
I® / i° { A I .
i 0 r 4 l w ’ 1\ l P ;; \\.\
i= ] i : ! N i w ; \‘u
E R 1T
- } ° A ’ - H
s E » S S e
°n © © nmmn [ ™) ) ° © ) P ® ) ° © .-.nm ® ™)
(d) 209_db SOMB (e) 213_javac 60MB (f) 228_jack 40MB
Semilyace paay wih S0M3 Senilpace peswdals wih 1MS
NEETES ) rEsE= o~
o | e —— - - / /
} | ’,’i‘ 1. 09 /“/,
{ / { - /
I Bl ¢ H 1 A
l ‘!.' l © Y
0 \_(\ /f »
‘. » -« © hu‘_, © w w w < L] = o w h\cm "0 " -] t- ] t -]
() ipsixql 60MB (h) pseudojbb 100MB

Figure 8: The estimated running time for the static and adaptive SS collectors for all benchmarks over a range of initial heap sizes.

Systems, Languages & Applications, pages 353-366, Tampa,

FL, June 2001.

‘_‘~[8] X. Huang, J. E. B. Moss, K. S. Mckinley, S. Blackburn, and
D. Burger. Dynamic SimpleScalar: Simulating Java Virtual
Machines. Technical Report TR-03-03, University of Texas at

Austin, Feb. 2003.

[9] S.F. Kaplan, Y. Smaragdakis, and P. R. Wilson. Trace reduction
for virtual memory simulations. In Proceedings of the ACM
SIGMETRICS 1999 International Conference on Measurement

ACM SIGMETRICS 2002 International Conference on

Measurement and Modeling of Computer Systems, volume

28(1), pages 264-274, Santa Clara, CA, June 2000.
{12] Y. Smaragdakis, S. F. Kaplan, and P. R. Wilson. The EELRU
adaptive replacement algorithm. 53(2):93-123, July 2003.

[13] P.R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for

101-116.

~ and Modeling of Computer Systems, pages 47-58, 1999.
[IO] S. F. Kaplan, Y. Smaragdakis, and P. R. Wilson. Flexible
reference trace reduction for VM simulations. ACM

Transactions on Modeling and Computer Simulation

(TOMACS), 13(1):1-38, Jan. 2003.

(11} K.-S. Kim and Y, Hsu. Memory system behavior of Java
programs: Methodology and analysis. In Proceedings of the

compressed caching in virtual memory systems. In Proceedings
of The 1999 USENIX Annual Technical Conference, pages




Heap Inst’s (x 10°) Minor faults Major faults GCs Minor fault cost | Hard faults | Warm-up Ratio
(MB) AD FIX AD FIX AD FIX | AD |FIX| AD FIX 1st 2 GCs (GCs) (AD/FIX)
30 | 15.068 | 42.660 | 210,611 | 591,028 | 207 0| 15| 62]095% | 0.95% 0 2 62.28%
40 | 15.251 | 22.554 | 212,058 | 306,989 106 0| 15| 28 | 095% | 0.93% 0 1 30.04%
50 | 14.965 | 16.860 | 208,477 | 231,658 110 8] 15| 18| 095% | 0.94% 0 1 8.22%
60 | 14.716 | 13.811 | 198,337 | 191,458 | 350 689 | 14| 13| 0.92% | 0.94% 11 1 4.49%
80 | 14.894 | 12.153 | 210,641 | 173,742 | 2,343 [ 27,007 | 14 91096% | 0.97% 2236 1 81.80%
100 | 13.901 | 10.931 | 191,547-| 145901 | 1,720 | 35,676 | 13 71094% | 0.90% 1612 2 88.92%
120 | 13.901 | 9.733 | 191,547 | 128,118 | 1,720 | 37,941 | 13 51 094% | 0.89% 1612 2 88.63%
160 | 13.901 | 8.540 | 191,547 | 111,533 | 1,720 | 28,573 | 13 31094% | 0.88% 1612 2 85.02%
200 | 13.901 | 8.525 | 191,547 | 115,086 | 1,720 | 31,387 | 13 31094% | 0.91% 1612 2 86.29%
240 | 13.901 | 7.651 | 191,547 | 98,952 | 1,720 | 15,041 | 13 21094% | 0.87% 1612 2 72.64%

Table 1: A detailed breakdown of the events and timings for .213_javac under the static and adaptive SS collector over a range of initial
heap sizes. Warm-up is the time, measured in the number of garbage collections, that the adaptivity mechanism required to select its final
heap size.

Appel 01 _compress with M0 Agout_IX2_jeve with 40N Acpel 208 sauace wib D
ESE= ' 7 EmE= s — NS .
o ’/,f © ,, - /'f,-/.
gt i” / - /
l N ',/' i - /’ is 7
i . ,/"/" i o " i- fl’
] o T J » / l " 'l'l
0 4 » ,,/’
* © . |
.ﬂ L] L] ”.-mm 1w “w w ° L] n < M“M L] 1w 0 ° o ) -« L] h% o w “w w
(a) 201_compress 60MB (b) 202_jess 40MB (c) 205_raytrace SOMB
o Appel _Z39_d whh 80MD " Appel _213_juvec wih $0MD o Appel 228 _jmch wih &0
ottt ’ ﬁ'\ [ f= e -, FEI-E
8 Y S S e 0 / \_. w ‘f\ )
13 o 4 "w ,/ ’
1. ’ I / ] o1e
{ i - e /
1® / i, [,/' i - 7
l * 4 l ° . /l l o /
wl — - y B / ) /
s =} _‘._/ A
oﬂ « (] u"_mm w " 1 L] » 00 . " mw 0 -] «© hﬂm » "w m
(d) 209_db 50MB (e) 213_javac 60MB (f) 228_jack 40MB
Apped ey i 400 ' Aowl proeints with WIME
RS ' EEE=
"w L ) © /
) //' . I
- / i
l [} /I/ i (]
|- / .
© 5 ; /'
® \"\\ ______ 4 ®
°¢ »n -« - u”m %0 o 0 “w - ] » L] w ’-Wm "w 0 ) = »
(g) ipsixql 60MB (h) pseudojbb 100MB

Figure 9: The estimated running time for the static and adaptive Appel collectors for all benchmarks over a range of initial heap sizes.



Appel _213_javac with 60MB dynamic memory Increzse

180 T
AD hesp AD memory ——w—-
;g( h.:azm; —:'-_— f_._.....---‘-ﬂ\
L heap eMory ---X—-
180 FthupFll(:mnov; ——teee
140 A
E 120 b N \
g 100 |-
E ol
g or
40 /
e ”
2} . | o
° N
0 50 100 150 200

Heap (MB)

(a) 213_javac 60MB— >75MB

Estimated time (bilfion insts)

150 |
/ /
[/ \_
100 | ‘ { /
o
NS L
u}d-‘ *}”,gw" g
° .':o 100 1‘” 200 30

Appel _213_javac with B0MB dynamic memory decrease

0 T T
AD he: FAI!;MM e
lehu"emnmu-ﬂ—- /
/

AR

Heap (MB)

(b) 213_javac 60MB— >45MB

Figure 10: Results of running 213 _javac under the adaptive Appel collector over a range of initial heap sizes and dynamically varying real
memory allocations. During execution, we increase (left-hand plot) or decrease (right-hand plot) the allocation by 15MB after 2 billion

instructions.



