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ABSTRACT
Multi-linked negotiation describes a situation where one agent needs
to negotiate with multiple agents about different issues, and the ne-
gotiation over one issue influences the negotiations over other is-
sues. Multi-linked issues will become important for the next gen-
eration of more complicated Multi-Agent Systems. However, most
current negotiation research looks only at single issue negotiation
and thus does not present techniques to reason and manage multi-
linked issues. In this paper, we present a technique based on the use
of a partial-order schedule and a measure of the schedule, called
flexibility, which enables an agent to reason explicitly about the
interactions among multiple negotiation issues. We show how an
agent uses the partial-order schedule to effectively manage inter-
acting negotiation issues; and how the flexibility is a key measure
for ordering and managing negotiation issues. Experimental work
is presented which shows this management technique for multi-
linked negotiation leads to improved performance.
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1. INTRODUCTION
Negotiation, an interactive communication among participants to

facilitate a distributed search process, is an important technique that
is used to effectively coordinate the behavior of cooperative agents
in a Multi-Agent System(MAS). Negotiation is used for task allo-
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Figure 1: Directly Linked Relationship

cation, resource allocation and conflict resolution. Multi-linked ne-
gotiation deals with multiple negotiation issues when these issues
are interconnected. In a multi-task, resource sharing environment,
an agent needs to deal with multiple related negotiation issues in-
cluding: task contracted to other agents, task requested by other
agents, external resource requirements for local activities and in-
terrelationship among activities distributed among multiple agents.
These issues are related to each other. The result of one issue influ-
ences the possible solutions for the other issues.

The relationships among these negotiation issues can be classi-
fied as two types. One type of relationship is the directly-linked
relationship: issue B affects issue A directly because issue B is
a necessary resource (or a subtask) of issue A, the characteristics
(such as cost, duration and quality) of issue B directly affect the
characteristics of issue A. For example, as pictured in Figure 11,
agent A has a nonlocal task “Task3” contracted to agent B while
agent B needs to subcontract “M7” (a subtask of “Task3”) to an-
other agent and request a resource for “M6” (another subtask for
“Task3”) through negotiation. From agent B’s viewpoint, the nego-
tiation with the agent who performs “M7” and the negotiation with
the agent who controls the resource needed for “M6” have a direct
influence on the negotiation with agent A on “Task3” since when
and how “M7” will be performed and when the resource for “M6”
is available affect when and how “Task3” can be performed.

Another type of relationship is the indirectly-linked relationship:
issue 1 relates to issue 2 because they compete for use of a com-
mon resource. For example, as shown in Figure 2, agent A has
a nonlocal task “M2” contracted to agent C while agent B has a
nonlocal task “M4” contracted to agent C, because of the limited
capability of agent C, when “M2” will be performed indirectly af-
fects when “M4” can be performed. Figure 3 describes a situation
where there are interactions among directly-linked and indirectly-

All task plans shown in this paper use the TÆMS language [1],
which is also used in our implementation and experiments.
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linked issues. Agent B has two nonlocal tasks: “M2” contracted
to agent A and “M4” contracted to agent C. If the facilitates2 rela-
tionship between “M2” and “M4” is exploited, the negotiation on
“M2” and the negotiation on “M4” are directly-linked; otherwise,
they are indirectly-linked.

In general, multi-linked negotiation (including both the direct-
linked and indirect-linked relationships) describes situations where
one agent needs to negotiate with multiple agents about different is-
sues, where the negotiation over one issue has influence on the ne-
gotiations over other issues. The commitment on one issue affects
the evaluation of a commitment or the construction of a proposal
for another issue.

How can an agent deal with these multiple related negotiation is-
sues? One approach is to deal with these issues independently just
like separated issues, ignoring their interactions. If these negotia-
tions are performed concurrently, there could be possible conflicts
among these issues, hence the agent may not be able to find a com-
bined solution that satisfied all issues without re-negotiation over
some already “settled” issues. For example, in Figure 1, agent B
negotiates with agent A and promises to finish “Task3” by time 20,
meanwhile agent B also negotiates with other agent about “M7”
and gets a contract that “M7” will be finished at time 30, then agent
B finds it is impossible for “Task3” be finished by time 20 given its
subtask “M7” will be finished at time 30. To reduce the likelihood
that this type of conflict could occur, these negotiations could be
performed sequentially; this means that the agent only deals with
one negotiation issue at a time, and later negotiations are based on
the previous negotiation results. However, this sequential process
is not a panacea. First of all, the negotiation process takes much
longer time when all the issues need to be negotiated sequentially,
potentially using up valuable time and secondly there is no guar-
antee of finding an optimal solution or even whether any possible
solution will be found. The latter problem can occur if the agent
does not reason about the ordering of the negotiation issues and

A facilitates relationship from “M2” to “M4” means that the com-
pletion of “M2” will positively affect the execution “M4” by reduc-
ing its cost, shortening its process time and/or improving its quality.

just treats them as independent issues with their ordering be ran-
dom. In this situation, the result from the previous negotiations
may make the later negotiation issues very difficult or even impos-
sible. For instance, in Figure 1, if agent B first negotiates about
“Task3” before starting the negotiations on “M6” and “M7”, and
the promised finish time of “Task3” results in tight constraints on
the resource request of “M6” and the negotiation on “M7”, then
these negotiation may fail and the commitment on “Task3” has to
be decommitted. One more problem is the difficulty in evaluating
a commitment given that latter issues are undecided, and it is thus
hard for the agent to find a local solution that will contribute effec-
tively to the construction of a good global solution. For example,
in Figure 3, agent B has two non-local tasks, task “M2” contracted
to agent A and task “M4” contracted to agent C. If “M2” could be
finished before “M4” starts, it will reduce the processing time of
“M4” by 50%. Suppose agent B first negotiates with agent C and
then negotiates with agent A; through the negotiation with agent C,
it is decided that “M4” starts at time 20 and finishes by time 40 ,
but then it is found that task “M2” could finish at time 25. Given
this latter information, if the start of “M4” is delayed to time 25,
“M4” actually could be finished at time 35 because the facilitates
effect. But this solution wouldn’t be found if the agent ignores the
interactions among these negotiation issues.

These previous examples show us how important it is for an
agent to reason about the interactions among different negotiation
issues and manage them from a more global perspective. If done ef-
fectively, this permits the agent to minimize the possibility of con-
flicts among these different negotiation issues, and achieve better
performance. In this paper, we introduce a partial-order schedule
(see Section 3) as a basic reasoning tool for the agent to deal with
multi-linked negotiation. It can be used to reason about the influ-
ence of a commitment of one issue on other negotiating issues. It
also can be used to reason about the parameter associated with each
negotiation issue in terms of the range of acceptable answers for a
commitment and how it affects the flexibility available for an agent
to schedule (and reschedule) its local activities.

The reminder of this paper is structured in the following man-
ner. Section 2 introduces a supply chain scenario that used as an
example to explain the ideas. Section 3 presents the definition of a
Partial-Order Schedule (POS) and related algorithms. Section 4 de-
tails how the multi-linked negotiation works using the partial-order
schedule and related reasoning tools. Section 5 reports the experi-
mental work to evaluate the effect of different negotiation strategies
on the agent’s performance. Section 6 discusses about related work
and Section 7 concludes and presents the areas of further work.

2. THE SCENARIO
We use the following supply chain example to explain our ap-

proach to solving a situation involving multi-linked negotiation sit-
uation. However, the following algorithm and the negotiation pro-
cess are domain-independent and not restricted to this example3.
Consider the following example where agents with interrelation-
ship shown in Figure 4.

Consumer Agent: generates two types of new tasks: “Pur-
chase Computer” task for the Computer Producer Agent, “Pur-

In this paper, the term “contractee agent” refers to the agent who
performs the task for another agent and gets rewarded for success-
ful completion of the task; “contractor agent” refers to the agent
who has a task that needs to be performed by another agent and
pays the reward to the other agent. The contractor agent and the
contractee agent negotiate about the task and a contract is signed
(a commitment is built and confirmed) if an agreement is reached
during the negotiation.
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chase Parts” task for the Hardware Producer Agent. Each
task includes following information:

– deadline ( ): the latest-start-time for the task.
– reward ( ): if the task is finished as the contract requested, the

contractee agent will get reward r.
– decommitment penalty rate ( ): If the contractee agent can

not perform the task as it promised in the contract (i.e. the
task could not finish by the promised finish time), it pays a
decommitment penalty ( ) to the contractor agent; if the
contractor agent needs to cancel the contract after it has been
confirmed, it needs to pay a decommitment penalty ( ) to
the contractee agent.

– early finish reward rate ( ): If the contractee agent can finish
the task by the time ( ) as it promised in the contract, it will
get the extra early finish reward: 4

in addition to the reward .

Computer Producer Agent: receives “Purchase Computer”
task from the Consumer Agent, decides if it should accept
this task and if it does, what the promised finish time of the
task should be. Figure 4 shows the local plan for producing
computers, it includes a nonlocal task “Get Hardware” that
requires negotiation with the Hardware Producer Agent.

Hardware Producer Agent: receives two types of tasks: “Get
Hardware” from the Computer Producer Agent and “Purchase Parts”
from the Consumer Agent. It decides whether to accept a
new task and what the promised finish time for the task is.

Suppose Computer Producer Agent has received the following
two tasks:
task name : Purchase Computer A
arrival time: 5
earliest start time: 10 (arrival time + estimated negotiation time(5))5
deadline: 70
reward: r=10
decommitment penalty rate: p=0.5
early finish reward rate: e=0.01
task name : Purchase Computer B
arrival time: 7
earliest start time: 12 (arrival time + estimated negotiation time(5))
deadline: 100
reward: r=10
decommitment penalty rate: p=0.6

For each time unit the task finishes earlier than the deadline, the
contractee agent get extra reward , but the total extra reward
would exceed the reward .

The task should not start until the contract has been confirmed

early finish reward rate: e=0.005
The agent’s local scheduler[8] reasons about these two new tasks
according to above information: their earliest start times, deadline,
estimated process times and the rewards, generates the following
agenda which includes the accepted tasks:

10, 50 Purchase Computer A
50, 90 Purchase Computer B

This agenda is only a high level plan and does not include the
execution details. The Computer Producer Agent checks the local
plans for these tasks as shown in Figure 5 and finds there are four
issues that need negotiation:

1. Negotiate with Consumer Agent about the promised finish
time of “Purchase Computer A”;

2. Negotiate with Consumer Agent about the promised finish
time of “Purchase Computer B”;

3. Negotiate with Hardware Producer Agent about “Get Hardware A”:
whether Hardware Producer Agent can accept this task and
when it can be finished;

4. Negotiate with Hardware Producer Agent about “Get Hardware B”:
same concern as above.

These four issues are all related. “Get Hardware A” and “Pur-
chase Computer A” are directed-linked, so are “Get Hardware B”
and “Purchase Computer B”; “Get Hardware A” and “Get Hardware B”
are indirected-linked, so are “Purchase Computer A” and
“Purchase Computer B”. We next show how Computer Producer Agent
deals with these multi-linked negotiation issues using a partial-
order schedule and related reasoning tools.

3. PARTIAL-ORDER SCHEDULE
A partial-order schedule is the basic reasoning tool that we use

for multiple related negotiations. Here we present the formalization
of the partial-order schedule and use an example to explain how it
works for a multi-linked negotiation. Figure 6 shows the partial-
ordered schedule from the example in Figure 5.

A Partial-Order Schedule represents a group of tasks with spec-
ified precedence relationship among them using a directed acyclic
graph: . , each vertex in V represents a task.

. Each edge (u, v) in E
denotes the precedence relationship between task u and task v, that
is task u has to be finished before task v can start.
Task ( ) is represented as a node in the graph, it is the basic el-

ement of the schedule. A task ( ) needs a certain amount process
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time ( t.process time ). A task can be a local task or a nonlocal
task: a local task is performed locally (i.e, the “Get Software A”
task) and a nonlocal task (i.e. the “Get Hardware A” task) is per-
formed unlocally hence does not consume local process time.

The Precondition of task is a set of tasks that need to be finished
before task can start: t , task

can start only after all tasks in have been finished. For ex-
ample, the precondition of task “Install Software A” includes task
“Get Hardware A” and task “Get Software A”.

The Postcondition of task is a set of tasks that only can start
after task has been finished:

. For example, the postcondition of task “Install Software A”
includes task “Shipping Computer A”.

A task has constraints of earliest-start-time (t.est) and dead-
line (t.dl). The earliest-start-time of task (t.est) is determined by
the earliest-finish-time of it’s precondition ( ) and its
outside-earliest-start-time constraint ( ):

The earliest-finish-time of a task ( ) is defined as:

The earliest-finish-time of a set of tasks V ( ) is defined as
the earliest possible time to finish every task in the set V, it depends
on the earliest-start-time and the duration of each task. For exam-
ple, in Figure 6, outside-earliest-start-time constraint for task “In-
stall Software A” is 10 ( same as its super task ‘Purchase Computer A”),
the earliest-finish-time for its precondition is 20 (assume “Get Hardware
A” could finish at its earliest possible time), then the earliest-start-

time for task “Install Software A” is 20.
The deadline of task ( ) is determined by the latest-start-

time of its postcondition ( ) and its outside-deadline-
constraint ( ):

;
The latest-start-time of a task ( lst(t) ) is defined as:

;
The latest-start-time of a set of tasks V ( ) is defined as the
latest time for the tasks in this set to start without any task missing
its deadline, it depends on the deadline and the duration of each
task.

The Flexibility of Task t represents the freedom to move the task
around in this schedule.

.
For example, .

The Flexibility of a Schedule S measures the overall freedom
of this schedule, it is the sum of the flexibility of each activity
weighted by its process time of the process time of the schedule.
The flexibility of the task with a longer process time has a bigger
influence on the flexibility of the schedule.

A Feasible Linear schedule6 is a total ordered schedule of all ac-

Partial-Order Schedule is a representation and reasoning tool of a
group of tasks and their interrelationship, it is not an executable
schedule for the agent. To translate a partial-order schedule to
an executable linear schedule, there are two different assumptions:
the task is interruptible or UN-interruptible. The interruptible ex-
ecution assumption is that the agent can switch to another task
during the execution of one task, and it can switch back at some
point and continue the execution of the incomplete task. The UN-
interruptible execution assumption does not allow execution of a



tivities with or without interruptible activities, that fulfills following
conditions:

Each task takes (n =1) time periods ( )for
execution, ;

All precedence relationships are valid;

All EST and DL constraints are valid;

A partial-order schedule is a Valid Partial-Order Schedule if there
exists at least one feasible linear schedule that can be produced
from this partial-order schedule without additional constraint and
with the interruptible execution assumption. Without additional
constraint and with the interruptible execution assumption, for a
task with the range [EST, DL], no matter what time is executed
during this range, there exists at least one feasible sequential sched-
ule that can be produced from this partial schedule, then the range
[EST, DL] for t is a free-range because task can be executed dur-
ing any period in this range.

We have built the following algorithms to support the negotia-
tion based on the partial-ordered schedule. The details of these
algorithm are described in [10].

Propagate EST DL: Given a set of tasks with the outside
constrains of the earliest-start-time and deadline, the dura-
tion of every task and the precedence relationship among the
tasks, find the t.est and t.dl for each task according to above
definition.

Feasible Schedule: Translate a partial-order schedule into
an executable linear schedule if the partial-order schedule is
valid, otherwise report failure.

Range Evaluation: Find if a partial-order schedule is valid
without trying to find a feasible linear schedule.

Find NL Range: Find the biggest free range for task nlt in a
partial-order schedule.;

4. MULTI-LINKED NEGOTIATION

4.1 General Ideas
To deal with the multiple related negotiation issues, the agent

needs to analyze the relationships among these negotiation issues
and find what is the influence of one issue on the others. First,
the agent builds a partial-order schedule including the detailed plan
for every task on the agenda which is generated by the agent’s lo-
cal scheduler, so that the agent knows what these tasks are and
how they are related to each other. The agent sorts its current ne-
gotiation issues according to their importance, their flexibilities or
the difficulties of negotiation processes7, and finds the influence
of the previous issue on the later issues. If the issue is a task re-
quested by another agent, i.e. “Purchase Computer A”, the agent
finds the earliest-finish-time (eft a) for this task using the partial-
order schedule, then the agent reasons about what the promised fin-
ish time (pft a) should based on the following concerns. First, the

task to be split into parts. In our work here we adopt the interrupt-
ible execution assumption.

Meta level information is helpful for agent to estimate the
difficulty of the negotiation process. For example, Com-
puter Producer Agent could check with Hardware Producer Agent
to find its flexibility for the next N time units and thus be able to
make a good guess about how easy it is to get “Get Hardware A”
and “Get Hardware B” finished during next N time units.

promised finish time (pft a) should be not earlier than the earliest-
finish-time (eft a) and not later than the deadline (dl a).

, let’s assume , x is a number
to be decided ( ). By setting a spe-
cific value of pft a in the partial-order schedule, the agent finds
how this pft a commitment affects other related issues, i.e. the
free range of task “Get Hardware A” and the earliest-finish-time
for “Purchase Computer B”. If the commitment of pft a leaves task
“Get Hardware A” a very small free range and makes the negotia-
tion difficult, the agent could increase x to allow task “Get Hardware A”
have a bigger free range. If the commitment of pft a implies a fin-
ish time that is too late for task “Purchase Computer B”, the agent
could increase x to provide an earlier finish time for task “Pur-
chase Computer B”. The agent also needs to reason about the bal-
ance between the amount of earlier reward it could get

and the degree of flexibility left for other undecided issues.
If the flexibility is low, the possibility of failing to successfully ne-
gotiation on other issues increases. In that case, the agent may have
to pay a decommitment penalty and additionally get no reward.

If the issue is that a task needs to be contracted to another agent,
i.e. “Get Hardware A”, the agent finds the biggest free range for
this task and the implication of this range on other issues: what
free ranges for other tasks are consistent with this range. It re-
serves a reasonable flexibility for every undecided issue so as to
make other negotiations easier; it also could reserve reasonable
flexibility for the local schedule to cope with uncertainties in the
execution behavior of the current scheduled tasks. Additionally,
the early reward rate ( ) could be decided based on the flexibil-
ity reasoning. If an earlier finishing time for “Get Hardware A”
increases significantly the flexibility of other issues, making other
negotiation much easier or making the local schedule more robust,
then the early reward rate should be set to a large number; other-
wise, a small number is appropriate. The importance of flexibility
means that it should be one of the attributes in negotiation: an agent
needs to decide how much flexibility it requires to be maintained or
how much extra reward it wants to gain.

Once the consistent free ranges are found for each negotiation is-
sue, each negotiation can be performed during these range concur-
rently without affecting each other or causing conflicts. By finding
free ranges for each negotiation issue, the multi-linked negotiation
problem is unlinked into several single issue negotiation problems.
However, this may not always be the best approach in every sit-
uation. Another alternative approach is for the agent to make the
decision to sequence these issues (not necessarily one by one, also
could be group by group) according to their importance or their ur-
gency. This partial sequencing of a set of negotiation issues leads
to an increase in the likelihood of achieving an overall solution that
solves all the negotiation issues in an effective manner. For ex-
ample, in Figure 1, if the agent knows that the resource for “M6”
is shared by many other users and may have limited availability,
it could find the largest free range for task “M6” and only leave
other issues with minimum ranges. This largest range is used in
requesting a resource for “M6” so as to increase the possibility of
a successful contract. Once the time slot for this resource is avail-
able, the range for “M6” could be reduced to fit its time slot, and
thus other issues could have larger ranges for their negotiation.

Besides building the first proposal, the partial-order schedule
also could be used to evaluate counter-proposals from other agents.
If the counter-proposal includes a range outside the initial proposed
range, the agent can check if it is consistent with other issues that
have already been decided or find its implication on those unde-
cided issues, and decides if it is acceptable.

The next section provides an extended example to explain these
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ideas.

4.2 Indirectly Related Issues
Figure 7 shows the partial-ordered schedule with two nonlocal

tasks “Get Hardware A” and “Get Hardware B”, which are indi-
rectly linked. The largest possible range for “Get Hardware A” is
[10, 50]; the largest possible range for “Get Hardware B” is [12,
80]. In this situation, these two ranges are consistent, they are the
free ranges. No matter what time they are finished at or before their
deadlines (their postcondition tasks start no earlier than their dead-
line), there always exists a local feasible schedule (generated by the
Feasible Schedule algorithm):

Get Software A
Get Software B
Install Software A
Shipping Computer A
Install Software B

Shipping Computer B

So the negotiation on these two nonlocal tasks can be performed
concurrently based on these two ranges. However, this schedule
has very little flexibility, the three tasks “Shipping Computer A”,
“Install Software B” and “Shipping Computer B” have zero flex-
ibility, that means if anything unexpected happens (i.e. the task
“Install Software B’ takes a little bit longer time than expected),
the whole schedule will fail. So, during the negotiation, Com-
puter Producer Agent may not want to build a commitment exactly
like [10, 50] for “Get Hardware A”, it needs to reserve some flexi-
bility for its local schedule.

Suppose the deadline of the task “Produce Computer B” is set
at 80, the largest range for “Get Hardware A” is [10, 50], while the
largest possible range for “Get Hardware B” is [12, 60], as shown
in Figure 8. This time, these ranges are not consistent, since the
Range Evaluation algorithm finds it is impossible to have a feasible
linear schedule given the time slot below is overloaded:

Shipping Computer A, Install Software B
The Find NL Range algorithm is used to find the consistence

range of these two tasks. Assume these tasks are sorted according
to their flexibility in increasing order:

F(Get Hardware A) = 3
F(Get Hardware B) = 3.8
So the agent works on the task “Get Hardware A” first. The range
for task “Get Hardware B” is set to a minimum range (i.e. here the
minimum range is defined as a range with flexibility 1) [12, 32], so
the task “Get Hardware A” could find a larger possible range: the
range is found as [10, 50]. After the range of “Get Hardware A”
is decided, the Find NL Range algorithm found the range [12, 40]
is the largest range for task “Get Hardware B”, which is consistent
with the range of “Get Hardware A”. Hence the concurrent nego-
tiation could be performed using these two ranges. On the other
hand, suppose the agent feels that “Get Hardware B” is more im-
portant than “Get Hardware A” and is more difficult to find an ac-
ceptable contract, it could first use the maximum range [12, 60] for
‘Get Hardware B” as the basis for negotiation. The time slot in
the resulting contract then defines the free range for negotiating a
contract for “Get Hardware A”.

4.3 Directly Related Issues
Figure 7 also shows examples of directly-linked issues. Com-

puter Producer Agent needs to find a promised finish time for the
task “Purchase Computer A” and task “Purchase Computer B”, which
are directly linked to task “Get Hardware A” and task “Get Hardware B”
respectively. The earliest-finish-time can be calculated by assum-
ing that the nonlocal task finishes at its earliest possible time, i.e.
the earliest-finish-time for the task “Purchase Computer A” is 40
given the task “Get Hardware A” finished at time 20. However,
this assumption leaves zero flexibility for “Get Hardware A” and
hence may cause failure of the negotiation on this task. Alterna-
tively, the agent could decide how much flexibility (f i) it needs to
reserve for each nonlocal task (nlt i) based on following concern:

1. the negotiation difficulty of task nlt i based on its estimation
and experience ;

2. the decommitment cost of the task T i (T i is the task whose
plan includes nlt i) ;

3. the early reward rate of the task T i;



Policy Tasks Tasks Task Task Decommit Early Utility
Received Accepted Canceled Early Finished Penalty Reward

Computer Producer 1 60 59 27 33 123 283 391
Computer Producer 2 60 60 0.5 0 2.9 0 413
Computer Producer 3 60 60 1.7 53 8.3 297 697
Hardware Producer 1 87 87 27 29 0 36 268
Hardware Producer 2 84 84 9.6 0 0 0 256
Hardware Producer 3 87 87 11 17 0 32 294

Table 1: comparison of performance

Based on these concerns, the range reserved for task nlt i could
be: [nlt i.est, nlt i.est + (1+f i)*nlt i.process time]. Sorting tasks
T i by the early reward rate in decreasing order, the promised fin-
ish time of task T i can be calculated using the Feasible Schedule
algorithm.

In this example, assuming that Computer Producer Agent de-
cides to reserve flexibility 1 for each of nonlocal task, and also de-
cides to calculate the finish time of the task “Purchase Computer A”
first because it has a higher early finish reward rate, then we have
following results:

1. The range reserved for “Get Hardware A” is [10, 30];

2. The finish time for “Purchase Computer A” is 50, the early
reward it will get is: (70-50)*0.01*10 = 2;

3. The range reserved for “Get Hardware B” is [12, 32];

4. The finish time for “Purchase Computer B” is 70, the early
reward it will get is: (100-70)*0.005*10 = 1.5;

The local feasible schedule is:
Get Software A
Get Software B
Install Software A
Shipping Computer A
Install Software B
Shipping Computer B

Based on above schedule, the range for “Get Hardware B” could
be updated as [12, 50] since it does not need to be finished be-
fore time 50. All these four issues can be negotiated concurrently
based on the above results. On the other hand, if the decommitment
penalty for “Purchase Computer A” and “Purchase Computer B”
is high and the schedule of Hardware Producer Agent is busy, the
agent could first negotiate on “Get Hardware A” and “Get Hardware B”
and subsequently negotiate on “Purchase Computer A” and “Pur-
chase Computer B”, .

5. EXPERIMENT
We have implemented an agent architecture including the agent

controller, agent negotiater and execution components. All above
algorithms and procedures associated with reasoning about the partial-
order schedule have been implemented so as to enable the reason-
ing in the multi-linked negotiation process as indicated in the exam-
ples described previously. We designed the following experiment
to study how the different negotiation strategies which involve dif-
ferent reasoning efforts affect the agent’s performance.

The experimental environment is set up based on the scenario
described in Section 2. Three agents were built using the JAF
agent framework [9]. New tasks were randomly generated with
decommitment penalty rate , early finish reward rate

, and deadline , and arrive at the contractee
agents periodically. The local scheduler of the agent schedules all
incoming new task according to their earliest-start-times, deadline,
process times and the rewards and generates an agenda (i.e. agenda
on page 3) including the accepted tasks. From this agenda, the
agent can find the scheduled finish time of each task. It could con-
tinue the negotiation about these incoming tasks just based on the
information from this agenda without further reasoning about the
detailed plan for each task (Actually, that is what the agent does
when using the “Earliest-Finish-Time Policy” and the “Deadline
Policy”). At the same time, if the local plan of these accepted tasks
involves any nonlocal task nlt, then the Find NL Range procedure
is used to find the earliest-start-time and the deadline of the task nlt,
the agent would then start negotiation with the other agent about
task nlt based on this time range.

In this experiment, Computer Producer Agent needs to deal with
the multi-linked negotiation issues related to the incoming task “Pur-
chase Computer” and the outgoing task “Get Hardware”. The fol-
lowing three different negotiation strategies were tested:

1. Earliest-Finish-Time Policy. The agent finds the scheduled
finish time of the task from its agenda and promises it as the
finish time in the contract with the intention to maximize the
early finish reward.

2. Deadline Policy. The agent promises the finish time which is
the same as the deadline of the task with no consideration of
the early finish reward.

3. Flexibility Policy. The agent analyzes its detailed partial-
order schedule, if nonlocal tasks are found, it arranges rea-
sonable flexibility (1, in this experiment) for each nonlocal
task, and based on this arrangement, the finish time of the in-
coming task is decided and promised to the contractor agent.

In above all three cases, the multiple negotiations are performed
concurrently based on the free ranges found by the partial-order
schedule. However, with the first two policies, the agent does not
reason about the interaction among issues or managing the flexibil-
ities for each issue.

The experiments are performed in the MASS simulator environ-
ment [3]. Every group experiment has the system running for 1000
time clicks three times, each time using one of the three different
polices. Table 1 shows the comparison of the agent’s performance
using difference policies. For the Computer Producer Agent, who
has multi-linked negotiation issues, the flexibility policy is obvi-
ously better than the other two policies; it gets more early reward
and pays fewer decommitment penalties.8 For Hardware Producer Agent,

Using t-test, With the 0.01 Alpha-level, the following hy-
pothesis is accepted: when using the flexibility policy, Com-
puter Producer Agent achieves an extra utility that is more than
64% of the utility gained when using the the Earliest-Finish-Time
Policy.



the Earliest-Finish-Time Policy and the Flexibility Policy make no
difference to the agent’s decision making processes, since the agent
has no sub-contracted task that needs consideration. The reason
that the Earliest-Finish-Time Policy provides less utility is because
the Computer Producer Agent cancels more task requests (because
the finish times Hardware Producer Agent could provide are too
late) and hence the Hardware Producer Agent has fewer tasks to
perform and gains that the less reward. These experiment shows
that in a multi-linked negotiation situation, it is very important for
the agent to reasoning about relationship among different negoti-
ation issues and leave reasonable flexibility for them. This type
of reasonings decreases the likelihood of decommitment for previ-
ously settled issues and thus gains more utility.

6. RELATED WORK
To our knowledge, there is no work that has addressed the directly-

linked relationship in the negotiation process. There is some work
that takes into account the indirectly-linked relationship among mul-
tiple negotiation issues. Level commitment[5] allows agent to de-
commit by paying a decommitment penalty. A statistical model
is used to predict future events so that the agent can calculate the
opportunistic cost for the current commitment. When a new task
arrives, the agent can backtrack from its previous decision by pay-
ing a decommitment penalty to get a better local solution. Also
Sandholm[6] has developed a complex contract type - clustering-
swap-multiagent (CSM contract) which allows tasks to be clus-
tered, and then swapped between agents and even circulated among
agents. He has proved that this CSM-contracts is sufficient for
reaching global task allocation optimum in a finite number of con-
tracts. This work deals with indirectly-linked issues by introduc-
ing complicated contract types, however it does not reason about
the interrelationship among tasks and the influence of the temporal
constraints on tasks as in our work. In research on the distributed
meeting scheduling [7] problem, multiple meeting scheduling ses-
sions were allowed to going on concurrently. Two different com-
mitment strategies were explored: one where the agent blocked the
proposed time and the other where the time was not blocked until
an agreement is reached. Adaptive selection of the commitment
strategy according to environment factors is recommended. How-
ever, in both of these works, the agent does not explicitly reason
about the relationship among different issues under negotiation. In
order to propose offers or counter-offers to minimize the conflict
and optimize the combined outcome.

Our partial-order schedule work is related to the Graphical Eval-
uation and Review Technique(GERT) [4] which is used for project
scheduling and management. The big difference between this work
and ours is that this work is not oriented to negotiation, all activities
are local and can be managed with authority, thus they do not rea-
son about free ranges, consistent ranges and schedule flexibilities
which we feel are critical for agent to effectively manage multi-
linked negotiation.

7. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we have studied multi-linked negotiation and looked

at different relationships such as directed-linked and indirectly-linked
relationships. We built a partial-order schedule representation and
a set of related algorithm as a toolkit to deal with multi-linked ne-
gotiation. Additionally, we explored how flexibility is an important
factor in successful negotiation and how the agent use reasonable
flexibility strategy based on allocating flexibility to linked nego-
tiation issues so as to achieve higher performance. In the future
work, we would like to study how flexibility helps an agent deal

with uncertainty in execution of task and the arrival of new tasks.
In this work, we assumed that local task execution was determinis-
tic which is not true for most application domains. We also plan to
use a more complex measure of flexibility [2] which characterizes
the interaction among tasks beside the time issue. Additionally, we
would like to study what is a good strategy for an agent to decide
whether to perform all negotiation issues concurrently and if not,
what sequence should they be done. We also want to explore how
meta-level information about other agent’s loads would help in this
decision-making process.
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