
Efficient Ordering and Parameterization of Multi-Linked Negotiation

Xiaoqin Zhang, Victor Lesser, Sherief Abdallah
Department of Computer Science

University of Massachusetts at Amherst
xqzhang@cs.umass.edu

Abstract

Multi-linked negotiation describes a situation where one agent
needs to negotiate with multiple agents about different issues,
and the negotiation over one issue influences the negotiations
over other issues. In this paper, we present a formalized model
of the multi-linked negotiation problem, and describe a search
algorithm based on this model for finding the best ordering of ne-
gotiation issues and their parameters. Experimental work is pre-
sented which shows that this management technique for multi-
linked negotiation leads to improved performance.

1 Introduction
Multi-linked negotiation deals with multiple negotiation issues
when these issues are interconnected. In a multi-task, resource
sharing environment, an agent may need to deal with multiple
related negotiation issues including: tasks contracted to other
agents, tasks requested by other agents, external resource re-
quirements for local activities and interrelationships among ac-
tivities distributed among multiple agents.

The potential relationships among these negotiation issues
can be classified as two types. One type of relationship is the
directly-linked relationship: issue B affects issue A directly be-
cause issue B is a necessary resource (or a subtask) of issue
A. The characteristics (such as cost, duration and quality) of
issue B directly affect the characteristics of issue A. For ex-
ample, as pictured in Figure 11, Computer Producer Agent
receives task Purchase Computer from Consumer Agent, and
decides if it should accept this task and if it does, what the
promised finish time of the task should be. The earlier the task
is finished, the higher the reward Computer Producer Agent
can get. In order to accomplish task Produce Computer, Com-
puter Producer Agent needs to generate an external request
for hardware (Get Hardware), and also needs to deliver the
computer (Deliver Computer) through a transport agent. The

This material is based upon work supported by the National Sci-
ence Foundation under Grant No.IIS-9812755, DMI-0122173 and the
Air Force Research Laboratory/IFTD and the Defense Advanced Re-
search Projects Agency under Contract F30602-99-2-0525. The U.S.
Government is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency, Air Force Research
Laboratory/IFTD, National Science Foundation, or the U.S. Govern-
ment.
Copyright c 2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

1All task plans shown in this paper use the TÆMS language [1],
which is also used in our implementation and experiments.

min

Install_Software

Get_Hardware

enablesGet_Software

enables

Computer Producer Agent

min

Produce_Computer

Hardware Producer Agent

Get_HardwarePurchase_Parts

Transport Agent

time: 10

enables

time: 10
time: 10

time: 6

Consumer Agent Consumer Agent Consumer Agent

Deliver_Computer

Deliver_Product

Deliver_Computer

Purchase_Computer

Figure 1: A Supply Chain Scenario

negotiation on the task Purchase Computer is directly linked
to the negotiation on the two tasks: Get Hardware and De-
liver Computer. If either one of these two tasks fail, the task
Purchase Computer can not be accomplished. Furthermore,
when and how these two tasks are performed also affect the
way the task Purchase Computer is going to be accomplished.

Another type of relationship is the indirectly-linked relation-
ship: issue 1 relates to issue 2 because they compete for use of a
common resource. For example, as shown in Figure 2, besides
the task Purchase Computer A, Computer Producer Agent has
another contract on task Purchase Computer B. Because of
the limited capability of the Computer Producer Agent, when
task Purchase Computer Awill be performed affects when task
Purchase Computer B can be performed. The negotiation on
task Purchase Computer A and the negotiation on task Pur-
chase Computer B are indirectly-linked.

How can the agent deal with these multiple related nego-
tiation issues? One approach is to deal with these issues in-
dependently and ignore their interactions. If these negotia-
tions are performed concurrently, there could be possible con-
flicts among these issues, hence the agent may not be able
to find a combined solution that satisfies all issues without
re-negotiation over some already “settled” issues. For exam-
ple, in Figure 1, Computer Producer Agent negotiates with
Consumer Agent and promises to finish Purchase Computer
by time 20. Meanwhile Computer Producer Agent also ne-
gotiates with Hardware Producer Agent about Get Hardware
task and gets a contract that Get Hardware task will be fin-
ished at time 20, then Computer Producer Agent finds it is im-
possible for Purchase Computer be finished by time 20 given
its subtask Get Hardware finished at time 20. To reduce the
likelihood that this type of conflict could occur, these negoti-
ations could be performed sequentially. The agent deals with
only one negotiation issue at a time, and bases the later ne-
gotiations on the results of previous negotiations. However,
this sequential process is not a panacea. First of all, the se-

enables

min

min

enables

min

min

est:10

Install_Software_A

Produce_Computer_B

Get_Software_A
enables

Get_Hardware_A

enablesenablesProduce_Computer_A

Get_Hardware_B

enables
Install_Software_B

Get_Software_B

negotiation with Hardware Producer est: earliest start time
dl: deadline

nonlocal task
local task

negotiation with Consumer Computer Producer Agent

est:12

B

A Purchase_Computer_A Purchase_Computer_B

Shipping_Computer_BDeliver_Computer_A

negotiation with Transportor

D

E

C

process-time:3

process-time:3

process-time:6 process-time:10

process-time:3

process-time:7
process-time:3

process-time:7

total-process-time:16 total-process-time:20
dl:40 dl:50

Figure 2: Computer Producer Agent’s Tasks

quential negotiation process takes longer, potentially using up
valuable time. Secondly there is no guarantee of an optimal
solution or even whether any possible solution will be found.
The latter problem can occur if the agent does not reason about
the ordering of the negotiation issues and just treats them as
independent issues, with their ordering random. In this situa-
tion, the result from the previous negotiation may make later
negotiation issues very difficult or even impossible. For in-
stance, in Figure 1, if Computer Producer Agent first negoti-
ates about Purchase Computer before starting the negotiations
on Get Hardware and Deliver Computer, and the promised
finish time of Purchase Computer results in tight constraints
on the negotiation on Get Hardware and Deliver Computer,
then these negotiations may fail and the commitment on Pur-
chase Computer has to be decommitted.

These previous examples show us how important it is for an
agent to reason about the interactions among different negotia-
tion issues and manage them from a more global perspective. If
done effectively, this permits the agent to minimize the possi-
bility of conflicts among these different negotiation issues, and
achieve better performance. Previously, Zhang and Lesser[3]
have presented a partial order schedule as a basic reasoning
tool for the agent to deal with multi-linked negotiation. It can
be used to reason about the influence of a commitment of one
issue on other negotiation issues concerned about time. How-
ever, that work does not provide a general solution for how an
agent should perform multi-linked negotiations.

In this paper, we introduce a decision-making process that
enables an agent to manage the multi-linked negotiation is-
sues and choose the best negotiation approach based on the
knowledge about each negotiation issue and the interrelation-
ships among them. The remainder of this paper is structured
in the following manner. Section 2 presents a definition of the
multi-linked negotiation problem and the algorithms. Section
3 details how the algorithms and the decision-making process
work for a multi-linked negotiation problem using an example.
Section 4 reports the experimental work to evaluate this ap-
proach, and Section 5 presents the major conclusions and the
areas of further work.

2 Multi-Linked Negotiation
2.1 Definition of the problem
A multi-linked negotiation problem occurs when an agent has
multiple negotiation issues that are related to each other.
Definition 2.1 A multi-linked negotiation problem is defined
as an undirected graph (more specifically, a forest as a set of

rooted trees): , where is a finite set of
negotiation issues, and is a set of binary rela-
tions on . denotes that the negotiation on u and
the negotiation on v are directly-linked. Each negotiation issue

is associated with a set of attributes .
Each attribute either already has been determined (already
has a value) or needs to be decided (to be assigned to a value).
The relationships among the negotiation issues are described
by a forest, a set of rooted trees . There is a relation oper-
ator associated with every non-leaf issue on the tree (denoted
as), which describes the relationship between this issue
and its children. This relation operator has two possible val-
ues: and .

A negotiation issue may be a task to be allocated or a
resource to be required through negotiation. From an agent’s
viewpoint, there are two types of negotiation issues:
1. Incoming negotiation issue: A task proposed by another

agent. For example, issue A (Purchase Computer A) and D
(Purchase Computer B) in Figure 2 are incoming negotia-
tion issues for Computer Producer Agent.

2. Outgoing negotiation issue: A task needed to be sub-
contracted to another agent, or a resource requested for a
local task. For example, issue B (Get Hardware A), C (De-
liver Computer A) and E (Get Hardware B) in Figure 2 are
outgoing negotiation issues for Computer Producer Agent.

Definition 2.2 A negotiation issue is successful (denoted as
) if and only if a commitment has been established and

confirmed for this issue by all agents involved in this negotia-
tion.
Definition 2.3 A leaf node is task-level successful (denoted
as) if and only if is successful (); A non-
leaf node is task-level successful (denoted as) if and
only if the following conditions are fulfilled:

is successful ();
all its children are task-level successful if ; or
at least one of its children is task-level successful, if

.

For each negotiation issue , denotes the success
probability, the probability that is successful (

), there is a function mapping the values of the attribute
, , to :

denotes the decommitment penalty [2] of . If is
successful (), but isn’t task-level successful

(), where is the root of the tree that
belongs to (denotes as), the utility of the agent
decreases by the amount of (it represents the penalty paid
to the other agent which is involved in the negotiation of issue

.) There is a function mapping the values of the attribute
, , to :
If is a root of a tree, then denotes the task-level

successful reward of . The agent’s utility increases by the
amount of when is task-level successful. There is
a function mapping the values of the attribute ,

, to :
The attributes of a negotiation issue are domain dependent.

They are specified according to the application domain. The
above functions , and are also defined according to
the application domain. However, there are some common at-
tributes introduced here:

1. negotiation duration (): the time needed for the negoti-
ation on to get a result, either success or failure.

2. negotiation start time (): the start time of the negotia-
tion on . is an attribute that needs to be decided by
the agent.

3. negotiation deadline (): the negotiation on needs to
be finished before this deadline . The negotiation is no
longer valid after time , which is the same as a fail-
ure outcome of this negotiation. For example, if a task is
proposed for negotiation, the contractee agent needs to re-
ply before time . Otherwise, this proposed task contract
is no longer valid and the contractor agent would think the
contractee agent is not interested in this task. Furthermore,
even if the agent starts the negotiation before , it is not
necessarily true that all times before are equally good.
Usually, an earlier started negotiation has a better chance to
succeed for two reasons: the other party considers this issue
before other later arriving issues, and this issue has a bigger
time range for negotiation. This relationship is described by
the function that takes as one of its parameters.

2.2 Description of the solution
Given this multi-linked negotiation problem , an
agent needs to make a decision about how the negotiation on
these issues should be performed. The decision concerns the
following two questions:

1. How are the negotiations on each issue ordered? Should the
negotiation on each issue be parallel or sequential? If se-
quential, in what order? Or should some of them be per-
formed in parallel, while others be sequenced?

2. What values should be assigned to the attributes of each issue
that needs to be decided in negotiation?

Definition 2.4 A negotiation ordering is a directed acyclic
graph (DAG), . If , then the negoti-
ation on can only start after the negotiation on has been
completed.
Definition 2.5 A negotiation schedule contains a set of
negotiation issues . Each issue has its negotiation start
time and its negotiation finish time calculated
based on its negotiation duration .

Using the topological sorting algorithm, a negotiation sched-
ule can be generated from a negotiation ordering as-
suming all negotiation issues started at their earliest possible
times. Given this assumption and a start time for a set of
negotiation issues, the negotiation schedule generated from a
negotiation ordering is unique.

Definition 2.6 Given a start time , a negotiation ordering
is valid if for every negotiation issue , the finish time
is no later than the negotiation deadline .

The number of possible negotiation orderings for negotia-
tion issues is:

.
G(n) denotes the number of all possible different directed
graphs based on vertices. There are three possibilities: there
is no edge between them; ; .
denotes the number of graphs that contain cycles.

Definition 2.7 A feature assignment is a mapping function
that assigns a value to every attribute that needs to be
decided in this problem. For those attributes that already have
been decided, value is the decided value.
Definition 2.8 A feature assignment is valid if given the as-
signed values of those attributes, there exists at least one feasi-
ble local plan for all tasks and negotiation issues. It is assumed
there is a function that can test if a feature assignment is
valid; this function is domain dependent.
Definition 2.9 A negotiation solution is a combination
of a valid negotiation ordering and a valid feature assignment
.
The evaluation of a negotiation solution is based on the ex-

pected task-level successful values and decommitment penal-
ties given all possible negotiation outcomes for every negotia-
tion issue.
A negotiation issue has two possible outcomes: successful and
failure.
Definition 2.10 A negotiation outcome for a set of negotia-
tion issues is a set of numbers

. means is successful,
means fails. There are a total of different outcomes for
negotiation issues, denoted as .
Definition 2.11 The expected value of a negotiation so-
lution is defined as:

denotes the probability of the outcome given the
feature assignment .

if
if

denotes that the agent’s utility increase
given the outcome and the feature assignment .

is a root of a tree and is task-level successful
according to the outcome .

denotes the decommitment penalty according to
the outcome , the negotiation ordering and the feature as-
signment .

represents every negotiation issue that fulfills all the follow-
ing conditions:
1. is successful according to ;

2. the root of the tree that belongs to isn’t task-level suc-
cessful according to ;

3. according to the negotiation ordering , there is no such is-
sue exists that fulfills all the following conditions:

(a) and belong to the same tree;
(b) gets a failure outcome according to the outcome ;
(c) makes it impossible for to be task-level suc-

cessful;
(d) the negotiation finish time of () is no later than

the negotiation start time of () according to the
negotiation ordering ;

2.3 Description of the algorithm
Based on above definition, we present a search algorithm that
finds the best negotiation solution for a multi-linked negotiation
problem .

Algorithm 2.1 Finds the best negotiation solution.
Input: , the start time for negotiation , a set of
valid feature assignments , .
Output:the best negotiation solution.
Generate all valid negotiation orderings ;
best value = minimum value;
best ordering = null;
best assignment = null;
for each negotiation ordering

for each valid feature assignment
if

best value = ;
best ordering = ;
best assignment = ;

return (best ordering, best assignment)
If the set of valid feature assignments is a complete set of all

possible valid feature assignments, algorithm 2.1 is guaranteed
to find the best negotiation solution. However, when the at-
tributes have continuous value range, it is impossible to find all
possible valid feature assignments. The following depth-first
search (DFS) algorithm searches over the entire value space
for all undecided attributes by pre-defined search step size and
finds a set of valid feature assignments.

Algorithm 2.2 Find a set of valid feature assignments.
Input: ; For each attribute , if is al-
ready decided, the value of is ; if

is undecided, the maximum possible range for is:
,

the search step size: .
Output: a set of valid feature assignments .
Generate the possible value set for attribute :
If is already decided, ;
Else ;

Repeat
add to ;

;
Until

Generate all possible feature assignments based on the pos-
sible values in ;
If valid(), add into ;
Return ;
Given the number of negotiation issues is , and the number of
valid feature assignments is , the complexity of algorithm 2.1
is: .

C

A D

B E

AND AND

Figure 3: Interrelationships Among Negotiation Issues

A CB

D E

A CB

D E

A CB

D E

Ordering #1 Ordering #2 Ordering #3

Figure 4: Three Possible Negotiation Ordering

3 Example
In this section, we demonstrate how the definition and the
algorithm work on the supply chain examples in Figure 2.
Figure 3 shows the relationships among the five issues for
Computer Producer Agent: issue A is directly related to issue
B and C, and issue D is directly related to issue E. Figure 4
shows three possible negotiation orderings for the five negotia-
tion issues. Ordering #1 means all five issues are negotiated in
parallel; ordering #2 means these five issues are negotiated one
by one, first A, then B, then C, then D, and finally E; ordering
#3 means that the negotiation on A is performed before the
negotiation on B and C, the negotiation on D is performed
before the negotiation on E. Suppose the negotiation start time

, and the negotiation duration on each issue is the same
, then the following negotiation schedule is generated

for negotiation ordering #3 according to the assumption that
every negotiation issue starts at it earliest possible time:

Beside the attributes we presented in section 2.2, the follow-
ing attributes need to be considered in this example:
1. time range : the time range associated with an issue

contains the start time () and the deadline (). If the is-
sue is a task in negotiation, this task can only be performed
during this range to have a valid result. The larger
the time range is, the higher the probability of success this
negotiation issue has, since it is easier for the other agent
to arrange and schedule this task. For an incoming issue,
this range is already determined by the other agent who pro-
poses this request; for an outgoing issue, the agent needs to
decide what time range to propose on this issue. The agent
needs to make sure this time range is consistent with all other

Get_Software_A
Install_Software_A

Install_Software_B
Get_Software_B

Get_Hardware_B

B

A
Get_Hardware_A

Shipping_Computer_B

Deliver_Computer_A
C

D

E

[20, 40][17, 34]

[10, 31]

[10, 31]

[22, 50][19, 40]

[12, 37]

[12, 37]

Purchase_Computer_A finish at time 40

Purchase_Computer_B finish at time 50

Figure 5: Partial Order Schedule

case# Issue Schedule
#1 A 0.9 6 0.012 22.15 A[0-3] 0 0 0.9

B 6 1.329 B[0-4] 3.0 0.8412
C 6 1.329 C[0-4] 0.833 0.8829

#2 A 0.92 6 0.189 1.946 A[0-3] 21 3.964 0.92
B 6 0.117 B[0-4] 1.0 0.7817
C 6 0.117 C[0-4] 0.5 0.8766

#3 A 0.19 9 0.117 16.52 A[0-3] 0 0 0.19
B 9 0.991 B[3-7] 3.0 0.8412
C 9 0.991 C[3-7] 0.667 0.8799

#4 A 0.64 9 0.006 16.56 A[4-7] 0 0 0.64
B 9 0.993 B[0-4] 2.428 0.8289
C 9 0.993 C[0-4] 0.667 0.8799

#5 A 0.15 13 0.043 17.68 A[0-3] 0 0 0.15
B 13 1.060 B[3-7] 2.428 0.8289
C 13 1.060 C[7-11] 0.833 0.8829

#6 A 0.84 11 0.142 12.58 A[8-11] 9 1.278 0.84
B 11 0.754 B[0-4] 1.428 0.7993
C 11 0.754 C[4-8] 1.0 0.8859

Table 1: Examples of Negotiation Solution

time constraints of other issues, so it can find a feasible local
schedule based on the commitment with this time range.

2. duration (): if the issue is a task in negotiation, duration
is the process time requested to accomplish this task; if

the issue is a resource in negotiation, duration d is the time
needed for the usage of the resource.

3. flexibility (): the flexibility is defined based on the time
range and the duration: . The flexibility directly
affects the success probability. For a negotiation issue with
negative flexibility, the success probability is 0.

4. finish time (): the promised finish time for the task. For an
incoming issue, the agent needs to decide the promised finish
time (which must be no later than deadline the other agent
requested) for this proposed task when it decides to accept
this task.

5. regular reward (): when an incoming task is task-level
successful, the agent’s local utility increases by the amount
of .

6. early reward rate (): for a task in negotiation, if the con-
tractee agent can finish the task earlier than the deadline re-
quest, it gets extra reward .
The agent needs to find out how these features affect the

task-level successful reward and the success probability.
These relationships can be described as functions according to
the agent’s knowledge of each negotiation issue. In the negoti-
ation process, for an incoming negotiation issue (such as A, D),
the attribute needed to be decided is the promised finish time

; for an outgoing negotiation issue (such as B, C, and E), the
attributes needed to be decided are the start time () and the
deadline (). The following functions describe how these at-
tributes affect the task-level successful reward and the
success probability .

For an incoming issue , the task-level successful reward
depends on the promised finish time :

For an outgoing issue v, the success probability depends on
the flexibility , actually the time range :

2

2Obviously this function could be affected by the meta-level infor-

is the basic success probability of this issue when the
flexibility is very large, is a constant parameter used to
adjust the relationship.

For every attribute that needs to be decided: start time (),
deadline () and the promised finish time (), the agent can
find it’s maximum possible range using the partial order sched-
ule as shown in Figure 5. Using algorithm 2.2, the agent can
search over the entire possible value space, and using the par-
tial order scheduler to test if a feature assignment is valid. A
set of valid feature assignments is found and sent to algorithm
2.1 to find the best negotiation solution.

To make the output easier to understand, only issue A, B
and C are considered in the following example. Table 1 shows
the output of algorithm 2.1 on the example in Figure 3 given
following parameters:

regular reward ;
negotiation duration ;
negotiation duration ;
negotiation duration ;

;
;

;
;

The different constant parameters for and spec-
ify that issue C has a higher success probability than B given
the same flexibility.

The following parameters are randomly generated:
1. the success probability of , ;
2. negotiation deadline ();
3. early reward rate ;
4. decommitment penalty , , and ;

In both case 1 and case 2, the negotiation deadline ,
so the valid negotiation ordering has the three negotiation is-
sues performed in parallel. In case 2 issue A has a higher ear-
lier reward rate , and all issues have lower decommitment
mation from the other agent.

Policy Tasks Task Task Decommit Early Utility
Received Accepted Canceled Penalty Reward

Sequence Negotiation 60 60 37.25 73.82 0 358.09
Std.Dev. 0 0 2.6 11.8 0 57.4

Parallel Negotiation 60 60 23.70 333.20 29.06 385.20
Std.Dev. 0 0 2.6 47.6 17.0 86.8

Decision-Based Negotiation 60 60 25.78 56.65 185.79 779.16
Std.Dev. 0 0 2.4 23.5 47.8 62.3

Table 2: Comparison Of Performance

penalties than in case 1, so the negotiation solution in case 2
arranges task A to finish 21 time units earlier than the requested
deadline, and earns an extra reward of 3.964. In exchange, is-
sue B and C have smaller flexibilities and , hence
lower success probabilities and . In case 3 and
case 4, the negotiation deadline . In case 3, issue A has
a much lower success probabilities than in case 4, so the
negotiation on A is scheduled before the negotiation on B and
C. In case 5 and case 6, the negotiation deadline and the
negotiation issues on A, B and C are sequenced according to
the success probabilities; the issues with lower success proba-
bility start earlier. In case 6, issue A has a higher earlier reward
rate , and all issues have lower decommitment penalties
than case 5, so the negotiation solution in case 6 arranges task
A to finish 9 time units earlier than the requested deadline; this
earns an extra of reward 1.278. In exchange, issue B and C have
smaller flexibilities and and hence lower success
probabilities and . It is also important to notice
that in all cases, issue B gets larger flexibility than issue C, but
has a similar success probability to that of issue B. This occurs
because it is much easier for issue C to achieve a successful ne-
gotiation according to the function that defines the relationship
between the success probability and the flexibility.

4 Experiment
We have implemented an agent architecture including the agent
controller, agent negotiation and execution components. The
search and evaluation algorithms have been implemented so as
to enable the reasoning in the multi-linked negotiation process
as indicated in the examples described previously. We designed
the following experiment to study how the different negotiation
strategies which involve different reasoning efforts affect the
agent’s performance. The experimental environment was set up
based on the scenario described in Section 3. New tasks were
randomly generated with decommitment penalty ,
early finish reward rate , and deadline ,
and arrived at the contractee agents periodically.

In this experiment, Computer Producer Agent needs to deal
with the multi-linked negotiation issues related to the incoming
task Purchase Computer and the outgoing task Get Hardware
and Deliver Computer. The following three different negotia-
tion strategies were tested:

1. Sequence Negotiation. The agent deals with the negotiation
issues one by one, first the outgoing negotiation issues, then
the incoming negotiation issues. The finish time promised is
the same as the deadline requested from the other agent, and
the outgoing issues get the largest possible flexibilities.

2. Parallel Negotiation. The agent deals with the negotiation
issues in parallel. It arranges reasonable flexibility (1.5, in
this experiment) for each outgoing task, and based on this
arrangement, the finish time of the incoming task is decided
and promised to the contractor agent.

3. Decision-Based Negotiation. The agent deals with the nego-
tiation as the best negotiation solution suggests. The best ne-
gotiation solution comes from the decision-making process
using the search algorithm 2.1.

The entire experiment contains 40 group experiments. Each
group experiment has the system running for 1000 time clicks
for three times and each time the Computer Producer Agent
uses one of the three different strategies.

Table 2 shows the comparison of the Com-
puter Producer Agent’s performance using different strategies.
When the agent uses the sequence negotiation strategy, more
tasks are canceled because of the missed negotiation deadline.
When the agent uses the parallel negotiation strategy, the agent
pays a higher decommitment penalty because the failure of the
sub-contracted task prevents the incoming task to be task-level
successful. The decision-based strategy is obviously better
that the other two strategies3. It chooses to have the negotiation
solution dynamically according to the negotiation deadline and
other attributes. Under this experimental setup, it chooses the
case where all negotiations performed in parallel about 13% of
the time, it chooses the case where all negotiations performed
sequentially about 38% of the time, and the other times it
chooses the case where some negotiations are performed in
parallel. This strategy enables the agent to get more early
reward and pays fewer decommitment penalties.

The experiment shows that in a multi-linked negotiation sit-
uation, it is very important for the agent to reason about the
relationship among different negotiation issues and make a rea-
sonable decision on how to perform negotiation. This decreases
the likelihood of the need for decommitment from previously
settled issues and increases the likelihood of utility gain.

5 Conclusion and Future Directions
In this paper, we have presented a formal model of multi-linked
negotiation problem, and defined how to evaluate a negotia-
tion solution based on this model. We built a search algo-
rithm that makes decisions on the negotiation ordering and the
feature assignment for different attributes in negotiation. Ex-
perimental work shows this decision-making process leads to
an improvement on the agent’s performance. However, this
search algorithm is a very simple complete search algorithm
and its complexity makes it unrealistic for a real-time applica-
tion with a large number of negotiation issues. In the future
work, we would like to improve the search algorithm by intro-
ducing some heuristic search techniques to allow real time use
of this methodology.

3Using t-test, with the 0.001 Alpha-level, the following hy-
pothesis is accepted: when using decision-based strategy, Com-
puter Producer Agent achieves an extra utility that is about 100% of
the utility gained when using the sequence negotiation strategy, and
78% of the utility gained when using Parallel Negotiation Policy.

References
[1] Decker, K., Lesser, V. R. Quantitative Modeling of Com-

plex Environments. In International Journal of Intelli-
gent Systems in Accounting, Finance and Management.
Special Issue on Mathematical and Computational Mod-
els and Characteristics of Agent Behavior., Volume 2, pp.
215-234, 1993.

[2] Sandholm, T. and Lesser, V. 1996. Advantages of a Lev-
eled Commitment Contracting Protocol. Thirteenth Na-
tional Conference on Artificial Intelligence (AAAI-96),
pp. 126-133, Portland, OR, .

[3] Zhang, Xiaoqin and Lesser, Victor. Multi-Linked Nego-
tiation in Multi-Agent System. Autonomous Agents And
MultiAgent Systems 2002 (AAMAS 2002). To appear.

