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ABSTRACT

BAYESIAN NETWORKS AND UTILITY THEORY FOR
THE MANAGEMENT OF UNCERTAINTY AND
CONTROL OF ALGORITHMS IN VISION SYSTEMS

FEBRUARY 2002

MAURICIO MARENGONI
B.S., FACULDADE DE ENGENHARIA INDUSTRIAL - SBC
M.S., UNIVERSITY OF ROCHESTER
M.S., INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS - SJC
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Allen Hanson

An Image Understanding (IU) system should be able to identify objects in 2D
images and to build 3D relationships between objects in the scene and the viewer.
The system presented here has a control structure for general purpose image under-
standing that addresses both the high level of uncertainty in local hypotheses and the
computational complexity of image interpretation. The control of vision algorithms
is performed by an independent subsystem that uses a set of Bayesian networks and
utility theory to compute the expected value of information provided by alternative
operators and selects the ones with the highest utility value. Each operator has a cost,
which is related to the algorithm complexity associated with the operator. The cost
of each operator is considered during the operator’s selection process. This control

structure was implemented and tested on several aerial image datasets. The results

viil



show that the knowledge base used by the system can be acquired using standard
learning techniques and that the value-driven approach to the selection of vision al-
gorithms leads to performance gains. Moreover, the modular system architecture

simplifies the addition of both control knowledge and new vision algorithms.
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CHAPTER 1
INTRODUCTION

Image Understanding (IU) systems are defined as systems capable of identifying
objects in 2D images and of building 3D relationships between objects in the scene and
the viewer. The construction of an end-to-end, general purpose, image understanding
system that is capable of supporting an intelligent agent in different domains is one of
the main goals of computer vision. Significant progress has been achieved on domain
specific systems and/or isolated modules of a general system, but the main goal is
still out of reach. A large number of image understanding systems developed so
far are dedicated to Aerial Image Interpretation. One of the problems with aerial
image interpretation systems is the management of uncertainty. Uncertainty in this
case arises from a variety of sources, such as the type of the sensor (optical, infrared,
radar), the sensor’s quality, the sensor’s position, weather conditions (humidity, cloud
conditions), illumination conditions (the angle of the sun), season (spring, summer,
fall or winter), random objects in the scene (number of vehicles or persons), and the
inherent uncertainty in the definition of common objects. A vision system for aerial
image interpretation has to be able to recognize and reconstruct objects in a scene
and to deal with many levels of uncertainty.

Object recognition in aerial images is one important step towards 3D reconstruc-
tion of a scene, but to automate the recognition process in a real world application
is not an easy task. Consider the tiles extracted from larger aerial images presented

in Figure 1.1
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Figure 1.1. Different types of regions extracted from aerial images.

The tile at left contains a building, which is easy to identify by looking at its
general shape, the door, and the rooftop. A more difficult task is to identify the two
large objects in the top middle tile. Comparing the shadows of these areas with the
shadows of the cars present in the image, it is possible to say that the height of the
two areas is greater than the height of the cars. These two areas look like buildings,
but they are not as easy to identify as the building in the first tile. The bottom middle
tile has three objects. It is hard to say what they are at first. If it is known that
this tile came from the same image as the previous two, it is possible to infer, from
the size of the objects, and other sparse cues (such as the windshields), that they are
Recreational Vehicles (RV’s) or some other kind of delivery truck. The recognition of
the three objects marked in the top right tile are not as simple, and more comparisons
and measurements may be required to identify them correctly. The region at right
(outlined by a box) is a big truck. The lines on top of the large region to the left
of the middle could lead a reasoning process to identify the region as a parking lot
(compare it with the bottom right tile, which is a real parking lot). A more careful
inspection of this region using an analysis of the shadow and studying other objects
close to the region would help to identify this region as a building. The region at left

could be identified either as a small building or as a large vehicle, such as a bus. The



region’s features (shadow, area, shape and appearance) do not help in discriminating
between these two hypotheses. The true identity of this region is unknown.

The research presented here addresses some of the control issues involved in the
interpretation process for a general purpose image understanding system that could
reason about the types of interpretation problems just discussed. These issues are
related to the construction of efficient knowledge bases, the selection of appropriate
visual operators given the knowledge available, management of uncertainty arising
from both the data and the operators, and fusion of information from different sources

which can either support or refute a certain hypothesis.

1.1 Statement of the Problem

The interpretation of an image can be viewed as establishing a correspondence
between image features and the identified object classes. It is clear that the descrip-
tive vocabulary of the system must be reflected in the set of features extractable
from the image. Thus, the image features must form the primitive descriptions of the
objects in the knowledge base. Since every feature has at least one visual operator
for measuring it, the control problems we address in this research are these: (i) given
a general purpose system and a specific interpretation problem within the domain of
the system, how do we effectively select the features to measure or, more generally,
decide which visual operator to apply, and in what order, (ii) how do we know when
to stop the reasoning process, and (iii) what class label should we give to that region.
Furthermore, because there is a significant amount of inherent ambiguity in the in-
terpretation process, an interpretation system must include a sufficiently rich set of
relations among features as well as flexible mechanisms for manipulating uncertain
hypotheses until there is a convergence of evidence.

In this thesis it is shown how Bayesian networks and utility theory are used to

build a control structure for a general purpose image understanding system. It also



addresses the knowledge engineering issue by demonstrating that it is possible to learn
the Bayesian network structures from fairly coarse training information. Ascender II,
an IU system for fully automated Aerial Image Interpretation, is used as a testbed to

address these questions:

e How can the results of visual operators and their associated uncertainties be

combined in order to classify a particular image region?

e How can the hierarchical structure of objects be exploited in order to construct

an incremental classification process?

e Can the construction of the knowledge base be simplified (or fully automated)
for a particular application using both human expertise and machine learning

techniques?

e Can performance be improved by using a disciplined approach to operator se-

lection?

1.2 Research Goals

In this thesis we discuss important issues related to reasoning in an image under-
standing system. The ideas discussed here are implemented in an aerial image inter-
pretation system called Ascender II. The Ascender II system is an ongoing project
that was first developed for the detection and reconstruction of buildings from aerial
images, but it has been generalized to other object classes such as parking lots and
vehicles. Some of the contributions of the work presented in this thesis include the

following:

e The knowledge base and control processes (reasoning subsystem) are completely
separated from the visual subsystem (visual operators, models, images). The
separation allows more flexibility in adding new visual operators, or in replacing

current operators with only minor changes in the reasoning subsystem [48].



e A set of Bayesian networks is used to implement the knowledge base underly-
ing the reasoning subsystem for a real world application. Bayesian networks
combine information from different sources, and have been used successfully in

selective perception systems applied in well-controlled environments [53].

e The knowledge base is divided into levels of detail and reasoning is performed
within each level. The hierarchy used in the knowledge base avoids large

Bayesian networks, which leads to faster propagation of beliefs in the networks.

e The use of the hierarchical structure also allows local reasoning. The drawback
of local reasoning is that, if backtracking is required, it has to be performed using
a pre-defined strategy. We believe that if the models are developed coherently,
backtracking will not be required (although we leave this as an open research

issue).

e Each network can be used to test the efficiency of visual operators. This can
be done before the operator is implemented. The visual operator can be sim-
ulated in a Bayesian network just by adding a node and a link. The link has
a conditional probability table which represents the operator’s reliability. The
values in the conditional probability table are changed during the simulation
up to the point where the operator has an impact in the decision process. The
simulation will show how reliable the operator has to be in order to be useful

for the system.

e The application in aerial image interpretation suggests that Bayesian networks
are robust in the face of either redundant or conflicting information and, if
sufficient information and time for processing is available, the system converges

to a correct outcome.



e Utility theory is a well-defined method for making decisions when dealing with
uncertain events. It is based on probability theory, which fits well in the environ-
ment described above. Utility theory can be used to select the most appropriate
visual operator from a library of visual operators, and to decide about the cor-
rect outcome in the recognition process based on a more complete information
about the state of the system. This will be contrasted with an alternative

heurisitic approach defined in this work, called uncertainty distance.

A discussion of previous work on image understanding systems and some back-
ground on the ASCENDER II system are presented in the next chapter. Chapter 3
presents the reasoning subsystem, its knowledge base, and details about the Bayesian
network structures, as well as a description of the datasets of images used in this
thesis. Chapter 4 and 5 present issues related to decision making and management of
uncertainty using uncertainty distance and utility theory respectively; they also de-
scribe the results of experiments performed on the image datasets. Chapter 6 shows
that the structure of the networks and/or the conditional probability tables can be
learned from data. Results of experiments using networks learned from data are also
presented in this chapter. Finally, in chapter 7, conclusions from this research are
presented as well as a set of interesting research questions related to extending the

current framework.



CHAPTER 2
RELATED WORK

2.1 Knowledge Based Vision Systems

One popular approach to the general Image Understanding problem in the 1980’s
was knowledge-directed vision systems. The typical knowledge-directed approach to
image interpretation seeks to identify objects in unconstrained two-dimensional im-
ages and to determine the three-dimensional relationships between these objects and
the camera by applying object- and domain-specific knowledge to the interpretation
problem. A survey of this line of research in computer vision can be found in [19],
[22], and [26].

Typically, a knowledge-based vision system contains a knowledge base, a con-
troller, and visual operators (refered to, in the literature, as knowledge sources, IU
processes, algorithms, visual or vision algorithms, vision operators, or simply opera-
tors). Knowledge representations range from semantic nets in the VISIONS system
[25], and later schemas [21], to frames in the ACRONYM system [7], and rules in
the SPAM system [49], to relational structures (generalized models) of objects in the
MOSAIC system [30]. Controllers are typically hybrid hierarchical systems, mixing
bottom-up and top-down reasoning. The order in which different visual operators are
applied is dictated by the control structure. In some heterarchical control systems the
order in which different visual operators are applied is dictated by the data, where
blackboards are used as a global database. In this case visual operators are triggered

if their preconditions have been met and their results were written in the blackboard



for future use. Systems developed using this approach include the ABLS system [59]
and the VISIONS schema system [21].

In most of these systems (VISIONS, ACRONYM, SPAM, or MOSAIC) the con-
troller and the visual operators are combined into a single system. However, these
systems can not be easily generalized to domains that are different from those for
which they were originally developed. Furthermore, the amount of specific knowledge
required to use the system in a different domain would be a burden in constructing
it.

Some of the problems found with most of the knowledge-directed vision systems
are the following: control for visual operators was never properly addressed as an
independent problem [22], and the system’s structure did not facilitate entry of new
knowledge [19]. From the surveys in [19] and [22], an ideal general purpose Image
Understanding system should take into account the two issues just described and

have, at least, the following characteristics:

e Multiple levels of representation to accommodate a diverse set of fea-
tures and objects. This is provided in our system by hierarchically structured

Bayesian networks.

e Dynamic Planning to make use of the current context and state of interpre-
tation. Once a specific task for the system has been identified (for example:
classify a given region), an ordered sequence of visual operators is generated.
This is accomplished in the Ascender II system using measures based on the

current state of the knowledge base (e.g., uncertainty distance or utility theory).

e Control the flow of processing during analysis. In the Ascender II system
the visual operators are invoked based on the outcome of the set of visual
operators used. The controller uses updated information to decide what to do

next.



e Map numerical values into symbolic quantities. This is done by a coher-
ent discretization of the possible outcomes for the features used in the system,
and by the relationship between features and object classes represented in the

networks.

e Combine evidence from different sources. The fusion of information is ac-

complished in the Bayesian networks.

e Recognize objects and resolve conflicts between contradictory hypotheses.
This is computed using the Bayesian networks combined with either a threshold

technique or utility theory.

2.1.1 Vision Systems Using Bayesian Networks

Bayesian networks have been successfully used in systems required to combine
and propagate evidence for and against a particular hypothesis. Vision systems have
been developed using Bayesian networks for both knowledge representation and as a
basis for information integration.

The TEA1 system [53] was developed using a set of Bayesian networks that are
combined to define what visual operator should be used and where the visual operator
should be applied to achieve scene interpretations at a minimum “cost”. The TEA1
system was designed to interpret table top scenes, and classify them with respect
of one of the possible classes available. The controller in the TEA1 system had to
deal with operator selection and control of the camera position in an active vision
scenario. Although this system used selective perception [8] to reduce the number of
visual operators called, the knowledge base encoded domain-specific knowledge and
was difficult to construct because of the level of detail required. The knowledge base
was composed of five structures: a PART-OF net to model the physical structures of
the scene; the Expected Area net which models spatial relationships between objects

in the scene; an IS-A tree that models the possible outcomes of a random variable;



the TASK net, used to select operators to answer specific questions; and finally, a
Composite network, added to combine all the information from the four networks.
Although the classification results were satisfactory, the system was slow, it did not
support “real-time” applications, and it was applied in a well-controlled indoor envi-
ronment [53].

Mann and Binford [46] showed how to make bottom-up inferences using geomet-
ric properties and Bayesian aggregation. The system was designed to recognize and
reconstruct simple mechanical objects, such as an elbow. This system, called SUCES-
SOR, uses two networks. The first (object model) represents physical properties of
an object, breaking the object into structural parts (e.g., house=walls+roof). The
second (aggregation network) represents geometrical relations between parts of an
object and geometrical forms that can be extracted from the data. The example pre-
sented in the paper was simple and the indoor environment well controlled. Mann’s
system can be applied only for small sets of objects because a model for each object
has to be built manually.

Kumar [43] introduced a system with simple networks (each network has only 2
layers) for aerial image interpretation. In this system, after an initial segmentation
step, a Bayesian network is built and a feature vector (area, average grey level, average
texture density, and contrast between two areas) is computed from the image. These
features are fed into the network and propagated to generate a label for each region.
In general the features are simple to compute, but a new network needs to be built for
each image. The probability tables used in the network were generated heuristically.
Because only one example is shown, it is hard to determine whether the system can
be generalized to other images.

More recently Krebs [42] presented a system using 3D B-spline curves as features
to identify objects in a well-controlled indoor environment. Kreb’s system uses a

“belong-to” network that models all objects in the scene and their parts as curves
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and sub-curves. The system uses an Influence Diagram (“task net”) [32] to control
and make decisions. Although the results were promising, the example used was too
simple, and it is not clear what would happen if one of the objects present in the

scene was not modeled.

2.2 The ASCENDER II System

2.2.1 Overview

The original Ascender system (called Ascender I here) was developed for building
detection and reconstruction from multiple aerial images of a site [15]. It used 2D
image features and grouping operators to detect rooftop boundaries [37] and then
matched these polygons under 3D constraints and across views to compute height
and to build 3D volumetric models. The system used a fixed strategy and it detected
nearly 90% of the buildings in controlled experiments on imagery from Fort Hood,
Texas. However, a considerable number of false positives were generated due to scene
clutter and the presence of buildings outside of the class for which the system was
designed (single flat-roofed buildings) [16].

It was learned from the Ascender I system that the use of multiple strategies and
3D information fusion can significantly extend the range of complex building types
that can be reconstructed from aerial images [33]. In order to address this problem of
generality, the Ascender II system has been developed to incorporate ATl mechanisms
for dynamic control of a large set of visual operators, from simple T junction detectors
to complex operators such as the Ascender I system used for polygon grouping and
flat roof building detection.

The design approach for Ascender II is based on the observation that while many
IU techniques function reasonably well under constrained conditions, no single IU
method works well under all conditions. Consequently, work on Ascender II is focus-

ing on the use of multiple alternative reconstruction strategies from which the most
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appropriate strategies are selected by the system based on the current context. In
particular, Ascender II utilizes a wider set of visual operators that fuse 2D and 3D
information and that can make use of EO, SAR, IFSAR, and multi spectral imagery
during the reconstruction process if available.

The Ascender II system was designed for aerial image interpretation, particularly
for the 3D reconstruction of urban areas. The system is divided into two independent
parts (the reasoning subsystem and the visual subsystem), in our case running on
different operating systems on different machines. The reasoning subsystem has a
knowledge base composed of a set of Bayesian networks. This subsystem is responsi-
ble for selecting visual operators and for making decisions throughout the inference
process. The visual subsystem has a data base of images, models, visual operators and
other image features extracted during the inference process. These two subsystems
communicate through sockets using a well-defined communication protocol. This
framework is presented in Figure 2.1. One advantage of this design is that changes
to the reasoning subsystem, or to the visual subsystem, can be made independently
of the other. For example, visual operators can be exchanged or augmented in the
visual subsystem without changing the reasoning subsystem.

Although the initial effort has focused primarily on recognizing and reconstructing
buildings from aerial images, Ascender IT has been designed as a general purpose vision
system. The system has a set of focus-of-attention regions as input. These regions
can be extracted from aerial images automatically (using a system such as Ascender I
[15]), manually, or interactively (using cues from other sources such as maps or other
classified images). The system’s goal is to select visual operators, recognize objects
in the scene, and reconstruct these objects automatically in 3D. This whole process
should be performed as fast, and as accurately, as possible to help human analysts

making decisions about the area being processed.
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Figure 2.1. Process overview. Decisions are based on current knowledge about the
site. Visual operators, stored in the visual subsystem, gather evidence about the site,
update the knowledge base, and produce geometric models.

As mentioned earlier, aerial image interpretation is a difficult problem. Even if
the focus-of-attention regions are buildings it is impossible to pre-define 3D models
for every type of building. Consider the sample of buildings presented in Figure 2.2.
The building at left and the building in the middle can fit into a rectangular polygon,
but not the building at the right (a rectangular fit would miss part of the building
or would add roads and ground area). The building at left is a single level building
with a peak type rooftop (see the roof centerline). The building in the middle is also
a single level building, but its rooftop is a composite of simple structures. Checking
the image it is possible to identify two flat areas (left and right of the white area),
and two cylindrical areas (see the shadow of the white area on the left side of the
building). The building at right has multiple levels, each with a flat rooftop. If objects
in the surrounding area were correctly identified (cars, boats, roads, trees, etc.), more
information about the buildings, such as height, area, and usage, could be extracted.

Previous systems for aerial image interpretation, such as ACRONYM [7] and

SPAM [49], were typically model-based systems, where all objects expected in the
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Figure 2.2. Different types of buildings extracted from aerial images.

scene are modeled. These systems used a top-down approach to match regions with
the available models. This approach is reasonable only if the number of objects in the
knowledge base is small because the models are built manually (as in an application of
ACRONYM to identify commercial jet planes in airport scenes [49]). This approach
can not be used for buildings because buildings appear in different shapes, levels,
colors, with different rooftops, etc.

Another common approach for classification uses primitives combined with a
bottom-up inference. In this case the system identifies the primitives in the im-
age and builds up an object model from the primitives found using local constraints,
e.g. geometry. A single primitive can be part of a large number of objects, thus
generating a large number of hypotheses that have to be confirmed. In aerial image
interpretation this approach is possible only if the image resolution is high enough to
extract the set of primitive features and the combinatorics of the hypothesize-and-test
paradigm can be reasonably constrained.

The Ascender II system combines top-down and bottom-up inference. It uses
top-down inference to go from a general interpretation of the region in the image to a
detailed interpretation. Bottom-up inference is used within each interpretation level,
identifying primitives (features) in the image and using these primitives to classify
(recognize) the regions. The use of Bayesian networks and utility theory leads to a

system that measures only the most useful subset of the features available. Using
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this subset the system is capable of recognizing the regions correctly, saving time and
reducing the cost of processing.

The work described here presents the ideas behind the reasoning subsystem (the
control process and management of uncertainty) of the Ascender II system. The
reasoning subsystem is based on a hierarchy of Bayesian Networks and uses Utility
Theory to select visual operators and to make decisions. It will be shown that the
Ascender II system has most of the characteristics desired in a general purpose Image
Understanding system: multiple levels of representation, dynamic planning, control of
the processing flow, mapping of numerical values into symbolic quantities, combining
evidence from different sources, resolving conflicts between contradictory hypotheses,

and facilitating the entry of new knowledge.

2.2.2 Bayesian Networks Background
As defined by Jensen [38], a Bayesian network is a probabilistic inference method

which consists of:

e A set of variables and a set of directed links between variables, where the links

represent some type of relationship between the variables.
e Each variable has a finite set of mutually exclusive states.
e The variables and the directed links form a directed acyclic graph (DAG).

e For each variable A with parents B, C,---, N, there is an associated conditional

probability table that represents P(A|B,C,---, N).

Bayesian network systems have been used as an inference method in many domains
such as agriculture [52], computing [28], information processing [31], medicine [3, 29],
forecasting [1], and computer vision [39, 57, 10, 55, 51, 9, 6]. The inference process

in Bayesian networks can be classified [54] as follows:
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Diagnostic inference: moves from effects to causes. That is, knowing the facts
available might lead to the most probable cause, e.g. if one verifies that the
grass in front the house is wet early in the morning, this might help to conclude

that the most probable cause is rain.

Causal inference: goes from causes to effects. For example, knowing that it rained

during the night will lead to wet roads and thus traffic jams.

Intercausal inference: goes between causes of common effects. For example, if a
traffic jam is caused either by wet roads or traffic accidents and, if there was no

rain to make the roads wet, then the belief in a traffic accident will increase.
Mixed inference: a combination of the processes above.

The propagation of beliefs in a Bayesian network, which is the mechanism used
to make inferences in the system, is an NP-Hard problem [17]. The algorithms that
propagate beliefs and update the beliefs in each node can be exact algorithms (for
simple structures) or approximate algorithms (for complex structures); a detailed
explanation of the most common algorithms can be found in Castillo [12]. The prop-
agation is also affected by the number of nodes in the network, the density of links
in the network, the structure itself and the number of states in each node [54].

Bayesian networks can be used to address the following types of questions [38]:
forecast (estimate the state of a variable given evidence), most probable configuration
of the variables, checking data conflict, sensitivity analysis, and value of information.
Introductions to Bayesian networks can be found in [50, 38, 54]; a simple example of

forecast using Bayesian Networks is presented in Appendix A.

2.2.3 Utility Theory Background
Utility theory is the branch of decision theory concerned with measurement and

representation of preferences. Researchers in utility theory focus on accounts of pref-
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Table 2.1. The decision table shows all utilities u;; for a decision problem with N
mutually exclusive events and M decisions.

Decisions Events
E, | B, |---| Ex
Decision 1 g | uge | cc- | uin
Decision 2 Upy | Usg | -+- | Usn
Decision M Uar | unz | | U
| Probability(Event) | p1 [ po [+ pnv |

erences in rational decision making, where preferences cohere with associated beliefs
and actions. In this case, utility refers to the scale on which preference is measured.
Utility theory has some of its ideas based on social studies performed by Bentham in
the 18 century [5], related to pain and pleasure. Today, this technique is applied in
different areas such as economics [20, 41, 45], knowledge representation [24, 4], and
game theory [58].

Utility theory has a set of principles that lie behind every economic transaction
and most non-economic transactions. A typical problem solved using utility theory
can be described as follows: consider the decision problem where there are N possible,
mutually exclusive events, and a decision, among M possible decisions, has to be made.
Utility theory selects the decision that has the highest utility, which is computed using
a decision table (see Table 2.1), based on the probability of an event being true and
the utility of each decision given that the event is true.

The utility values in the decision table are computed by comparing consequences
for each possible outcome (event, decision). Notice that for any practical problem,
each pair (event, decision) has a practical consequence related to it. All possible
consequences in a problem with N events and M decision are shown in Table 2.2.

Now the consequences have to be ranked from best (most favorable) to worst

(least favorable). The ranking can be computed as follows: assume that only one
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Table 2.2. The table shows all consequences for N events and M decisions.

Decisions Events
El E'2 Cen EN
Decision 1 011 012 v ClN
Decision 2 021 022 v CQN
Decision M CMl CMZ te CMN

of the events is true (consider only one column in Table 2.2), find the best and the
worst consequences in the column, and rank all other consequences in the column
accordingly; repeat the process for all other events. At this point, it is possible to
compare all the best and worst consequences from different columns and find the best
and the worst of all consequences in the table. Comparing the other consequences
with the best and the worst results in a partial ordering among all consequences in
the table, with ties solved randomly.

The next step consists in converting each consequence into a numerical value. The

numerical values, or utilities, are computed as follows:

e Define a numerical value, say “C”, for the best consequence in the table (any

positive value).

(PR}

e Define a numerical value, say “c”, for the worst consequence in the table.

e For all consequences Cj; in the table find the corresponding value of p;; as

follows:

— Choose any consequence Cj;. Cj; is worse, or at most as good as the
best consequence; and Cj; is better, or at least no worse than the worst

consequence.

— Define the probability p;; using the following methodology: suppose you

are given a choice. You can have consequence Cj; with certainty, or you can
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Table 2.3. The table shows all probabilities p;; such that it is indifferent for the user
to take Cj; with certainty, or the best consequence available with probability p;;.

Decisions FEvents
B, Ey || En
Decision 1 | p11 | p1i2 | - | pin
Decision 2 | pao1 | P22 | --- | pon
Decision M | pp1 | Pm2 | ¢ | Pun

gamble to have consequence C' with probability p;; and ¢ with probability
1 —pi;. If p;j = 1 you will select to gamble, and if p;; = 0 you will select
Cjj. So find a value of p;; that makes the selection between Cj; and the
gamble indifferent (see Appendix B for an example). Table 2.3 shows all

probabilities for a decision problem with N outcomes and M decisions.

e Compute the numerical utility of Cj;, defined as u(Cj;), using the expression

below:

u(Cij) = pij * C + (1 — pij) x ¢

Table 2.4 shows the utility values for a decision problem with N outcomes and M
decisions. Usually events are not known with certainty, but they have an expectation
(or prior probabilities). In this case only the expected utility of each decision can be
computed. The expected utility of a decision is defined as the sum over all events of

the utility of each consequence times the probability of the event:

EU(Decision;) = > u(Cy;)p(j)

=1

The current utility of the decision problem is defined as the maximum value among

each of the expected utilities:
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Table 2.4. The table shows the utility values for all possible consequences in a
decision problem with N events and M decisions.

Decisions Events
B, | B || En
Decision 1 | u(C11) | u(Cr2) | --- | u(Cin)
Decision 2 | u(Cs) | u(Cq) | --- | u(Con)
Decision M | u(Cpr1) | w(Cun2) | -+ | w(Cun)
max(EU(Decision;))

The best decision is defined as the decision ¢ which gives the maximum expected

utility (the argument of the expression above):

argmaz;(EU(Decision;))

A simple example on how to use utility theory in a decision making problem is

presented in Appendix B.
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CHAPTER 3

REASONING OVER FEATURES IN AN AERIAL IMAGE
INTERPRETATION SYSTEM

3.1 Using Bayesian Networks to model objects

The goal of the reasoning subsystem is to accumulate evidence sufficient to de-
termine a plausible identity of a selected image region in terms of the object classes
represented within the system. A priori knowledge about objects and their relation-
ships is captured in a hierarchical Bayesian network structure (see below). Each
network in the Ascender II system is used to perform the following tasks related to
a specific image region: select a feature to be measured in the image, combine the
evidence from different features once they have been collected, and decide when to
accept the current hypotheses and stop the reasoning process on a region.

Evidence about a feature is obtained by applying a corresponding visual operator
to the region in the image. A priori knowledge, in the form of initial prior probabilities
associated with each object class, is used to select the image understanding (IU)
process for the initial step. Once evidence is obtained, it is entered in the Bayesian
network and it is combined with previous knowledge. The process is repeated until the
system accumulates enough information to determine the region’s most representative
object class.

One problem with Bayesian networks is that propagation of evidence is, in general,
an NP-hard problem [17]. If the network structure is a tree or a polytree (a structure
in which a node can have multiple parents, but there is no closed circuit in the

undirected graph underneath), evidence can be propagated in linear time [50].
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To avoid the general propagation problem, our reasoning subsystem has been
designed using a set of small Bayesian networks organized into a hierarchical structure
according to levels of detail. One of the networks is a general graph with an embedded
cycle that leads to the NP-Hard propagation problem (see the Level 0 network in
Chapter 5). Because the network is small in terms of number of nodes and density
of links, the propagation time in this network is not a problem, and does not affect
performance. However, we don’t know when the NP-Hard propagation problem starts
to interfere in terms of processing time, and this analysis is beyond the scope of this
thesis.

The hierarchical network structure is the system’s knowledge base. Decision pro-
cedures use the information inside the networks to decide what to do next. The idea
of using this set of networks, designed hierarchically, to control the inference process is
new [35], and its drawback is that backtracking in the hierarchy is difficult to support.
Backtracking is a term used in systems with the hypothesis-and-test approach and it
is the action taken when the test does not confirm a hypothesis and a new hypothesis
has to be tested. In a Bayesian network the evidence entered and propagated will,
automatically, lead to one or another hypothesis and backtracking is not required.
In the hierarchy of Bayesian networks proposed here backtracking would be required
when the system classifies a region as one of the object classes available and calls a
network in the next level for a detailed classification and the evidence obtained in
this network leads to a change in the classification obtained in the previous level. We
claim that the system’s ability to make local inferences faster while classifying objects
in a well-defined hierarchy is a worthwhile tradeoff. If the knowledge base in the As-
cender II system was composed of only one network, the backtracking problem would
not exist. The experiments presented later show that backtracking was required only

twice in 80 regions. In these cases the ambiguity was solved by calling a procedure

22



hand-crafted in the code. This issue needs further study, which is also beyond the
scope of this thesis.

Each network represents knowledge about an object class at a particular scale of
detail. Each object class has also been decomposed into subparts within a network,
and each subpart may be represented by a separate network. The subparts are basic
components of the objects such as rooftops for buildings, vehicles for parking lots,
etc. The reasoning process is performed at each level assuming that recognition in
the previous stage was correct. As an example, if a building is found in the first level,
at the next level the system determines whether the building has a single-level or
multiple-level rooftop; if a single-level building is detected, it is possible to recognize
the building’s rooftop; otherwise it breaks the building into subregions, such that
each subregion is a single rooftop, and then classifies their rooftops.

The hierarchy in the knowledge base is designed as follows: a network at level
it represents a refinement of a class represented in a network at level ¢ — 1. This
organization of networks is shown in Figure 3.1.

The first level attempts to recognize that a region belongs to a generic class,
like building, or grassy field, or parking lot. The second level assumes that the
region belongs to the generic class found in the first level and attempts to refine the
classification within that same object class; for instance, if a region is recognized as a
parking lot at level one, it might be recognized as a full parking lot at level two, using
an IU process that counts vehicles in the region and compares the area covered by
cars with the region’s area.

The Bayesian networks were developed using the HUGIN system [2]. One of
our goals is to show that using small networks, plus the hierarchical structure sug-
gested here, will increase performance and will avoid propagation of evidence through
variables that will not affect the overall classification process, because they are not

directly related to the immediate local decision.

23



Level 1 S E

Level 2

Figure 3.1. The controller starts at level 0 and determines an outcome for the root
node at that level (in this case A, B or C). If the outcome is A and time for further
computation is available the controller loads the network for A at level 1 (the thicker
line shows this inference call). The process is repeated until the last level is reached
or the time for computation has expired.

The knowledge in each network is structured as follows: each network has only
one root node, and each state of the root node represents a possible class for a region.
The other nodes in the network are random variables representing features. The
features were selected such that their values are expected to discriminate between
two or more classes, or to help confirm that a region belongs to a certain class. The
feature set ranges from a simple line that can be found in the optical image to a
complex planar fit which requires either a DEM or a stereo matching operator. Each
arc represents the relationship between features or between a feature and a class in
the root node. Each feature has associated with it one or more visual operators in the
visual subsystem. The visual operators are responsible for computing and interpreting
their corresponding feature.

Two types of knowledge are encoded in the network: domain-specific knowledge in

the form of prior probabilities for each class, and general knowledge which shows the
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relationship between a class and a feature, and is represented by conditional probabil-
ity tables. Changes in the distribution of objects in the data set imply an adjustment
to the set of prior probabilities used for each network in the reasoning subsystem. A
link from the root node to the feature has associated with it a conditional probability
table which represents the conditional probability of the feature F' having a value “k”

given that the class C' has a value “c”, described in the expression:

P(F=k/C = ¢)

The inference process in Bayesian networks uses Bayes Rule, which allows reason-

ing in both directions (from cause to consequence and back).

P(C = ¢/F = k) P(F = k)
P(C =c¢)

P(F=k/C=c)=

or

P(F=Fk/C=c)xP(C =c)
P(F = k)

P(C=c/F=k)=

Thus, a feature can be measured for a region and its value propagated through
the network, ultimately changing the beliefs in the classes at the root node for that
region.

The hierarchical structure applied in the reasoning subsystem can be used as a
basic framework to implement an incremental or “anytime” recognition system. This

topic will be left for future work.

3.2 Structure, Feature Set and Probability Tables
Although no constraint was placed on the network structures, they were designed

as simply as possible (utilizing a small number of nodes and edges) to avoid a seri-

25



ous impact from the exponential increase in propagation time. The networks were

designed using the following principle:

e The root node represents the region of discourse.

e The states in the root node are the possible classes that the region can belong

to.

e The children of the root node are features that can either be measured or inferred

from measurements performed on the image.

e Each feature is discretized into ranges such that a feature value can be used
to discriminate between the classes in the root node; these ranges were defined

empirically, and they are another part of the knowledge engineering process.

The basic structure of the networks is presented in Figure 3.2. Features can be
measured directly (like feature 1) or indirectly (measure feature 21 which will give

evidence about feature 2).

Class 1
-1Class 2

Class K

Figure 3.2. Bayesian network general structure in the Ascender II reasoning sub-
system.

The feature set selected for the system can be divided into the following groups:

simple features, such as width and area of a region, which can be implemented using
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simple pixel counters; features that verify geometrical properties in 2D, like corners
and T junctions; and 3D features, such as planar surface fit, height, and rooftop
model matching, which need either a DEM (digital elevation map) or sophisticated
stereo matching algorithms.

Edges were placed in the networks between features that are related, going from
the most general feature to the most specific feature (like from feature 2 to feature
21 in Figure 3.2). Edges were also placed going from the root node to all nodes
representing general features.

Another problem when designing Bayesian networks is to define a set of probabil-
ities. Where do probabilities come from and how can they be determined? Features
can be statistical and they can be measured over regions in different images. These
measurements can be used to select the ranges for the states of the feature, and to
measure frequency (i.e., the number of times feature ¢ is in state z and the region be-
longs to class i divided by the number of times feature ¢ is in state z). The frequency

value can be written in terms of probability using the following expression:

| Regions = Class_i N Feature_.q = z |

prob(Region = Class_i|Feature.q = z) = Feat |
eature_.q = z

Another way is to estimate the values of the probabilities based on personal knowl-
edge (subjective probabilities) [44]. In this case human specialists can be used to
retrieve visual information, estimating values that an ideal operator should measure.
This estimate does not need to be a precise value; assuming that the features are
already decomposed into states (representing ranges), only the state of the feature
for each region needs to be specified. In this case the states are used as a guide and
the probabilities are defined subjectively by the set of specialists.

All the conditional probability tables were defined for the Ascender II system using
both approaches described above. The prior probabilities for the root nodes were

defined subjectively depending on the specific data set being worked on. If nothing is
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known about the distribution of regions in the data set, the prior probabilities of the
classes in the root node can be specified using the uniform distribution. This approach
will lead to more exploratory calls to visual operators, thus a longer processing time,
but the final classification of the regions should be the same in most cases. If a priori
information about the data set is known, approximate values for beliefs can be given
to the classes in the root node, which will make the reasoning process more efficient.

The approach described above was used to design a set of networks (experiments
using these networks can be found in [35, 36, 48|, and will be described in Chapter
4). One of the problems discovered early in initial experiments resulted from setting
the value of the feature directly into the feature node, which assumes that the oper-
ators are 100% reliable. This is certainly not true, especially for the values close to
a threshold (boundary between two states in a node). Because of this, a node corre-
sponding to the operator for each feature being measured in the image was added to
the networks. The conditional probability table between the feature and the operator
which computes the feature represents the reliability of the operator. The values of
the conditional probabilities can be computed easily if the ground truth for the data
sets is available; otherwise they can be estimated from a set of several runs. The gen-
eral structure of the modified networks is presented in Figure 3.3, and experiments

using these networks can be found in [47], and will be described in Chapters 5 and 6.

3.3 Datasets

The knowledge base in the Ascender II system was designed to allow variations
in the imagery used. These variations are related to number of views available, dif-
ferent resolutions, different number of objects in each class, etc. For the experiments

performed here the following data sets were used:

The Fort Hood dataset: 7 views with known camera parameters, varying image

resolution (ground sample distance per pixel - gsd), and a corresponding DEM
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Figure 3.3. The new general structure for the Bayes Networks in the reasoning
subsystem for Ascender II.

(computed using TERREST [56]). The area used for the experiments on this

data set is shown in Figure 3.4. For this image the gsd value is 0.35m.

The ISPRS Avenches ! [dataset:] 4 views, 0.1m gsd resolution, and a correspond-
ing DEM with 0.25 m gsd resolution (the DEM was available in the dataset and
not computed with TERREST). Image 5883 from this data set was used in our

experiments and it is shown in Figure 3.5.

The Fort Benning dataset: 2 views, 0.14m gsd resolution, and a corresponding
DEM, computed from TERREST, with the same resolution. The area called

MOUT, shown in Figure 3.6, was used in our experiments.

International Society for Photogrammetry and Remote Sensing; the data was obtained from the
site: ftp.vislist.com/IMAGERY/PTERRAIN
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Figure 3.4. Area used for experiments in the Fort Hood data set.

Figure 3.5. Image 5883 from the Avenches data set.
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Figure 3.6. The MOUT site in the Fort Benning data set.

The ISPRS Flat Scene ? [dataset:] 2 views, 0.24m gsd resolution, and a corre-
sponding DEM. The DEM provided with the dataset has a resolution of 1 m;
this resolution was considered too low for our experiments. TERREST was
used to compute a DEM with a higher resolution (0.24m). The Flat Scene is

shown in Figure 3.7.

The ISPRS Glandorf data set: 2 colored views, 0.24 m gsd resolution, and a cor-
responding DEM. Again the resolution of the DEM was too low (1 m) and TER-
REST was used to obtain a higher resolution DEM (0.24 m). The Glandorf area

is shown in Figure 3.8.

The first three data sets (Fort Hood, Avenches and Fort Benning) were used for

all experiments performed in this research. The last two data sets (Flat Scene and

2This dataset and the Glandorf dataset were obtained from: ftp.ifp.uni-stuttgart.de/pub/wg3
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Figure 3.8. The Red band of the left view of the Glandorf data set.
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Glandorf) were used only as a test set for the learning experiments performed in this

work. This topic will be discussed in Chapter 6.

33



CHAPTER 4

CONTROLLING AND MAKING DECISIONS IN AN
AERIAL IMAGE INTERPRETATION SYSTEM -
UNCERTAINTY DISTANCE

A human decision has both logical and subjective components of reasoning. Typ-
ically, a decision depends on three issues: the information available at the time when
the decision was made, the previous knowledge of the person who made the decision
about the issues involved in the decision (the logical parts), plus some other personal
aspects (e.g. preferences) of the person who made the decision (the subjective part).
This last statement acknowledges the fact that two people with the same knowledge
about the problem, and with the same information available, might make different
decisions.

Any computer system needs to make a large number of decisions during processing.
The Ascender II system has three important decisions to make: what feature to select,
when processing should stop, and what label should be given to a region. These

decisions are directly related to the system’s performance.

4.1 Feature Selection

A selective perception system is intended to solve a specified task with minimum
effort [8]. For the Ascender II system, at first, a region can be any of the objects
modeled in the Bayesian network, and operators are designed to measure features in
the image such that an object class can be assigned to the region. It is important
in selecting the operators to consider availability, cost in terms of both resources

required and time for processing, reliability, etc. Thus a primary goal of the reasoning
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subsystem is to select a subset of features that will allow a consistent, cost-effective
identification of the region class.

The selection can be made in different ways, e.g., using a pre-defined static strategy
where features are called independently of the evidence acquired, or using a dynamic
strategy where different features are called depending on the current state of pro-
cessing. Even if a dynamic strategy is used, there are many possible alternatives for
selecting a feature. For example, the network can be simulated and the feature with
the highest impact on the root node can be selected (impact here can be measured
as the largest change in the belief distribution of the root node); or utility theory can
be used, as in the TEA1 system [53].

The Ascender II system initially used a simple dynamic strategy for the selection
process, where the node that had the highest uncertainty was selected. A new mea-
sure for uncertainty was used in this process. A random variable (N) is defined to
have maximum uncertainty when the probability distribution over the states (Sy)
is uniform. A measure for uncertainty, called the uncertainty distance, was defined;
the uncertainty distance represents the difference between the value of the current
maximum belief in the node and the value of the belief if that node has a uniform dis-
tribution (see Figure 4.1). This measure is computed as shown below (Sy represents

the number of states in node N).

1

Uncertainty Distance = maz(Belief(N)) — .
N

A more classical approach for measuring uncertainty, such as entropy, can also be
used. A simple mathematical analysis comparing uncertainty distance and entropy
was performed. Assume that a random variable has only two states Yes and No. The

values for beliefs in this Boolean variable were adjusted as follows:

e Initially set the value of Yes = 0 and No = 1.
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Figure 4.1. The graph shows the uncertainty distance measure for a node with 5
states. The dotted line shows the Uniform Distribution and the state with the highest
belief, which implies the largest uncertainty distance, is state 4.

e Increment the value of Yes and decrement the value of No continuously, under

the constraint that Yes + No = 1.
e For each step measure entropy and uncertainty distance.

The curves obtained for the Yes value using both measures are shown in Figure 4.2.
The dotted line is the uncertainty distance and the continuous line is the entropy.
Figure 4.2 shows that both are symmetric and inversely related; while the entropy de-
creases (meaning that the uncertainty is reduced) the uncertainty distance increases
(meaning that the states of the variable are moving away from the uniform distribu-
tion, thus also reducing uncertainty about the variable outcome). Experiments have
shown that the Ascender II system performed slightly better when using uncertainty
distance instead of entropy to select features. Because we believe it is more intuitively
understandable, the uncertainty distance measure was initially used in the Ascender
IT system.

Given a network, the system computes the uncertainty distance for all nodes which
have a corresponding IU process and selects the node with the highest uncertainty

i.e. the minimum uncertainty distance. As an example, consider the case in which
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Figure 4.2. The graph shows entropy (solid line) and uncertainty distance (dotted
line) for the state Yes in a Boolean variable (see discussion in text).
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the features planar fit and line density inside the region are both Boolean variables.
If the belief for a good planar fit in a region is 54% and the belief for a high number
of lines inside the region is 67%, the uncertainty distance is higher for the planar fit
variable, and this node will be selected.

Once a node is selected in the Bayesian network, a knowledge source is activated in
the visual subsystem and performs an action on the image. The findings of this action
are then returned to the reasoning subsystem, entered as evidence and propagated
through the network. The process is repeated until the reasoning subsystem has
enough evidence to recognize and label the region as one of the available object

classes.

4.2 The Recognition Process

The recognition process in the Ascender II system could be defined in a number
of different ways. One of the simplest recognition processes is just to define a fixed
threshold. When a belief value in the root node reaches the threshold, the system
stops the recognition process. In this case the region is labeled using the class which
passed the threshold in the root node. The threshold could be a single global value
accross all networks in the system, however, this method has some problems. If the
number of classes in the root node is different for each network, it will be easier to
reach the threshold in nodes with a smaller number of states than in nodes with a
larger number of states. Another problem with this method is that if the threshold
is set to a high value, this value might not be reachable in some networks, which
implies that all applicable vision routines will be executed without being able to
reach a decision.

Another approach for defining the recognition process is to use a relative threshold.
The relative threshold can be measured either within the state or between states. In

the first case it is measured by the relative amount (percentage) of how much the
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belief in each state changes, in one step of the reasoning process, or in P steps; if the
change reaches a certain threshold the process stops and the region is labeled using
the class which has passed the specified threshold. In the second case, the two largest
beliefs in the root node are compared, and the reasoning process is stopped if one of
the beliefs is at least a factor k times larger than the other. Again, once the reasoning
process is stopped, the region is labeled using the class with the highest belief in the
root node.

The decision criterion first used to select a label for a region was a relative thresh-
old, where the two classes with the highest and second highest beliefs are compared
after each new piece of evidence is propagated through the network. If the maximum
belief is at least k times the value of the second highest belief the controller stops and
identifies the region as belonging to the class with the maximum belief.

Clearly, the value of k£ has an impact in the system’s performance. The value of
k is directly related to the correct classification of a region, the number of operators
required to classify a region, and the number of times that the system can not decide
about the region using the criterion but instead has to make its current “best guess”
(label the region using the object class with the highest belief in the root node). If &
is too small the system might not apply any available operator and take the current
prior beliefs as acceptable, which will lead to a poor classification process. If the value
of k is too large the system would use all operators available and still not reach the
decision criterion. In this case it will have to make the “best guess” about the region’s
class. The system inspects the beliefs in the root node and finds the highest value
among them, and labels the region using the object class with the highest belief in
the root node. In order to set a value for k a set of experiments were defined. In these
experiments the value of £ was changed from 1.25 up to 6.0 and the number of regions
correctly classified (see Figure 4.4), the number of operators used (see Figure 4.3),

and the number of times the system was not able to decide using the criterion (see
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Figure 4.5) were observed. For this experiment the Fort Hood, Avenches, and Fort
Benning datasets were used, with a total of 79 regions and 906 possible operators.

k vs Number of Operators used in the regions correctly classified — Overall
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Figure 4.3. Number of operators vs. threshold k: the graph shows the total number
of operators used by the system when the value of k goes from 1.25 to 6. If the system
used all evidence available, prior to a decision, it would use 906 operators.

As expected, Figure 4.3 shows that the number of operators required to reach
the decision criterion increases when the value of k increases. The number of regions
correctly classified also increases when £ increases (Figure 4.4). This was expected
as a higher value of k requires a larger number of operators applied to the region,
resulting in a more reliable classification process.

Some visual operators have a set of parameters that can be adjusted (or calibrated)
to get a better performance based on the image conditions (brigthness, contrast,
noise, etc). The parameters for the visual operators used in these experiments were
manually set so that they would perform well on the three datasets used. If the

features retrieved by the operators for each region were correct and reliable the graph
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k vs Number of Regions correct classified — Overall
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Figure 4.4. Regions correctly classified vs. threshold k: the graph shows the number
of regions correctly classified when the value of k goes from 1.25 to 6. The dotted
line shows the number of regions correctly classified if the system uses all available
operators, and the dashed line shows the number of regions correctly classified using
only the initial prior probabilities.
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k vs Number of Times the system did not reached the decision threshold (NUnD) — Overall
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Figure 4.5. Number of times the system did not decide based on the threshold k
criterion: the graph shows the number of times (out of a total of 79 regions) the
system did not reach the decision criterion when the value of k goes from 1.25 to 6.
In these cases the system made the best possible guess about the region’s class.
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in Figure 4.4 should be strictly monotonic. As the image set used is noisy and does not
correspond to exact conditions where the operators were calibrated, the outcome of
the operators, when applied to this images, might not correspond to the real feature
value, which might lead to misclassifications. Finally, as shown in Figure 4.5, the
higher the value of £ the larger the number of regions for which the system could not
reach the decision criterion. The value of k£ has to be defined based on these three
issues. A value of k£ equal to 2 or 2.5 would give the best overall performance. For

our experiments the value 2 was used.

4.3 System Description

The first set of experimental networks are presented in Figures 4.6, 4.7, 4.8, and
4.9. At this point only buildings are handled by the system beyond the level 0 network.
The network at level 0 (Figure 4.6) attempts to recognize the class to which the region
belongs. If the class identified is not Building the process is stopped, and a generic 3D
model for the object class is selected from the data base for visualization purposes. In
the case where a building is identified the network at level 1 is called (Figure 4.7). This
network is designed to identify single-level buildings based on a simple set of features;
if a single-level building is identified the network shown in Figure 4.8 is called to
determine the rooftop class. If a multilevel building is identified, there is a possibility
that the hypothesis is wrong (a multilevel building may have a line on the roof which
looks very much like the center line of a peaked roof). Consequently, the network
shown in Figure 4.9 is called to confirm a multilevel building, or to backtrack to a
single-level building (this is an example of a pre defined backtracking path encoded
into the system. If the building is not a multilevel building the system makes a call to
the Rooftop network shown in Figure 4.8). If a multilevel building is identified, the
system breaks the region into two new subregions, based on the evidence gathered,

and calls the network at level 1 for each subregion recursively.
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Figure 4.6. The level 0 network determines if a region belongs to one of the possible
object classes: Building, Parking Lot, Open Field, Single Vehicle, and Other.

Note that some knowledge sources can be called from different levels. Each call
is related to a specific region and values already computed are stored in the visual
subsystem. When a repeated call is made, the system will return the value stored in

the database and will not recompute the feature.

4.3.1 How the Ascender II System Works - Snapshots

This section presents a sequence of snapshots taken when the system was running
over a region in the Fort Benning data set. The input image and the regions to be
identified are shown in Figure 4.12; this set of regions was determined using optical
images processed by the Ascender I system (Figure 4.10) combined with a SAR clas-
sification provided by Vexcel Corp (Figure 4.11). The prior probabilities associated
with the object classes in the level 0 network are shown in Table 4.1.

Consider the sequence of events which occurs when the system is processing region

X in Figure 4.12. This region is shown in Figure 4.13 (top) with the network at level
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Figure 4.7. The level 1 network is invoked for each building found in level 0 to
determine if it is a single-level building or a multilevel building.

0. The nodes shaded are the ones invoked by the reasoning subsystem; the evidence
found during inference and the class identified are shown in the figure. After deciding
on a building class the system called the network at level 1, which checked for T
junctions in focus-of-attention terminal areas shown in Figure 4.13 (bottom). The
terminal areas are defined automatically and designed to have a length of 50% of the
length of the region and have a width of 10% the width of the region. Evidence from
level 1 identified the building as multilevel and the network to confirm multilevel
building at level 2 was invoked.

At this point the system decomposed the region into two new subregions, as
shown in Figure 4.14 (top), and recursively called the network at level 1 for each new
subregion. The process is repeated on each of the two subregions, as shown in Figure
4.14 (bottom). Region A was also identified as a multilevel building and decomposed
into two new subregions.

The process is again repeated for the left-most subregion (A1). This region was
identified as a single-level building, so the rooftop network is called for this particular
region in an attempt to identify the building’s rooftop. In this case, the system

identifies the rooftop as a peaked roof (see Figure 4.15 top). The process is repeated
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Figure 4.8. This network is invoked at level 2. It is called after a single-level building
is detected and it is used to determine the rooftop type.

Table 4.1. Probability distribution of beliefs in the root node for the level 0 network
among the states Building, Parking Lot, Open Field, Single Vehicle and Other for all
three data sets.

Knowledge | Building | Parking Lot | Open Field | Single Vehicle | Other

Fort Hood 0.35 0.2 0.2 0.15 0.1

Avenches 0.32 0.25 0.38 0.03 0.02
Fort Benning 0.35 0.2 0.2 0.15 0.1

for subregion A2, which is also identified as a peaked roof building. The system
then considers region B (Figure 4.15 top) and eventually identifies two peaked roof
structures, as shown in Figure 4.15 (bottom), which is representative of the final

result.

4.4 Experiments and Results

In all experiments described here, only the domain-specific knowledge in the net-
work at level 0 was changed from one experiment to the other. This knowledge repre-
sents expected frequency for each possible class in the root node and it is represented

as prior probabilities (see Table 4.1).
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Figure 4.9. This network is also invoked at level 2. It is called when a multi-
level building is detected. The reasoning system calls this network to confirm the
recognition at level 1.

Table 4.2. Average number of calls to knowledge sources in the level 0 network, for
different data sets, for all classes (Total column), and by specific classes (remaining
columns).

Knowledge | Total | Build. | P.Lot | O.Field | S.Vehicle

Fort Hood 3.9 4.25 | 4.00 3.29 0

Avenches 4.7 5.22 5.00 4.0 0
Fort Benning | 2.9 3.00 0 0 2.0

There are seven visual operators available in the network at level 0 and three
additional operators at level 1. Table 4.2 presents the average number of visual
operators invoked by the reasoning subsystem at the level 0 network for each data
set, and also the average calls by region type (object class). The recognition results
obtained were first presented in [48], and they are summarized in Table 4.3.

Notice that in all cases misclassification was decided relative to the initial focus-
of-attention regions provided to the system and not against a complete ground truth
model. That is, if a building was not included in the set of focus-of-attention regions,
and consequently not recognized by Ascender II, it was not counted as an error.

The recognition results obtained for the regions (Fort Hood data) shown in Figure

4.16 are shown in Figure 4.18. The undecided region (region A) has a belief of 59% for
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Figure 4.10. Regions obtained by the Ascender I system from the Fort Benning
dataset.

Table 4.3. Summary of the recognition process for different data sets. In each case
the number of objects correctly identified is shown, followed by the total number of
objects evaluated by the system (* - see text concerning identity of the RV regions).

Data set Overall | Level 0 | Level 1 | Level 2
Fort Hood 37/41 | 37/41 | 21/21 | 21/21
Avenches 17/18* | 18/18 | 16/16 | 15/16
Fort Benning | 17/19 | 18/19 | 17/17 | 16/17
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Figure 4.11. Regions obtained from SAR data from the Vexel Corp.
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Figure 4.12. Regions to be identified by the Ascender II system from Fort Benning
dataset. The region marked with an X was selected to demonstrate the performance
of the system. See text for a description of how the regions were obtained.
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Figure 4.13. Decomposition of the building hypothesis. Top: Region of discourse.
The ground truth is a multilevel building with 4 peaked roofs. The building class
was selected as the most probable because of the combination of the features Width
= 12.36 m and Height = 9.0 m. Bottom: The system used the fact that the region
was identified as a building and that evidence of T junctions was found (Number and
Contrast of T’s) to identify it as a multilevel building.
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Figure 4.14. Decomposition of the building hypothesis. Top: The region was con-
firmed as a multilevel building and was broken into two new subregions. Bottom:
Looking for T junction evidence in the terminal areas of region A.

52



Peaal
Look for rooftop B

- - Cylinder
|n sub region A1 Rmﬁup Pt
. F-‘IanarFll: ‘
L —23%
= -53%
Apply: Peak roof (98%0)
Cylinder (0%)

Decision: Peaked roof‘

Reconstruct the region using
four peak roof buildings.

e i

=

i
=
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Figure 4.16. The input regions from the Fort Hood data set. These regions
were obtained by running the original Ascender I system constrained to detect two-
dimensional building footprints [16].

the Parking Lot state and 31% for the Open Field state (the region is a parking lot).
By the decision criterion discussed earlier (section 4.1), although close to the ratio,
no decision is possible (this does not happen with our utility theory mechanisms, see
Chapter 5.). The misclassified regions are: an open field identified as building (region
C), and 2 single vehicles identified as open fields (regions F).

The classification obtained for the regions in the Avenches site (Figure 4.17) is
presented in Figure 4.19. There is a set of small regions in the Avenches data set that
were detected by the Ascender I system as buildings, and confirmed by the Ascender
IT system as single buildings with flat roofs; the correct identity of these objects is
unknown. They look like large RV’s or large containers, as one can see by their
shadows and relative size. We considered these areas as large RV’s which could be

identified as either flat roof buildings, or single vehicles. The system’s knowledge base
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Figure 4.17. The input regions from the Avenches data set. These regions were
obtained by running the original Ascender I system constrained to detect two-
dimensional building footprints.

was re-engineered to allow this type of discrimination (see Chapter 5). In this case
the system correctly identified them as flat roof buildings. Region A is a parking lot
for boats and it was correctly identified as parking lot. The rooftop of building B was
misclassified as a peak instead of flat.

The results for the Fort Benning data are presented in Figure 4.20. The only
complete misclassification was a small peaked roof building (which is the church
steeple), in front of the church, which was classified as a single vehicle. The other
problem found was a flat roof building classified as peak roof building due to a shadow
that generates strong evidence for a center line in that building (see Figure 4.21).

The final 3D reconstruction for the Fort Hood and Fort Benning data are pre-
sented in Figures 4.22 and 4.23 from a synthesized or virtual viewpoint. Geometric

reconstruction of building models is based on a robust surface fit to the local DEM us-
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Figure 4.18. Recognition results on the Fort Hood data. Three regions were mis-
classified and for one region the system was not able to make a decision.

Table 4.4. Mean, maximum and minimum errors, in meters, for the 3D reconstruc-
tion in Fort Benning.

IV Planimetric | IV Altimetric | IV Absolute
Mean 0.528 0.608 0.805
Maximum 0.848 0.892 1.112
Minimum 0.246 0.377 0.524

ing the initial model and parameters generated by the recognition process [34]. Error
analysis was performed by comparing the 3D reconstruction obtained with hand-
constructed CAD models available for the Fort Benning data. The errors obtained in
this analysis are shown in Table 4.4 in Planimetric (horizontal), Altimetric (vertical)
and Absolute distances, all in meters.The maximum error was 1.1 meter (or about 10
pixeis) and, given the quality of the images for this site and the quality of the camara

parameters to compute the DEM, this result can be considered good.
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Figure 4.19. Recognition results on the Avenches data set. All R.V.’s were classified
as flat roof buildings.

4.4.1 Evaluation

One of our claims is that the Ascender II system can perform 3D reconstruction
accurately and efficiently. In order to validate this claim the Fort Benning data was
used to test the Ascender II system against a system that randomly selects a vision
operator, and also against a system that invokes all operators to get all available
evidence prior to making a decision. The summary of these results is presented in
Table 4.5. For the system with random selection only the best performance is shown.
Table 4.6 shows the average number of operators called using each method in the
evaluation process. For the systems with the best performance, Ascender II and All
Evidence, the time required to process each region, on average, is shown in table 4.7.

The main difference, in terms of identification, between the Ascender II system
and the All Evidence system was that the small building in front of the church was

classified as single vehicle by the Ascender II system. The system using all available
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Table 4.5. Number of regions correctly identified and total number of regions at
each level for the Fort Benning data set.

Method Overall | Level 0 | Level 1 | Level 2
Random 15/19 | 16/19 | 15/15 | 14/15
All Evidence | 17/19 | 19/19 | 17/18 | 16/17
Ascender IT | 17/19 | 18/19 | 17/17 | 16/17

Table 4.6. Average number of operators called for each region for the Fort Benning

data set.

Table 4.7. Average processing time (in seconds) on each region for Ascender II and

Method Level O | Level 1 | Level 2

Random 3.04 1.31 2.84
All Evidence 7 5 5
Ascender II 2 1.05 2

All Evidence methods for the Fort Benning data.

Method Level 0 | Level 1 | Level 2
All Evidence 39.6 24.8 1.68
Ascender 11 11.3 24.6 0.89
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Figure 4.20. Recognition results on the Fort Benning data set.

evidence correctly identified it as a building, but misclassified its rooftop as a cylinder
and not a peak. The price paid by the All Evidence system was much higher in terms
of time required for the correct classification. At the level 1 network the difference
is higher in terms of operators than in terms of time. This network has only three
operators and two of them are applied twice (once for each terminal area). The planar
fit operator is a very expensive operator in terms of time, and it was always called by
the Ascender II system. This made the difference in terms of time less relevant.

The random system generated more misclassifications, exchanging buildings for
parking lots and open fields, as shown in Table 4.8. In the best case, three regions
were misclassified at the level 0 network. Notice that after 5 runs using the Random
operator selection, region number 1 was never classified as a Flat roof building, all

regions were misclassified at least once, and none of the Random runs did better than
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Figure 4.21. The shadow on the flat roof of this building makes a strong evidence
for a center line and the roof top was misclassified as a peaked roof building.

the All evidence system or the Ascender II system . In this case the overall probability

of misclassification is 0.326, a high value for a classification system.
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Table 4.8. The table presents the results of the 5 random runs executed in the Fort
Benning data set. The true column gives the correct classification for each region
and the Run columns give the classification given for each region based on a random
selection of operators. P stands for Building, Single level, Peaked roof; F is the same
for a Flat roof; V stands for Single Vehicle; M for Building, Multilevel; L for Parking
Lot; O for Open Field. The * indicates the misclassified regions. The errors column
shows the number of times the region was misclassified in 5 runs, and the errors row
shows the number of misclassifications per run.

Region ID | True | Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Errors
0 P P P L* V* P 2
1 F P* p* P* p* V* 5
2 F F F L* F F 1
3 P P V* P P P 1
4 P L* F F F F 1
5 P L* P L* P P 2
6 BS V* F F F P 1
7 \Y% p* \Y% \Y% v 1
8 F F F F O* F 1
9 F F p* F F F 1
10 F F L* L* L* F 2
11 P V* P P P P 1
12 P P L* L* P P 2
13 P P P V* P P 1
14 P P F* P P F* 2
15 M M M M L* L* 2
16 P P V* P P V* 2
17 P P M* P M* P 2
18 P P L* P P P 1

Errors - 6 8 7 6 4
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Figure 4.22. 3D reconstruction on the Fort Hood data.

Figure 4.23. 3D reconstruction on the Fort Benning data.
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CHAPTER 5

CONTROLLING AND MAKING DECISIONS IN AN
AERIAL IMAGE INTERPRETATION SYSTEM -
UTILITY THEORY

One of the problems with uncertainty distance is that personal preferences are not
easily modeled in that framework. The only way to add personal preferences using
uncertainty distance is to change the conditional probability tables in the Bayesian
networks. Another problem with uncertainty distance is that feature selection is based
only on one state of each feature (the one with the highest uncertainty distance).
Utility theory allows the modeling of personal preferences just by changing the order
of consequences, which directly affect the utility tables. Utility theory uses all states
in a feature node to compute the expected value of information of the feature during
the selection process, and it is a well defined methodology [44] based on probability

theory.

5.1 Reasoning in the Ascender II using Utility Theory

The Ascender II system has to select a set of visual operators to help it in deciding
the region’s label. There are K features that can be measured in the region, the
measurements are not completely reliable, the measurements can have different costs,
and at least some measurements are required to decide about the region’s label.
Utility theory is a probabilistic technique for decision making and it fits well in a
Bayesian network system. Utility theory provides mechanisms to select the decision
that has the highest expected utility. In the discussion that follows, we use the

following notation:
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o R; L the event that region R belongs to Class j (the outcome).

DR; % the decision that region R is identified as Class j (the decision based

on the outcome).

E % a1l the evidence collected so far.

F,, 4 feature F is discretized into m states.

5.1.1 Selection of a Visual Operator

The region’s prior probabilities and the conditional probability tables relating
features with labels are obtained as described in Chapter 3 and stored in the Bayesian
networks. The utility tables storing the values U(DR;|R;) (the utility of deciding that
a region is in class ¢ given that the region belongs to class j) are not hard to define.
The tables are based on the consequences of classifying a region correctly or not,
and this is related to the user’s preference for a certain object class and/or specific
goals for the classification process (e.g. find all parking lots in the image) [44]. The
utility tables used in most of the experiments are all similar, with 1’s on the diagonal
and 0’s in all other entries (see Table 5.1). In this case, only the correct labels are
accepted and they have exactly the same utility in the classification process. Later in
this chapter it will be shown how to set preferences using utility tables and, at that
point, different utility tables will be presented.

The expected utility (EU) of each decision is computed using the probability that
a region belongs to a class j given all knowledge available, P(R;|E), and the utility of
deciding that a region is in class ¢ given that the region belongs to class j, U(DR;|R;),
[44]:

N
EU(DR;|E) = Y. U(DR;|R;) * P(R;|E) (5.1)
7=1
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Table 5.1. The table shows all utilities for the level 0 network in the Ascender II

system.
Decide Class
Building | Park. Lot | Open Field | Other
Building 1 0 0 0
Parking Lot 0 1 0 0
Open Field 0 0 1 0
Other 0 0 0 1

The system’s utility is defined as the maximum value among the expected utilities of

each decision:

EU(DR4|E) = maz(EU(DR;|E)) (5.2)

The best decision is defined as the decision a which gives the maximum expected

utility:

a = argmaz;(EU(DR;|E)) (5.3)

In our problem domain the system has to decide the most likely identity (e.g.
label) of a region. Assume that there are K features that can be measured in the
region and that the measurements are not completely reliable, as it is almost always
the case. Features are selected based on their value of information [32]. The value of
information gives the expected gain, in terms of utility, that is achieved by knowing
the feature value. This value is computed as follows: for each feature currently
available compute the expected utility of the system given that information about
the feature is known, EU(F,,). The feature is divided into M discrete intervals and
each of these intervals might lead to a different object class (for example, if height is
less than 1 meter the region would be labeled as open field, but if the height is greater

than 4 meters the same region would be labeled as a building), with a corresponding
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utility. The utilities found for each interval have to be weighted by the probability

that the feature value is in the corresponding interval:

M
EU(DR,|E,F,,) = Y_ P(F,) * maz;(EU(DR;|E, F,,)) (5.4)

m=1
Now, compute the value of information of each feature by subtracting the current

utility of the system from the expected new utility of the system when information

about the feature is known, as shown in the equation below:

VI(F,) = EU(DRy|E, F,,) — EU(DR,|E) (5.5)

and select the feature with the highest value of information. Intuitively, the value of
information measures the expected improvement in the utility once the result of an
operator becomes available. Notice that the best decision can change (o’ and « can
be the same or not) once the most valuable feature is measured and its evidence is
entered into the system.

Figure 5.1 shows a generic Bayesian network that will be used to illustrate how
feature selection is performed in the Ascender II system. The first step is to compute
the system’s utility before extracting any information about the features. This value
gives a reference for selecting features and helps on deciding the most valuable feature.
Each decision has an expected utility U(Dec;) = EU(DR;|E); the expected utilities
of the decisions can be calculated by multiplying the matrix of utilities by the column
vector of beliefs from the root node, as shown in Figure 5.1. The system’s utility is
the maximum value among the utilities of the decisions.

Once the system’s utility is known, the next step is to determine if it is worth
to measuring any feature and, if it is, what feature should be measured. In order
to do this the value of information for each feature has to be computed. This is

performed by computing the expected utility of each feature as follows: let us assume

66



Beliefs on ttstates of the root.

General Bayesian Network

State 1 = Bel 1A
State 2 = Bel 2/

b L]
Cren 77
State N = Bel M

Beliefs on the states of feature i.

State 1 =bel |
State 2.= bel 2

< .
State My =bel M;

U(Dec. 1) U1l U12 o o o UIN Bel 1
U(Dec. 2) u21 u22 U2N Bel 2
: = ° . * :

. . . .
U(Dec. M) UM1UM2 o o o UMN Bel N

System’s Utility = max(U(Dec. j))

Figure 5.1. A generic Bayesian network for the Ascender II system. The network
shows the beliefs for a generic feature and for the root node, as well as the expression
used to compute the system’s utility.

7333} @
1 1

feature has “M” states, stateq, states, - - -, stateyr; and each state in feature has

a corresponding belief, bely, bels, - - - belys, corresponding to the current expectation

W

about each state of feature “i”. Set the outcome of feature

W
1

to state; (i.e. make
the belief of state; = 1 and the belief of all other states equal to 0), and propagate
the information through the network. This will change the beliefs in the states of the
root node. Use this new set of beliefs in the root node to compute the new utility
of the system (maz;(EU(DR;|E, F,,) in equation 5.4). Multiply this value by bel;
(the “probability” that feature 7 is in state 1 (P(F,,) in equation 5.4)). Repeat this
process for all states of feature ¢ and then compute the expected utility of the system
given feature i (EU(DR;|E, F),) in equation 5.4). When completed, the value of
information for feature 7 is found from equation 5.5. The process is repeated for all

features and the one with the highest value of information is selected.
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5.1.2 The Recognition Process

The recognition process using utility theory has two steps. In the first step the
system decides when to stop the reasoning process, and, in the second step, the
system decides about the region’s label. To stop the reasoning process, the system
checks the features that have not been measured yet and computes their corresponding
value of information as described above. If none of the features has a positive value
of information, meaning that they are not expected to increase the current utility of
the system, the reasoning process stops. Otherwise, a feature is selected as described
earlier and the process continues. To label a region the system computes the utility
of the system after the reasoning process is stopped and, using equation 5.3, labels
the region using the decision that has the highest utility. Notice that the final label
depends on the utility table which has to reflect the user’s preference or the system’s

goals.

5.1.3 New Networks

The following changes were made in the system for the tests using utility theory.
As mentioned in Chapter 3, one problem with the networks used in the first exper-
iments was that the operators were considered completely reliable. This is not true
and may cause errors when the value retrieved by an operator is close to a threshold
value. Nodes to model the operator’s reliability were therefore implemented in the
networks. A new network was added in the hierarchy to model Parking Lots at level
1. This network also adds new objects to the system, such as large trucks or RVs.
Finally, the structure of the network at level 0 was changed to better represent the
geometric features of a region, so that features such as width, area, and the ratio
of width and length, were combined in the network and not considered completely

independent sources of information as before.
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The networks used in these experiments are shown in Figures 5.2 to 5.6. The
classes used in an operator’s node are the same as the classes in a feature’s node, so

the classes for the feature’s nodes were omitted in the figures.

Building
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" 1Open Field |
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Figure 5.2. The level 0 network determines if a region belongs to one of the possible
classes.

5.1.4 How the Ascender II System Works Using Utility Theory - Snap-
shots

In this section the selection of operators and the decision process using utility

theory will be described in detail. As a specific example, consider the boat parking

lot in the Avenches data set (see Figure 5.7). The decision table used in the level

0 network (see Table 5.2) was obtained as described earlier (see section 5.1.1). The

table reflects the fact that only the correct classification is desired, and that the object

classes have the same importance.
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Figure 5.3. The level 1 network is invoked for each building found in level 0 and
tries to determine if it is a single-level building or a multilevel building.

Using the utility table and the probabilities given by the beliefs the utility of
the system was computed. First, the expected utility of each decision available was
calculated using equation 5.1. The utility of each decision is shown in Table 5.3.

The current utility of the system is 0.38, the highest utility available, and the best
decision without getting any evidence is to label the parking lot region as a building.
The reasoning process is started by computing the value of information of each feature
using equations 5.4 and 5.5.

To determine the expected utility for the feature “Planar fit” the current beliefs
are: P(Good)=0.5545 and P(Bad)=0.4455. Simulating a “Good” planar fit in the
network (setting the feature Planar Fit to Good with probability 1 and propagating
this information through the network) leads to a new set of beliefs in the root node

(Table 5.4). The process is repeated for a “Bad” planar fit and a second set of beliefs
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Figure 5.4. The level 1 network is invoked for each parking lot found in level 0 and
tries to refine its classification.

is obtained for the root node (Table 5.4). The utility of the system can be computed
for each case (Good and Bad); this gives the values 0.3895 for a “Good” planar fit
and 0.4209 for a “Bad” planar fit. The expected utility (equation 5.1) of the feature

“Planar Fit” is:

EU(PlanarFit) = 0.3895 % 0.5545 + 0.4209 % 0.4455 = 0.4035

Repeating the process for each feature gives the expected utility values shown
in Table 5.5. The feature with maximum expected utility (Height) is selected. The
height operator is then applied to the region and returns an average height of 1.1
meters. This value is compared with the ranges in each state of the node Height
Operator and one state is selected as evidence. The evidence is propagated through

the network giving the beliefs shown in Table 5.6 for the classes in the root node.
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Table 5.2. The decision table shows all utilities for the level 0 network in the
Ascender II system and the initial beliefs for each class in the root node.

Decisions Class
Building | Parking Lot | Open Field | Other
Decide Building 1 0 0 0
Decide Parking Lot 0 1 0 0
Decide Open Field 0 0 1 0
Decide Other 0 0 0 1
| Probability(Class) | 038 | 025 [ 027 [ 0.10 |

Table 5.3. The utility value of each decision before acquiring any evidence for the
parking lot of boats in the Avenches data set.

Decisions Utility
Decide Building 0.38
Decide Parking Lot | 0.25
Decide Open Field | 0.27
Decide Other 0.10

Table 5.4. Planar Fit. The beliefs for each class in the root node when the class
“Good” is entered for the feature Planar Fit, and when the class “Bad” is entered for
the feature Planar Fit.

Class Probabilities given Good | Probabilities given Bad
Building 0.3895 0.3232
Parking Lot 0.1127 0.4209
Open Field 0.3895 0.1212
Other 0.1083 0.1347

Table 5.5. The expected utility value of each feature. In this case the feature Height
has the highest expected utility and should be selected.

Features Expected Utility
Planar Fit 0.4035
Height 0.6700
Line Density 0.3960
Width 0.3600
Ratio 0.3956
Area 0.3600
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Figure 5.5. This network is called after a single building is detected and it is used
to determine the rooftop type.

Table 5.6. The beliefs for each class in the root node after evidence for average
height equals to 1.1 meters is entered and propagated through the network.

Building | Parking Lot | Open Field | Other
Probability(Class) 0.11 0.57 0.22 0.10

Using this new set of beliefs a new utility for the system (value equals 0.57) is
computed using equation 5.2, and the process is repeated to select the next operator.
The new utilities for each feature not measured yet are shown in Table 5.7. This time
the Planar Fit feature was selected. The operator returns a value of 41% for a good
planar fit (which means that the fit is not very good). This value is entered as evidence
(in terms of likelihood) as follows: multiply the current belief in a good planar fit in
the Planar Fit Operator’s node by the likelihood of 0.41 (the value returned in terms
of probability), and the belief in a bad planar fit by (1 - 0.41), the likelihood of a bad
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Figure 5.6. This network is called when a multilevel building is detected. The
reasoning system calls this network to confirm the recognition at level 1.

planar fit. The new set of beliefs in the Planar Fit Operator’s node is propagated
through the network, giving a new set of beliefs for the classes in the root node, as
shown in Table 5.8

The system’s utility moved from 0.57 to 0.60. The new expected utility for each
feature is computed again and these values are shown in Table 5.9. As none of the
features have an expected utility greater than the current utility, the system stops
the reasoning process at level 0. Using the current beliefs and the utility table, the
Ascender IT system labels the region as a “Parking Lot” and proceeds to level 1. The
decision table for the network at level 1, for Parking Lot, is shown in Table 5.10.

The expected utility for each feature at this level is shown in Table 5.11. The

feature “Area” is selected and the operator returns a value of 1133 square meters.
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Table 5.7. The expected utility value of each feature after the measure of feature
Height. In this case the feature Planar Fit has the highest utility and should be

selected.

Features Expected Utility
Planar Fit 0.6035
Line Density 0.5700
Width 0.5700
Ratio 0.5700
Area 0.5700

Table 5.8. The beliefs for each class in the root node after evidence for height and
planar fit (good planar fit = 0.41) are entered and propagated through the network.

Open Field
0.20

Other
0.10

Building
0.10

Parking Lot
0.60

Probability(Class)

Table 5.9. The expected utility value of each remaining feature after the measure-
ments of Height and Planar Fit. In this case none of the features has an expected
utility higher than the system’s utility and the process stop.

Table 5.10. The decision table shows all utilities in the level 1 network for Parking
Lots in the Ascender II system, and the initial beliefs (a-priori probabilities) for each

class in the root node.

Features Expected Utility
Line Density 0.600
Width 0.600
Ratio 0.600
Area 0.600

Decisions Class
Parking Lot | Truck-RV | Single Vehicle | Other
Decide Parking Lot 1 0 0 0
Decide Truck-RV 0 1 0 0
Decide Single Vehicle 0 0 1 0
Decide Other 0 0 0 1
| Probability(Class) |  0.35 0.40 0.1 | 0.10 |
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Figure 5.7. The boat parking lot in the Avenches dataset is used to illustrate how
utility theory can be used for feature selection and recognition.

Table 5.11. The expected utility value of each feature.

Features Expected Utility
Planar Fit 0.5800
Average Line Length 0.4500
Area 0.6550
Height 0.5950

This value is entered as evidence and propagated through the network. The new
beliefs for the classes in the root node are shown in Table 5.12

The new system’s utility is 0.83. Again, the expected utility for each feature is
computed (see Table 5.13) and as the maximum expected utility is not greater than
the system’s current utility, the reasoning process is interrupted at this level. Since
there are no more levels of reasoning for the Parking Lot branch, the Ascender II

system labels the region as a Parking Lot.

Table 5.12. The beliefs for each class in the root node after evidence for the feature
“Area” with value 1133 square meters is entered and propagated through the network.

Parking Lot | Truck-RV | Single Vehicle | Other
Probability(Class) 0.83 0.12 0.04 0.01

76



Table 5.13. The expected utility value of each feature.

Features Expected Utility
Planar Fit 0.83
Average Line Length 0.83
Height 0.83

5.2 Experiments Using Utility Theory

The experiments described here were performed over the same data sets used in
the experiments in Chapter 4. For performance comparison, the networks shown in
section 5.1.3 were also used in the Ascender II system, using uncertainty distance for
feature selection and a relative threshold for region recognition. These results are
presented at the end of this section and summarized in Tables 5.17, 5.18, and 5.19.
Again, the network at level 0 (Figure 5.2) attempts to recognize the region’s class.
If the class identified is Building or Parking Lot, the process proceeds to the next
level; otherwise it is stopped and a generic 3D object class model is selected from
the database for visualization purposes. The reasoning process through the networks
is the same as described in Chapter 3; the only difference is that a new branch was
added for Parking Lots at level 1. In the case where a parking lot is identified in
the network at level 0, the network at level 1 is called (Figure 5.4) and the system

attempts to classify the region as a real parking lot, a single vehicle, or a Truck-RV.

5.2.1 Results

The results presented here were obtained over the three data sets presented in
Chapter 4, using the same set of input regions. The prior probabilities used in these
experiments are shown in Tables 5.14, 5.15, and 5.16. The average number of calls
per region, in all three data sets, is shown in Table 5.17. The column “Total” shows
the overall average number of calls for the 79 regions; the column “Total2” shows the
overall average number of calls only for the regions correctly classified at the level

0 network. The specific columns (Building, Parking Lot and Open Field) also show
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Table 5.14. Probability distribution of beliefs in the root node for the level 0 network
among the states Building, Parking Lot, Open Field, and Other for all three data sets.

Knowledge | Build. | P.Lot | O.Field | Other

Fort Hood 0.38 | 0.25 0.27 0.10

Avenches 0.36 | 0.32 0.20 0.12
Fort Benning | 0.50 0.25 0.15 0.10

Table 5.15. Probability distribution of beliefs in the root node of the level 1 network
for Parking Lots among the states Parking Lot, Truck-RV, Single Vehicle, and Other
for all three data sets.

Knowledge | Parking Lot | Truck-RV | Single Vehicle | Other
Fort Hood 0.40 0.20 0.30 0.10
Avenches 0.35 0.40 0.15 0.10
Fort Benning 0.25 0.25 0.40 0.10

the average number of calls for the regions correctly classified at the level 0 network.
The large difference in the average for the column “Open Field” is due to the more
efficient way utility theory selects operators and decides about open fields.

The overall performance of the two systems is summarized in table 5.18. The
systems’ performance, in terms of classification accuracy, were quite similar, and for
the data sets used we can not conclude that one performed better than the other.
However, in terms of the number of operators used, the system using utility theory
performed better (using a smaller number of operators on average) than the system
using uncertainty distance (see Table 5.19). This result was expected, and it confirms

our expectations that the application of utility theory improves efficiency. Notice also

Table 5.16. Probability distribution of beliefs in the root node of the level 2 network
for Rooftops among the states Flat, Peak, Cylinder, Flat-peak and Other for all three
data sets.

Knowledge | Flat | Peak | Cylinder | Flat-peak | Other

Fort Hood | 0.45 | 0.15 0.15 0.15 0.10

Avenches 0.30 | 0.36 0.12 0.12 0.10
Fort Benning | 0.30 | 0.30 0.15 0.15 0.10
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Table 5.17. Average number of calls to vision operators. Total column shows values
for all classes in the data sets and Total2 column shows the values for regions correctly
classified at Level 0 in the data sets. The other columns show the values for specific
classes (Building, Parking Lot and Open Field).

Decision process Total | Build. | P.Lot | O.Field | Total2
Utility Theory 4.9 6.4 5.2 1.1 5.1
Uncertainty Distance | 5.8 6.2 6.9 4.6 6.0

Table 5.18. Summary of the recognition process for different data sets. In each case
the number of objects correctly identified is shown, followed by the total number of
objects evaluated by the system.

Uncertainty Distance

Data set Overall | Level 0 | Level 1 | Level 2
Fort Hood 34/42 | 36/42 | 22/24 | 21/21

Avenches 12/18 | 15/18 | 12/13 5/7
Fort Benning | 17/19 | 18/19 | 17/18 | 17/18
Total 63/79 | 69/79 | 51/55 | 43/46
Utility Theory
Data set Overall | Level 0 | Level 1 | Level 2
Fort Hood 35/42 | 37/42 | 22/24 | 21/21

Avenches 13/18 | 16/18 | 12/13 5/7
Fort Benning | 16/19 | 18/19 | 17/18 | 16/17
Total 64/79 | 71/79 | 53/55 | 42/45

that the number of operators used by the system in both cases (uncertainty distance

and utility theory) is about half the number of operators available within the system.

5.3 Adding Cost to the Visual Operators
The visual operators have been selected based only on their value of information,

as given in equation 5.5. The cost of applying an operator was ignored; all operators

Table 5.19. Total number of calls to visual operators for all data sets for all classes.

Decision process Number of Operators
Utility Theory 430
Uncertainty Distance 475
All Operators 906
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were assumed to have zero cost. This is not generally true and the system should
be able to incorporate varying costs into its algorithm selection process. These costs
may be based on processing time, algorithm complexity, resources required, etc. In
the following paragraphs some cost functions will be presented with a brief discussion
whether these functions can be used or not in the current system.

A cost based on processing time requires a mapping function that outputs the
running time of an operator given the number of pixels to be processed. In this
scenario, ideally, all algorithms should have their implementation optimized. A badly
implemented operator, in this case, could be useless and never be selected. The
operators in the Ascender II system were defined and implemented considering only
the output they provide, thus their implementation are not necessarily optimal in
terms of running time. For instance, Figure 5.8 shows the three steps of the line
density operator as implemented here. The operator goes over all lines previously
extracted in the image, filtering the lines that are inside a region and saving the filtered
lines in a file. The algorithm then reads the file and computes the line density inside
the region. The process of saving the filtered lines into a file and then immediately
reading it is not really necessary. This implementation could be optimized and the
processing time could be considerably reduced. Thus, this type of cost function can
not be used in the current system.

A cost based on resources required, such as memory, processor speed, or number
of processors, would not apply in our case. It is true that each operator requires some
memory to compute a feature over a region, but it is bounded by the image size,
which is kept in memory all the time. The operators run on the same machine, so
they all use the same processor speed. None of them is a parallel operator and they
all run on a single processor machine. Thus, this type of cost function is not adequate

for the current system.
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Figure 5.8. The graph shows the time required to compute line density in the
Avenches data set. The operator is divided into three parts, filtering the lines that
are inside the region and saving them into a file, loading the lines from a file, and
computing the density inside the region.

The cost function used in Ascender II is based on the algorithmic complexity
of each operator. The operators were divided into three complexity classes and an
associated cost was attributed to each of these classes. A short description of each
operator is presented in Table 5.20. The first class has all operators which compute
their output based only on the information from a small set of pixels. Thus, these
operators run in constant time and they belong to the complexity class O(1). The
second class has the operators which need to compute features based on the lines
found in the image and stored in the visual subsystem. The running time of these
operators is linear with the number of lines in the image and they form the complexity
class O(L). The third complexity class has the operators which need information from
all pixels inside the region being processed to compute a feature. The running time of
these operators is linear with the number of pixels being processed. These operators

form the O(N) complexity class.
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Table 5.20. List of visual operators, their corresponding complexity classes, and a
short description of each of them.

Operator | Class | Description

2 O(L) | Computes # of T junctions inside the terminal areas
(see Figure 4.13) in the region.

3 O(L) | Computes contrast of T junctions in the terminal areas
(see Figure 4.13) of the region.

6 O(N) | Computes a Planar Fit over the DEM of the region and
returns the correlation of this fit.

8 O(L) | Computes the Line Density inside the region given as

number of lines per 100 m?.
10 O(N) | Computes the Average Height of the region in meters.
11 O(1) | Computes the Ratio in % between width and length.
13 O(1) | Computes the Width of the region in meters.
15 O(L) | Finds if there is a line in the center of the region and returns
the % of this line compared to the length of the region.
O(L) | Same as 15 but returns if the % is larger than 65% or not.
O(N) | Computes the shape of the shadow of the region.
O(1) | Computes the difference in height between the center of the
region and the corners of the region.
20 O(N) | Computes the correlation of the DEM inside the region

against a Peak roof model [34].

17
18
19

21 O(N) | Same as 20 for a Flat-peak model

22 O(N) | Same as 20 for a Flat model

23 O(N) | Same as 20 for a Cylinder model

24 O(L) | Checks if there exists a line in the sides of the region.
25 O(1) | Computes the area of the region
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5.3.1 Defining a cost associated with a complexity class

The cost associated with the complexity class of an operator could be expressed
in terms of money, time, number of pixels processed, or any other relevant scale. The
problem is that no matter what scale is used the cost has to be expressed in terms of
utility so it can be combined with the ”information-based” utility used up until this
point.

Without cost the value of information (equation 5.5) considers only the increment
in the system’s utility given by the knowledge of a certain feature. In this case the
value of information can be defined as the expected gain, in terms of utility, that we

can get if we know the value of the feature. Then, equation 5.5 could be written as:

Gain(F,) = EU(DRw|E, F,,) — EU(DR,|E) (5.6)

If o is the same as a and EU(DR,|E) < 1, than the Gain(F,,) is always positive.
It will be zero when EU(DR,|E) = 1. Notice that because we select the operator
with the highest value of information (or expected gain), the function of the expected
gain with the order in which an operator is applied is a positive, decreasing function,
as represented in Figure 5.9. Thus the later in the reasoning sequence that the
operator is applied the smaller the increase in the system’s utility (or gain) given by
the operator.

When using cost, the value of information is computed using one of the equations

below:

VI(F,,) = Gain(F,,) — Cost(F,,) (5.7)

or

VI(F,,) = EU(DRy|E, F,,) — (EU(DR,|E) + Cost(F,,)) (5.8)
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Figure 5.9. The graph shows how the gain in the utility of the system decreases as
a function of when an operator is applied. The dashed line represents the cost of the
operator and beyond point s in the sequence the operator is not invoked.

If we look at equation 5.7 we can see that the cost for an operator should not be
too high or else the operator could have negative value of information and would never
be called, making it useless and forcing the system to use only cheap and perhaps
unreliable operators, leading to poor classifications. On the other hand, the cost of an
operator should not be too low, or else the system would behave as if all operators were
zero cost operators, leading to a system that could select very expensive operators,
even when they would not be required.

The operator’s cost was defined in terms of utility values based on the operator’s
complexity class. We define the maximum cost (MC) of an operator as a linear
function of the mean of the expected gain given by an operator over the sequence of
operators (called average gain or AG), that is, MC = F x AG.

The cost function for each complexity class was defined as a linear function of the
maximum cost, as presented in Table 5.21. The average gain was computed over all
regions in the Avenches data set for all cases where evidence over the sequence of

operators were converging, that is, o’ = « in equation 5.8. The value of the average
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Table 5.21. This table shows the generic function of an operator’s cost based on the
operator’s complexity class.

Complexity | Cost
O(1) A*MC
O(L) B*MC
O(N) C*MC

gain obtained is 1.083 out of 10, which was approximated to 1.1. This value was used
as a first attempt to define the cost functions in terms of utility. Further experiments

were performed to tune the values of F, A, B, and C.

5.3.2 Tuning the cost function

A set of experiments were performed in the Avenches dataset to tune the cost
functions in the Ascender IT system and to study the system behavior when using
cost.

In the first experiment the goal is to determine a good value for F' in the expression
MC = F x AG. A first guess was made for the constants A, B and C in the cost
functions presented in table 5.21. The value of the constants were defined as A = 0.02,
B =04, C = 1.0. The value of AG was set to 1.1 and the value of F' was changed
from 0 to 1; for each value of F' the operators selected by the system were applied in
the Avenches data set and the regions were classified properly. The resulting curve
is shown in Figure 5.10. The number of operators applied in the image was reduced
when the cost factor (F) increased, as expected. The average of the final beliefs in
each level did not change significantly (less than 3%), and the final classification of
the regions for the Avenches data set was the same. The use of cost proved to be very
efficient, the system kept the same accuracy and used less resources to perform the
same task. Figure 5.10 shows a clear turning point when F' = 0.5, at this point the

number of operators used still decreases but the rate at which it decreases is smaller
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than before (less than 5%). The value of F' could be selected as any value between
0.5 and 1.0 without any significant change, thus we set the value of F' as 0.5.

# of operators used vs. cost factor (F)
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Figure 5.10. The graph shows the number of operators used by the system in the
Avenches data set when the value of F goes from 0 to 1. For the Avenches data set
the number of regions correctly classified was the same.

In the second experiment the constant value B in the cost function presented
in Table 5.21 for the complexity class O(L) was investigated. For any region we
know that O(1) < O(N). We can also say that for all lines inside a region O(1) <
O(L) < O(N). The problem, in our case, is that the O(L) operators consider all
lines in the image and, as a first step, clips the lines in the image against the region
boundaries. Because of this step it is hard to compare an O(L) operator with an
O(N) operator. If the region is small and the image has a large number of lines we
can find that O(L) > O(N). In this experiment we used F' as 0.5 (as defined in the
previous experiment), we kept AG, A, and C with the same values used in the first

experiment and we changed the value of B from 0.02 (the constant value in the cost
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function for the O(1) complexity class) to 1.5 (50% more expensive than the cost for
an O(N) operator).

The result is shown in Figure 5.11. The average final beliefs in each level have
not changed significantly (less than 1%) and the final classification of the regions
were the same. When the cost factor of an O(L) operator is between 0.2 and 1,
the variation in the total number of operators used by the system is small (67 to 66).
Considering that the overall variation in the total number of operators used is not too
large (around 15%) and considering the time required to the O(L) operators was, on
average, smaller than the time required to the O(N) operators in the Avenches data
set we decided, empirically, to set the value of the constant B in the cost function
of the O(L) operators to 0.4 (our guess in the first experiment, thus validating our

choice of B).

# of operators vs. Cost Factor for O(L) operators
72 T T

70(- 1

[o2]
©
T

1

# of Operators
D
(]
T
|

o2}
N
T

1

62 i

60 1 1
0 0.5 1 1.5
Cost Factor

Figure 5.11. The graph shows the number of operators used by the system in the
Avenches data set when the constant B in the cost function for the O(L) operators
goes from 0.02 to 1.5. The overall classification did not change.
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Table 5.22. This table shows the function of an operator’s cost based on the opera-
tor’s complexity class.

Complezity Cost
O(1) 0.02*MC
O(L) 0.4*MC
O(N) 1.0*MC

Based on these two experiments and in the fact that an O(1) operator should cost
much less than an O(NN) operator we also decided, empirically, to fix the values of the
constants A and C in the cost function for the complexity classes O(1) and O(N) as
0.02 and 1 respectively.

In order to define the cost functions for each complexity class in the Ascender II
system only the average gain (AG) value remains to be investigated. In this third
experiment we used F' = 0.5 and the cost functions as defined in Table 5.22; the value
of AG was changed from 1.1 to 10 and the results are presented in Figures 5.12, 5.13,

and 5.14.
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Figure 5.12. The graph shows the number of operators used by the system in the
Avenches data set when the average gain goes from 1.1 to 10.
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Figure 5.13. The graph shows the average beliefs for each level in the Avenches
data set when the average gain goes from 1.1 to 10.

Figure 5.12 shows that as the average gain increases, the number of operators used
decreases, but when the average gain increases above 5 the number of regions correctly
classified decreases (Figure 5.14). In particular, there was a dramatic decrease in the
beliefs at level 0 when AG increased beyond 5. This happened because the system
exchanged an expensive operator (Height) by another one, not so expensive but also
less reliable (Line Density). Because the system started to use cheaper operators the
evidence gathered about the object classes was not so strong and the average beliefs

in each level of inference decreased (Figure 5.13).

5.3.3 Running the Ascender II system using cost

From the experiments just described the maximum cost of an operator was defined
as MC = 0.5x AG. The cost function for each complexity class was kept as presented
in Table 5.22. From the experiments performed in the Avenches dataset the value

of the average gain can be any number between 1.1 and 5, because the average final
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Figure 5.14. The graph shows the number of regions correctly classified in the
Avenches data set when the average gain goes from 1.1 to 10.

beliefs in each level are about the same and the classification of the regions was the
same. However, the higher the value of AG in this range did dramatically lower the
number of operators used. So an AG value of 5 would be the best for the Avenches
data set.

Experiments were performed using the Ascender II system with operator’s cost
in the other two datasets (Fort Benning and Fort Hood). Although we should have
used a value of 5 for AG, this value proved to be too high for the Fort Benning data
set, decreasing the number of regions correctly classified considerably (values not
presented here). Two sets of experiments were performed; in the first experiment we
used an average gain value of 1.1, and in the second experiment we used an average
gain value of 2.5. The cost for each complexity class in this case is shown in Table
5.23.

The results are presented in Tables 5.24, and 5.25. The introduction of cost in

the Ascender II system has a small change in the final classification of the regions
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Table 5.23. Cost for each complexity class and for each average gain used.

Complexity | Average Gain = 1.1 | Average Gain = 2.5
0(1) 0.011 0.025
O(L) 0.220 0.500
O(N) 0.550 1.250

Table 5.24. Number of operators used in each data set when the average gain

changes.

Data Set Average Gain = 0 | Average Gain = 1.1 | Average Gain = 2.5
Fort Hood 178 119 114
Avenches 101 67 63

Fort Benning 113 100 97

(1.3 to 2.6%), but it shows a significant decrease in the number of operators used (27
to 30%). The changes in the average final beliefs in each level was too small to be

significant (less than 3%), and not considered.

5.4 Changing Preferences in the Reasoning Subsystem

One of the problems that was mentioned at the beginning of this chapter was the
fact that personal preferences could not be easily implemented when using uncertainty
distance. In this section we will show how personal preferences can be adjusted when

using utility theory.

Table 5.25. Number of regions correctly classified in each data set when the average
gain changes.

Data Set Average Gain = 0 | Average Gain = 1.1 | Average Gain = 2.5
Fort Hood 36 36 35
Avenches 15 15 15

Fort Benning 15 14 13
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5.4.1 Setting preferences - background

The key idea on setting preferences in a utility table is to understand how decisions
are made when we use utility theory. The decision is made just by maximization, that
is, selecting the decision that has a maximum value in a decision vector (equation
5.2 and 5.3). The decision vector is obtained by multiplying the matrix, composed of
utilities, by the column vector, composed of the beliefs in each object class, as shown

in equation 5.9.

Deq U11 U12 te Ulm Bel1
D602 U21 U22 te Ugm B€l2

= * (5.9)
Dec, Ui Una - Uun Bel,,

Setting personal preferences means adjusting the values in the utility table such
that, for a given set of values in the belief vector, if the person prefers Decision; for
this distribution of probabilities over the set of events, then Decision; will be selected.
Notice that each column in the utility table is directly related to an event, the belief
vector gives the probabilities of any possible event to be true, and the decision vector
gives the value of each decision.

Suppose, for instance, that we have the following situation: there are two decisions
that we are interested (say Dec,, and Dec,). Suppose there are 3 events that are
related to these decisions (say event;, event;, and eventy). If we look to equation 5.9,

we are interested only in the part presented in equation 5.10.
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Bel1
B€l2

Dec Ug Up -+ Uy U, Uy -+ Upn Bel;
P _ pl p2 P pj pk p « (5'10)
Decq Uql Uq2 s qu qu qu s qu Belj

Belk

Bel,,

In this case, because we are interested only in these two decisions and they are
related only to events ¢, j, and k, we can set all the utilities in these two rows to zero,

except for Upi, Upj, Upk, Ugi, Uyj, and Uy, Then and we have:

Decp = Upi * Bell + Upj * Belj + Upk * Belk

Decq = qu * Bell + Uq]' * Belj + qu * Belk

Lets now make an analysis of the decisions based on each event: if we want to
make decision p when event 7 is true, we have to make Up,; > Uy;. If we want to make
decision ¢ when the event j is true, we have to make U,; > U,;. Finally, if we want
either decision p or decision ¢ when event k is true, then we have to make Uy, = Ug.
Reasoning this way we can adjust all set of utilities in the utility table according to
our personal preferences.

In the Ascender II system we have a particular condition where a decision is
selected based only on one event, and also, there is only one event for each decision.

Thus, the utility table is a square matrix (n = m).
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D6C1 U11 U12 s Uln Bel1
D602 U21 U22 te UQn B€l2

= x (5.11)
Dec,, U Uy -+ Upn Bel,,

If, as we have been doing, we defined the same value, different than zero, for the
diagonal entries in the utility matrix, and zeros for all other entries, the decision will
be made based only on the belief values. The highest belief among the n values will

give the decision. The decision is made by maximizing:

max (U * Belief;, Uy % Belief, - -+, Uy, * Belief,)

but as Uy = Uyy = - - - = U, the expression above is just:

max(Beliefy, Belief,, - -+, Belief,)

If the values of the utilities on the diagonal are not the same (but all other entries
are still 0), this means that we have introduced a bias towards a decision. Let us
assume, without loss of generality, that one of the utility entries in the diagonal is
the largest, say Uss. Now, even if the belief related to that utility (Beliefs) is not
the largest in the belief vector, the decision can still be made to choose Decision,.

Again the decision is made by maximization:

max (U * Belief;, Uy x Belief, - -+, Uy, * Belief,)

However now Usy > Uyy,Usz, Usg, -+, Upn. Assuming that Belief; is the largest
in the belief vector, it is still possible that Uss * Belie fo > Uy * Belie f1, which would

lead to Decisions instead of Decision;.

94



5.4.2 Setting preferences - general case

If the events were Boolean variables (true or false) and mutually exclusive, we
would need to define only one value different than zero for each row in the utility
table. In general this is not the case. What we have is a set of beliefs about the
events and we have to make a decision based on the combination of different events
being possibly true. In this case we have to consider a more general case where the

utility table has distinct values in each row.

U11 U12 U13 tt Ulm
U21 U22 U23 tt U2m
U31 U32 U33 Tt U3m
Unl Un2 Un3 e Unm

Let us consider, for instance, column 7, and let us assume, without loss of gener-
ality, that Us,; is the largest value in column ¢. This means that if the event corre-
sponding to column ¢ is true, Decisions will be selected. Consider now the values in

a row. Let us, at first assume that:

m
Vid Up=K
i=1

i.e., the sum of the utility values in each row is a constant. This means that all
the decisions have the same weight (no bias is introduced towards any particular
decision), and the decision will be made depending on the probabilities of the events.
If the utilities in each row add up to different values we are giving a bias to decisions
corresponding to higher sums.

Consider the values of the utilities in a particular row, say row 7. Suppose that U;s

is the largest value in this row followed by U;;. This means that if the event 2 is true
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it will make the highest impact towards Decision;. Notice that it might not select
decision ¢ because it will depend also on the other values of the utilities in column
2. If instead of event 2 we have event 1 as true, this event will also make an impact
towards Decision; but not as strong as event 2. Combining all the possibilities among
utilities and probabilities of events is not simple and, in general, it is an optimization
problem which is beyond the scope of this thesis.

As a simple example consider the utility table presented below:

Up O 0 0

0 Uw/3 Un/3 Un/3
0 Uwn/3 Un/3 Uy/3
0 Uw/3 Un/3 Un/3

We have 4 possible events (4 columns) and 4 possible decisions (4 rows). Let us
assume we are mainly interested in event 1, which will lead towards decision 1. If
event 1 is not true we don’t care about which one is true and what decision will be
taken.

If we solve the equation below, we can compute a value for bell.

U
bell.Uy, = %(beﬂ + bel3 + beld)

bell = %(1 — bell)
bell = 0.25
Thus, in this particular case, Decision; will be selected if bell > 0.25 otherwise
we could take any other decision randomly.
Any variation in the utility values can be analyzed as we just did here. Now lets

investigate what happens when we use some of these utility tables in the Ascender II

system.
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Table 5.26. The modified utility table shows new values for utilities in the level 0
network.

Decide Class
Building | Park. Lot | Open Field | Other
Building 1 0 0 0
Parking Lot 0 0.33 0.33 0.33
Open Field 0 0.33 0.33 0.33
Other 0 0.33 0.33 0.33

Table 5.27. Comparison in terms of number of regions correctly classified per object
class and number of operators used per object class (in parentheses).

Utility Table Building | Park. Lot | Open Field
Original Utility Table 5.1 | 46 (55) 9 (34) 16 (21)
Modified Utility Table 5.26 | 47 (50) 9 (32) 16 (22)

5.4.3 Experiments changing preferences

In the first experiment we set the utility table for the level 0 network as shown in
Table 5.26; compare this with table 5.1. This new utility table shows that if the final
belief in buildings is above 0.25 we want to decide that the region is a building. The
results obtained when the system used the new utility table over the three basic data
sets (Avenches, Fort Benning and Fort Hood) is presented in Table 5.27.

The system using the original utility table missed three buildings over all data
sets (three regions in the Avenches data set which have an average height smaller
than 4 m). The system using the modified utility table correctly classified one of
these buildings in the Avenches data set while using a smaller number of operators to
classify the total set of buildings over the three data sets. Furthermore, no significant

difference was noticed for the other object classes.

5.4.3.1 Making strong preferences
In the next set of experiments we used only the Avenches data set. In this case

we set the utility table at the level 0 network to classify Parking Lots correctly and
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Table 5.28. The table shows the new utilities for the level 0 network, with a prefer-
ence for Parking Lot areas. Moderate 2-fold preference.

Decide Class
Building | Park. Lot | Open Field | Other
Building 5 0 0 0
Parking Lot 0 10 0 0
Open Field 0 0 5 0
Other 0 0 0 5

Table 5.29. The table shows the new utilities for the level 0 network, with a strong
preference for Parking Lot areas. Strong 10-fold preference.

Decide Class
Building | Park. Lot | Open Field | Other
Building 1 0 0 0
Parking Lot 0 10 0 0
Open Field 0 0 1 0
Other 0 0 0 1

we reduced the utility of all other object classes. The new utility tables are presented
in Tables 5.28 and 5.29, specifying a moderate 2-fold and a strong 10-fold preference.

The results obtained when the system used the new utility table with preferences
for Parking Lots is presented in Table 5.30.

In this case we noticed two things: the system needed more exploratory calls for
operators in order to decide about regions that were not parking lots and, in extreme
cases, some of these regions were still misclassified (due to the parking lot decision
overriding the correct class). The system also classified the parking lots very fast
(using only 1 operator) and misclassified all open fields as parking lots (which was

expected). So, by adjusting utilities it is possible to change the system behavior, not

Table 5.30. Comparison in terms of number of regions correctly classified per object
class and number of operators used per object class (in parentheses).

Utility Table Building | Park. Lot | Open Field
Original Utility Table 5.1 7(15) | 6 (19) 3 (5)
Moderate 2-fold Preference for Park. Lots | 6 (14) 6 (6) 2 (9)
Strong 10-fold Preference for Park. Lots | 4 (23) 6 (6) 0 (3)
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only in terms of giving a bias to an object class, but also in terms of the effort required
to classify this object class. Notice that when preference for a certain decision is set
at a sufficiently high level, the system will not miss any object of that type. All other
objects may or may not be classified correctly. Another point in this case is that we
observed that objects with the type related to the preferred decision are processed

faster than others, using at most 2 operators.
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CHAPTER 6

LEARNING MODELS FOR THE CONTROL
STRUCTURE

6.1 Learning the structures of the knowledge base

The knowledge engineering necessary to design an efficient Bayesian network
(structure and probability tables) is a time consuming task, even for small networks
such as those currently used in the Ascender II system. This has been one of the
main criticisms of Bayesian networks [12].

Different algorithms for learning Bayesian networks have been developed [13, 23,
18]. Heckerman [27] presents a tutorial on learning and Bayesian networks using dif-
ferent methods to learn the probabilities and network structure. Cooper’s algorithm
[18] uses unrestricted multinomial distributions to learn probabilities and structures.
Friedman’s algorithm [23] works with the conditional probability tables and learns
local structures. Cheng’s algorithms [13] learn only the probability tables or the
probability tables and the network structure from data using an information theo-
retic dependency analysis. We selected Cheng’s algorithm because he made available
a tool called Power Constructor [14] which implements his algorithms. It is easy to
use and it is freely available on the internet.

The first of Cheng’s algorithm assumes that the node ordering (dependencies
among variables, thus the structure) is given, and has O(N?) complexity (where N
is the number of variables, or nodes, in the network). The second, more general,
algorithm requires O(N*) conditional independence (CI) tests, but node ordering is

not required. The general algorithm is similar to the first in the learning phase, but
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it has to deal with two major problems: determining if two nodes are conditionally
dependent (if so, a link has to be placed between these two nodes), and determining
the orientation of the links in the learned structure (arrow direction). The learning

occurs in three phases:

e Drafting, where the algorithm computes the mutual information (equation 6.1)
of each pair of variables (nodes) in the structure as a measure of closeness in
order to determine if two variables are correlated. An edge is added between
the two nodes if the value of mutual information is greater than a small value

¢. This creates a first draft of the Bayesian network.

e Thickening, where the algorithm adds links to the current structure depending
on the results of a group of CI tests based on equation 6.2, where the conditional

set C' is changed to find conditional dependencies.

e Thinning, where each link in the structure is checked using a group of CI tests
(based also on equation 6.2). Some links might be removed from the network if

found not to be conditionally dependent.

The mutual information of two nodes X; and X; is defined as:

P(z;, ;)
I(X;, X;) = P(z;, xj)log——"-1— (6.1)
i) = 2 Plaaploa e s
and the conditional mutual information is defined as:
P iy Lg
[(X;, X;IC) = S P(x;,2;,c)log (i, 25c) (6.2)

P(zilc), P(x;]c)

T5,T5,C

where C is a set of nodes. When I(X;, X;) is smaller than a user defined threshold
(¢), we say that X; and X; are marginally independent. When I(X;, X;|C) is smaller

than the threshold (¢), we say that X; and X; are conditionally independent given C.
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The first expression is used in the Drafting step, and the second expression is used
for the group of CI tests in the Thickening and Thinning steps. More details about

the algorithms and the tool can be found in [14].

6.2 Getting data to learn the Bayesian networks

Cheng’s algorithm was used to learn the network structure and the conditional
probability tables for the variables representing the features and the region label in
the hand-crafted networks used in Chapter 5. The operator nodes as well as the
operator reliability tables were not included in the learning process, but were added
manually when the learning was completed. If the true value of each feature was
provided, the tables representing the operator’s reliability could also be learned from
the data.

The data used for learning was collected from the three data sets described earlier
in our research: Ft. Hood, Ft. Benning and Avenches; the 79 input regions presented
in Chapter 4 for these datasets were used. These regions represent a mix of objects
drawn from buildings, parking lots, grassy fields, etc. All regions were presented to
a set of 6 human subjects, and the subjects were asked to estimate the state of each
feature in the feature set (features were coarsely quantized to facilitate the human
task and to reduce the number of examples required in the learning phase). Consider
the building region presented in Figure 6.1. For a region like this the human subject

had to answer a set of simple questions, such as:

e [s there a center line in the region? If so, how long is it compared to the length

of the region? (Given in percentage).

e What is the height of the region: 0 m? between 0 and 2 m? between 2 and 4

m? more than 4 m?
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e What is the width of the region: less than 10 m? between 10 and 50 m? greater

than 50 m?

Figure 6.1. A building

o
e, o o E L&
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region in the Avenches data set.

The information obtained from human subjects was compiled and used to learn
a Bayesian network at different levels. The learned networks, with the addition
of the operator’s nodes, are shown in Figures 6.2, 6.3, 6.4, and 6.5. The general
structures of the networks are different from the hand-crafted networks, although
some of the substructures were preserved (for instance the substructure relating the
variables Area, Width, Ratio, Geometry). In the hand-crafted networks features such
as planar fit, height and line density, were set as independent (we did not know how
to correlate them). In a more detailed analysis we could consider them as dependent,
for instance, a high value for line density might increase the expectation of a poor
planar fit, and so on. These correlations among features were captured in the learning
phase, thus, the learned networks are generally more densely connected.

The networks learned from data are limited to the objects present in the training
data. For instance, the data used to learn the networks had only peak- and flat-roofed

buildings. Thus the feature Rooftop in Figure 6.5 has only states for Peak and Flat
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Figure 6.2. The level 0 network learned from data determines if a region belongs to
one of the possible object classes: Building, Parking Lot, Open Field, or Other.

roofs, and did not reflect the more general discrimination task as in the hand-crafted

networks presented in Figure 5.5.

6.3 Experiments and Results

A set of experiments was designed to demonstrate the performance of the system
using the learned networks on the same data sets used for training, as well as on
two datasets not used before (Flat Scene and Glandorf datasets). The use of the
training data during testing is legitimate because there are two major differences in

the procedure that have to be considered:

1. During the experimental phase the features were computed algorithmically from
the image data by a visual operator. The results of these computations do not
necessarily correspond to the outcome given by humans in the learning phase,
for instance, where humans had to classify if the width of a region was less
than 10 meters or greater than 10 meters, for values close to 10 meters some

humans classified the region width as less than 10 meters while others classified
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Figure 6.3. The level 1 network for buildings learned from data determines if a
region classified as a building is a single level or a multilevel building.

as greater than 10 meters. The visual operator gave a measurement of the

region’s width.

2. The networks used in the experiments were augmented by the addition of the
operator nodes and their corresponding reliability tables. The values of the
features computed by the visual operator were entered into the operator’s node

but were attenuated by the operator’s reliability during the propagation.

First, the networks and probability tables (including prior probabilities) as learned
from the data (System A) were applied to the 3 datasets (Ft. Hood, Avenches and
Ft. Benning). Because the prior probabilities learned from data reflect the exact
frequency of each object class, the system should react faster (meaning that the
system moves towards the decision faster) to feature values retrieved from the data
and it would not be a fair comparison to the system using the hand-crafted networks.
So a second test was performed where the prior beliefs for each object class in the
networks were changed to the prior probabilities of the hand-crafted networks (System

B). The results obtained for these two experiments are shown in Tables 6.1 and 6.2.
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Table 6.1. Total number of calls to visual operators for the three basic datasets for
all classes.

Decision process Number of Operators
Hand-crafted Networks 430
Learned Networks (System A) 322
Learned + Adjusted Priors (System B) 400
All operators 906

Table 6.2. Summary of the recognition process for different data sets using the
learned networks.

Hand-crafted Networks

Data set Overall | Level O | Level 1 | Level 2
Fort Hood 35/42 37/42 23/25 21/21
Avenches 13/18 | 16/18 | 12/13 5/7
Fort Benning | 16/19 | 18/19 | 17/18 | 16/17
Total 64/79 | 71/79 | 52/56 | 42/45
Learned Networks - System A
Data set Overall | Level 0 | Level 1 | Level 2
Fort Hood 33/42 34/42 20/21 20/20
Avenches 16/18 | 18/18 | 15/15 7/9
Fort Benning | 15/19 | 18/19 | 17/18 | 15/17
Total 64/79 | 70/79 | 52/54 | 42/46
Learned Networks + Adjusted Priors - System B
Data set Overall | Level 0 | Level 1 | Level 2
Fort Hood | 34/42 | 35/42 | 20/21 | 20/20
Avenches 13/18 | 16/18 | 12/14 6/7
Fort Benning | 16/19 | 18/19 | 17/18 | 16/17
Total 63/79 | 69/79 | 49/53 | 42/44
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Figure 6.4. The level 1 network for parking lots learned from data determines if a
region classified as a parking lot is a real parking lot, an RV-truck, or a single vehicle.

The numbers shown in Table 6.2 are all similar. Thus, the system using Bayesian
networks learned from data performed very similar to the system using the hand-
crafted networks in terms of number of regions correctly classified. However, System
A was able to classify the regions using 32% fewer operators and System B used 15%
fewer operators than the system using the hand-crafted networks (see Table 6.1). The
fact that System B used more operators than System A was expected because the
distributions of beliefs over the object classes were more uniformly distributed in Sys-
tem B than in System A, thus requiring more exploratory calls before deciding about
a region. The fact that System B is more densely connected than the hand-crafted
network explain the fact that it used less operators to get the same performance in

terms of number of regions correctly classified as the hand-crafted network.

6.3.1 Using the learned networks on two new datasets
The next experiment was designed to show that the structure and relationships
among features learned from data is robust enough to be applied to a different dataset.

In this experiment, the hand-crafted system using utility theory was compared to the
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Figure 6.5. This level 2 learned network is called after a single building is detected.
It is used to determine the building’s rooftop type (Peak or Flat).

Table 6.3. Probability distribution of beliefs in the root node for the level 0 network
among the states Building, Parking Lot, Open Field, and Other for the Flat Scene
and Glandorf data sets.

Data Set | Building | Parking Lot | Open Field | Other
Flat Scene 0.42 0.21 0.27 0.1
Glandorf 0.50 0.30 0.12 0.08

learned system applied to a set of regions extracted manually from the Flat Scene
dataset and from the Glandorf dataset, as shown in Figures 6.6 and 6.7. In both
systems the prior beliefs were adjusted to approximate the distribution of object
classes in each dataset (as shown in Tables 6.3 to 6.6). The results are shown in

Tables 6.7 and 6.8, and Figures 6.8 and 6.9.

Table 6.4. Probability distribution of beliefs in the root node for the level 1 network
for Buildings between the states Multilevel and Single Level for the Flat Scene and
Glandorf data sets.

Data Set | Multilevel | Single Level
Flat Scene 0.35 0.65
Glandorf 0.35 0.65
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Table 6.5. Probability distribution of beliefs in the root node for the level 1 network
for Parking Lots among the states Parking Lot, Truck-RV, and Single Vehicle for the
Flat Scene and Glandorf data sets.

Data Set | Parking Lot | Truck-RV | Single Vehicle ‘
Flat Scene 0.23 0.23 0.54
Glandorf 0.33 0.12 0.55

Table 6.6. Probability distribution of beliefs in the root node for the level 2 network
for Buildings between the states Flat Roof and Peak Roof for the Flat Scene and
Glandorf data sets.

Data Set | Flat Roof | Peak Roof
Flat Scene 0.30 0.70
Glandorf 0.45 0.55

Table 6.7. Summary of the recognition process for the Flat Scene dataset using the
hand-crafted and the learned networks with utility theory and adjusted priors.

Flat Data Set
System Overall | Level 0 | Level 1 | Level 2 | Operators
Hand-crafted | 22/30 23/30 | 21/21 13/14 170
Learned 26/30 27/30 | 21/21 13/14 162

Table 6.8. Summary of the recognition process for the Glandorf Scene dataset using
the hand-crafted and the learned networks with utility theory and adjusted priors.

Glandorf Data Set
System Overall | Level 0 | Level 1 | Level 2 | Operators
Hand-crafted | 46/80 | 61/80 | 56/65 | 29/35 363
Learned 48/80 57/80 | 58/65 | 33/35 455

109



Figure 6.6. Set of regions extracted by hand from the Flat Scene dataset.

In the Flat Scene dataset the number of operators applied by the system using
the learned networks is slightly smaller (5%), but the larger number of relationships
between the features in the learned networks allowed a clearly better performance of
the system (87% correct classifications against 73% for the system with the hand-
crafted networks). An improvement in the performance of the system using the
learned networks was also observed in the Glandorf dataset (60% against 57.5% for
the system with the hand-crafted networks), but the number of operators used by
the learned networks in this case was considerably higher than the system using the
hand-crafted networks (25%). In the Glandorf dataset 10% of the regions incorrectly
classified are complex regions that have parts of different objects in it. These regions
could be classified as anything. Another problem with the Glandorf dataset is that
the images are darker than the others, so the sequence of operators learned using the

other datasets might not work as well in the presence of poor contrast (line detectors,
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Figure 6.7. Set of regions extracted by hand from the Glandorf dataset.

for instance). Another problem in this data set is that some objects are very close
to others, and when computing features from the DEM an overlap of the regions
could lead to mistakes (height, for instance, compares the average height inside the
region with the average height of the region’s neighborhood). Finally, the set of prior
probabilities used in this data set were not tuned. Other values for prior probabilities
could give the system a better performance, but this is a time consuming task that
is beyond the scope of this work.

One aspect to notice is that the learned networks have a higher density of links
(as mentioned before), meaning that features are correlated among themselves (as
expected). This correlation was not explored when the hand-crafted networks were
designed (there was no practical way to determine the conditional probability tables
between features at that point). In this case, evidence of the presence of one feature

gives not only evidence about the object label but also evidence about the presence
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Figure 6.8. Classified regions for the Flat Scene dataset.

or absence of other features. This is one explanation of why the learned networks
converged faster to the correct classification than the hand-crafted networks.

These two points will require an investigation on how the relations among features
can improve the system’s performance as suggested above. One must also consider
that a higher density of links in the network implies a longer propagation time. A bal-
ance between link density and performance (in terms of correct classification, number
of operators used, and processing time) has to be found for each network. This will

be left to future work.
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CHAPTER 7
CONCLUSIONS

7.1 Conclusions

At the beginning of this thesis the following questions were asked:

1. How can the results of visual operators and their associated uncertainties be

combined in order to classify a particular image region?

2. How can the hierarchical structure of objects be exploited in order to construct

an incremental classification process?

3. Can the construction of the knowledge base be simplified (or fully automated)
for a particular application using both human expertise and machine learning

techniques?

4. Can performance be improved by using a disciplined approach to operator se-

lection?

We have shown that Bayesian networks are robust and they can be used to com-
bine converging and conflicting information coming from different features. The un-
certainty about features measurements and the relations between features and object
classes is mapped into the conditional probability tables. In the data sets used here
the Ascender II system using Bayesian networks correctly classified regions in aerial
images with accuracies above 80% on four of the five datests, and about 60% on the

other.
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The hierarchical structure of Bayesian networks used in the knowledge base al-
lowed the system to work incrementally through partitioned sub-networks. The re-
gions are classified first using a more generic label, which is refined in the subsequent
levels. The drawback related to backtracking was never really an issue in the experi-
ments developed here, since the few cases where it was needed could be anticipated
and corrective strategies were incorporated as necessary.

We have demonstrated that visual information provided by humans in a simple
and natural way can be combined and used to learn the structure and/or conditional
probability tables for the Bayesian networks. The data used to learn the networks
must be representative of all object classes whose recognition by the system is desired.
These networks can be used on similar datasets with about the same performance
as a hand-crafted system with a simple adjustment of prior beliefs for the object
classes. This significantly reduces the burden of designing and tuning the structure
and probability tables for Bayesian networks, which has been a major criticism of
this methodology.

A more disciplined approach to operator selection and decision making such as
utility theory proved to be more efficient, not in terms of number of regions correctly
classified, but in terms of resources used. In general the system using utility theory
used fewer operators to classify regions than the system using uncertainty distance.
When operator cost was added to the system, resource requirements were further
reduced. Utility theory also allow a simpler way to set personal preferences into the
system or to change the system’s goals.

In the Ascender II system the knowledge base and control processes (reasoning
subsystem) are completely separated from the visual subsystem (visual operators,
models, images). The separation allows more flexibility in adding new visual op-
erators, or in replacing current operators, and requires only minor changes in the

reasoning subsystem.
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The datasets used with the Ascender II system differ in the types of buildings
present, image resolution, camera models, number of views available, imaging condi-
tions, etc, but the system correctly identified most of the regions in each site without
any adjustement. The prior probabilities in the root node of the Bayesian network
were changed for each site just to reflect the distribution among object classes in each
dataset.

In addition to these specific properties, the Ascender II system has some features

that are desirable in a general vision system, as discussed in the surveys [19] and [22].

e The control of visual operators was addressed and we show an efficient method-

ology for operator selection and classification.

e The use of Bayesian networks and the separation of the reasoning subsystem
from the visual subsystem facilitates the addition of new features to the knowl-

edge base and the addition of new operators to the visual subsystem’s library.

e The system has multiple levels of representation for the object classes provided

by the hierarchical structure of Bayesian networks.

e The selection of operators is performed dynamically and depends on the sys-

tem’s current state of knowledge.

e Conflict resolution, evidence combination and mapping of numerical values into
symbolic quantities are all provided by the Bayes nets framework in a principled

manner.

7.2 Future Work

The Ascender II system is an ongoing project. It is possible to add more operators
and create more branches to include new object classes. The control strategies will

be refined to improve performance, either in terms of processing time, or in terms of
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correct classification. There is a large set of research topics that could be pursued
within the current framework. Some of the more interesting questions are presented

below.

7.2.1 Related to Vision
1. The current system has only one visual operator associated with most features.

It is possible to add more operators per feature, and to decide which operator to

use once a feature is selected. The idea would be to extend the feature selection

process currently used to select the operator which will measure the feature.

2. The system could be used to simulate new features and the visual operator(s)

for extracting it before implementation of the feature. This simulation would
help to identify characteristics of the feature/visual operator (e.g., reliability)
that would be useful in the classification process and to determine the impact
of the feature on the system’s performance. This was done with the shadow
operator in the current system. The operator was not implemented. The use of
the shadow feature was simulated assuming an operator reliability of 80%. A
conditional probability table reflecting this reliability was added to the Bayesian
network at level 2 and a set of experiments were performed. The experiments
show that an operator with this reliability would improve classification. As only
one operator was tested under this methodology, further study is required to

fully understand the simulation aspects of the system.

3. The current system could be expanded to incorporate local spatial relations

between objects in the scene (e.g., parking lots nearby roads).

4. The current system could also be expanded to perform temporal reasoning.

Suppose that a certain scene was reconstructed a year ago and a new image is

obtained from the same area. How could this previous information (i.e. prior
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reconstruction) be used to drive the system to find changes efficiently in the

new scene?

7.2.2 Related to Bayesian Networks
1. We already used different prior probabilities in each network and verified that
the system’s behavior changes significantly. A more detailed study should be

done to show how changes in the prior probabilities affect the overall system’s

performance, both in terms of processing time and in terms of correct classifi-

cations.

2. We know that certain features extracted from individual regions are related, like

ratio, width and area in the level 0 network (in this case we simply added a link

between them). However, it is not clear how some features are related to others,
for instance, is planar fit related to height? We also know that the number of
connections will affect the propagation time, thus affecting the overall processing
time. The learned networks show that the structure of relations among features
can improve the system’s performance, but a more detailed study about how
features are connected and how and why performance varies as a function of

feature links is needed.

3. The number of features modeled in the networks is directly related to the num-
ber of nodes present in the networks. The tradeoff between features, network

complexity and processing time is also an open question.

7.2.3 Related to Anytime Systems
An “anytime” system is defined as a system designed to improve the quality of
its computation continuously over time [60]. The Ascender II system, because of its

hierarchical structure, could be modified to show an anytime system behavior. This

could be done in two different non exclusive ways: within each level (the selection of
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an operator increases the belief of the region’s outcome over time), and within the
hierarchical structure (the refinement of the classification process can be seen as an
improvement in terms of detail in the region’s final label).

One way to show improvement in the Ascender II system is to measure the system’s
utility over time. Because algorithm improvement is not done continuously, in most
of the practical anytime systems the improvement is not observed as a continuous
function, but it is more like a step function. In the Ascender II system this would also
be the case because there is no improvement when an operator is being applied. The
improvement has to be measured before and/or after the application of an operator
that requires a discrete interval of time.

One problem in demonstrating the Ascender II system as an anytime system is
that the average number of operators applied per level is too small (less than 2), so
the step function would have only three points. The first issue we have to deal with
in this problem is to define a function to combine the different levels of reasoning as
we outline below.

Consider that the first level is the most important one since the system defines
the region’s most general object class in the first level, and after that it is limited to
refining its classification. We could define a function to weight the system’s decision

over the different levels of reasoning as shown below:

Levelyeight = decisiong + 0.1 x decision; + 0.1 x decision,

Suppose Region; is a Parking Lot and the prior probabilities show a bias for
Buildings. Without using any operator the decision at level 0 would be for Building,
which would be wrong, so we have that the decisiony without any operator is 0 (a
wrong decision). After applying the first selected operator the prior beliefs change.

Suppose now that the highest belief is for Parking lot. The decisiong after the first
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operator is now 1 (the correct decision). This process can be repeated through all
levels such that each region would get a vector of decision values after each operator.
Using the equation above it is possible to plot a curve of Levelyeigns versus the
number of operators used. Averaging over the curves for all regions, we get the graph
presented in Figure 7.1.
Weighted utility vs Number of operators — Al data sets
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Figure 7.1. Average weighted utility in the Ascender II system. It shows how the
overall utility is generally an increasing function. Thus it could behave as an anytime
system

The problem in our case is that the number of regions in each level was not large

enough, otherwise the graph should give the average utility of an operator in the

sequence, which should be an increasing continuous function. A more detailed study

has to be carried out to understand the system’s behavior as an anytime system.

120



APPENDIX A
INTRODUCTION TO BAYESIAN NETWORKS

This appendix is included for readers not familiar with the terminology of Bayesian
Networks. The appendix presents the basic terminology, some concepts about the
network structure, and some ideas about how to use a Bayesian network. A knowl-

edgeable reader can safely skip it.

A.1 The Bayesian Network Structure

A Bayesian network is a Directed Acyclic Graph (DAG). Each node in the network
represents a Random variable and each edge represents a relationship between two
variables. Each variable is either continuous or discretized into a set of exhaustive
mutual exclusive states. The Bayesian Network has two types of nodes, an external
node and an internal node. An external node has no parents and an internal node
has at least one parent.

All nodes have a probability table associated with it. The table for a variable in
an external node have the prior probabilities for each possible state of the variable.
The table for a variable in an internal node represents the conditional probability
associated with that variable. The conditional probability table has values such as
P(X =z|Y1 = y1,Y2 = yo,- -+, Yy = yyn), where X is the variable represented by the
internal node and Y; is the set parents of node X.

Figure A.1 shows an example of a simple Bayesian Network. All variables in this
network are Boolean with states true and false. Nodes A and E are external nodes

(or roots). Nodes B, C, and D are internal nodes. The prior probability tables for
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nodes A and E give the values of P(A = True) and P(A = False) and P(E = True)
and P(E = False), respectively. The other 3 tables give the conditional probability
values for P(B|A), P(C|A), and P(D|C, E).

P(A)

— P(E)
PA) P©C)

P(B)

P(E) | P(C) P(D)

Figure A.1. Simple Bayesian network with corresponding probability tables.

One of the advantages on using Bayesian Networks is that it facilitates the com-
putation of joint probabilities, that is, suppose we want to know the probability of
the joint event: P(D = T'rue,C = False, A = False) or simply P(D,-C,-A).

In terms of probability theory, when dependencies are not clearly stated, this is
computed by:

P(DI|C, A) x P(C|A) * P(A)

but in our Bayesian Network example this is computed as:

P(D|C) x P(C|A) x P(A)

because D is only directly dependent of C'.
Bayesian Networks can be used to make different kinds of inferences, as presented

in Russell [54]:

e Diagnostic: from effects to cause (given A infer about D).
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e Causal: from causes to effects (given D infer about A, C, and E).

e Intercausal: between causes of a common effect. This is also known as explaining

away. (given D and C' we can explain what happened with FE).

e Mixed: combining two or more of the above.

A.2 Forecast example using Bayesian networks
This simple example is extracted from Russell [54] and will be used to show the

reasoning process using Bayesian Networks.

A.2.1 Building a Model

Consider the following situation: one morning Mr Holmes realizes that the grass
in his front yard is wet. He is puzzled. He wants to know the cause for the wet grass.
There are two possibilities: either rain occurred last night or he forgot to turn off the
sprinkler last night. Mr Holmes has a neighbor (Dr Watson) whose house also has a
lawn. He knows that if the lawn in Dr Watson house is wet it is more likely that rain
caused the wet grass.

The situation described above can be modeled as a Bayesian Network. Notice
that there are four variables described in the text: Mr Holmes lawn, Dr Watson lawn
(both have only two states wet or dry), Rain occured last night, and the Sprinkler
was on (these two also have two states: yes or no).

As Mr Holmes lawn can be wet either by rain or by the sprinkler, and as we know
nothing about Dr Watson sprinkler, we can built the Bayesian Network presented in
Figure A.2.

Now, Mr Holmes knows that 10% of the time he forgets to turn off the sprinkler
and he also knows that 20% of the time rains at night. Based on these information
it is possible to build the probability tables for both root nodes, as shown in Tables
A.1 and A.2.
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Figure A.2. Simple Bayesian network.

Table A.1. The prior probability table for rain.

YES | NO
P(Rain occurred) | 0.2 | 0.8

To build the conditional probability tables we need to know how the variables are
related. Lets consider first Dr Watson lawn condition: if rain occurred last night Dr
Watson lawn is certainly wet, with probability one. If rain did not occurred last night
Dr Watson lawn could be wet because he also forgot his sprinkler on, lets consider (or
simply make a guess) that Dr Watson lawn is wet 20% of the time when there is no
rain. Notice that in order to be straight we should give the probability of the grass
being wet without rain as 50% - we know nothing about - but, as we know Mr Holmes
behavior forgetting the sprinkler on we can make a better guess for this probability.
This situation leads to the conditional probability table presented in Table A.3.

Reasoning similarly about Mr Holmes lawn we can built the conditional probabil-

ity table presented in Table A.4. Notice that if rain occurred Mr Holmes lawn will

Table A.2. The prior probability table for the sprinkler on.

YES | NO
P(Sprinkler on) | 0.1 | 0.9
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Table A.3. The conditional probability table of the grass in Dr Watson’s house
being wet given the knowledge of rain.

P(Rain occurred=yes) | P(Rain occurred=no)
P(Watson’s lawn=wet) 1 0.2
P(Watson’s lawn=dry) 0 0.8

Table A.4. The conditional probability table of the grass in Mr Holmes’ house being
wet given the knowledge of rain and the sprinkler on.

P(Rain) | P(Sprinkler) | P(Lawn=wet) | P(Lawn=dry)
yes yes 1 0
yes no 1 0
no yes 0.9 0.1
no no 0 1

be certainly wet, but if the sprinkler was on there is a possibility (10% of the time)
that the lawn dries at night and it is not wet in the morning.

The whole network can be broken into two clusters (Rain, Holmes, Sprinkle, and
Rain, Watson), because Watson is independent of Holmes (if we don’t know about
Rain then the condition of Holmes’ front yard is not dependent of the condition of
Watson’s front yard). The usage of this clusters of variables is the basic idea behind

the HUGIN system [2]).

A.2.2 Answering questions without evidence

Once the model is built it is possible to determine the expected events. At first
we know that Mr Holmes was puzzled that the lawn is wet, the question is: what
is the overall probability that Mr Holmes lawn is wet? To answer this question we
have to compute P(MrHolmesLawn = wet) and P(MrHolmesLawn = dry) (in
this case having one of them is enough because the variable has only two states and
their probabilities add up to 1). To compute this probabilities we have to analyse all

possible combinations of P(RainOccurred) and P(SprinklerOn). This is given by
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Table A.5. The joint probability table for Mr Holmes lawn, Rain occurred and

Sprinkler on.

P(Rain) | P(Sprinkler) | P(Lawn=wet) | P(Lawn=dry)
yes yes 0.02 0
yes no 0.18 0
no yes 0.072 0.008
no no 0 0.72

the joint probability P(MrHolmesLawn, RainOccurred, SprinklerOn), all together,

which is given by the expression below:

P(Holmes, Rain, Sprinkler) = P(Holmes|Rain, Sprinkler) x P(Rain, Sprinkler)

but as Rain and Sprinkler are independent we have:

P(Holmes, Rain, Sprinkler) = P(Holmes|Rain, Sprinkler)*P(Rain)xP(Sprinkler)

The result of the joint probability is presented in Table A.5, P(MrHolmesLawn,
RainOccurred, SprinklerOn), which shows that the event more likely is that no rain
occurred, the sprinkler was off and Mr Holmes lawn was dry. By marginalization!,
we can compute P(MrHolmesLawn) which is presented in Table A.6 which gives
that 72.8% of the time Mr Holmes lawn is expected to be dry and 27.2% of the time
Mr Holmes lawn is expected to be wet. As the lawn is expected to be dry more often

this explains the reason that Mr Holmes was puzzled. The process can be repeated

for P(DrWatsonLawn) and P(RainOccurred) and we get Tables A.7 and A.8.

A.2.3 Handling evidence and answering other questions
A Bayesian Network is a model that has a set of variables and a set of relations.

The variables usually represent an event (e.g. Rain occurred, Mr Holmes lawn).

1 Addition of each column in the table
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Table A.6. Probability of the grass in Mr Holmes’ house being wet.

WET | DRY
P(Lawn) | 0.272 | 0.728

Table A.7. The joint probability table for Rain occurred and Dr Watson lawn being
wet.

P(Rain occurred=yes) | P(Rain occurred=no)
P(Dr Watson lawn=wet) 0.2 0.16
P(Dr Watson lawn=dry) 0 0.64

When an event is observed we say that evidence was gathered for that event (e.g.
Rain occurred = yes, Mr Holmes lawn = dry).

When one or more events are observed and their values are set in the corresponding
variables and propagated through the model the expected values for other variables
are changed. Using this technique it is possible to explain some events or change the
expectation related to some unobserved events.

Now lets see how we handle evidence in this example. Lets suppose we have the
evidence that the grass in Mr Holmes front yard is wet P(MrHolmesLawn = wet).
The first thing we do is to set the probability P(MrHolmesLawn = dry) to zero in
Table A.5, as presented in Table A.9:

Note that the values now do not add up to 1, so we have to normalize these proba-
bilities by dividing them by the prior P(MrHolmesLawn = wet) = 0.272 (see Table
A.10). This table represents the posterior joint probability P*(MrHolmesLawn,

RainOccurred, SprinklerOn). By marginalization we can also compute the poste-

Table A.8. Probability of Dr Watson lawn being wet and dry.

WET | DRY
P(Dr Watson lawn) | 0.36 | 0.64
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Table A.9. Table for the joint variables Rain occurred, Sprinkler on and Mr Holmes
lawn when evidence about the grass being wet is entered.

P(Rain) | P(Sprinkler) | P(Lawn=wet) | P(Lawn=dry)
yes yes 0.02 0
yes no 0.18 0
no yes 0.072 0
no no 0 0

Table A.10. Normalized table for the joint variables Rain occurred, Sprinkler on
and Mr Holmes lawn when evidence about the grass being wet is entered.

P(Rain) | P(Sprinkler) | P(Lawn=wet) | P(Lawn=dry)
yes yes 0.074 0
yes no 0.662 0
no yes 0.264 0
no no 0 0

rior probabilities for P*(RainOccurred) and P*(SprinklerOn), which are shown in
Tables A.11, and A.12.

Notice that the probabilities of P(RainOccurred =Y ES) and P(SprinklerOn =
Y ES) both raised considerably. This was expected since one of them or both were
responsible for the fact that Mr Holmes lawn was wet. Using the posterior proba-
bility of Rain occurred it is possible to update the expectation for Dr Watson lawn.
This is done by first computing the posterior joint probability P*(RainOccurred,
DrWatsonLawn). This computation is performed by multiplying the Table A.7 by
the posterior distribution of Rain, P*(Rain), (Table A.11) and dividing the resulting

table by the prior distribution of rain, (Table A.1), that is:

Table A.11. Posterior probabilities for Rain occurred given that Mr. Holmes lawn
is wet.

YES | NO
P(Rain occurred) | 0.736 | 0.264
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Table A.12. Posterior probability for the Sprinkler on given that Mr. Holmes lawn
is wet.

YES | NO
P(Sprinkler on) | 0.338 | 0.662

Table A.13. Posterior probability table for the variables Rain occurred and Dr
Watson lawn being wet.

P(Rain occurred=yes) | P(Rain occurred=no)
P(Dr Watson lawn=wet) 0.736 0.0528
P(Dr Watson lawn=dry) 0 0.2112
P*(Rain)

P*(Watson, Rain) = P(Watson|Rain)P*(Rain) = P(Watson, Rain)m

The values of the posterior probabilities P*(DrW atsonLawn, RainOcurred) are
presented in Table A.13, and by marginalization we can compute the posterior prob-
ability table for Dr Watson lawn as presented in Table A.14.

Notice that once we know that Mr Holmes lawn is wet the probability of Dr Watson
lawn being wet raised more than twice its initial value. Suppose now that Mr. Holmes
checks Dr. Watson’s front yard and sees that it is not wet, (DrWatsonLawn = dry).
The process is repeated by setting evidence in Table A.13, as shown in Table A.15.

By marginalization we can compute the new posterior probability of Rain oc-
curred, P**(RainOccurred = no) = 1, and we can update the posterior joint proba-

bility P*(MrHolmesLawn[H], RainOccurred[R], SprinklerOn[S]) as follows:

P*(R)

P**(H,R,S)=P*(H,R,S)

Table A.14. Posterior probability table for Dr Watson lawn.

WET | DRY
P(Dr Watson lawn) | 0.7888 | 0.2112
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Table A.15. Probability table showing evidence that Dr Watson lawn is not wet.

P(Rain occurred=yes) | P(Rain occurred=no)
P(Dr Watson lawn=wet) 0 0
P(Dr Watson lawn=dry) 0 1

Table A.16. The new posterior joint probability for Rain occurred, Sprinkler on and
Mr Holmes lawn.

P(Rain) | P(Sprinkler) | P(Lawn=wet) | P(Lawn=dry)
yes yes 0 0
yes no 0 0
no yes 1 0
no no 0 0

The new posterior probability for Mr Holmes lawn, Rain occurred and Sprinkler on
can be computed, as shown in Table A.16, which gives the event that the Sprinkler was
on as certain, P**(SprinklerOn = yes) = 1, which is the only possible explanation
for Mr Holmes lawn being wet and Dr Watson lawn being dry.

Notice that if Mr Holmes found that the grass in Dr. Watson front yard was wet
(DrWatsonLawn = wet) then we would have a more interesting propagation process.
In this case evidence for the wet grass in Dr Watson lawn would be entered in Table
A.13 and we would get Table A.17.

This fact would lead to a new posterior probability for Rain occurred P**(Rain
Occurred = yes) = 0.933 and a new posterior joint probability for the variables
Rain occurred, Sprinkler on and Mr Holmes lawn being wet P**(MrHolmesLawn,

RainOccurred, SprinklerOn), as shown in Table A.18. Notice that in this case

Table A.17. Probability table when evidence is entered saying that Dr Watson lawn

is not wet.
P(Rain occurred=yes) | P(Rain occurred=no)
P(Dr Watson lawn=wet) 0.933 0.067
P(Dr Watson lawn=dry) 0 0
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Table A.18. Posterior joint probability table for the variables Rain occurred, Sprin-
kler on and Mr Holmes lawn being wet given evidence that Dr Watson lawn is wet.

P(Rain) | P(Sprinkler) | P(Lawn=wet) | P(Lawn=dry)
yes yes 0.094 0
yes no 0.839 0
no yes 0.067 0
no no 0 0

both events are possible, by marginalization P**(RainOccurred = yes) = 0.933,

and P**(SprinklerOn = yes) = 0.161.
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APPENDIX B

A DECISION MAKING EXAMPLE USING UTILITY
THEORY

This appendix is included for readers not familiar with the terminology of Utility
Theory. The appendix presents the basic terminology, some concepts and ideas about

how to use Utility Theory. A knowledgeable reader can safely skip it.

B.1 The concept of utility and utility theory

We have to make decisions every day of our lives. Some of these decisions are
simple such as what shirt to wear or where to go for lunch. A few of these decisions
are more important such as a marriage proposal, an offer for a new job, or buying
a new car. In certain cases these decisions reflect directly only in ourselves or some
direct relatives, in other cases it might affect others (managers in industry usually
make decisions that affect shareholders, employees and the community, government
people can make decisions which can affect the whole nation and sometimes other
nations). So decision making and its consequences is something that concerns all of
us, both as makers of the action and/or as sufferers from the consequences.

When we make a decision we basically decide to take an action in a certain direc-
tion. In order to make the decision we usually consider some situations we encountered
in the past, the circunstances we have in the present and the possible outcome for
a set of events that might happen in the future. Each action taken carries a set of
consequences depending on the outcome of these events in the future (for instance if
we decide to buy a certain stock its value in the future depends on a set of things

involving the market, the economy, etc).
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On evaluating the consequences of possible actions the problem is to give a numeri-
cal value for each consequence. An easier task is to evaluate two possible consequences
and decide which one is preferable. Using this concept and assuming that preference is
transitive (i.e. if consequence A is preferable than consequence B and consequence B
is preferable than consequence C, than consequence A is preferable than consequence
C), we can give a partial order to all possible consequences [11] of taking an action.
Once this partial order is achieved we can assign numbers indicating how much each
consequence is valued. These numbers are called utilities, and utility theory deals
with the development of such numbers [40] and how they can be used in a decision

problem [44].

B.2 Building a model for Utility Theory
In this section we will be using a simple decision problem example to show how to
build a model using utility theory, and how the model can help on a decision making

process.

B.2.1 Buy a used car example

This example shows how utility theory can be used in a decision making problem.
Consider the following decision problem: we are considering buying a specific used
car. Before we buy the car we can perform a test to know about the car’s condition.
Let’s consider the case where two tests are available: Test 1is 100% reliable, expensive
but gives a good profile about the car, and Test 2 is 100% reliable, it is cheaper, but
reports only the car’s current condition. The possible unknown events are related to
the car’s current condition which can be either good or bad. The decisions we are
facing are: buy the car without performing any test, perform Test 1 on the car and
buy the car if it passes the test, or perform Test 2 on the car and buy the car if it

passes the test. The consequence table for this example is presented in Table B.1.
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Table B.1. Consequence table for the “buy a used car” problem.

Decisions Events
Car=Good | Car=Bad
di=Perform no Test Ch Cia
dzZPeI‘fOI‘Hl Test 1 021 022
d3:Perform Test 2 031 032

The best consequence in the first column is C;, because if the car is good we can
just buy it without performing any test. The worst consequence in the first column is
C51 because Test 1 is the most expensive test available, and if the car is good we will
spend the largest amount of money to obtain that information. In the second column
the best consequence is C3s, because if the car is bad we spent the least amount
of money to determine the car’s condition. The worst consequence in the second
column would be Ci,, that is, buy the car if the car is bad. All the consequences can

be compared and partially ordered. One possible partial ordering is shown below:

Clla 0317 0327 0217 0227 012

At this point numerical values have to be defined for the consequences Cj;. We
start this task by first giving values for the best and worst consequences in the list
above, that is C7; and Cj5. Without loss of generality assume the values 1 and 0
for the consequences C7; and C'5 respectively. The next step consists in converting
all other consequences into a numerical value. The numerical values, or utilities, are
computed as follows:

For all consequences Cj; in the table find the corresponding value of p;; as follows:

e Choose any consequence Cj;. Cj; is worse, or at most as good as the best

consequence; and Cj; is better, or at least no worse than the worst consequence.

e Define the probability p;; using the following methodology: suppose you are

given a choice. You can have consequence C;; with certainty, or you can gamble
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to have consequence C; with probability p;; and C}, with probability 1 — p;;.
For instance consider consequence C3; (Perform Test 2 and buy the car), now
consider this consequence as a fact, and consider the following lottery: there is
a probability (p;;) that the car is good and we can buy it without any test and
there is another probability (1 — p;;) that the car is bad and we are not buying
it. If p;; = 1 you will select to gamble, and if p;; = 0 you will select C;;. So find

a value of p;; that makes the selection between C;; and the gamble indifferent.

The value of consequence Cj; is computed using the equation presented below:

Cij = pij * C11 + (1 — pij) * Cho

The set of probabilities p;; can be computed for each consequence Cj; as explained
above. Table B.2 shows possible values for each probability p;; (because of the sub-
jectivity involved, these values could be different for another person). Notice that
because Ci; = 0 and Cj; = 1 the values of Cj; (utilities) are equal the probabilities
Dij-

Another way to explain the utilities of the consequences in Table B.2 is the fol-
lowing: the values 1 and 0 do not need further explanation. The other entries can be
viewed as follows: in the Perform Test 2 case, if the car passes the test, the conse-
quence is basically the same, the car is good and we will buy it, but we have to pay
the car’s test, which decreases the utility value from 1 to 0.8. If the car fails the test,
we will not buy it, but we have to pay for the test and we will have no car at the
end, which decreases the utility value a bit more from 1 to 0.7. Similarly if we decide
to Perform Test 1 and the car passes the test we will buy it but we spent the largest
amount of money, decreasing its utility from 1 to 0.6. In this case, if the car fails the
test we will not buy it but we spent the largest amount of money, so the utility value,

in this case, decreases from 1 to 0.5.
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Table B.2. Probability and , in this case utility table for the

“buy a used car”

problem.
Decisions FEvents
Car = Good | Car = Bad
d;=Perform no Test 1 0
dy=Perform Test 1 0.6 0.5
ds3=Perform Test 2 0.8 0.7

Table B.3. Decision table for the “buy a used car” problem.

Decisions Class
Car = Good | Car = Bad
di=Perform no Test 1 0
do=Perform Test 1 0.6 0.5
ds3=Perform Test 2 0.8 0.7

Probability

| p(Good)=0.7 | p(Bad)=0.3 |

The decision table for the “buy a used car” example is shown in Table B.3. The
probabilities of the events “Car is Good” and “Car is Bad”, in this case, could be
obtained through the experience of the person analyzing the car’s overall condition.

Using decision table B.3, it is possible to compute the utility of each decision using

the equation presented below:

That is, for each decision we make the summation for all possible events (n) of
the product of the probability of the event and the utility of its consequence. The
result of this sum is shown in Table B.4. The best decision is the one with the highest
expected value, in this case the decision with highest utility is to Perform Test 2
(with value 0.77). So the person should perform the test and buy the car if the car

passes the test
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Table B.4. Expected utility for each decision in the “buy a used car” problem.

Decisions Utility
d;=Buy the car 0.7
dy=Perform Test 1 | 0.57
dz3=Perform Test 2 | 0.77

B.2.2 Dealing with uncertainty

In the previous example we assumed that the outcome of both tests were 100%
reliable, this is almost never true. Information, in general, has a certain amount of
uncertainty. Let’s change the previous example and consider the following situation:
We want to buy a car but we also want to perform a test to know the car’s condition,
but, in this case, we will consider that the tests are not 100% reliable but we have to
select one of them or none. This problem is also known as the value of information,
that is, how much should we pay for an information knowing that it is not completely
reliable? Or, is a certain information worth a value given its reliability?

In this example we have only to select what test to perform on the car. We know
that Test 2is 90% reliable and depends on the car’s condition and the technician who
will perform the test, but that the test does not give any information other than the
car’s current condition. Test 1 gives a good profile about the car, but it needs some
electronic equipment and the test’s outcome depends on the quality of the electronic
equipment being used. Assume that the electronic devices are good 3 out of 4 times.

The utility table in this problem is considerably different. We want to perform a
test and use the information given by the test to decide if we will buy the car or not.
If the car is good we want to buy it, but if the car is not good we don’t want to buy
it. The decision table for the buy a used car problem is shown in Table B.5. In this
example there are two related decisions, the first decision is: what test to perform.
The second decision is about buying or not buying the car, which depends on the

outcome of the test performed.

137



Table B.5. Utility table for the buy a used car problem with a test selection.

Decisions Car’s Condition
Car=Good | Car=Bad
d;=Buy the car 1 0
ds=Do not buy the car 0 1

Table B.6. Conditional probability table for the Test 1 case.

Test outcome Car’s Condition
Car=Good | Car=Bad

Good 0.75 0.25

Bad 0.25 0.75

To compute the utility of each test and decide which one is the best test we will
represent the reliability for each test as a conditional probability table, as shown in
tables B.6 and B.7, for tests 1 and 2 respectively. The prior probabilities about the
car’s current condition are also known (expectations about the car’s condition) (see
Table B.8).

Now we can put all this information together and decide which test to select in
order to get information about the car’s condition and then decide whether to buy
the car or not. In this case we have to compute the expected utility for each test and
select the test with the highest expected utility. The expected utility for each test is

computed using the expression:

N

EU(Test) = Z maz; Z w(Cy)p(Test = k/Car = j)p(j)

States—of—Test j=1

Table B.7. Conditional probability table for the Test 2 case.

Test outcome Car’s Condition
Car=Good | Car=Bad

Good 0.9 0.1

Bad 0.1 0.9
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Table B.8. Prior probabilities for the car’s current condition.

Car’s Condition
Good Bad
Probability( Car=) | 0.7 0.3

Notice that, because of Bayes Rule the equation above can also be written as:

EU(Test) = > max; g: u(Cyj)p(Car = j/Test = k)p(Test = k)

States—of—Test j=1

This last expression will be used in the Ascender II system for the feature’s ex-
pected utility computation. For the Test 1 case, the expected utility computation is
summarized in Table B.9. The values for each entry in the Test 1 Outcomes were

computed using the second summation in the formula:

Z:U(C’ij)p(Test =k/Car = j)p(j)

In the expression above N is the number of possible outcomes for the event
(in the example, the car’s condition). For instance, for the column “Good” in
the “Test 1 Outcomes” the value 0.525 was obtained using the calculation: Util-
ity(Buy the car, Car = Good) times Probability(Test 1 = Good / Car = Good)
times Probability(Car=Good) plus Utility(Buy the car, Car = Bad) times Probabil-
ity(Test 1 = Good / Car = Bad) times Probability(Car=Bad), or in numerical values
1%0.7%0.75 4+ 0% 0.3 % 0.25 = 0.525

Once all the entries in the top part of the table showing Test 1 outcomes were
computed, find the maximum in each column (the max part of the formula), and add
them up (the first summation of the formula). This will give the expected utility of
the test. In this case the expected utility of Test 1 is 0.75. Repeating the process for
Test 2 will give an expected utility of 0.9. So, we should perform Test 2 and if the

car passes the test we should buy it.
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Table B.9. Summary of the computation of the expected utility of Test 1.

Decisions Car’s Condition | Test 1 Outcomes
Good Bad Good Bad
d;= Buy the car 1 0 0.525 0.175
ds= Do not buy the car 0 1 0.075 0.225
| Probability(Car=) | 07 | 03 | | |
P(Test 1=Good/Car=) | 0.75 0.25
P(Test 1=Bad/Car=) | 0.25 0.75

In this example it was presented how to select an information based on the informa-
tion reliability (the value of an information) and without considering the information
cost. Utility theory can also include costs and personal preferences in the decision

model. The reader interested in these more advanced topics should refer to Lindley

([44]).
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