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ABSTRACT
COLOR-BASED MODELS FOR OUTDOOR MACHINE VISION

FEBRUARY, 2002
SHASHI D. BULUSWAR, B.A., GOSHEN COLLEGE
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Allen R. Hanson

This study develops models for illumination and surface reflectance for use in
outdoor color vision, and in particular for predicting the color of surfaces under outdoor
conditions. Existing daylight and reflectance models that have been the basis for much of
color research thus far have certain limitations that reduce their applicability to outdoor
machine vision imagery. In that context, this work makes three specific contributions: (i)
an explanation of why the current standard CIE daylight model cannot be used to predict
the color of light incident on surfaces in machine vision images, (ii) a model (table)
mapping the color of daylight to a broad range of sky conditions, and (iii) a simplified
adaptation of the frequently used Dichromatic Reflectance Model for use with the
developed daylight model. A series of experiments measure the accuracy of the daylight
and reflectance models by predicting the colors of surfaces in real images. Finally, a
series of tests demonstrate the potential use of these methods in outdoor applications such

as road-following and obstacle detection.
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CHAPTER 1
INTRODUCTION
1.1  Overview

Several outdoor machine vision applications (such as obstacle detection [51], road-
following [16] and landmark recognition [11]) can benefit greatly from accurate color-
based models of daylight and surface reflectance. Unfortunately, as Chapter 4 will show,
the existing standard CIE daylight model [42] has certain drawbacks that limit its use in
machine vision; similarly, as Chapter 5 will show, existing surface reflectance models
[56][70][80] cannot easily be used with outdoor images. In that context, this study makes
three contributions: (i) an explanation of why the CIE daylight model cannot be used to
predict light incident upon surfaces in machine vision images, (ii) a model (in the form of
a table) mapping the color of daylight aéainé? a.broad range of sky conditions, and (iii) an
adaptation of the frequently used Dichromatic Reflectance Model [80] for use with the
developed daylight model.

One notable application of the above models is the prediction of apparent color.!
Under outdoor conditions, a surface's apparent color is a function of the color of the
incident daylight, the surface reflectance and surface orientation, among several other
factors (details in Chapter 2). The color of the incident daylight varies with the sky
conditions, and the surface orientation can also vary. Consequently, the apparent color of

the surface varies significantly over the different conditions. The accuracy of the

" In this study, the phrase apparent color of a surface refers to the physical measurement of the surface's
color in an image.



developed daylight and reflectance models is tested over a series of experiments

predicting the apparent colors of surfaces in real outdoor images.

1.2 Variation of apparent color

The following examples describe why robust models of daylight and reflectance are
important for outdoor color machine vision. Figure 1.1 and Figure 1.2 demonstrate the
variation in the apparent color of two matte surfaces across 50 images. These images
were taken under a variety of sky conditions, ranging from a clear sky to an overcast sky,
with the sun-angle between 5° (dawn and dusk) and 60° (mid-day). The illumination
angle (i.e., the orientation of the surface with respect to the sun) varied from 0° to 180°,
and the viewing angle (the angle between the optical axis and the surface) varied from 0°
to 90°. Figure 1.1(a) shows an image with the two target surfaces; from each such image,
the RGB? value of each surface was determined by averaging the pixels over a small
portion of the surface (from the circles), in order to reduce the effect of pixel-level noise.
Figure 1.1(b) shows the RGB color from a single image—predictably, the samples from
each surface form a single point. Figure 1.2(a) shows the variation in apparent RGB color
of the surface patches over the 50 images, and Figure 1.2(b) shows the variation in the

intensity-normalized rgb space.’

2 While there are some canonical “RGB” spaces [37], manufacturing inaccuracies cause each camera to, in
effect, have its own unique RGB space. Hence, each camera should be calibrated to determine its unique
response parameters; the calibration parameters for the camera used in this study are shown in Chapter 2.

3 The rgb space is a normalized form of RGB, and is used to eliminate the effect of brightness. In rgb,
r=R/(R+G+B), g=G/(R+G+B), and b=B/(R+G+B); hence, r+g+b = I and given r and g, b=1-r-g.
Therefore, rgb is a two-dimensional space that can be represented by the rg plane.
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As the figures show, the apparent color of the two surfaces is not constant; rather, it
varies significantly over the range of conditions in both RGB and rgb. The Cartesian
spread of the clusters representing each surface is about 90 units (from a range of 0-255)
in RGB (with a standard deviation of 35) and about 0.2 (out of the possible 0-1 range)
units in rgb (with a standard deviation of 0.05). The significance of these numerical
measures can be understood in two ways: first, in RGB, a range of 90 represents more
than one-third of the overall range along each dimension (which is 255); in rgb, 0.2 is
one-fifth of the entire range. Secondly, the RGB spread is about 250% of the distance
between the centroids of the two clusters, while the rgb spread is about 105% of the inter-
centroid distance. This means that the overall variation in the apparent color of a single
surface can be greater (in terms of Cartesian distance in color space) than the difference
between two perceptually distinct colors (in this case, white and green). The factors
causing the variation in apparent color are examined in Chapter 2.

While Figure 1.1 and Figure 1.2 show the variation in the apparent color of simple
matte surfaces, Figure 1.3 and Figure 1.4 show the variation for a specular surface—a
“Stop” sign—from 50 images over the same range of illumination and viewing conditions

as before.*

Figure 1.3 shows “Stop” signs at two different orientations: (a) one facing
away from the sun, and (b) the other, facing the sun (i.e., with the surface normal in the
azimuthal direction of the sun, and partially reflecting the sun into the camera). Figure
1.4 shows the variation in (a) RGB and (b) rgb, respectively, as the orientation and

illuminating conditions change. As the figures demonstrate, the variation in apparent

color of a specular surface can form a bi-modal distribution. In this case, the Cartesian

* Note that the traffic signs used in this study are privately owned, and do not have retroreflective or
fluorescent properties that are required for some public signs. Appendix A contains a more detailed
description of these two phenomena.



distance between the centroids of the two clusters is about 195 units in RGB and about
0.23 units in rgb. In addition, as Figure 1.4(b) shows, a specular surface may be non-
uniformly colored in an image when direct sunlight is incident upon it. Hence, a portion
of the “Stop” sign is the characteristic red, while another portion exhibits the specular
effect.’

Human beings are able to adapt to this evidently significant color shift due to a
mechanism called color constancy, which is a combination of biological and
psychological mechanisms. Although much work has been done on the processes
involved in human color constancy [2][6][7][34][45][86], it has proven difficult to
successfully simulate the proposed models in computational systems. The
aforementioned examples suggest that in machine vision images, the notion of a color
associated with an object is precise only within the context of scene conditions. The
discussion in Chapter 6 shows that models of daylight color and surface reflectance,
combined with a small number of reasonable assumptions, is an effective way of
modeling scene context.

The discussion in the following chapter shows that color images of outdoor scenes are
complicated by phenomena that are either poorly modeled or described by models which
will more parameters to an already complicated problem. As a result, computational
color recognition has been a difficult and largely unsolved problem in unconstrained
outdoor images. To that end, the two models developed in this study_—the daylight and
reflectance models—are shown to be effective in relatively uncontrolled outdoor

environments.

> Note that the characteristic specular effect of specular surfaces is apparent only when the surfaces are
large enough to reflect a portion of direct light onto the camera.



Please note that while color prediction is an ideal application to test the two models, it
is not the sole reason for their development; rather, the models attempt to add new insight
into two important processes in outdoor color machine vision (namely, illumination and
reflectance). The color prediction experiments discussed in Chapter 6 require input on
some subset of the following parameters of scene context: sun angle, cloud cover,

illumination angle, viewing angle and sun visibility.

1.3 Overview of chapters

Chapter 2 examines various factors that affect outdoor color images. Chapter 3
examines relevant existing work in color machine vision and shows that existing methods
make assumptions that are not appropriate for unconstrained outdoor images.

In Chapter 4 it is shown that.the existing standard model of daylight (the CIE model
[42]) has limitations when applied to machine vision images due to the effect of ambient
light and ground reflection. Hence a model of daylight is built, such that the color of the
incident daylight can be predicted, given the sun-angle and sky conditions.

Chapter 5 shows that the prevalent surface reflectance models [56][70][80] cannot be
easily applied to outdoor images because of their use of brightness values and their
assumptions about the illumination and the independence of the specular effect from
illumination; the Normalized Photometric Function (NPF) is then developed by
simplifying the existing physics-based models for use in outdoor images.

Chapter 6 combines the daylight and NPF models in order to estimate the apparent
color of a target surface under a given set of conditions, and then to classify image pixels

as target or background.



Chapter 7 discusses the results from tests on images from road scenes; finally,

Chapter 8 discusses directions of potential future research based on this study.

(R v )
Figure 1.3. Images of a specular “Stop” sign at two different orientations: (a) facing
away from the sun; (b) facing the sun.
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CHAPTER 2

FACTORS IN OUTDOOR COLOR IMAGES

2.1 Overview

Since one major motivation of the models developed in the study is to predict the
apparent color of surfaces in outdoor images, this chapter discusses the significant
processes involved: (a) the color of the incident daylight, (b) surface reflectance
properties, (c¢) illumination geometry (orientation of the surface with respect to the

illuminant), (d) viewing geometry (orientation of the surface with respect to the camera),

(e) response characteristics of the camera (and peripheral digitization hardware), =

(f) shadows, and (g). inter-reflections. In typical outdoor images, some of these factors
remain constant, while others vary. Those that do vary can cause a significant shift in
apparent surface color. The following sections provide some background on the
processes involved in color and image formation, and examine the factors causing the

variation in apparent surface color.
2.2 Light, the visual spectrum, and color

Visible light is electromagnetic energy between the wavelengths of about 380nm and
700nm. Figure 2.1 shows the visible spectrum along with the colors represented by the

various wavelengths.

10



Ultraviolet 400nm 500nm 600nm 700nm Infrared

Figure 2.1. The visible electromagnetic spectrum, approximately between 380nm and
700nm. Just below and above the limits are the ultraviolet and infrared wavelengths,
respectively.

Light can be represented by a Spectral Power Distribution (SPD) in the visual
spectrum, which plots the energy at each wavelength (usually sampled at discrete
intervals) between 380nm and 700nm. Figure 2.2 shows simplified SPD's that represent
colors that are shades of pure (a) “red”, (b) “green”, (c) “blue”, and (d) “white”.° In this
example, the red, green and blue SPD's peak at about 670nm, 550nm and 450nm,
respectively. The white SPD, on the other hand, is flat, since white (by definition)
contains an equal proportion of all colors.”

The SPD's shown in Figure 2.2 are simplified; only very spectrally concentrated light
sources will have such SPD's. The SPD representing the color of daylight is not as
narrow or smooth, as shown in Figure 2.3, which represents a typical blue cloudless sky

[48][94].

S The names of the colors are in quotes because these are perceptual associations rather than precise
definitions.

7 The vertical axis for SPD's denotes the energy radiated; often, the energy measurements at the various
wavelengths are normalized [94] and represented relative to a given wavelength. Hence, there is no unit of
measurement along the vertical axis.

11
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2.3 The effect of illumination

When light is incident upon a surface, the surface's albedo determines how much of
the incident energy along each wavelength is reflected off the surface, and how much is
absorbed. The resultant reflection, which is the product of the SPD of the incident light
and the albedo, is also represented by an SPD. Figure 2.4 shows the albedo for two
surfaces, blue and green, which are from the Munsell® color set (numbers 10Bv9¢l, and
10Gv9cl, respectively) [48][55].

When white light is incident upon a surface, the SPD of the resultant reflection is the
same as the albedo. However, if the incident light is colored (for instance, red), the
resultant SPD is different from the albedo. If the incident light is a different color (blue,
for instance), the resultant SPD can be significantly different from that under red light. In
outdoor images, the color of the incident daylight is seldom white’ and certainly not
constant; it varies significantly, depending on the sun-angle, cloud cover, humidity, haze
and atmospheric particulate matter [36][42]. Figure 2.5 shows the SPD for the color of
daylight from “reddish” sunlight (at a low sun-angle) [66]; the SPD for this phase of
daylight is quite different from the one shown in Figure 2.3.

Figure 2.6 and Figure 2.7 show the SPD's of the two surfaces from Figure 2.4 under
the two phases of daylight described in Figure 2.3 and Figure 2.5. As the SPD's indicate,
the reflections off the surfaces under different illuminating conditions are significantly

different.

® The Munsell color chart is a standard set of colors that is often used by color scientists.
® The color of daylight is closest to white when the whole sky is covered by white clouds; even then, it can
have a non-trivial blue component.
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Figure 2.4. Normalized SPD's representing the albedos for two colors from the Munsell
set: (a) green (Munsell 10Gv9cl), (b) blue (Munsell 10Bv9cl). Note that the SPD's for

these surfaces are more complicated than the simple SPD's shown in Figure 2.2.
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Figure 2.5. Sample spectral power distribution for daylight from “reddish” sunlight.
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Figure 2.6. The Munsell green (number 10Gv9cl) patch (a), with the SPD representing
its albedo (b). The SPD of the apparent color of the patch changes (¢ and d) as the
illuminant changes from blue sky to red sun.

The variation in the color of daylight is caused by changes in the sun-angle, cloud
cover, and other weather conditions. In addition, the presence of haze, dust and other
particulate pollutants can also affect the color of daylight in localized areas [36]. The
CIE model [42] has served as the standard for the variation of the color of daylight, and
has empirically been shown to be accurate in radiometric data. However, as Chapter 4
shows, the model has three disadvantages when applied to machine vision images,

namely that it does not account for the effect of ambient light or ground reflection, and
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there is very little context-specific data mapping illumination conditions to incident light
color. Hence, Chapter 4 develops a model specifically for machine vision. Note that one
additional consequence of the variation in the color of daylight is illuminant metamerism,
where two surfaces with different albedos and under different illuminant colors, map to
the same apparent color. Although this is a rare phenomenon, it cannot be avoided and is

one of the causes of errors in applications of the techniques developed in this study.
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Figure 2.7. The Munsell blue (number 10Bv9cl) patch (a) with the SPD representing its
albedo (b), and the SPD's under (a) blue sky, and (d) red sun.
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2.4 The effect of surface orientation and reflectance

Illumination geometry, i.e., the orientation of the surface with respect to the sun,
affects the composition of the light incident upon the surface. Daylight has two
components, sunlight and ambient skylight, and the surface orientation determines how
much light from each source is incident on the surface. For instance, a surface that faces
the sun is illuminated mostly by sunlight, whereas one that faces away is illuminated
entirely by the ambient skylight and light reflected off other surfaces in the scene. The
reflectance properties of the surface determine the combined effect of illumination
geometry and viewing geometry (i.e., its relative viewing geometry). Figure 2.8 explains
some of the terminology related to surface orientation. The strength of the specular
reflectance component of the surface, based on the combined geometry of illumination
and viewing, affects the composition and amount of light reflected by the surface onto the
camera (as shown earlier in Figure 1.3 and Figure 1.4). While physics-based reflectance
models exist [46][56][70](80], they cannot be easily used with outdoor images because
(i) they assume single-source illumination, (ii) they do not account for the effect of
illuminant obscuration on the specular effect, and (iii) they rely on illuminant brightness,
which cannot be easily estimated for daylight (shown in Chapter 5). Hence, Chapter 5
develops the Normalized Photometric Function, which can be applied to outdoor data and

to the daylight model developed earlier in the same chapter.
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Figure 2.8. The geometry of illumination and viewing depends on the position of the
illuminant and camera (respectively) with respect to the surface. Along the surface
normal, the angle is 0°, and ranges from 90° to 90° on either side of the surface normal.
The relative viewing geometry is the combination of the illumination and viewing
geometries.

2.5 The effect of the sensor

Before a discussion of the effect of sensor (camera) characteristics, the following
descriﬁﬁon of color spaces may be ~helpfill. A éblor digital image represents scenes as
two-dimensional arrays of pixels. Each pixel is a reduced representation of an SPD,
where the reduction depends on the color space being used. One commonly used space is
the three-dimensional RGB (Red-Green-Blue) space, which is derived from a set of
(three) trichromatic filters [94]. While there are canonical “RGB” spaces, manufacturing
inaccuracies cause each camera to, in effect, have its own unique RGB space. Hence,
each camera should be calibrated to determine its unique response parameters; the
calibration parameters for the camera used in this study are shown in Table 2.1. Figure
2.9(a) shows the spectral transmission curves for a set of three filters'® used to derive a
hypothetical RGB. For each pixel, the product of each of the trichromatic filters and the

input SPD is integrated, and the resulting sum then becomes the value of the pixel along

' The filters shown in Figure 2.9 are the CIE color matching functions [94]. The RGB color space(s) used
by most cameras are linear transforms of these functions [37].
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the corresponding dimension. The RGB space represents the brightness (intensity) of a
pixel along each dimension, ranging (usually) from 0 to 255. In such a framework, the
color “black” is represented by the value [0,0,0], “white” by [255,255,255], a pure bright
“red” by [255,0,0], “green” by [0,255,0], and “blue” by [0,0,255] (once again, the colors'
names are in quotes because these are qualitative and perceptual associations rather than
precise quantitative definitions.). One of the consequences of reducing the representation
of color from the continuous SPD function to a three-dimensional value is that a number
of physically different SPD's can be mapped to the same RGB value. This phenomenon
is known as observer metamerism, and even humans perceive metamers as being similar;
fortunately, this type of metamerism is not a common occurrence in practice.

The RGB space can be normalized over total brightness, such that r=R/(R+G+B),
g=G/(R+G+B), and b=B/(R+G+B). The normalized space, referred to hereafter as rgb,
eliminates the effect of brightness, and the value along each of the dimensions (in the
range 0-1) represents the pure color without brightness. Hence, black, white, and all the
grays in between are mapped to the same value [0.33,0.33,0.33]. In rgb, r+g+b = I,
given the values along only two of the dimensions, the third can be determined.

Therefore, rgb is a two-dimensional space.

19



N,
- o
et | T | 1 | B

400 450 500 550 600 650 700
(a) Trichromatic filters

Cyan 235,255, 253
Whiic
Blue Nngcnm
Green Yellow
.0,0
Black Red
(b) RGB space

Figure 2.9. Trichromatic filters (a) used to reduce an SPD to the RGB color space (b).
Of the three filters, the “red” filter peaks at about 440nm, “green” at about 550nm, and
the “blue” filter has a large peak at about 600nm and a smaller one at about 440nm.

Factor Model Comments
Focal length 6.5mm (equivalent to 37mm on
a 35mm camera)
Color filters Based on NTSC RGB standard Calibration required
primaries [76]

White point [0.326, 0.341, 0.333] Obtained with a calibrated white
surface (Munsell N9/) under D65
illuminant

Gamma correction y=0.45 f-stop adjusted to stay in the 50-75%,
(approximately linear) output range

Aperture range /2.8 to f/16 Aperture adjusted with f-stop

Shutter speed 1/30 to 1/175 seconds

Image resolution 756x504, 24-bit RGB

Gain 2.0 e-/count Fixed

Table 2.1. Parameters of the camera used in this study.
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The response characteristics typical to digital cameras (or other imaging devices used
for machine vision) can cause apparent surface color to shift in a number of ways. In the
process of reducing the SPD's at individual pixels to RGB digital values, a number of
other approximations and adjustments are made, some of which have a significant impact
on the resultant pixel colors, while others have a relatively small effect. To begin with,
wavelength-dependent displacement of light rays by the camera lens onto the image plane
due to chromatic aberration can cause color mixing and blurring [S]. However,
experiments in the literature [S] suggest that the effects of chromatic aberration will have
a significant impact only on those methods that depend on a very fine level of detail.

Observer metamerism, introduced in the previous section, occurs when different SPD's

are mapped to the same RGB value [92]. Although this process does not shift or skew the:. . ..c:. - -

apparent color of an object, it can cause ambiguity since two physically distinct colors
(with respect to their respective SPD's) can have the same RGB value; in practice, as
mentioned before, this does not occur very often. Many cameras perform pixel-level
color interpolation on their CCD (Charge-Coupled Device) arrays, which convert the
incident light energy at every pixel (photo-cell) to an electrical signal. On the photo-
receptor array, each pixel contains only one of the three RGB filters, and the other two
values are calculated from neighboring pixels at a later stage. Figure 2.10(a) shows the
color filter array in the Kodak DC-40 digital camera. After the reduction of the SPD's to
three separate electrical signals, the digitizer converts each input electrical signal to a
digital value. Many digitizers use a nonlinear response function because the output of the
camera is assumed to be a monitor or other display device (the phosphors for which are

inherently nonlinear). The nonlinear response of the digitizer is meant to compensate for
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the monitor nonlinearity; while this may help in displaying visually pleasing images, it
can cause a problem for image analysis. The nonlinear response function is determined
by a gamma-“correction” factor (shown in Figure 2.10(b)), which is 0.45 for many
commonly used digital cameras [18]. On many cameras, gamma-correction can be
disabled; on others it is possible to linearize the images through a calibration lookup table
[60]. The dynamic range of brightness in outdoor scenes accentuates the possibility of
clipping (photo-cell/pixel saturation) and blooming (draining of energy from one
saturated photo-cell to a neighboring photo-cell) [60]. Although pixel clipping is easy to
detect, there are no reliable software methods for correcting the problem. Blooming is
difficult to even detect; while fully saturated pixels can easily be detected, the effect on
photo-cells receiving excess energy from neighboring cells is more difficult to detect.

Hence, blooming is not easily detectable or correctible [60].

The images used in this study were collected using a Kodak digital camera
(customized DC-40), the relevant parameters for which are listed in Table 2.1. The
automatic color balance on the camera was disabled, and the f-stop adjusted so that the
output was always in the 50-75% (approximately linear) range; this avoided nonlinear
response and pixel clipping. In addition, a color calibration matrix was obtained based on
standard techniques [76], using a calibrated white surface (Munsell N9/) under a D65
illuminant. However, three other camera-related problems, namely blooming, chromatic
aberration, and the mixed-pixel effect were considered either unavoidable or negligible,

and not addressed specifically.
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Figure 2.10. Sources of color shifts in digital cameras: (a) pixel interpolation, (b)
nonlinear response. With pixel interpolation each pixel (photo-cell) has only one color
filter, and the other two color values are approximated from neighboring pixels. With
gamma-“corrected” nonlinear response, the output signal is adjusted for display purposes
according to the rule (o = "), where o is the output signal, i is the input light intensity,
and y the correction factor.

2.6 Shadows and inter-reflections

Inter-reflections and shadows can cause a further variation in apparent color by
adding indirect incident light or by restricting the effect of the existing light sources,
thereby altering the color of the light incident upon the surface. Inter-reflections, for
instance, cause light reflected off other surfaces in the scene to be incident upon the
surface being examined. In fact, Chapter 4 shows that the color of daylight departs
significantly from the CIE daylight model, due in part to light reflected off the ground.
Beyond that, however, the effect of inter-reflections in complicated scenes can be hard to
estimate [31]. Therefore, in this study, it is assumed that the scenes do not contain large,
brightly colored objects near the target surface.

Shadowing can be of two types: self-shadowing and shadowing by another object.
Chapter 4 shows that when the object is self-shadowed, the final effect is that the surface

is illuminated both by skylight and by indirect sunlight reflected off the ground; this
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effect is taken into account while determining the color of the incident light. On the other
hand, if a surface is shadowed by a secondary object, the effects depend on the secondary
object, and can cause all the effects of self-shadowing and additional inter-reflection off
the secondary object. In this study, since it is assumed that there is no significant inter-
reflection (other than off the ground), it is assumed that the effect of secondary
shadowing is no different from that of self-shadowing.

Table 2.2 summarizes the various factors that contribute to the variation of apparent
color in outdoor images, along with relevant models for those factors and the problems (if
any) with those models. Note that many of these factors apply to indoor images as well.

The above discussion indicates that color images of outdoor scenes are complicated

by phenomena that are either poorly modeled or inadequately described by models which

.. add more parameters to an already complicated problem. As a result, problems such as

apparent color prediction have been difficult and largely unsolved in unconstrained
outdoor images. To that end, the contributions of this work include useful context-based
models of daylight and reflectance that can be applied when either full or partial

contextual information is available.
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account for illuminant
obscuration

Factor Models Problems Solutions

Daylight: Sun- CIE [42] e Little or no context-based | ® Context-based

angle & sky information model developed

conditions « Does not account for e Model accounts for
ambient or stray/indirect moderate amounts of
light stray and incident

light

Daylight: Haze, None Difficult to model [36] Ignored

pollution

Reflectance: Lambertian [38]; ¢ Assumptions about * Models adapted for

Surface orientation | Dichromatic [80]; single-source illuminant extended 2-source

(w.r.t., illuminant | Hybrid [56]; e Use of brightness values illuminant (daylight)

and camera) Shading [70] e Specular effect does not e Brightness issues

eliminated by
normalization

o Reflectance model
explicitly accounts
for illuminant
obscuration

Camera: Nonlinear

Supplied with

Nonlinear only near

f-stop adjusted: only

response camera extremes of sensor range middle, approximately
linear range used
Camera: Boult [5] Affects mostly edge pixels | Ignored
Chromatic
aberration
Camera: Clipping | Novak [60] Can be detected but not Pixels detected and
corrected eliminated
Camera: Blooming | Novak [60] Cannot be easily detected Ignored
or corrected
Shadows None [31] Difficult to model o Self-shadowing
modeled as incident
ambient light
e Direct shadowing
ignored
Inter-reflections None [31] Difficult to model ¢ Ground reflection
modeled in daylight
model

e Other inter-
reflections ignored

Table 2.2. Factors affecting the apparent color of objects in outdoor images, existing
models and problems (if any) with those models, as well as ways in which this study
addresses the problems.
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CHAPTER 3

PREVIOUS WORK

3.1 Overview

This chapter discusses prevalent work in three areas: color prediction/recognition
techniques (e.g., color constancy) in Section 3.2, models of daylight in Section 3.3, and
surface reflectance models in Section 3.4. As Section 3.2 shows, research in color
machine vision has a rich history; however, there has been little work exploring issues in
outdoor images. The primarily physics-based models in Sections 3.3 and 3.4 that are
related to the issues in this work make strong assumptions that may not hold in outdoor

images.

3.2 Color machine vision

Research in color machine vision has a rich history, although relatively little of it
explores issues in outdoor images. Existing work in relevant aspects of color vision can
be divided into two categories: computational color constancy and physics-based
modeling. In addition, there is a body of research related to color vision in the areas of
parametric classification [16], machine learning techniques [10], color-based
segmentation [51][64][79], application-driven approaches [16][73], and color indexing
[28][82][85]. Finally, a number of other studies have been developed for particular
applications or domains [12][13][41][54][67][71][84][88][91][96], but do not deal with

issues related to outdoor color images.
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3.2.1 Color constancy

Most of the work in computer vision related to the variation of apparent color has
been in the area of color constancy, where the goal is to match object colors under
varying, unknown illumination without knowing the surface reflectance function. An
illuminant-invariant measure of surface reflectance is recovered by first determining the
properties of the illuminant.

Depending on their assumptions and techniques, color constancy algorithms can be
classified into six categories [26]: (1) those which make assumptions about the statistical
distribution of surface colors in the scene, (2) those which make assumptions about the
reflection and illumination spectral basis functions, (3) those that assume a limited range
of illuminant colors or surface reflectances, (4) those which obtain an indirect measure of
the illuminant, (5) those which require multiple illuminants, and (6) those which require
the presence of surfaces of known reflectance in the scene. Among the algorithms that
make assumptions about statistical distributions, von Kries and Buchsbaum assume that
the average surface reflectance over the entire scene is gray (the gray-world assumption)
[8][44]; Gershon [31] assumes that the average scene reflectance matches that of some
other known color; Vrhel [89] assumes knowledge of the general covariance structure of
the illuminant, given a small set of illuminants; and Freeman [25] assumes that the
illumination and reflection follow known probability distributions. These methods are
effective when their assumptions are valid. Unfortunately, as the examples in Chapter 1
(Figure 1.1, Figure 1.2, Figure 1.3, Figure 1.4) show, no general assumptions can be

made about the distribution of surface colors without knowledge of the reflectance, even
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if the distribution of daylight color is known. Consequently, these methods are too
restrictive for all but very constrained scenes.

The second category of color constancy algorithms make assumptions about the
dimensionality of spectral basis functions [81] required to accurately model illumination
and surface reflectance. For instance, Maloney [49] and Yuille [95] assume that the linear
combination of two basis functions is sufficient. It is not clear how such assumptions
about the dimensionality of spectral basis functions in wavelength space apply to a
reduced-dimension color space, such as the tristimulus RGB (Finlayson [22] discusses
this issue in greater detail).

Among the algorithms that assume limits on the potential set of reflectances and
colors in images is Forsyth's CRULE (coefficient rule) algorithm [24], which maps the
gamut (continuum) of possible image colors to another gamut of colors that is known
a priori, so that the number of possible mappings restricts the set of possible illuminants.
In a variation of the CRULE algorithm, Finlayson [20] applies a spectral sharpening
transform to the sensory data in order to relax the gamut constraints. This method can be
applied to algorithms using linear basis functions [49][95] as well. CRULE represents a
significant advance in color constancy, but its assumptions about gamut mapping restrict
it to matte Mondrian surfaces or controlled illumination; this is largely because
uncontrolled conditions (or even specularity) can result in the reflected color being
outside the limits of the gamut map defined for each surface without the help of a model
of daylight. Ohta [63] assumes a known gamut of illuminants (indoor lighting following

the CIE model), and uses multi-image correspondence to determine the specific
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illuminant from the known set. By restricting the illumination, this method can only be
applied to synthetic or highly constrained indoor images.

Another class of algorithms uses indirect measures of illumination. For instance,
Shafer [80] and Klinker [43] use surface specularities (Sato [77] uses a similar principle,
but not for color constancy), and Funt [27] uses inter-reflections to measure the
illuminant. These methods assume a single point-source illuminant, which limits their
application in outdoor contexts, since daylight is a composite, extended light source.

In yet another approach, D'Zmura [97] and Finlayson [21] assume multiple
illuminants incident upon multiple instances of a single surface. The problem with these
approaches is that they require identification of the same surface in two different parts of
the image (i.e., multiple instances of a given set of surface characteristics) that are subject
to different illuminants. Once again, the approaches have been shown to be effective
only on Mondrian or similarly restricted images. In a variation of this approach,
Finlayson [23] shows good results on a set of synthetic and real images by correlating
image colors with the colors that can occur under each set of possible illuminants.

The final group of algorithms assume the presence of surfaces of known reflectance
in the scene and then determine the illuminant. For instance, Land's Retinex algorithm
[45] and its many variations rely, for accurate estimation, on the presence of a surface of
maximal (white) reflectance within the scene. Similarly, Novak's supervised color
constancy algorithm [61] requires surfaces of other known reflectances.

Funt [26][29] discusses the various approaches to color constancy in greater detail.
The assumptions made by the aforementioned algorithms limit their application to

restricted images under constrained lighting; certainly, few such methods have been
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applied to relatively unconstrained outdoor images. It therefore makes sense to develop

models for outdoor illumination and surface reflectance under outdoor conditions.

3.2.2 Parametric classification

The emergence of road-following as a machine vision application has spawned
several methods for utilizing color to enable autonomous vehicles drive without specific
parametric models. Crisman's SCARF road-following algorithm [16] approximates an
“average” road color from samples, models the variation of the color of the road under
daylight as a Gaussian distribution about an “average” road color, and classifies pixels
based on minimum-distance likelihood. This technique was successfully applied to road-
following, but cannot be applied for general color recognition, because the variation of
the color of daylight according to the CIE model [42] cannot be modeled as Gaussian
noise. At the same time, the notion of an “average” color for the entire gamut under
changes of illumination and scene geometry may not be constrained enough for
classifying pixels under specific conditions. One of the contributions of this dissertation
is a definition of underlying models of illumination and reflectance, so that apparent
object color under specific conditions can be localized to a point in color space with an

associated Gaussian noise model for maximum-likelihood classification.

3.2.3 Techniques based on machine-learning

Pomerleau's ALVINN road-follower [73] uses color images of road scenes along with
user-generated steering signals to train a neural network to follow road/lane markers.
However, the ALVINN algorithm made no attempt to explicitly recognize the apparent

color of lanes or roads, or to model reflectance.
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Buluswar [10] demonstrates the use of machine-learning techniques for non-
parametric pixel classification as an approach to color “recognition”. Multivariate
decision trees and neural networks are trained on samples of target and non-target
“background” surfaces to estimate distributions in color space that represent the different
apparent colors of the target surface under varying conditions; thereafter, image pixels
are classified as target and background. This approach was shown to be very effective
for color pixel classification in several outdoor applications. The problem with such non-
parametric techniques is that their performance is determined entirely by the training
data: if there is training data for the set of encountered illumination and viewing
conditions and for non-target surfaces that can be expected in the images, then such
techniques can approximate discriminant boundaries around them. In the absence of such
data, however, the performance of non-parametric classification techniques in the
“untrained” portions of color space is unpredictable. Funt [30] also approaches color
constancy as a machine learning problem; as with other learning-based approaches, a
potential issue with this technique is that the training data needs to represent the gamut of
possible conditions that can occur, without which it is difficult to expect accurate

performance.

3.24 Color segmentation

In the problem of segmentation, the goal is to separate spatial regions of an image on
the basis of similarity within each region and distinction between different regions.
Approaches to color-based segmentation range from empirical evaluation of various color
spaces [64], to clustering in feature space [79], to physics-based modeling [51]. The

essential difference between color segmentation and color recognition is that the former
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uses color to separate objects without a priori knowledge about specific surfaces, while
the latter attempts to recognize colors of known color characteristics. Although the two
problems are, in some sense, the inverse of each other, results from segmentation can be
useful in recognition; for instance, Maxwell [51] shows the advantages of using

normalized color and separating color from brightness.

3.2.5 Colorindexing

Swain [82] introduced the concept of color histograms for indexing objects in image-
databases, proving that color can be exploited as a useful feature for rapid detection.
Unfortunately, this method does not address the issue of varying illumination, and hence
cannot be applied to general color recognition in outdoor scenes. Funt [28] uses ratios of
colors from neighboring locations,, so as to extend Swain's method to be insensitive to
illumination changes; unfortunately this method requires histograms of all the objects in

the whole scene to vary proportionally.

3.3 Models of daylight

As Chapter 4 discussed, the CIE model [42] has been used to define the color of a few
specific phases of daylight, and to parametrically model the overall variation of daylight
color. This radiometric model has been confirmed by a number of other radiometric
studies in various parts of the world [19][35][58][66], and has been used by several
machine vision researchers [21][63] in digital images. Chapter 4 shows—in detail—that
the CIE radiometric model cannot be applied to machine vision images because it does
not account for (i) ambient light from a sufficiently large portion of the sky, and (ii) the

effect of light reflected off the ground. In addition, the lack of context-specific data
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makes the CIE model difficult to use in a wide range of conditions where the specific
color of the incident light is required.

While the CIE model has been the most widely applied model in the context of color
images, Sato [77] develops an intensity-based model in which sunlight is characterized as
a “narrow Gaussian distribution” [77]. However, the model requires bright sunlight
without any clouds, and does not account for the effect of a cloud cover or sun-
obscuration (partial or full). Hence the applicability of Sato's model for color images

with unconstrained sky conditions is unclear.

3.4 Surface reflectance models

In general, surface reflectance can be modeled by a bidirectional reflection
distribution function (BRDF) [17][38][59], which describes how light from a given
direction is reflected from a surface at a given orientation. Depending on the
composition of the incident light and the characteristics of the surface, different spectra of
light may be reflected at different orientations, thereby making the BRDF very complex.

The simplest model of reflectance is the Lambertian model [38], which predicts that
light incident upon a surface is scattered equally in all directions, such that the total
amount of light reflected is a function of the angle of incidence. The Lambertian
model—and modifications thereof [65][93]—are used to describe reflectances of matte
surfaces.

However, for modeling surfaces which have a specular component, a number of
researchers use a composite of the specular and Lambertian components
[15][43][461[56][77][801[87][97]. For instance, Shafer [80] models surface reflectance

as a linear combination of the diffuse and specular components, and determines the

33



weights of each component from a measure of specularity. Shafer's Dichromatic
Reflectance Model shows that color variation in RGB lies within a parallelogram, the
length and breadth of which are determined by the two reflectance components. Klinker
[43] refines the Dichromatic model by showing that surface reflectance follows a “dog-
legged” (“1”-shaped) distribution in RGB, and then fits a convex polygon to separate the
reflectance components. In a variation of Shafer's approach, Sato [78] uses temporally
separated images to model the surface components. Each of these methods depends on
the presence of pure specular reflection from a point-source light. As Chapter 4 will
show, daylight is a composite, extended light source, not a point-source; consequently,
none of the aforementioned approaches have been applied to outdoor images. Lee [46]
derives the Neutral Interface Reflectance model which also models surface reflectance as
a linear combination of the two reflectance components and demonstrates the
effectiveness of his model on spectral power distributions of surfaces. Unfortunately,
Lee stops short of applying his methods to real digital images. Sato [77] applies the
Neutral Interface model and approximates sunlight as a “narrow” Gaussian (with a low
standard deviation) to recover the shape of surfaces in outdoor digital images. In another
approach to determining shape from shading, Nayar [56] uses photometric sampling (a
method of sampling reflectance under varying viewing geometry) to model surface
reflectance. While the methods developed by Nayar and Sato have been used for shape-
extraction, neither has been used to model reflectance in color space. None of the
aforementioned models have been used in the context of estimating apparent color in

outdoor images; some of the above bear particular relevance to the Normalized
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Photometric Function model developed in Chapter 5, and will be analyzed in greater
detail there.

As the preceding discussion indicates, there is almost no work that attempts to
estimate apparent color in realistic outdoor images (the one exception, Buluswar [10],
classifies pixels without explicitly modeling or estimating apparent surface color). The
goal of this dissertation is to adapt (and simplify) existing physics-based models and

thereby develop a method applicable to outdoor images.
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CHAPTER 4

A MODEL OF OUTDOOR COLOR

4,1 Overview

The first major contribution of this work is a detailed discussion of daylight color.
Even though a standard model for the variation of daylight color (the CIE model [42])
exists, this section shows that the CIE model has three disadvantages that reduce its
applicability to machine vision. First, the CIE radiometric equipment has a very small
ﬁéld-of-view (e.g., 0.5° and 1.5° [66]), in order to sample a small portion of the sky. On
the other hand, when daylight is incident upon a surface, the FOV of the surface can be
up to 180°, which means that there can be a significant amount of incident ambient light;
the CIE model does not account for this; émbient light. Secondly, in typical machine
vision images, a significant amount of light is reflected off the ground, thus changing the
composition of the light incident upon surfaces close to the ground; the CIE model does
not account for such indirect light. Finally, there is very little context-specific information
in the CIE model [14], which means that it is difficult to use the model to predict the
color of daylight under specific conditions. As a consequence of these three issues, the
CIE model cannot be used to estimate the apparent color of a surface, even if the
illuminating conditions are specified. In order to deal with these problems, Section 4.4
develops a context-based model of daylight color that makes it possible to predict the
color of the incident light under specific conditions (sun angle and cloud cover); this

prediction is then combined with a reflectance model developed in Chapter 5.
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4.2 The CIE daylight model

The CIE daylight model [42] is based on 622 radiometric measurements of daylight
collected separately over several months in the U.S.A., Canada, and England [9][14][35].
Such radiometric measurements are typically made by aiming a narrow tube [14] with a
very small field-of-view (e.g., 0.5° and 1.5° [66]) at a selected portion of the sky. The
light going through the collection tube falls on a planar surface covered with barium
sulphate (or a similar “white” material), and the spectral power distribution of the surface
is recorded. In the CIE studies, careful precautions were taken so as to eliminate the
effect of stray light—for instance, the data was collected on roof-tops, and all nearby
walls and floors, and even the collection tube, were covered by black light-absorbent
material [14].

The parametric model was then obtained by mapping the spectral power distributions -
of each of the 622 samples into the CIE chromaticity space, and then fitting the following
parabola to the points:

y=28x-3.0x"-0.275 4.1
where 0.25 < x < 0.38. In the rgb space (which is a linear transform of the chromaticity
space [37]), the model is:

g= 0.866r—0.831r° + 0.134 4.2)
where 0.19 <r < 0.51. Figure 4.1 plots the daylight model in rgb; the figure also plots
the CIE daylight model in the color circle. The regions of the function representing
(approximately) sunlight and skylight (Figure 4.1(b)) have been determined empirically,
based on radiometric measurements made by Condit [14] and the measurements shown in

Table 4.1 (which is discussed later in this section).
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For mathematical simplicity, the experiments that follow in later sections will
approximate the CIE parabola by the following straight line, also shown in Figure 4.1(c):

g=0227+ 0284 r 4.3)

which was determined by fitting a line to discrete points along the locus of the CIE
parabola in rgb. The RMS error introduced by the linear approximation (determined by
point-wise squared error for g-values generated for discrete r-values in the range 0.19 <r
< 0.51 at increments of 0.005) is 0.007. Figure 4.1(c) compares the linear and quadratic

models.

4.3 Daylight in machine vision images

The goal of the CIE studies was to obtain the precise color of daylight under some
specific conditions (e.g., noon in a clear sky, etc.). One of the motivations behind the
studies appears to be the design of artificial light sources [42]. Hence, some canonical
illumination conditions (such as noon sunlight and “average” daylight [42] were used as
models for artificial light sources. In order to assure the accuracy of the measurements,
high-precision radiometric equipment was used, and precautions were taken to prevent
stray light from entering the experimental apparatus. In addition, only small portions of
the sky were sampled by using the narrow collection tube.

Although these restrictions were required for the purposes of the radiometric studies,
such conditions are not typical in outdoor computer vision images. As explained in
Chapter 2, machine vision images are subject to a number of factors that can cause shifts
in the color of the incident light. We collected samples of daylight under varying
conditions from 224 color images of a calibrated matte white surface (Munsell number

NY/), where the apparent color of the white surface is the color of the light incident upon
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it. Figure 4.2 shows the sampling apparatus, along with samples of the color of daylight
obtained from the set of 224 images, plotted in rgh. The exact set of illumination
conditions sampled in these images is described in Table 4.1.

Figure 4.2(a) shows a board with a number of matte surfaces of different colors,
mounted on a tripod which has angular markings at every 5°, along with accompanying
adjustments on a rotatable head-mount. The surface in the middle of the board is the
Munsell White, and is used to sample the incident light. During data collection, the
angular markings on the tripod were used to vary the viewing geometry in the azimuth;
images were taken at every 10°. The viewing geometry with respect to pitch was
(approximately) fixed by maintaining a constant distance between the camera and the
surface, as well as a constant camera height. For the measurements at each sampled sun-
angle, the illumination geometry was also fixed with respect to pitch, but varied in the
azimuth using the tripod angular settings. Using this procedure, it was determined that
for almost'' the whole 180° range where the sun is directly shining on the surface, the
color of the incident daylight does not change with respect to varying relative viewing
geometry. Similarly, as long as the surface is facing away from the sun, the color of the
incident light is that of the skylight incident upon the surface. A total of 224 samples of
daylight were collected under the illuminating conditions described in Table 4.1. The
conditions were chosen so as to capture the maximum possible variation in the color of
the light each day. In order to reduce the effect of pixel-level noise, the color of the white
surface was sampled as the average over a 20 pixel x 20 pixel area. Figure 4.2(b) shows

the data collected using the apparatus in Figure 4.2 (a), plotted against the linear

' At the extreme angles (e.g., near the -90° and 90° viewing angles), too little of the surface is visible for
any meaningful analysis.
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approximation of the CIE model. The root-mean-squared error'? between the linear CIE
model and the observed data was only 0.006. However, the Cartesian spread of our data
was 0.162, about 46% of the spread of the CIE model, which is 0.353. In other words,
our data covers only a portion of the full range of daylight color predicted by the CIE
model, even though both studies sampled a similar range of sky conditions. In order to
determine why the spread in CIE data is more than twice that in our data, the
observations are divided into two groups: (i) those with an r value less than 0.33 (which,
as discussed in Figure 4.1, represent samples of daylight from the direction away from
the sun), and (ii) those with an r value greater than 0.33 (which represent samples from

the direction of the sun).

2 For every r value from the observed data (all of which were within the r range of the CIE model), a g
value was calculated using the CIE model in Equation 4.2, and then compared to the corresponding g value
in the observed data. Thereafter, the root-mean-squared error between the two sets of g values was
calculated.
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Figure 4.1. The CIE parametric model of daylight in (a) the rgb space and (b) the color
circle. The sunlight and skylight components have been empirically determined to be on
either side of the white point ([0.33, 0.33] in rgb and the center of the color circle). The
CIE studies [42] describe the factors causing the variation. Figure (c) shows the linear

approximation to the CIE parabola that this study uses for mathematical simplicity in
later sections.
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(b) Observed samples vs. CIE model

Figure 4.2. Samples of daylight color obtained from color images, compared to the CIE
model. The white surface in the center of image in Figure (a) reflects the color of the
incident light. These samples are plotted along with the linear approximation of the CIE
model in Figure (b).
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4.3.1 Incident light from the direction away from the sun

In the first group of samples, i.e., those with r values lower than 0.33, our samples (36
out of the 224 collected) stretched from [0.288, 0.302] to [0.326, 0.336], yielding a
Cartesian spread of 0.051. On the other hand, the portion of the CIE function with r
values below 0.33 stretches from [0.180, 0.264] to [0.320, 0.326], with a spread of 0.146.
Since the spread is representative of the extent of variation in color, the data indicates that
the variation in daylight according to our samples is about 35% of the variation according
to the CIE model (for the samples with r values below 0.33). Perceptually, this means
that the color of skylight is significantly “bluer” in the CIE model than in our data for the
same range of sampled sky conditions [14].'* The lowest r value according to the CIE
function is 0.180, with a corresponding g value of 0.263. Since there is no
documentation on the specific set of conditions that resulted in that particular sample in
the CIE data, a comparable radiometric study [66] is used. That study recorded an rgb
value of [0.180, 0.303] from a “cloudless sky at sunset™ [66], from a portion of the sky in
the opposite direction from the sun. For the same set of conditions, our data recorded an
rgb value of [0.288, 0.302]. This discrepancy constitutes a Cartesian shift of 0.108 along
the CIE linear function.

In addition to a clear sky with a setting sun, the color of the incident light from a
direction away from the sun was sampled for two other conditions: a clear sky with the
sun at 30° and an overcast sky. For the clear sky, our data showed a value of [0.324,

0.334], whereas the CIE data [14] shows a value of [0.258, 0.313]; this corresponds to a

13 Of all 622 CIE samples, the specific illumination conditions have been published for only 56 samples
from Condit's study [14].
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Cartesian shift of 0.069 along the CIE linear function. On the other hand, for the overcast

sky, our measure was [0.357, 0.335], very close to the CIE measure of [0.360, 0.336].

o
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(a) Narrow FOV device (b) Wider FOV device (c) Planar surface with 180° FOV

Figure 4.3. [Illustrative examples of devices/objects with different fields-of-view: (a)
tube-like. sensors/devices such as telescopes and photometers have narrow FOV’s; (b).
cameras have a wider FOV; (c¢) planar surfaces, on the other hand, have light incident
from the full 180° “field-of-view”. The implication of this phenomenon for outdoor
images 1s that planar surfaces will have light incident upon it from a much larger portion
of the sky than will the photo-receptor sensors of photometers (with collection tubes) or
cameras.

The following discussion shows that when there is a discrepancy between the CIE
model and our data, two factors account for the shift: (i) ambient skylight from a large
portion of the sky (which is incident upon the surface because of the 180° FOV, and (ii)
sunlight reflected off the ground. It is shown that the effect of ambient skylight accounts
for about 75% of the shift, while the ground's reflection of sunlight accounts for about
20%. In the case of an overcast sky, there is very little variation in the color of the
ambient skylight. At the same time, the sun is not visible, as a consequence of which the

ground does not reflect the color of the sunlight.
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4.3.1.1 The effect of ambient skylight

Figure 4.3 illustrates the significance of the field-of-view in outdoor images; the
figure shows three objects: (a) a telescope (with dimensions representative of some
photometeric tubes) with a narrow FOV (5°); (b) a camera with a wider FOV (45°), and
(c) a planar surface, which has a 180° FOV. In the context of outdoor illumination,
planar surfaces will have light incident upon it from a much larger portion of the sky.
The field-of-view of the measuring devices used in the CIE radiometric studies was
significantly smaller than that of the planar surfaces used for collecting our data; as a
result, our samples include a greater effect of ambient light. For instance, in the
radiometric study cited above [66], the field-of-view of the sampling device was 0.5°
(horizontal) and 1.5° (vertical); on the other hand, the white sampling surface used in our
“* apparatus has a field-of-view ‘of practically 180°. The sampling surface is Lambertian,
which means that its apparent color will be affected by light from every source in its
field-of-view. As a consequence, while the radiometric equipment measures the color of
light from a very small portion of the sky, our apparatus (which is far more representative
of surfaces in machine vision images) measures the color of incident light from a very
large portion of the sky—up to half the sky. This method is more suitable than the CIE

apparatus for estimating the color of daylight incident upon flat surfaces.
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Figure 4.4. Samples of direct skylight color obtained from different portions of the sky:
(a) experimental setup demonstrating how direct samples of the sky at different angles
(with the camera facing away from the sun) were collected—samples were collected with
the angle between the camera axis and the ground plane (6) at 5°, 15°, 30°, 45° and 85
(b) the samples plotted against the linearized CIE model. The data demonstrates that
different portions of the sky can exhibit different colors.

The following discussion shows that different portions of the sky have different
colors. To demonstrate this effect, we sampled five direct images of the sky using the
setup illustrated in Figure 4.4(a). The images sampled direct skylight at five different
angles (the angle 6 between the camera axis and the ground plane): 5°, 15°, 30°, 45° and
85°. The samples were from the eastern portion of a clear sky, with the sun setting in the

west—the same conditions reported in Parkkinen's radiometric study cited above [66].
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From each image, pixels were extracted from 10x10 areas, and then averaged; Figure
4.4(b) shows the color of pixels from each of the five images, which were: [0.201, 0.253]
at 5°, [0.188, 0.264] at 15°, [0.254, 0.288] at 30°, [0.261, 0.297] at 45°, and [0.259, 0.298]
at 85°. Perceptually, the color of the sky was “bluest” at an angle of 15°, and less “blue”
at lJower and higher angles. In addition, the data shows that the color of the sky varies a
great deal between 45° and 85°, which is the middle portion of the sky. The white surface
was then sampled facing up, towards the sky (i.e., not vertical as shown in Figure 4.2(a),
but almost horizontal, at an angle of approximately 5° in order to prevent direct incident
sunlight). Since the surface is Lambertian, its apparent color will be a mixture of the
light incident from all directions. The horizontal samples were taken on three different
days under the aforementioned conditions. Each time, the rgb value of the surface was
about [0.260, 0.299]. This means that when the .surface faces up towards the sky (and
there is no direct sunlight incident upon it) the color of the light incident upon it is
dominated by the middle portion of the sky. Hence, it can be assumed that the “average”
color of that half of the sky (under those conditions, i.e., clear sky with a setting sun), is
[0.260, 0.299]. If this average is accepted as a better representative of the color of
skylight than a sample from a small portion of the sky, then the color of skylight shifts
along the CIE linear function by 0.08 (which is the distance between [0.260, 0.299] and
[0.180, 0.303]). This shift is about 74% of the total discrepancy between our estimate of
the color of the incident light and the radiometric measurement [66].

For the clear sky with the sun at 30°, the color of the incident light (with the surface
standing vertically) was [0.324, 0.334], with the CIE measure for the same conditions

being [0.258, 0.313]. Hence, the discrepancy was a Cartesian shift of 0.069 along the
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CIE linear function. Direct measurements of the sky color (using pixels from a 10x10
area of the sky) were: [0.282, 0.303] at 5°, [0.256, 0.314] at 15°, [0.308, 0.326] at 30°,
[0.311, 0.329] at 45° and [0.310, 0.328] at 85°. The average color of the sky, as
measured by the white surface facing up towards the sky (with no incident sunlight) was
[0.309, 0.328]. The distance between the average color of the skylight and the CIE
sample was 0.053. All three points lie on (or within two standard deviations of) the CIE
linear function, meaning that the ambient light accounts for about 77% of the discrepancy
between the CIE model and ours.

For the overcast sky, the color of the incident light (measured using the vertical
sample) was [0.357, 0.335], very close the CIE measure of [0.360, 0.336]. This is
because the color of the sky was uniform—direct measurements of the color of the sky
were: [0.358, 0.336] at-5% [0.354, 0.334] at 15°, [0.358, 0.335] at 30°, [0.355, 0.336] at
45°, and [0.357, 0.335] at 85°. The average color of the sky (from the surface facing up
towards the sky) was [0.357, 0.335], which was, again, the color of the middle portion of
the sky. The CIE estimate [14] was [0.360, 0.336], which is very similar to the average
color of the sky. This is not surprising since there is very little variation across different
portions of an overcast sky. Note that in this case, there is no sunlight reflected off the
ground, either, which is another reason why there is no discrepancy between our data and
the CIE data. Table 4.1 (which is discussed in detail later), lists the color of the incident
light in the direction of the sun and away from the sun for a number of conditions. The
color of the ambient skylight is listed for each of the conditions, and whenever the sky
color is not overcast (i.c., when the sky is not uniformly colored), the ambient light

accounts for about 75% of the discrepancy between the CIE data and ours.
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4.3.1.2 The effect of ground reflection

While ambient skylight accounts for about 75% of the discrepancy between the

radiometric studies and ours, another 20% is explained by the effect of reflectance off the

ground. In our apparatus the white sampling surface is vertical, as a result of which the

incident light is from the sky as well as from other objects in the scene. Of the scene

objects, the one that is consistently the largest and closest to the sampling surface is the

ground. Since the sampling surface is Lambertian, its apparent color will be a

combination of light from all sources—in this case, the sky and the ground.

Figure 4.5(a) illustrates this phenomenon through four points:

1.

The first sample (labeled “Skylight” in the figure) represents the average color of
the sky (as measured by the surface oriented horizontally).

The second sample (labeled “Sunlight” in the figure) shows the color of the
incident sunlight from the direction of the sun (as measured by the surface facing
the sun).

The third sample (labeled “Ground” in the figure) shows the color of two types of
concrete on which the apparatus rests. The color of these samples is the very
similar to that of the incident sunlight, which is not surprising, since the concrete
is gray and is illuminated by sunlight. The reader may recall that direct sunlight
typically overcomes the effect of ambient light, as a result of which the color of
the incident light is that of the incident sunlight.

Finally, the fourth sample (labeled “Incident light” in the figure) shows the color
of the white surface oriented vertically. This sample represents the color of the

effective incident light, and lies on the line connecting the two points representing
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the color of the first point (i.e., the average color of the sky) and the second point
(i.e., the color of the incident light from the direction of the sun).

The data suggests that the color of the light incident upon a vertical surface is a
combination of the average skylight and the sunlight reflected off the ground. In order to
account for the linear shift along the CIE linear function due to the effect of ground
reflection, the three-dimensional world is modeled as a six-sided polyhedral box (see
Figure 4.6). In this (admittedly crude) model, the white surface faces one side, with its
back to another. When the surface faces away from the sun, the side of the box that is
behind the surface represents the portion of the sky with the sun. Hence, light is incident
upon the surface from five of the six sides. Of these five sides, four represent the sky and

one side represents the ground. The linear shift is modeled as a weighted sum of the

« brightness of each side. The brightness of the.ground depends on its own reflectivity, the

brightness of the sunlight and the visibility of the sun (due to cloud cover, etc.). If the
average brightness of the ground is represented by g, the ratio of ground brightness to sky
brightness by G, and the sun visibility factor (which is described in Table 4.1 and
Section 4.4) is represented by SV, then the effect of ground reflection can be determined
from the expression: (4xGxg + gxSV) (which represents the distance between the average

color of the sky and the color of the ground reflection).
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Figure 4.5. Samples of daylight color obtained from color images: (a) the color of
skylight (“Skylight”), sunlight (“Sunlight”), the effective incident light (“Incident”)
measured using the white surface, along with a direct measurement of the “average”
ground color (“Ground”); (b) direct samples of the “average” ground color (averaged
over 30x30 regions), measured from two different locations; (c) samples of the white
surface at different orientations (facing down, vertical, and facing up).
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Figure 4.6. Six-sided polyhedral model showing light incident upon the surface from five
directions: sunlight from one direction, ground reflection the bottom, and skylight from
above and the sides.

In the samples described in Figure 4.4 and Figure 4.5 (i.e., with the setting sun in a
clear sky), the sun visibility (SV) factor was 1, average brightness of the sky (measured
over 30x30 portions of the image, as the average ((R+G+B)/3) was about 1.5 times the
average brightness of the ground. Hence the polyhedral model evaluates to
(4x1.5%g + gx1) = 7g, meaning that the effect of ground reflection is 1/7" of the effect of
the éks;light. Therefore, the linear.‘ shift >is.:l;/;7fﬁ‘ of fhe way between the color oAf the sky
and the color of the ground. Using this method, the color of the incident light is
estimated to be [0.284, 0.306]; as men'tioned before, the observed color of the incident
light (from the surface oriented vertically) was [0.288, 0.302]. The previous section
showed that the effect of ambient skylight accounted for a shift of 0.08 along the CIE
linear function, from [0.180, 0.303] to [0.260, 0.299], which was about 74% of the total
discrepancy of 0.108. The effect of ground light accounts for a shift of 0.025 along the
CIE linear function, which is about 23% of the total discrepancy. Therefore, the
combined effects of ambient skylight and ground reflection—under this set of
conditions—account for about 97% of the discrepancy between the CIE model and our

observations.

52



Since ground reflectance affects the color of the incident light, the albedo of the
ground must also be taken into account. The data collected in this study was on two
types of ground surface: a concrete structure, and a lawn with dead, winter grass. The
average (again, over a 30x30 region) color of the two types of ground were very similar,
with both being the color of the incident light in the direction of the sun (see Figure
4.5(b)). Hence, a “gray-world” assumption about the ground was reasonable for our data,
but may not be reasonable for all types of ground—for instance, if the images were taken
in a field with bright green grass, the color of the ground reflection may be different.
Another advantage of the polyhedral box model of the world is that it can accommodate
the effect of miscellaneous scene objects on the color of the incident light, if their albedos
and sizes are known.*

Finally, Figure 4.5(c) shows:7 samples of the white surface as its orientation changes
from horizontal facing down to almost’ horizontal facing up. The data shows that the
apparent color of the surface (i.e., the color of the effective incident light) is one of three
colors: (a) the 2 samples labeled “Facing down” represent the color of the sunlight (when
the surface faces the ground, so that no skylight is incident upon it), (b) 3 more samples,
labeled “Vertical” represent the combination of skylight and sunlight, taken with the
surface oriented such that both skylight and ground-reflection are incident (with surface
orientation at 60°, 90° and 120° with respect to the ground plane), and (c) the remaining 2
samples (labeled “Facing up”) represent the apparent color of the surface when only
skylight, but no ground-reflection is incident (in other words, these last 2 samples

represent the color of skylight). This means that even if a surface is not exactly vertical,

' For instance, Gershon's approach [31] can take advantage of this model.
15 Again, the surface is almost horizontal so that there is no sunlight incident upon it.
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its effective incident light is the same combination of ambient skylight and ground
reflection for a wide range of angles, as long as both sources are in the field-of-view of
the surface.

The reader may recall that earlier discussions (in Section 4.3.1.1) explaining the
discrepancy between the linear CIE model and our data were based on samples under a
clear sky with the sun at 30°. Under those conditions, it was determined that the ground
color (sampled by the white surface facing down) was [0.372, 0.335]. Applying the
polyhedral box model of daylight to 9 of our samples, the estimated linear shift due to
ground reflection was determined to be about 0.013, which is about 19% of the total
discrepancy (which, as shown earlier, was 0.69).

For the overcast sky, there was no statistically significant discrepancy between the
CIE model and our data. In the previous section, it was shown that the:color:of the
ambient skylight under those conditions was uniform. Since the sun was completely
occluded by clouds, the ground reflection was the color of the ambient light—{[0.358,
0.335]. Note that since the sun visibility factor for an overcast sky is 0, the polyhedral
model suggests that there will be no shift from the average color of the sky (in other

words, the incident light will be the color of the sky, unaffected by ground reflection).

4.3.2 Incident light in the direction of the sun

The color of the incident light in the direction of the sun is not affected by ambient
skylight or ground reflectance. When the white surface is sampled at various orientations
between vertical and horizontal (facing the sky), the »gb color of the surface is exactly the
same ([0.436, 0.349]). The reason the color of the incident sunlight is not “diluted” is

that sunlight is significantly (about 4 or 5 times, as observed in the data) brighter than the
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ambient skylight. Consequently, the effect of ambient skylight is negligible. This
hypothesis is also supported by the fact that only about 1% of the CIE samples have an r
value greater than the samples in our study—meaning that in the direction of the sun, our
data is very consistent with the CIE data'®.

As a model of incident light color, with respect to specific sun-angle and sky
conditions, the CIE data does not account for ground reflection or the effect of ambient
light from a large portion of the sky. Any object in machine vision images will be
affected by one or both of these phenomena, which means that the color of the incident
light in vision images is likely to be significantly different from the predictions of the
CIE model. Hence, the CIE model may lead to incorrect estimations of apparent color,

and may therefore be inappropriate for vision applications.

4.4 Daylight color indexed by context

As stated previously, the color of the incident daylight depends on the sun-angle, sun
visibility, cloud cover, miscellaneous atmospheric particulate matter, and illumination
geometry. Hence, this study develops a context-based table of daylight color, in the
direction of the sun and away from the sun, indexed by the sun-angle (elevation), cloud
cover and sun visibility. The source data is the same as that shown in the distribution in
Figure 4.2. The sun-angle is the vertical rise of the sun, and can be calculated from a
standard astronomical equation, given the location (latitude and longitude) and time-of-

day [53]. In addition to using the equation, the sun-angle was confirmed through

'8 The reader may recall (from Section 4.3.1) that the CIE samples in the direction away from the sun were
perceptually “bluer” than ours. Since higher r values occur in samples facing towards the sun, the
negligible discrepancy (between the CIE data and ours) among the samples with high r values suggests that
the CIE measurements of light in the direction of the sun are perceptually not “redder” than ours.
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physical measurements with a protractor on the ground plane. The cloud cover is an
approximate measure of the percentage of the sky covered by clouds. The sun-visibility
factor, scaled from 0 to 1 is an approximate measure of the clarity of the sun. For
instance, if the sun is completely covered by a dark cloud, the visibility factor is 0;
similarly, if the sun is completely visible, the factor is 1, and if the sun is behind a thin
cloud but still perceptible, the factor may be about 0.5. Another way of determining the
sun-visibility factor is from the sharpness of shadows—the sharper the shadows, the
higher the visibility factor'’.

The table lists, for varying values of each of these conditions, the average rgb and
brightness from the direction of the sun rgbs, and V., and away from the sun (rgbaway
and V,,w,,y).18 The standard deviations for each of these measurements are also shown (in

-the columns marked o), along with the number of samples (#) taken. Note that the
standard deviations for the brightness values are too high to accurately predict the
brightness of daylight under a given set of conditions. Finally, the last column of the
table lists the average sky color (rghsy, measured with the white surface facing up
towards the sky; the standard deviation of rgb, across all the samples was about 0.004.
The data in Table 4.1 was collected at three locations in the U.S.—rural Massachusetts,
suburban Detroit, and suburban Chicago—in 1995, 1996 and 1997, respectively. Each of
the years, at each of the locations, the data was collected over six months: September

through February. Hence, this data does not account for possible variations due to

17 The sun-visibility factor affects the nature of the incident light in two ways: (1) It affects the color of the
incident sunlight; (2) It affects specular reflectance—this effect is described later. It may be possible to
measure the sharpness of shadows by gradient-detection techniques.

18 The measurement of brightness values in digital cameras depends on the gain-setting. For the data in
these samples, the CCD gain was fixed at 2.0 e-/count. Details of the effect of the gain control can be
found in camera users' manuals or other reference books [40].

56



seasonal factors (such as summer haze, etc.). In addition, the effect of smog is uncertain,
and the applicability of the model to areas with significantly different levels of smog or
haze is not clear [36].

It is difficult to compare the data in this table to the (small amount of) context-based
information in the Condit's data [14], because the radiometric measurements appear to
have a much greater variance among entries representing similar conditions. For
example, at a sun-angle of 30° on a clear day, the standard deviation in Condit's
measurements of incident light in the direction of the sun is about 0.020 in rgb
(corresponding to an 800°K difference in color temperature); the standard deviation for
the same conditions in Table 4.1 is 0.008. Although there are no explicitly stated reasons
for the variation in the radiometric measurements,'® it presumably stems from the fact
that the radiometric studies are (by design) sensitive to small changes in many of the
factors described in Chapter 2. Our data, on tﬁe other hand, is insensitive to small

variations in the scene, largely due to the larger field-of-view of the sampling white

surface.

** In fact Condit refers to these variations as being “surprising” [14].
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Sun Cloud Sun 18bgun Or-sun Van Oyosun 2bzuay r-away avay v-away y
Angle | % | visibility ® ooy | Gy | Vamy | Gumay | | 1EDsy
0-5 0-20 1 436 .006 195 24 .288 .009 53 29 8 .260
.349 302 299

0-5 21-50 1 436 .006 186 31 .296 .012 48 33 9 277
.349 312 .302

0-5 51-70 0.5 406 .008 | 158 36 319 .009 56 38 11 349
344 315 331

0-5 71-100 0 352 .005 41 22 352 .008 41 26 10 355
335 335 336

6-15 0-20 1 394 .008 | 206 31 .288 .010 58 34 6 274
.330 .302 305

6-15 21-50 1 394 .009 198 38 .296 .009 41 40 6 .296
.340 312 314

6-15 51-70 0.5 .368 010 | 167 29 319 012 41 32 7 331
334 315 330

6-15 71-100 0 352 .008 44 21 352 .007 36 24 6 352
335 335 .338

16-25 0-20 1 385 .008 | 221 28 323 .008 51 34 11 301
337 334 313

16-25 21-50 1 385 007 | 215 26 323 .013 51 26 7 334
337 334 323

16-25 51-70 0.5 376 .011 188 30 326 .012 58 32 4 337
337 336 329

16-25 | 71-100 0 352 .008 50 21 352 .009 48 25 4 357
.335 335 335

26-50 0-20 1 --370 008 | 224 33 323 .009 56 35 9 309
R N T: 1 A B : 334 .328

26-50 21-50 | 370 007 | 220 29 323 .011 69 35 8 333
332 334 332

26-50 51-70 0.5 359 .006 176 28 326 .010 51 31 4 347
337 336 334

26-50 | 71-100 0 352 .008 64 24 352 .008 68 29 9 354
335 .335 336

51-70 0-20 1 .350 007 | 249 36 323 .010 ! 38 3 312
.335 334 .330

51-70 21-50 1 350 009 | 249 35 323 .013 60 37 5 333
335 334 332

51-70 51-70 0.5 359 .010 170 37 .326 .010 43 37 9 341
332 336 332

51-70 | 71-100 0 352 .008 52 22 352 .008 51 25 8 352
335 335 335

Table 4.1. Context-based illumination model, showing and the rgb and brightness (V)
values for the incident light in the direction of the sun (rgbsun, Vsun) and away from the
sun (gbavay, Va rgbaway), for various conditions, along with the corresponding standard
deviations and the number of samples (#). The conditions are indexed by the sun angle,
the cloud cover (Cloud %) and the sun visibility factor. The last column shows the
average color of the sky (rgbs,), measured with the white surface facing up, towards the
sky.
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CHAPTER 5
A SURFACE REFLECTANCE MODEL: THE NPF

5.1 Overview

The second model developed in this study is the Normalized Photometric Function, a
reflectance model that is a simplified form of existing models [80] for use in outdoor
color images, and in particular with the daylight model from the previous chapter.
Several physics-based reflectance models exist, most notably Shafer's Dichromatic model
[80], Nayar's hybrid reflectance model [56], and Phong's shading model [70], but these
models make three assumptions that are not suitable for outdoor images. First, they
assume single-source illumination, whereas daylight is a composite illuminant; second,
they require brightness values, and the previous sections showed that the brightness of
daylight is difficult to model; ﬁnall:y',. .th&; three models assume that specular surfaces
always demonstrate the characteristic specular effect (the “spike”), which may not be true
if the illuminant is an extended source. This chapter discusses the existing models, and
then derives the Normalized Photometric Function (NPF) through modifications and
simplifications to the existing models, for use in outdoor images. A photometric function
typically plots the brightness of the light reflected off a surface as a function of the
viewing angle; the NPF, however, plots the relative change in normalized color of a

surface as the viewing angle changes.
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5.2 Existing physics-based models

The Dichromatic Reflectance Model [43][80] represents the intensity of reflected
light (radiance) L, at wavelength 1 for a surface at incident angle i, viewing angle e, and
phase angle g as:

L(dieg) = my(ie,g) cs(A) + my(i,e,g) cu(A) G
where ¢;(4) and cp(4) are the albedos at wavelength A for the specular and Lambertian
components, respectively; ¢; and ¢, are constant for a given surface, and are dependent
only on wavelength—not the illumination or viewing angles. The illumination and
viewing angles determine the geometric scale factors my(i,e,g) and my(i,e,g), such that
(0<m,, mp=<1). The Dichromatic model shows that most of the (i, e, g) combinations will
result in reflectance that is dominated by the Lambertian component, i.e., m; = 0, and
mp =1. For thé remaining angles, depending on the specularity of the surface, (OSﬁg,
m<1). The points from each of the two components are represented as two linear
clusters in a spectral histogram, which together form a skewed “L” in a parallelogram

representing the dichromatic plane in RGB space (see Figure 5.1).
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|_— Pixel values

R

Figure 5.1. The Dichromatic Model [43][80] describes reflectance in RGB space as a
skewed “1L”-shaped cluster within a parallelogram that represents the dichromatic plane.

According to the Phong shading model [70] (adapted for computer vision by Horn
[39]), the brightness of reflectance (L) at incidence angle i, viewing angle e, and relative
viewing angle » (the angle between the directions of viewirig: and maximal specular

reflection) is:
+
Liien)= tnz—] cos® (n) + (1-t) cos(i) (5.2)

where ¢ and a are parameters of the material; ¢ represents the total amount of light
reflected by the specular component, and a represents the clustering of reflection of the
specular component about the angle of reflection. In this model the falloff in the
brightness of specular reflection is a function of cos® (1), and the weights for the two
components are ¢ and (/-f). The value of a is determined empirically for a given surface,
and varies from 1 (for matte surfaces) to 200 (for highly specular surfaces). At (n= 0),
the brightness is maximal (i.e., 1), and falls off as the surface is rotated, to the minimum

(i.e., 0) at —-90° and 90°.
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Finally, according to Nayar's hybrid reflectance model [56], the total intensity 7 at a
given point on the surface is modeled by:

I= A4 cos(@s—6,) + Bé (6,— 26,) (5.3)

where 4 and B are the weights of the Lambertian and specular components, respectively,

and 6; and 6, are the angle of incidence and the direction of the surface normal.

The three models have three characteristics in common:

1. They model reflectance as a weighted linear combination of the Lambertian and
specular components.

2. The Lambertian component (also called “body reflection’) is modeled according
to Lambert's Law [38].

3. All three models deal with the brightness values across the visual spectrum, which
can then be represented; 1n RGBas the brightness along eéch of the three
dimensions.

The NPF similarly models reflectance as a linear combination of the Lambertian and
specular components, also using Lambert's law. On the other hand, the NPF models
reflectance in normalized color space (rgh) for compatibility with the daylight model in
Table 4.1, which is accurate only for rgb values. In addition, the incidence angle changes
across non-planar surfaces, thereby creating a variation in the brightness of the
Lambertian component at different portions of a surface [38]; however, the rgb color of

the Lambertian component surface does not vary due to a change in the incidence angle
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(as long as the illuminant color does not change).20 As a result, the NPF model can easily

be applied to non-planar surfaces.

There are also three notable differences between the three models:

e The Phong model assumes that the weights of the two components are dependent
(t and (1-1)); as described by Horn [39], this is because if an amount ¢ of the
incident light in reflected by the specular component of the surface, the remainder
of the light (which is (1-1)) penetrates to the “body” of the surface*' and exhibits
Lambertian reflectance. On the other hand, Shafer and Nayar do not explicitly
assume dependency between the coefficients of the two components.

e The brightness falloff models for the specular component are different: Nayar
uses th; delta function [57], Phong uses cos®n, and Shafer does not specify the

specular falloff function.

¢ Phong and Nayar, unlike Shafer, develop a photometric function.

Because it predicts reflectance in normalized color space, the NPF assumes that the
sum of the weights of the two components is 1. It is then shown that based on a
simplification of the Dichromatic model, the composite falloff function, i.e., the transition
between the color of the Lambertian component and the color of the specular component
(as the surface orientation changes) is along a straight line in rgb color space. Based on

the straight line, a piecewise-linear photometric function is empirically derived, mapping

 Note that the NPF ignores the effect of intensity, separating surface intensity from normalized color;
however, one of the pixel classification techniques described in Chapter 6 explicitly uses intensity
constraints.

?! Phong describes specularity as light reflecting off a thin, smooth outer layer of a surface, and Lambertian

reflection as resulting from penetration of light through the outer layer to the rougher “body” of the surface.
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the relative viewing angle (which is the angle between the directions of viewing and
maximal specular reflection) to the relative change in the weights of the two components.

As described earlier, there are three reasons the aforementioned three physics-based
models are difficult to use—in their current form—for color recognition in outdoor
images. First, all three models assume a single-source illuminant (either point or
extended).” The second reason is with regard to m; (to use the terminology of the
Dichromatic Model), the scale factor of the specular component. In the physics-based
models, m; is modeled either as an impulse function of i and e [46][56] or as a power of
cos(n) [70]. Intuitively, this means that all surfaces with (c;(1) > 0) (i.e., all surfaces with
a specular component) will exhibit the specular “spike”, which is modeled by m;(i,e,g).
Under daylight, the specular effect is apparent only under bright sunlight, but is
diminished or absent under iny’ skylight or under an overcast sky. Hence, the effect of
the illuminant (i.e., the presence, bbscuration of, or absence of the sun) on the specular
component must also be taken into account. The third reason the existing models need to
be modified is that all three reflectance models deal with intensity values, which are
independently calculated for each of the R, G, and B primaries when applied to color.
The CIE daylight model and the mc;del in Table 4.1 explicitly avoid intensity-based
modeling, because the intensity of incident daylight is difficult to precisely model. In
addition, as mentioned before, the brightness of the Lambertian component varies over

the area of non-planar surfaces; this means that using a non-normalized space would

22 Sato [77] adapts a general weighted linear reflectance model for shape recovery under daylight, and
applies it to shape recovery by modeling sunlight as a “narrow Gaussian distribution”. In that model,
Lon(8-60) = A exp (-(0-6)%(c°)), where Ly, is the intensity of sunlight with incidence angle &; and
reflecting angle s. The term o represents the standard deviation of the distribution, and 4 is an empirical
parameter. However, the model requires bright sunlight without any clouds, and does not account for the
effect of a cloud cover or sun-obscuration (partial or full).
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require knowledge of the surface normal at every point on the surface. On the other
hand, he normalized rgb color does not change due to a change in the incidence angle
under a given illuminant. Hence, although these reflectance models have been used
successfully for problems such as shape-from-shading (Nayar) and estimation of
reflectance and illumination parameters (Shafer), and for rendering synthetic images

(Phong), they have to be modified for use in outdoor images with a model of daylight.
5.3 Derivation of the NPF

As mentioned earlier, the NPF combines aspects of the three physics-based models,
so that it can be applied to a model of daylight such as the one in Table 4.1. To begin

with, the NPF separates the effect of intensity from that of normalized color. The NPF

can be derived from the Dichromatic Model, which does not explicitly assume: that the .. :

coefficients of the two components are dependent. In the Dichromatic Model, the
condition (0 < m;,, m, < 1) is true, but the condition (m;+ my = 1) is not assumed to be
true; in other words, the model assumes that the scale factors of the two components are
mutually independent. With the exception of some surfaces (such as fluorescent paints

and certain metals [32]), specular surfaces typically reflect back the color of the

illuminant, with a uniform albedo; hence, c(1) = 1.

In addition, it can be shown that for normalized color, the condition (m; + m, = 1) is
valid.? According to the weighted-combination reflectance models, in RGB, R, = WiR; +
WiRs, Goa = WiG; + WGs, and B, = W;B; + W,B;, where R,, G, and B, are the apparent

colors of the surface, R, is the albedo of the red component Lambertian, W, the weight of

% Note that this assumption is made in the intensity-based models derived by Phong [70] and Horn [39].
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the Lambertian component, and so on. In rgh, r = R/R+ G+B). Hence,

R, R
a =W + W
R,+G,+Bl Ry +G; + B

S

If the two weighted components are multiplied by

some constant 4 (representing intensity), then R, G and B all become multiples of 4, thus
leaving the ratio [R:G:B] unchanged. Hence, multiplying the components by a constant
does not alter r,, g,, or b,. Since the constants do not affect the apparent normalized
color, the ratio of the weights are what matter, not their absolute values. This means that
the weights are not independent. Hence, if both components were multiplied by the
expression (1/Wj), W; would be replaced by 1, and W, by (W/W;). By the same token, the
sum of the weights, W+W,, can be set to a constant; when that constant represents
maximal reflectance, the constant can be set to 1, with sub-maximal reflectance
represented by fractions between 0 and 1. Hence, it can be assumed that the condition
(W;+ Wg=1) is valid. |

Physically, if the specular component reflects the color of the illuminant, then a pure
specular surface with ms=1 and m;=0 will be the color of the illuminant. As the weight of
Lambertian component increases (with a change in the viewing angle), the apparent color
of the surface tends away from the color of the illuminant towards the color of the
Lambertian component. Hence, m; decreases as m; increases. In the extreme, if the
surface is Lambertian, m=0 and m;=1, and the apparent color of the surface is the
apparent color of the Lambertian component. This observation, also made by Horn [39],
makes (m; + mp=1).

Therefore, in rgb the Dichromatic Model can be simplified to:

L(A,i.e,g) = (1-my(i,e.g)) + my(i,e,g) cs(A)
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Note that (as explained earlier in this section) the expression cs(A) is eliminated from the
model because the specular component reflects back the color of the illuminant, meaning
that cs(1) = 1 . Further, the Dichromatic Model uses the phase angle g as a third angular
parameter, in addition to the incidence angle i and the viewing angle e. Accqrding to the
Lambertian model [38], the brightness—not the normalized color—is a function of the
phase angle. Hence, g can be simplified as the sum of i and e. Finally, by expressing the
combination of i and e as the relative viewing angle n, i.e., the difference between the
viewing angle and the angle of maximal specularity (as in the Phong model), the
Dichromatic Model can be normalized to:
L(@,n) = (1-my(n)) + my(n) cs(2) (54
In Equation 5.4 the Lambertian component is defined in the wavelength space.
According to the Lambertian model, the energy reflected at a given wavelength 1 is
méasufed as the product of the incident light and the surface albedo [38]:
p(A) = 1(4) cos(6;) o(4) (3-3)
where p(4) and (1) denote the intensity of the reflected and incident light at wavelength 4,
respectively, 6; is the angle of incidence, and o(1) is the surface albedo for light at
wavelength 4. In a normalized color space, the brightness component of the Lambertian
model is eliminated. Hence, the cosine factor in Equation 5.5 is dropped:
pA) =1(2) o(d) (5-6)
Equation 5.6, which uses the continuous wavelength space, can be reduced to the
three-dimensional rgb space by using a set of three camera/digitizer filters (which, the
reader may recall, are linear transforms of the CIE tristimulus functions [32], but need to

be calibrated for each individual camera), and then normalizing over intensity, to get:
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r= IE(/l);(/l)d/l
g= [E()g(A)da
b= [E(A)b(A)dA (5.7)

where r, g and b are the normalized color values derived from applying the filters 7, E

and b to the spectral power distribution of the incident light (E) at wavelength 1.
Equation 5.8 shows a discrete (three-dimensional) approximation of a continuous
function (in wavelength space). By applying this approximation to the wavelength-space
model from Equation 5.7, the Lambertian color-coefficient model [68] is derived as:

r=ri*W,+ g*Wg+ bi*Wp

g=ri*We+ g*Wee+ bi*Wep

b=r*Wy+ g*Weg+ b*Was (5.8
where r;, g; and b; represent the color of the incident light, and W,,, W,; and W,; are the
colof coefficients (albedo) of the red component of the surface under the red, green and
blue bands of the illuminant, respectively; the expressions associated g and b are
analogous. According to this model, the apparent color of a Lambertian surface (or the
Lambertian component of a surface) constitutes a linear transform of the incident light,
the coefficients of which are determined by the spectral reflectance of the surface. The
nine weights can be determined from a total of three images each under different
illuminating conditions (the three images constitute a total of nine equations for
determining the coefficients, three each of r, g, and b). Note that the off-diagonal terms
in the matrix are non-zero due to the overlap in the tristimulus functions [32].24 The

color-coefficient model makes the assumption that camera response is linear, i.c., that the

response along each of the three bands remains the same for all brightness values. As

24 Finlayson [22] shows that in some special cases, the off-diagonal terms are zero.
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discussed in Chapter 2, the response function for cameras can be nonlinear, and is a
function of the gamma-correction () factor. For each of the bands, the output signal o is
determined by (o = i*), where i is the strength of the input signal on the digitizer, and y,
the gamma-correction factor. Fortunately, it is not difficult to linearize the response [60]
(for some cameras, it is possible to simply disable the gamma-correction). For the data
collected for this study, the camera f-stop was adjusted so as to restrict the response to a

very small range in the middle, approximately linear portion of the response function.

In matrix notation, the color-coefficient model is represented as:

rl (w, w, w,Ir]
8| = W, ng ng gi
b J KAl

v (59)
Earlier, in Equation 5.4, the Lambertian component was represented by mg(n)cs(y),

J Wbr ng th

which is the wavelength form'of the color-coefficient model shown in Equation 5.9,
above. In the normalized rgb space, the apparent color of this component is a single
point determined by applying the color-coefficient matrix to the normalized color of the
illuminant. The specular component, represented in Equation 5.4 simply as (1-my(n)), is
an offset from the point (in the direction of the illuminant gb color) that represents the

apparent normalized color of the Lambertian component; Figure 5.2 shows this

phenomenon.
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Figure 5.2. The Dichromatic Reflectance model in normalized color space. The apparent
color of the surface is a point on the line between the points representing the colors of the
illuminant and the Lambertian component of the surface under that illuminant.

This means that in rgb (as in the RGB and wavelength spaces), surface reflectance

can be modeled as a weighted combination of the Lambertian and specular components

e
S

In rgb however, the two reﬂectanee components are represented by two pomts rather
than the two lines of the skewed “J.” in the Dichromatic model (see Figure 5.1); one of
these two points represents the illuminant, and the other represents the apparent color of
the Lambertian component under that illuminant. Note that the illuminant point also
represents the apparent color of the pure specular component, because under pure
specular reflectance, the apparent normalized color of the surface is that of the illuminant.
The variation in apparent color of a surface due to varying orientation is represented by
the line connecting the two points. The apparent color of a surface for a particular
combination of illumination geometry and viewing geometry (i.e., the relative viewing
geometry) depends on the relative strengths of the specular and Lambertian components,
and is represented by a point along the line connecting the two “pure” points (Figure 5.2).

This observation is supported in radiometric studies done by Lee [46], which show that in
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the CIE chromaticity space, the reflectance of various surfaces form straight lines which

converge at the point representing the illuminant.

Applying Equation 5.4 to the tristimulus functions shown in Equation 5.7 and to the
color-coefficient model in Equations 5.8 and 5.9:

A(n)= C+ [I-C]*p (5.10)

where 4 is the apparent rgb color (vector) of a surface at a relative viewing angle », under

illuminant color (vector) /, with a Lambertian component vector C, at relative distance p

between C and /.

5.4 The photometric function

A photometric function typically profiles the change in surface reflectance intensity

" as the“viewing angle ‘changes, where the vertical axis represents the range between =i

minimal and maximal intensity. Since the normalized rgb color of a surface is
constrained to be on the line between the color of its Lambertian component and the color
of the illuminant (i.e., the normalized dichromatic line shown in Figure 5.2), the NPF
relates the viewing angle to the point on this line. Hence, the vertical axis of the NPF
represents the relative change in nor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>