
Many-Layered Learning

Paul E. Utgoff
David J. Stracuzzi

Technical Report 02-13
March 25, 2002

Department of Computer Science
140 Governor’s Drive University of Massachusetts

Amherst, MA 01003 U.S.A.

utgoff stracudj @cs.umass.edu



1 Introduction 1

2 Background and Motivation 1

2.1 Learnability and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Sequential Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Design Goals and Assumptions 6

4 Two Concepts from a Card-Stackability Domain 7

4.1 A Hand-Designed Many-Layered Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 A View of the Target Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Learning From An Organized Input Stream 9

5.1 A Curriculum Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.2 Experiment #1: Perfect Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3 Experiment #2: Complete Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.4 Other Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Learning From An Unorganized Input Stream 12

6.1 A Stream-To-Layers Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.2 Experiment #1: Using All The Hand-Designed Concepts . . . . . . . . . . . . . . . . . . . 15

6.3 Experiment #2: Using A Reduced Set of Hand-Designed Concepts . . . . . . . . . . . . . . 16

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 The Two-Clumps Problem 18

8 Applying STL to a Larger Task 19

9 Summary and Conclusions 20



Many-Layered Learning 1

Abstract

We explore incremental assimilation of new knowledge by sequential learning. Of particular interest is how
a network of many knowledge layers can be constructed in an on-line manner, such that the learned units
represent building blocks of knowledge that serve to compress the overall representation and facilitate trans-
fer. We motivate the need for many layers of knowledge, and we advocate sequential learning as an avenue
for promoting construction of layered knowledge structures. Finally, our novel STL algorithm demonstrates
a method for simultaneously acquiring and organizing a collection of concepts and functions as a network
from a stream of unstructured information.

1 Introduction

Learning is an essential element of intelligent behavior. We know that a human cannot learn an arbitrary
piece of knowledge at any time. Instead, one is receptive to those ideas that would not be too difficult to learn
with a reasonably small amount of effort. Other ideas remain unfathomable and distant, until the agent’s
knowledge develops further, rendering such formerly difficult knowledge now simple enough to absorb. This
is the starting point for our discussion, that knowledge accumulates indefinitely, seemingly as a result of a
very basic kind of learning mechanism. Our discussion focuses on possible computational processes that can
model long-term layered learning.

Knowledge that could be acquired readily upon presentation constitutes a frontier of receptivity, and that
which has already been learned by the agent provides a basis on which to assimilate new knowledge. As
currently simple knowledge is assimilated, the frontier of receptivity advances, improving the basis for fur-
ther understanding of currently complex knowledge. We explore the idea that knowledge can accumulate
incrementally in a virtually unbounded number of layers, and we refer to this view and its approaches as
many-layered learning. How can an agent process its input stream so that it structures its knowledge in a
usefully layered organization, and how can it do so over long periods of time, say measured in decades?

We discuss why many layers of knowledge are necessary for learning non-trivial concepts. After this back-
ground perspective, we illustrate several important points with a concrete example. One of these points is that
layered learning can benefit from an input stream that is the result of an organized curriculum. The second is
that simple learning mechanisms can drive a knowledge organization process very effectively. An important
conclusion is that it is possible to design algorithms that model sequential learning of a large number of
interdependent concepts over a long period of time.

2 Background and Motivation

We proceed with a discussion of why a many-layered knowledge representation is essential for maximizing
knowledge compression and hence generalization. Then we comment on common approaches as practiced
in artificial neural network learning. Following that is a short review of recent work that considers how to
model learning of many layers of knowledge.

2.1 Learnability and Compression

Learning is a process of compressing observations and experiences into a form that can be applied advanta-
geously thereafter. A general statement or hypothesis may explain a great many observations succinctly, and
because it exploits regularity to achieve compression, it will likely be an excellent predictor of future events
(Rissanen & Langdon, 1979). To the extent that a hypothesis is a correct theory, it can help the agent to
predict consequences, and therefore to improve the agent’s projective reasoning. Structural and procedural
knowledge can each be compressed, and this has important implications not only for space consumption, but
also for time consumption and learnability.
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One critical means of achieving compactness is to refer to previously acquired knowledge whenever possible,
rather than to replicate it in place. One finds this notion in structured programming, by coding useful proce-
dures or functions, and then referring to them where needed. This leads to great compression of executable
code. It also results in large coding efficiencies, as the functionality needed in multiple locales is produced
and debugged independently just once, and is used by reference thereafter. Indeed, this approach to modular
programming led to the notion of data abstraction, sharing of code libraries, and the general elevation of the
functionality of programmable machines. There is no arbitrary or practical constraint placed on the depth of
the functional nesting.

Shapiro (1987) applied this model of structured programming to learning, calling it structured induction.
He saw that reuse of knowledge facilitated compression, and that a learner could benefit by applying this
idea to classification tasks. By decomposing a learning problem into learning subproblems, one can learn
the subproblems individually (in a context-independent setting), and then return to a higher level learning
problem at a workable level of abstraction. For example, in learning whether a King-Pawn-versus-King
chess position can be won, one of the important criteria is whether the pawn can outrun the opposing king
to the far side of the board in order to become a queen without being captured. This is itself a concept
(Boolean predicate (Bruner, Goodnow & Austin, 1956)) to be learned, which discriminates the can-outrun
from the cannot-outrun positions. Upon learning this outrun concept, it can be used as a primitive in the
original learning problem. This is a very powerful approach with respect to producing compression. Another
important view of this process is that the outrun predicate is a Boolean feature that is true or false of a
position, giving a new dimension for discrimination.

As with modular programming, there is no arbitrary limit on the number of layers of knowledge nested in
this manner. Shapiro demonstrated beautifully very dramatic improvements in compression, compared to
learning the same classification task without a structural decomposition. This is much more than a matter of
saving space. The total time required to learn the outrun concept and the canwin concept is very much less
than the total time needed to learn the canwin concept without the decomposition. The concept of outrun
is independent of the larger problem. It can be learned once, free of the contexts in which it appears, and
then be reused as needed within a variety of contexts. Otherwise, the equivalent functionality of the outrun
concept must be learned in each and every context in which it appears. The concept of outrun constitutes a
building block because it is an element of knowledge that can be used to simplify learning and expression of
higher level knowledge (predicates and functions) in more than one context.

Pagallo’s (1990) FRINGE algorithm attempted to find useful subconcepts by searching for the pathological
effects of omitting them. Whereas Shapiro provided the task/concept decomposition by hand, Pagallo did
not. She noticed that without decomposition, knowledge would replicate itself. In particular, fragments of
replicated structure can be observed at the fringe of a decision tree. By reducing each smallest replicated
subtree to a Boolean function, and then rebuilding the tree with that function as a new feature (variable), a
more compact tree would often result. In this way, important subconcepts could be identified automatically in
an iterative manner. However, a significant difficulty is that one must see enough data to cause the replicated
subtrees to form in each context. Thus, one must first suffer the consequences before obtaining the benefit.
This nevertheless remains a promising direction for further research.

Reducing replicated structure is a general approach to compression. Cook and Holder’s (1994) SUBDUE
system induces a graph grammar, guided by the minimum-description-length compression measure, beam
search, and background knowledge. There is no arbitrary depth limit for the grammar. They mention specif-
ically the important idea of building block knowledge, for example a benzene ring that was identified in a
chemistry application. One achieves compression by being able to reference something by name more than
enough times to overcome the small cost of maintaining a name for that substructure.

Zupan et al’s (Zupan, et al. 1999) HINT algorithm searches for a decomposition of the partial function indi-
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cated by a collection of labeled training instances. The algorithm considers limited subsets of the variables
and subfunctions of those variables, picking the configuration that compresses the data best. The algorithm
locks into each such decomposition step in a greedy manner. This approach is designed to find a functional
decomposition, which differs from grammatical structure replacement rules because a new function defini-
tion is synthesized. Although there are practical limitations on the arity of the decomposed functions, there
are no constraints on the depth of the decomposition (layering).

In summary, one important avenue for achieving compression is to avoid replication of knowledge. This can
be implemented by storing an element of knowledge as a single definition of some kind, such as a procedure
or a function or a concept, and then referring to that element as needed. Generalization includes not only the
process of grouping and abstracting data elements in the classical sense, but also very importantly the process
of organizing knowledge into usefully referencable entities that can serve as building blocks. One would
like to benefit from the widest applicability and reusability of the knowledge. Composition of individual
knowledge elements facilitates compression.

2.2 Artificial Neural Networks

A variety of artificial neural network (ANN) algorithms have been devised (Rumelhart & McClelland, 1986;
Freeman & Skapura, 1991; Fausett, 1994). They generally impose a severe constraint on the number of lay-
ers of computation, which causes compression and hence learnability to suffer. We shall refer to algorithms
and approaches that strongly limit the number of layers as few-layered learning. Artificial neural network
approaches that use few layers continue to receive a great deal of attention, because they can be applied to a
useful class of problems and because there is still much to learn about them. Artificial neural networks have
much to offer, and our own work reported here fits generally into this category, though not with the restric-
tion of few layers. Functionally shallow networks preclude forms of knowledge reuse that would facilitate
compression and learnability, and such shallow networks are unattractive in this regard, particularly when the
goal is to model lifelong accumulation of knowledge. Kass (1982) discusses various neural organizations.
Connectivity constraints and proximity constraints argue against neural plausibility of shallow networks.

The constraint of few layers limits the ability to reuse knowledge learned previously as building blocks.
Consider a Boolean function expressible by n layers of combinational logic. To reëxpress the function in just
two layers may require an exponential expansion in the number of gates and connections. The combinations
implicit in the deeper circuit must be made explicit in the shallower circuit. To undertake the learning of a
Boolean function subject to the constraint of just a few layers cripples the learning fatally by forcing it to learn
an exponential number of subconcepts. This affects both space and time consumption. One must observe an
exponential number of training instances in order to sample all the special case learning subproblems. These
principles apply equally well to layers of hard or soft threshold functions.

Consider a simple illustration of the organizational tradeoff. Suppose we were to wish to build a Boolean
logic circuit patterned by the expression:

or and or A B or C D and or E F or G H

where the letters indicate Boolean input values. As written, the corresponding circuit would have three layers
of computation, using seven two-input logic gates and fifteen wires, counting inputs and output. In contrast,
by distributing the two ands, a functionally equivalent logic circuit could be pattered by the expression:

or and A C and A D and B C and B D
and E G and E H and F G and F H

The corresponding circuit would have two layers of computation, using eight two-input logic gates, one
eight-input gate, and twenty-five wires. The three-layered circuit requires less hardware than the two-layered
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circuit. For the Boolean logic case, the constraint of two layers is analogous to requiring that a function be
expressed in disjunctive normal form, which provides poor compression and tedious learning of many special
cases.

Gradient-descent for global error minimization of shallowly nested functional forms has not been shown to
scale to deeply nested forms. There is anecdotal evidence that additional layers may degrade the learning
process (Tesauro, 1992). For networks of a fixed architecture, trained by global error minimization, theoreti-
cal results have shown that loading data into such a network is an NP-complete problem, independent of the
training algorithm and regardless of whether the network is shallow or deep (Judd, 1990; Blum & Rivest,
1988; Šı́ma, 1994). However, when the network architecture is allowed to grow during learning, or is trained
with localized signals, these results do not apply. White (1990) has shown that networks that grow during
learning can learn arbitrary functions in the limit.

Various shallow network architectures are often called universal approximators for certain classes of func-
tions (Mitchell, 1997). Although a function may be representable in such an architecture, the learnability
of such a function with such a representation is not guaranteed. It is similar to saying that any continuous
function can be approximated arbitrarily accurately by a sum of monomials; one may require an infeasibly
large number of such monomials. Similarly, any Boolean function can be represented by a disjunctive nor-
mal form (and hence a three-layered network), but such a form may suffer with respect to learnability and
compression. We must remain concerned with what is feasibly learnable in a given representation.

Jacobs et al (Jacobs, et al. 1991) presented a modular architecture that partitions a space of tasks in such a
way that one few-layered network handles each disjoint subset of the tasks. This is a form of decomposition
in the sense that the tasks are partitioned once at the same level, with one gating function to select from
among single subtask layer. A less sophisticated model of a similar kind is a piecewise-linear fit of training
data (Nilsson, 1965). Each linear threshold unit competes to classify an instance, and is trained accordingly
so that each linear discriminant applies to a subset of the training instances. Each linear discriminant serves
no other purpose than to provide an answer for its subdomain (of expertise). These shallow networks do not
produce building blocks of knowledge.

Another kind of non-constructive approach places multiple related tasks at the output layer with a few-layered
architecture (Suddarth & Holden, 1991; Caruana, 1997). This enriches the error gradient at the hidden units,
thereby hastening learning. Suddarth explored putting extra tasks on the output layer that did not actually
need to be learned. Their mere presence during the training process sped learning for the actual task of
interest. However, problems associated with using few layers remain.

Several constructive methods add hidden units during learning, increasing the width of one or more existing
layers (Ash, 1989; Hanson, 1990; Frean, 1990; Wynne-Jones, 1992; Utgoff & Precup, 1998). These con-
structive methods generally bog down fatally. This is often explained as becoming stuck at a local minimum,
or being forced to traverse a very shallow error gradient. However, the potentially exponential learnability
requirements imposed by so few layers are likely to be the major contributor. Other methods add hidden
units in a manner that increases the number of layers (Gallant, 1986; Fahlman & Lebiere, 1990), driven by
the single goal of reducing residual global error for the single task at hand.

Reiterating, to impose a constraint on the maximum depth of knowledge nesting imposes a very strong
constraint on the amount of compression and generalization that can be achieved. One cannot simply resort
to trying to train deep networks from the outset by gradient-descent for one or more advanced concepts at
the output layer. Nonrecursively partitioning a large task into a single set of special cases does not produce
building blocks of knowledge. Existing constructive methods have been designed for single-task learning,
and are designed to remove residual error, not form building blocks. Systems that are designed to solve
multiple tasks using shared hidden units in a fixed architecture benefit from sharing hidden units, but suffer
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from having few layers of computational units. We need deep networks in order to learn complex sets of
concepts over a long period of time, yet gradient-descent works only for shallow networks, leaving us with
the ability to learn only simple concepts with shallow networks.

2.3 Sequential Learning

To facilitate learnability and compression, it is important to eliminate hindrances where possible, particularly
any constraint on the number of layers of knowledge. We have mentioned several systems that have no such
constraint, but that solve one or more tasks fixed ahead of time. What of the longer view, in which we wish
agents to learn new tasks in terms of old? The ability to form building block concepts is critical. One means
of forming building blocks is to learn more than one concept in a sequential manner, so that old concepts are
available for use in expressing new concepts.

Some learning systems attempt to learn a succession of concepts instead of just a single target concept.
Sammut’s (1986) MARVIN is able to use previously learned concepts as building blocks when learning a
new concept. The system assumes the presence of a wise teacher. That teacher decides which concepts to
teach, and in what order. This has the positive effect of progressively improving the basis for subsequent
learning. Banerji (1980) refers to this layering of concepts as a ‘growing language’.

Clark & Thornton (1997) discuss the need for layers of representation based on the need to map one represen-
tation to another. They do not propose a specific algorithm, instead discussing the problem more theoretically.
They offer a very helpful distinction between two classes of learning problems, which they call Type-1 and
Type-2 learning. For Type-1 learning problems, our well-studied statistical methods capture regularity that
is directly observable, even if only faintly. However, for Type-2 learning, a mapping of the given variables
to new variables is absolutely necessary in order to uncover otherwise unobservable regularity. Of course,
more than one level of mapping to new variables may be needed, further complicating the learning problem.
Offline methods for searching for such mappings will generally be intractable because there is no informa-
tion available to guide the process, by definition. A clear implication is that such Type-2 mappings can arise
from learning a variety of concepts or functions in a Type-1 manner, some of which happen to provide useful
mappings for problems that will arise sometime thereafter. Clark & Thornton’s perspective is very important,
and we make use of their Types distinction below.

New work is beginning to appear that approaches larger learning problems in a bottom up manner, by learning
a progression of tasks. This is very much in the spirit of Shapiro’s work on structured induction, and it
addresses Type-2 learning problems by learning a sequence of tasks. For example, Stone & Veloso (2000)
have explored many-layered learning in the domain of robotic soccer. He observed that the learning tasks
he was tackling were intractable with standard (Type-1) methods. By teaching his system a progression of
simpler (Type-1) tasks, the larger (Type-2) task could be learned. The system relies on a teacher to decide
what to teach, and when. Stone does not propose a uniform approach to learning at each layer. Instead, any
learning algorithm and representation can be used at any layer of computational units.

A recent approach to nesting of learning tasks is the KBCC system Shultz and Rivest (2000). They extended
cascade-correlation by training a set of networks ahead of time to solve a variety of useful tasks. Their KBCC
system can add such a learned network (encapsulated), instead of a single unit, to the overall network being
constructed. This produces a nested form of learning.

Valiant (2000a,2000b) has proposed a ‘neuroidal’ architecture in which concepts are represented in layers
of linear threshold units. He discusses the idea that each unit should correspond to a concept, and that each
unit can be trained individually (a localized training signal). It remains to the designer to organize the units
and their connections, and to decide how to train them. There is no limit to the depth of the nesting, and the
goal is to express concepts in terms of other building block concepts. This is an important step toward deep
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networks of building blocks, and away from limitations imposed by employing only gradient descent driven
by output error.

In a somewhat different vein, there is work that studies how a developing nervous system impacts learning.
For example, Elman (1993) has suggested that the less developed mental capacity of infants helps learning
by admitting only small chunks of knowledge. Simulations with language learning in artificial neural net-
works indicated that starting with a small network capable of processing short sentences helps to accelerate
learning. When development continues, modeled by enlarging the network, the ability to learn to process
longer sentences is considerably enhanced by having already learned to handle short sentences. Starting with
the larger network at the outset impairs learning. More recently, Dominguez and Jacobs (2001) showed that a
developmental approach to learning improves performance. Learning at one granularity of vision (spatial fre-
quency range), followed by learning at another is more efficient than learning with both granularities from the
outset. These demonstrations of advantages that accrue from a developing nervous system are compelling.
Some physical developmental stages are obvious in animals. For example, Turkewitz & Kenny (1982) dis-
cuss generally how some neural subsystems are programmed to have a head start over others. Kittens are
born with fully functional visual systems, yet with eyelids that remain sealed for 6-7 days after birth. This
gives weaker sensory systems a chance to develop before stronger systems are enabled that would otherwise
dominate.

Quartz and Sejnowski (Quartz & Sejnowski, 1997) discuss patterns of neurological growth, including axonal
and dendritic arborization, and synapse formation. They relate various studies that support the notion that
nerve activity (use), and correlation among signals of proximal dendrites promote growth and branching.
Their view is that development and learning are very much driven by the agent’s experiences and interactions
with its environment. Learning remains a nonstationary problem throughout the life of the agent.

Recapitulating, there are Type-2 problems that are too difficult to learn as a shallow Type-1 mapping from
the inputs to the outputs. Indeed, this accounts for the common approach of manually engineering an input
representation in order to reduce the learning task to something simple enough for one of our presently weak
algorithms to handle. A handful of researchers are examining how to nest learning, so that new learning
problems can be made easier by what has been learned previously. Developmentally, limited processing
capability can facilitate early learning. As processing capability develops, new learning can build on top of,
or influenced by, what has already formed.

3 Design Goals and Assumptions

Our primary goal is to design a single learning mechanism that can exhibit difficult (Type-2) learning by way
of layered simple (Type-1) learning. This constitutes a different paradigm from the more typical approach of
applying a Type-1 method to a Type-1 problem, possibly with hand-engineering of the input representation,
or applying a Type-1 method to a Type-2 problem. In our view, learning of difficult concepts takes place only
after learning of prerequisites renders them not difficult. This is very different in scope from the common
attitude, much evident in practice, that one should be able to turn on a learning system and watch it run to
completion. We share this goal, but hold that systems capable of Type-2 learning will require more than
Type-1 learning algorithms. We conjecture that they will also require a bottom-up layering mechanism, so
that Type-1 problems and results can be composed to realize Type-2 learning.

Our paradigm does not mean that such a learning system could not be used to learn a single difficult concept
of interest, but it does mean that preparatory learning would need to occur as a prerequisite. In any case,
we envision a system that is oriented toward long term learning of a large number of concepts that are too
difficult to learn any other way. To this end, we are also interested in how knowledge can accumulate in a
set of data structures that do not lose their utility (Minton, 1990). Organization of knowledge in terms of
building blocks is an essential element of our design. Of particular interest is how building blocks can be



Many-Layered Learning 7

identified in an on-line bottom-up manner, without resorting to off-line analyses of large data collections to
search for useful decompositions. We shall distinguish on-line composition from off-line decomposition,
even though a retrospective view of local knowledge organization may bear some strong similarities.

We make three basic practical assumptions in order to produce a workable scope for experimentation. The
first is that linear threshold units and linear combination units are the only unit types, and that they are
individually trainable. The second is that such a unit can be adjusted at any time by delivering (presenting) a
training instance to it, wherever the unit may be located in the network. We do not propagate errors backward;
gradient-descent is applied only locally at each unit to train its adjustable parameters (weights). The third
(very common) assumption is that the instance (input) representation consists of a set of propositional and
numeric variables.

The remaining sections present a domain that requires Type-2 learning, two algorithms that accomplish Type-
2 learning by layering of Type-1 learning, and a second well-known domain in which our bottom-up approach
outperforms a gradient-descent approach. We conclude with a discussion of the main lessons that we have
learned.

4 Two Concepts from a Card-Stackability Domain

In the sections below, we explore several aspects of many-layered learning. Of interest is how to build an
on-line learning algorithm that organizes its concepts (linear threshold units and linear combination units) as
it acquires them. To ground the discussion initially, we employ a domain in which the most advanced of the
concepts are two kinds of card stackability found in many forms of card solitaire. These concepts are rich
enough for purposes of study and illustration.

The first kind of card stackability, called column stackable, pertains to cards that are still in play. A card c1
can be stacked onto a card c2 already at the bottom of a column if two conditions hold. First, the color of the
suit of card c1 and the color of the suit of card c2 must differ, and second, the rank (ace..king) of card c1 must
be exactly one less than that of card c2. We shall ignore the rules for which cards may be placed at the head
of a column, as they are immaterial here.

The second kind of card stackability, called bank stackable, applies to cards that become out of play upon
being stacked onto a bank. A card c2 that is still in play may be placed onto a card c1 that is out of play in
a bank if two conditions hold. First, the suit of card c2 and the suit of card c1 must be identical, and second,
the rank of card c2 must be exactly one more than that of card c1. Again we shall ignore the rules for which
cards may start a bank (typically the aces) as they are unimportant here.

Notice that these concepts depend on the properties of each card individually and each pair of cards collec-
tively. The terms suit, rank, suit color, suit colors differ, rank successor, and suits identical are mentioned,
and are building blocks themselves. For humans, these concepts and functions are not difficult to compute,
primarily because the rank, suit, and suit color are indicated plainly on each card. However, to make the
problem slightly richer, yet nevertheless understandable, suppose that the deck of cards to be used does not
have these standard indications. Imagine instead that each of the fifty-two cards has solely one of the integers
in the interval 0 51 indicated, without rank, suit, or color. The rank of each card is implicitly an integer in
the interval 0 12 , and the suit is implicitly an integer in the interval 0 3 . Suits 0 and 2 are grouped into
one color, as are suits 1 and 3. This produces a problem that is simple enough to understand in its entirety,
yet that is rich enough to lend itself to requiring many layers of knowledge. Deeply nested knowledge is our
goal here; we do not wish to hand-engineer an input representation that leaves a problem simple enough for
a few-layered (Type-1) method.

For completeness, we state these definitions formally, but we shall not attempt to learn them exactly this way.
We can define column stackable and bank stackable as:
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Figure 1. Hand-Designed Many-Layered Network

suit(x) = (x div 13)
rank(x) = (x mod 13)
suit color(x) = (suit(x) mod 2)
column stackable(c1,c2) (suit color(c1) suit color(c2)) (1+rank(c1) = rank(c2))
bank stackable(c2,c1) (suit(c1) = suit(c2)) (1+rank(c1) = rank(c2))

Notice that we have given a nested set of definitions. It is more compact to express the target concepts in
such a manner. However, in our discussion below, we shall avoid the integer and modular arithmetic that we
have employed here.

4.1 A Hand-Designed Many-Layered Network

Figure 1 shows a hand-designed many-layered network consisting of the inputs, a variety of building block
units, and the two target concepts. All the units are shown in a line of boxes at the top, with the units of
each layer shown as a group. For any unit, its output line descends diagonally to the right, and its input line
ascends diagonally from the left. An output line of one unit is connected to the input line of another unit
only where a dot appears at their intersection. Lines crossing without such a dot are not connected. A linear
threshold unit is shown as a clear box, and a linear combination unit (no threshold) is shown as a shaded
box. For example, rank(c1) has as its inputs (following its input line diagonally to the left and looking for
connecting dots) input(c1), club(c1), diamond(c1), heart(c1), and spade(c1).

The building-block concepts and functions successively map the inputs to increasingly useful representations.
Notice that there are six layers of computation, indicated by the seven groups of units. These subconcepts
are learning problems in their own right. An agent should be able to acquire a structure of many layers that
represents this knowledge. We shall see below in Section 6 that some of these units turn out to be not strictly
necessary. This is simply a network that a human might (did) reasonably construct, and it serves our purpose
for the moment.
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The propositional concepts for each card individually are symmetric. Looking at those for card c1, the con-
cept of suit corresponds to fixed sub-intervals of the domain interval 0 51 . The less13(c1), less26(c1), and
less39(c1) concepts enunciate these critical subinterval boundaries. With knowledge of these subintervals, it
is straightforward to compute the suit of c1 by testing whether it falls into a particular subinterval, but not
the next one smaller. The following table indicates how the suits are computed from the subintervals for an
integer card value c1:

less13(c1) less26(c1) less39(c1)
T T T spade(c1)
F T T heart(c1)
F F T club(c1)
F F F diamond(c1)

If one were to compute the suit value as an integer in the interval 0 3 , and reference the input card value c1,
then one could compute rank from the linear combination: c1 13 suit(c1). The weight from each suit unit
subtracts the corresponding multiple of 13 from the rank unit. However, in the hand-designed network above,
there is no suit unit. Instead, there are four Boolean units, one for each suit. Assuming here that TRUE maps
to 1, and FALSE maps to 0, a suitable linear combination to compute rank would be: c1 - 39 diamond(c1)
- 26 club(c1) - 13 heart(c1) - 0 spade(c1).

Each of the suit colors red and black is a simple disjunction of the relevant suits. The suits black red unit, the
suits red black unit, and the suit colors differ unit collectively compute an exclusive-or of the suit color. The
rank successor concept is somewhat opaque because of using hard-threshold units to test this relation. To test
for a difference of exactly one using only inequalities, it is necessary to test simultaneously for whether the
difference in rank is at least one and for whether the difference is at most one. If each is true, then of course
the difference is exactly one. The concept of suits identical is a disjunction of the four suit-equivalence
tests. Finally, column stackable is the conjunction of the suit colors differ and rank successor concepts, and
bank stackable is the conjunction of the suits identical and rank successor concepts.

4.2 A View of the Target Concepts

Figure 2 depicts the two target concepts column stackable and bank stackable as a matrix. Card c1 indexes
the row, and card c2 indexes the column. A large solid dot indicates an ordered pair that is column stackable,
a large hollow dot indicates an ordered pair that is bank stackable, and a small solid dot indicates a pair that
is either impossible or that is not a member of either target stackability concept. No ordered pair can be both
column stackable and bank stackable. One can see that in these two input dimensions, each of the concepts
requires some care to specify exactly. There are twelve decision regions, each with boundaries that are not
aligned with either of the axes. The depicted decision boundaries and enclosed regions are discussed below.

5 Learning From An Organized Input Stream

We would like to design an online learning algorithm that learns new concepts, using previously learned
concepts as additional inputs to each learning task. Our goal is to mimic a process of being receptive to those
new ideas that are not too difficult to understand, given the current state of knowledge. How can we model
mechanisms of this kind? This section presents an illustration of the economies that accrue from learning
each layer, one after the other.

5.1 A Curriculum Algorithm

The hand-designed network of Figure 1 can be learned sequentially, one layer at a time. Each concept
or function to be learned at a layer is trained individually in a supervised manner, as though it were an
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52

Figure 2: Target Concepts For Column Stackable (Large Solid Dots) And Bank Stackable (Large Hollow
Dots)

independent learning task. It is possible to learn each concept as a single unit, one at a time, but because
the units at each layer are not connected to each other, it is also possible to take on an entire layer at a
time. The stream of training examples is processed by delivering (presenting) each training example to its
corresponding unit. One waits until the concepts at a layer are learned sufficiently well before proceeding to
the next. This supposes a good teacher or other mechanism for organizing the training in such a sequential
manner, and deciding when to proceed to the next layer.

Although in our example the main goal for the agent is to learn the two concepts regarding stackability, these
are too difficult to learn immediately. One needs to learn the simpler concepts first, to build a satisfactory
basis for subsequent Type-1 learning. In this domain, it is important to learn first that certain intervals of
integer values are important to recognize. From that basis, it becomes much easier for the agent to learn the
suit concepts. So it goes, each new layer of knowledge advancing the frontier of receptivity, preparing the
agent to acquire the next. It is the layering of Type-1 learning that produces Type-2 learning.

We implemented an algorithm to train the layers successively as described above. This is an instance of a
curriculum algorithm, which we shall characterize as any algorithm that is designed to provide instruction
in an order that corresponds to a workable progression of an agent’s frontier of receptivity. When an ordered
pair of cards is presented, a class label (or function value) is included so that the corresponding unit can
be trained. If the unit is on the first computational layer, it is trained in a straightforward manner, using
the appropriate error correction rule. Each linear threshold unit is adjusted by stochastic gradient-descent
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to reduce the absolute error, using stepsize 0.1, real inputs normalized by the largest magnitude for each
input variable individually, and Boolean inputs mapped onto 1 for TRUE and -1 for FALSE. Each linear
combination unit is adjusted by stochastic gradient-descent to reduce the mean-squared error, using the same
stepsize, normalization, and Boolean input encoding. If the unit is beyond the first computational layer, all
the units preceding it are first evaluated in a feed-forward manner, so that its inputs are available, given the
ordered pair of cards (Rivest & Sloan, 1994). Then the error correction rule is applied.

5.2 Experiment #1: Perfect Connectivity

In a simple experiment, all the exact dependencies of the knowledge elements (concepts and functions mod-
eled as linear units) were known, sidestepping any problems of connectivity. As shown in Figure 1, the units
of each layer were learned successively in 2, 2, 557, 3, 2, and 2 epochs for each layer respectively, using all
the examples as the training corpus. Our interest here is in memory organization, not classification accuracy,
so there is no need to use less than the full corpus. Total cpu time was 13.2 seconds on a 1.13-gigahertz
Pentium III.

5.3 Experiment #2: Complete Connectivity

A second experiment was run in which the connectivity was not known in advance. Instead, for each new
layer of unlearned units, the output of every previously learned unit (including the input units) was connected
as an input to each unlearned unit of the new layer. In this case, the layers were learned successively in 4, 2,
537, 4, 2, and 3 epochs respectively, in 41.6 seconds. Even with this highly connected approach, the target
concepts were still learned very rapidly when the layers are trained in this sequential manner.

The approach of allowing all inputs or previously learned concepts to serve as an input basis for subsequent
learning has the desirable property of allowing the agent to draw on whatever it already knows in order to
understand what is new, to find regularity where it would otherwise be obfuscated. However, an undesirable
property of this massive connectivity is an ever-growing dimensionality for subsequent learning, which will
not scale to large problems. One can adopt a method for learning in the presence of many irrelevant sub-
concepts (Littlestone, 1988), or implement a mechanism for eliminating connections, or devise a scheme for
adding connections selectively. We present a connection elimination mechanism below, but we did not use it
for our curriculum algorithms.

5.4 Other Experiments

We conducted experiments with a variety of feed-forward artificial neural networks and backprop (Werbos,
1977; Rumelhart & McClelland, 1986), which are too numerous to report in detail. In summary, putting
aside speed issues, network topologies with more than two layers of hidden units failed. This was so even
when providing a topology with perfect connectivity, as given in the hand-designed network of Figure 1.
When confronting the task with the common two layers of hidden units, convergence was also elusive. The
curriculum algorithm we used was given specific information for each of its units, and backprop was not.
We are not offering a classical comparison of any kind. Rather, we are illustrating that there are limitations
to backpropagation of error, a form of top-down learning, that are avoided with a curriculum algorithm, a
form of bottom-up learning. Reflecting on our experiments, the first layer provides decision boundaries, and
the second layer combines groups of boundaries to form decision regions. These regions, when found, are
specific to the task at hand. Would such units, if learned, constitute building blocks? We think not.

5.5 Discussion

Figure 2 depicts possible decision boundaries (and implicitly the decision regions) for the two target card-
stackability concepts. These twelve regions partition the instance space, but do not provide multiple layers
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of composed knowledge. Instead, these regions are tailor-made for the two target card-stackability concepts.
While partitioning instance space for a particular task may seem like a satisfactory accomplishment, we
would rather that learning take place in a way that provides successive levels of mapping based on using ear-
lier concepts where possible. For example, if a two-hidden layer network is coaxed to learn column stackable,
leaving out bank stackable, decision boundaries other than those depicted in Figure 2 may be found. For ex-
ample, the boundaries (horizontal and vertical in the figure) might instead transect the bank stackable regions
(have slope -1), making them useless for the subsequent purpose of learning bank stackable.

The decision boundaries that are shown in Figure 2 would happen to work for either task alone, because they
conveniently bound regions that are relevant to both stackability concepts. Alas, learning one of the tasks
alone may not result in such serendipitous boundaries that are useful for each. Examining this figure, we see
that a 2/16/12/2 network is capable of representing both of the target solitaire concepts. There would be two
input units, sixteen computational units at layer 1 (for sixteen region boundaries), twelve computational units
at layer 2 (for twelve regions), and two output units, each computing a disjunction of the needed regions.

As we noted above, the ability to represent something does not mean that learning will succeed. Indeed,
theoretical results from computational learning theory show that we should not expect a global training
algorithm to perform well on this problem. Notice that each of the two outputs in the 2/16/12/2 network
architecture described above is in a k-term DNF format. Pitt and Valiant (1988) proved that k-term DNF
concept representations cannot be efficiently learned. Although an equivalent k-CNF representation may be
learned efficiently, converting from k-term DNF to k-CNF causes a worst case exponential explosion in the
representation size.

Returning to Figure 1, imagine lopping off the bank stackable unit and its unique predecessors. That would
excise bank stackable, suits identical, both spade, both heart, both club, and both diamond. Now, to learn
bank stackable, it would be necessary to learn just these six concepts. The modularity of the subconcepts
is apparent, making the learning of bank stackable relatively easy, given the existing knowledge of col-
umn stackable.

To illustrate this point further, suppose that we wanted to reuse these networks for recognizing concepts
in poker. The network in Figure 1 contains many concepts that can be applied to the new problem. For
example, rank successor is needed to evaluate what elements of a possible straight may be present. Similarly,
suits identical can be used in evaluating a flush. The same cannot be said of the few-layered networks
discussed above. Few, if any, of the divisions are relevant to the new concepts, forcing learning to begin
anew.

For sequential Type-2 learning to work well, the decomposition of the presumably final targets into useful
subconcepts must already have occured. Does an agent ever really learn a final target? One must learn the
building-block knowledge for future tasks yet to be encountered. In some sense this seems impossible, but it
is only a matter of viewpoint. It is only in the top-down-decomposition view of the world that time must run
backward. In the bottom-up-composition view, building blocks are created based on experience. A new block
is learnable if and only if the prerequisites are in place. Learning simple useful concepts in a many-layered
organization lays the foundation for whatever else may come.

6 Learning From An Unorganized Input Stream

We present and discuss our novel STL algorithm, which demonstrates a mechanism for organizing concepts
in terms of each other at the same that they are acquired. This models quite directly the notion of an advancing
frontier of receptivity, even without a teacher prescribing the layering.

Although an agent can benefit greatly from receiving information in an order that conforms to the agent’s
receptivity, one cannot expect life’s experiences to be ordered so well. How can learning of multiple layers
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of building-block knowledge work in the absence of a good ordering of experiences? One approach is to try
at all times to make sense of all that one can. This entails great inefficiency, but it can account for learning
useful building blocks. Agents make different use of the information that they receive, presumably because
their current knowledge differs, giving each its own frontier of receptivity. For example, two people attending
the same lecture will hear and understand it differently. How can this process be modeled?

6.1 A Stream-To-Layers Algorithm

Consider again the two target concepts column stackable and bank stackable. Suppose now that when an
ordered pair (c1,c2) instance is presented, a set of observed relations is also stated, each as a positive or
negative atom. For example, consider the following instance, in which c1 is bound to 6 (the 7 ) and c2 is
bound to 8 (the 9 ):

c1/6,c2/8 , (less13(c1), less26(c1), less39(c1), spade(c1), heart(c1), club(c1), diamond(c1), black(c1), red(c1),
rank(c1,6), less13(c2), less26(c2), less39(c2), spade(c2), heart(c2), club(c2), diamond(c2), black(c2), red(c2),
rank(c2,8), both spade(c1,c2), both heart(c1,c2), both club(c1,c2), both diamond(c1,c2), black red(c1,c2),

red black(c1,c2), rank one or more(c1,c2), rank one or fewer(c1,c2), suits identical(c1,c2), suit colors differ(c1,c2),
rank successor(c1,c2), column stackable(c1,c2), bank stackable(c1,c2)).

In the following instance, c1 is bound to 46 (the 8 ), and c2 is bound to 34 (the 9 ):

c1/46,c2/34 , ( less13(c1), less26(c1), less39(c1), spade(c1), heart(c1), club(c1), diamond(c1), black(c1),
red(c1), rank(c1,7), less13(c2), less26(c2), less39(c2), spade(c2), heart(c2), club(c2), diamond(c2), black(c2),

red(c2), rank(c2,8), both spade(c1,c2), both heart(c1,c2), both club(c1,c2), both diamond(c1,c2), black red(c1,c2),
red black(c1,c2), rank one or more(c1,c2), rank one or fewer(c1,c2), suits identical(c1,c2), suit colors differ(c1,c2),
rank successor(c1,c2), column stackable(c1,c2), bank stackable(c1,c2)).

This may be more information than is strictly necessary because the agent may already know how to infer
some of these atoms from (c1,c2) due to earlier successful learning of some of the building block concepts.
In terms of level of discourse, this would be a mismatch between sender and receiver. Information that the
agent could already infer is irrelevant, as is information that is currently too difficult to absorb. Providing
such irrelevant information is a matter of communication inefficiency, which is not a major concern of ours
here. We simply provide the truth values for all the stated atoms, thereby avoiding all the problems related to
discourse.

We assume that the stream of observations holds the atoms that correspond to the concepts. One might say
that an important segmentation of the agent’s observations has therefore already occurred. This is so, and is
one of the basic assumptions that we discussed above. However, an agent’s waking hours include a stream of
observations, which are represented in some as-yet unknown form. Our world provides a stream of sensory
and perceptual information, and our interest is in being able to learn from such a stream. To this end, we
manufacture such a stream, putting aside the problem of what mechanisms in an agent could produce such
a stream. Our stackability example already assumes knowledge of integer values and their ordering. The
stream of information that washes over an agent can provide primitives and higher level information, and the
STL algorithm described below suggests one way in which this information can be assimilated and organized
over time.

Can an agent learn the subconcepts and organize them into layers that correspond to computational depen-
dencies? Yes, if one is guided by an assumption that only simple (Type-1) learning mechanisms are available
to learn and refine a knowledge element. Table 1 shows the STL (stream to layers) algorithm. For every
predicate or function name observed, the algorithm updates the unit as described here. If the unit does not
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Table 1. The STL Algorithm
Input: A stream O of observations, each of the form ot Bt Lt , where Bt is a set of variable bindings and Lt is a
conjunction of literals.
Initially: U /0, whereU is the set of all defined units. M /0, where M is the set of all learned units or base inputs.
On-line Algorithm: For each observation ot :

1. Compute value of every uk U using bound input variables.
2. M M ! Vt , where ! is the distinguished bias input which is always 1, andVt is the set of input variables

in Bt .
3. For each literal l j Lt : (Let A denote predicate or function to be learned corresponding to atom name in lj.)

(a) If there is a numeric argument ai of l j then A is a linear combination unit with target T ai. Otherwise,
A is a linear threshold unit; if l j is positive then T 1 else t 1.

(b) If not A U then create unit for A, U U A , set A to be undefined, Ainputs M, Aweights W ,
where each wk is sampled from uniform density over [-0.05,0.05].

(c) Update unit A using target T , appropriate gradient-descent correction, stepsize (0.1 for combination, 0.01
for threshold), input values each normalized to maximum magnitude 1.0.

(d) If A has been learned sufficiently well (see discussion) then M M A .
(e) If A is unlearnable over Ainputs (see discussion) then N M Ainputs, Ainputs Ainputs N, initialize

new weights for new inputs N as in Step 3b, reset A as learnable, go to Step 3c.
(f) If A M and A has some inputs not tried for deletion then:

i. If A is undefined (see Step 3b) then A A (copy of A), remove one of Ainputs selected at random
and mark the deleted input as ‘tried’.

ii. Update A as in Step 3c.
iii. If A has been learned sufficiently well, as in Step 3d, then M M A , U U A , discard

A, set A to refer to A , set A to be undefined, M M A , M M A .
iv. Otherwise, if A is unlearnable over Ainputs, as in Step 3e, then discard A , set A to be undefined.

yet exist, it is created and added to the list of unlearned units, which is initially empty. Its inputs are initially
the distinguished input values as provided in an observation. For each set of atoms presented as a training
instance (observation), the algorithm attempts to learn each atom as a linear threshold unit or an unthresh-
olded linear combination. For an atom with only bound variables as arguments, the atom indicates a Boolean
concept, and the positive or negative value indicated for the atom (absence/presence of negation connective)
is its training label. However, for an atom with a single numeric argument, the atom indicates a numerical
function, with the numeric argument being its training value. In this model, a function can have at most one
numerical argument.

The STL algorithm tries to learn all the concepts/functions that come its way. Of course some concepts
are learned more easily (sooner) than others. For example, the concepts that one sees in the second layer
of Figure 1 will presumably be learned reliably before the others. Any concept/function that is learned
successfully has its output value connected as an input to those concepts/functions that have not yet been
learned reliably. This has the effect of pushing the as-yet-unlearned concepts to a deeper layer. This process
continues, always pushing the unlearned concepts deeper, and providing each with an improved basis. This
models an advancing frontier of receptivity. The agent is receptive to what can be learned simply, given
what has already been acquired successfully. This approach embodies an assumption that those concepts that
can be learned early should be considered as potential building blocks (inputs) when learning other concepts
later.

The STL algorithm operates in an online manner. The algorithm must make two important decisions. The
first is to determine when a unit has successfully acquired its target concept, and is therefore eligible to
become an input to other, unsuccessful units. The criterion for successful learning in STL is that the unit
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must have produced a correct evaluation for at least n consecutive examples, where n 1000VC u for unit
u. The VC dimension of a linear unit is simply d 1 for a unit with d inputs. We chose 1000 empirically for
the problems at hand. We are examining how to formulate a more principled criterion.

The second decision that STL must make is to determine when a unit cannot learn a target concept sufficiently
well. One possible approach would be simply to connect a trained unit to an untrained unit as soon as a
trained unit becomes available. This is unnecessarily aggressive; one unit may train faster than another even
though both are capable of learning given their current input connections. STL relies on sample complexity
to determine when a unit requires additional input connections. If a unit is presented m examples without
satisfying the above learning criterion, the unit is considered to have failed and new connections are added
before training resumes. The number of required examples ism c

"2 VC u ln 1
# with c 0 8, confidence

parameter # 0 01 and accuracy parameter " 0 01 for thresholded linear units. The number of examples
required for an unthresholded linear combination is described by a similar formula m 128

"2 log2
16
#

2Pdim u log2
34
" where Pdim u is the pseudo-dimension of u and the confidence # 0 01 and accuracy

" 0 1 (Anthony & Bartlett, 1999).

STL adds connections from all previously learned units to a unit that is not currently learnable. Units rep-
resenting high-level linear functions quickly acquire the input connections required for successful learning.
As discussed above, a disadvantage to this “connect-to-everything” approach is that initially units will have
many more connections than is strictly necessary. This is particularly true of units representing high-level
concepts. To combat this problem, STL employs a novel method for removing unnecessary input connections
from each unit that it has successfully learned.

When an individual unit satisfies the criterion for successful learning, it begins the process of removing any
inputs that are not required for correct evaluation. The unit first generates a copy of itself, selects one of the
input connections at random, and removes it from the copy. Thus, the copy is a duplicate of the unit minus
one input. The duplicate is then trained, and if it satisfies the learning criterion, the duplicate replaces the
original unit and the process continues. Otherwise the failed duplicate is discarded and the removal process
continues with a newly created duplicate. Each input connection, including the bias, is tested exactly once
for a total of d 1 removal attempts per network unit. The bias connection is always tested last, in order to
prevent spurious relationships among other inputs from conspiring to make the bias appear falsely useless.

At first glance, training d 1 copies of each unit in the network may appear to be an overly expensive solution
to the connectivity problem in STL. Indeed, the cost of removing unnecessary connections from the network
outweighs the cost of generating the initial (learned) network. However, several aspects of the connection
removal process work together to make the price quite reasonable. First, each duplicate is initialized with the
same weights (minus one input) as the learned unit. This means that the duplicates begin training with a very
beneficial set of weight values, and that training proceeds very quickly when the removed input is irrelevant.
Second, STL’s reliance on simple concepts and simple learning units means that most of the concepts in a
network will depend on only a small number of inputs. Most of the inputs to a given unit will be irrelevant,
therefore most of the d 1 copies of the unit will train quickly. Finally, the process of removing connections
takes place after the unit has successfully learned. Thus, the concepts quickly become available for use by
higher-level concepts, and only afterward spend computation optimizing their representations.

6.2 Experiment #1: Using All The Hand-Designed Concepts

We presented all distinct (c1,c2) pairs and the corresponding atoms as training instances. Although STL
is intended to be an online algorithm, we have only a finite amount of data, 52 52 2704 observations.
An infinite stream of input data was simulated by treating this collection of observations as a circular list.
This is very much like an offline algorithm making multiple passes over the data, each pass being an epoch.
However, the algorithm has no knowledge of epoch, and it operates in an online manner.
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Figure 3. STL Using All The Hand-Designed Concepts

The algorithm learned all concepts and functions in 17,026,156 instances, requiring 47:40 minutes (47 min-
utes and 40 seconds) on a 1.13-gigahertz Pentium III, and 132 total connections. The network had learned
perfectly after 8:39 minutes, using the remaining time to remove connections. The time to complete the learn-
ing is very close to the 8:52 minutes that is used when connection elimination is disabled. Notice that the time
to complete the learning is actually lower when connections are removed when possible. The constructed
network, shown in Figure 3 has four computational layers, and a different knowledge organization from that
of the hand-designed network. Remarkably, the rank, suit colors differ, suits identical, and rank successor
units are learned but not used. It is somewhat unsatisfying to see these building blocks as superfluous. It is
explained in part by the difficulty in learning. Something that takes much longer to learn, such as rank, will
be pushed to a deeper layer. Meanwhile, a different basis for learning an advanced concept may be found.

The integer interval units, such as less13, were not needed for learning the suit concepts. The spade and
diamond suits can be learned easily without the interval units. After spade has been mastered, heart can be
learned readily because it is any card value less than 26 that is not a spade. Similarly, club can be learned
after diamond has been acquired. None of the interval concepts were required for learning the suits.

6.3 Experiment #2: Using A Reduced Set of Hand-Designed Concepts

Having been shown that the interval units were not needed, we reran STL while leaving them out. Figure
4 shows the resulting network, which was learned in 13,232,552 observations, taking 31:49 minutes, with
correctness achieved after just 4:48 minutes. There are six computational layers with 116 connections. Notice
that black(c1) is learned without depending on the club(c1) concept. This makes sense, given that spade(c1)
being true would cinch it, or if c1 be neither spade nor diamond, then a simple test for c1 being in the club
range will suffice. It is less appealing semantically, but it is sensible. The rank units are used, but both club,
rank one or more and rank successor are not.

Of interest is the relationship between the number of instances presented to the network and the number of
connections in the network when connection removal is enabled. Figure 5 shows a graph of training instances
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Figure 4. STL Using A Reduced Set of Hand-Designed Concepts
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Figure 5. STL total connections while training the stackability targets.

presented versus connections in the network. The vertical line represents the point at which all units in the
network are considered sufficiently learned. Notice the sharp rise and fall in connections during early training
as connections are simultaneously added to unlearned units and removed from learned units. The six peaks
in the graph correspond to the six computational layers in the resulting network. Finally, a majority of the
instances are presented after the units in the network have already been learned.

6.4 Discussion

When exposed to a stream of observations of various Boolean predicates and linear functions, the STL algo-
rithm can learn these predicates and functions, organize them into a layered network of building blocks, and
repeatedly advance its level of receptivity. Network organization occurs naturally as a result of simple Type-
1 learning mechanisms. It is somewhat surprising that simple Type-1 mechanisms are apparently needed to
build efficient deeply layered knowledge structures that represent difficult Type-2 concepts.
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Figure 6. A two-or-more clumps network trained via STL.

7 The Two-Clumps Problem

The two-or-more clumps problem is a synthetic Boolean problem in which the n inputs are arranged sequen-
tially, x0 xn 1. The objective of the problem is to decide whether there are two or more groups of adjacent
“on” inputs. The input string is circular, so that x0 and xn 1 are adjacent. As an example of the two-or-more
clumps problem with n 8, the input string 00110100 is a positive instance while 00111110 is a negative
instance. Several different learning algorithms have been applied to the two-or-more clumps problem, e.g
Mezard (1989), Frean (1990), and Redding (Redding, et al. 1993).

The essence of the problem is to count the number of edges, or on-to-off transitions, encountered while
scanning along the string of bits. A two-layer network with n nodes in the hidden layer acting as edge
detectors and a single output element implementing a threshold-2 function accurately represents the target
concept. Data reflecting this structure was generated for n 25 according to Monte Carlo simulations as
described by Mezard. Eight sets of training data, with 50, 100, 200, 300, 400, 500, 600 and 800 instances,
along with a set of 600 instances for testing, were generated independently. Each set had a mean of 1.5
clumps per instance.

Five different STL networks with 25 inputs and 26 concepts were each trained on the 600 instance set of
two-or-more clumps data. The average overall training time was 39:28 minutes, the average number of
training instances was 9,227,762, and the average number of network connections was just 104, which is just
three more than the ideal network structure. A correct network was achieved after 1:36 minutes on average.
Figure 6 shows a typical network structure after connection removal. All of the edge-detection units have
learned their concepts exactly. Each edge unit has pruned every irrelevant input, and found the correct edge
pattern. The top-level threshold concept very nearly implements the correct concept, including only a few
irrelevant inputs.

Figure 7 shows a graph of training instances presented versus the number of network connections. The
single peak indicates the addition of connections to the top-level disjunction, while the sharp drop during
early training corresponds to the fast learning and optimization of the edge detector concepts. The large
number of instances required to remove connections from the top-level concept reflects the large number
(25) of relevant inputs.
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Figure 7. STL total connections while training two-or-more-clumps.
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Figure 8. Two-or-more clumps accuracy for several algorithms.

In a second experiment, an STL network was trained on each of the eight sets of training data and then tested
on the 600-instance testing set. Figure 8 shows the accuracy of each STL network along with the accuracy
measures from the Tiling algorithm (Mezard & Nadal, 1989), the Upstart algorithm (Frean, 1990), and
the Constructive Higher-Order Network (CHON) algorithm (Redding, Kowalczyk & Downs, 1993). Recall
that STL is given training information for the edge units that the other algorithms are not. If one wants to
learn to recognize clumps, a useful prerequisite is to learn to recognize edges. Notice how STL performs
comparatively well even with only 50 training instances and quickly rises to achieve 99% accuracy at just
300 training instances. STL eventually achieves a perfect 100% accuracy at 800 training instances.

8 Applying STL to a Larger Task

Can STL scale up to richer input streams? As a simple test, we aggregated the card stackability state and the
two-or-more clumps state into one. An ordered pair of cards is represented by two integer variables, and a
clumps state consists of 25 Boolean predicates, so the aggregate state has 27 components. The card pairs are
sampled randomly from the complete space of pairs, and the 25-tuples are sampled randomly from a single
large sample of the space of 25-tuples as discussed above.
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Figure 9. Combined problems trained via STL.

Figure 9 shows the resulting network, consisting of eight layers of computation. To learn all the predicates
and functions correctly required 31,438,449 observations and 5:31:28 hours of cpu, with another 81,526,067
instances and 11:19:02 hours of cpu to complete the connection reduction process. The separation of units
by relevant inputs is quite good, judging by the figure.

The main bottleneck is the problem of determining relevant inputs for each unit, which is the classic single-
unit feature selection problem. Although our removal method is of lower computational cost than previous
methods (Stracuzzi & Utgoff, submitted), it is nevertheless doomed computationally. Methods for adding
inputs are of the same complexity. Indeed, no scheme that entertains all possible inputs with equal probability
will scale up for lifelong learning. We expect that a workable approach will be to take into account constraints
imposed by physical location of connections, and consideration of only nearby connection points (Quartz &
Sejnowski, 1997).

9 Summary and Conclusions

We examined two approaches for modeling many-layered learning. The first involves learning from a cur-
riculum, and simply illustrates that difficult problems can be learned when broken into a sequence of simple
problems. It is remarkable that so much of the human academic enterprise is devoted to organizing knowl-
edge for presentation in an orderly graspable manner. This fits well the supposition that humans do indeed
have a frontier of receptivity, and that new knowledge is layed down in terms of old, to the extent possible.
We do not observe our teachers starting a semester with the very last chapter of a text, and then hammering
away at it week after week, waiting for all the subconcepts (hidden in the earlier chapters) to form them-
selves. Instead, teachers start quite sensibly at chapter one and progress through the well-designed layered
presentation. Although agent autonomy is a laudable goal, in moderation, as scientists we impose a serious
handicap when we deprive our agents of books and teachers (including parents).

The second approach dispensed with organized instruction, offering a possible mechanism for extracting
structure from an unstructured stream of rich information. We showed in the STL algorithm how adoption
of simple Type-1 learning mechanisms can learn and organize concepts into a network of building blocks
in an online manner. As simple concepts on the agent’s frontier are mastered, the basis for understanding
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grows, enabling subsequent mastering of concepts that were formerly too difficult. The approach accepts
the seeming paradox that our apparent ability to do just Type-1 learning and layering is the bedrock of our
intelligence because it produces Type-2 learning.

An agent can benefit greatly by following a curriculum. Were STL to process a stream that was generated
to be progressively higher level, it would spend a great deal less time futilely trying to master a concept that
were currently hopelessly difficult. Exposing an agent to just what should be acquired next helps focus effort,
and can lead to a better structuring of the learned knowledge.

While it has been informative for us to explore how to model learning of knowledge in many layers, some
of the problems suggest new approaches. For example, STL relies on a kind of race to produce a knowledge
organization. Whatever can be learned next using simple means achieves the status of building-block, which
means it has earned the right to be considered as an input to all units yet to be learned. We have noted that this
can drive a mechanism for organizing knowledge as it is acquired. However, this strategy does not necessarily
lead to the best possible organization. Furthermore, the successfully learned portion of an organized structure
becomes statically cast. We would rather have a mechanism in which each unit can continue to consider
which other units will serve it best as inputs, and revise its selection of inputs dynamically.

Finally, while we have advocated a building block approach that is designed to eliminate replication of
knowledge structures, one can see quite plainly in Figure 1 that many concepts learned for just one card were
learned identically for the other. A mechanism for applying learned functions to a variety of arguments would
be highly useful. Much of the work in inductive logic programming addresses this problem. It will be useful
to explore further how variable binding mechanisms can be modeled in networks of simple computational
devices (Valiant, 2000a; Valiant, 2000b; Khardon, Roth & Valiant, 1999).

Our main results are an argument in favor of many-layered learning, a demonstration of the advantages of
using localized training signals, and a method for self-organization of building-block concepts into a many-
layered artificial neural network. Learning of complex structures can be guided successfully by assuming
that local learning methods are limited to simple tasks, and that the resulting building blocks are available for
subsequent learning.

Acknowledgments

This work was supported by Grants IRI-9711239 and IRI-0097218 from the National Science Foundation.
Marcus Frean provided helpful information on generating 2-clumps data. Robbie Jacobs, Andy Barto, and
Margie Connell gave helpful comments on an earlier version. The anonymous reviewers added to the clarity
of the presentation.

References
Anthony, M., & Bartlett, P. L. (1999). Neural network learning: Theoretical foundations. Cambridge Uni-

versity Press.

Ash, T. (1989). Dynamic node creation in backpropagation networks. Connection Science, 1, 365-375.

Banerji, R. B. (1980). Artificial intelligence: A theoretical approach. Elsevier.

Blum, A., & Rivest, R. L. (1988). Training a 3-node neural network is NP-complete. Proceedings of the 1988
IEEE Conference on Neural Information (pp. 494-501). Morgan Kaufmann.

Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of thinking. Wiley.

Caruana, R. (1997). Multitask learning. Machine Learning, 28, 41-75.

Clark, A., & Thornton, C. (1997). Trading spaces: Computation, representation, and the limits of uninformed



Many-Layered Learning 22

learning. Behavioral and Brain Sciences, 20, 57-90.

Cook, D. J., & Holder, L. B. (1994). Substructure discovery using minimum description length and back-
ground knowledge. Journal of Artificial Intelligence Research, 1, 231-255.

Dominguez, M., & Jacobs, R. A. (2001). Visual development and the acquisition of binocular disparity
sensitivities. Proceedings of the Eighteenth International Conference on Machine Learning (pp. 114-
121). Williamstown, MA: Morgan Kaufmann.

Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. Cog-
nition, 48, 71-99.

Fahlman, S. E., & Lebiere, C. (1990). The cascade correlation architecture. Advances in Neural Information
Processing Systems, 2, 524-532.

Fausett, L. (1994). Fundamentals of neural networks: Architectures, algorithms, and applications. Prentice
Hall.

Frean, M. (1990). The Upstart algorithm: A method for constructing and training feedforward neural net-
works. Neural Computation, 2, 198-209.

Freeman, J. A., & Skapura, D. M. (1991). Neural networks: Algorithms, applications, and programming
techniques. Addison-Wesley.

Gallant, S. I. (1986). Optimal linear discriminants. Proceedings of the International Conference on Pattern
Recognition (pp. 849-852). IEEE Computer Society Press.

Hanson, S. J. (1990). Meiosis networks. Advances in Neural Information Processing Systems, 2, 533-541.

Jacobs, R. A., Jordan, M. I., & Barto, A. G. (1991). Task decomposition through competition in a modular
connectionist architecture: The what and where vision tasks. Cognitive Science, 15, 219-250.

Judd, J. S. (1990). Neural network design and the complexity of learning. Cambridge, MA: MIT Press.

Kaas, J. K. (1982). The segregation of function in the nervous system: Why do sensory systems have so
many subdivisions? Contributions to Sensory Physiology, 7.

Khardon, R., Roth, D., & Valiant, L. (1999). Relational learning for NLP using linear threshold elements.
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (pp. 911-919).

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.
Machine Learning, 2, 285-318.

Mezard, M., & Nadal, J. P. (1989). Learning in feedforward layered networks: The tiling algorithm. Journal
of Physics A, 22, 2191-2203.

Minton, S. (1990). Quantitative results concerning the utility of explanation-based learning. Artificial Intelli-
gence, 42, 363-391.

Mitchell, T., M. (1997). Machine learning. McGraw-Hill.

Nilsson, N. J. (1965). Learning machines. New York: McGraw-Hill.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning, 5,
71-99.

Pitt, L., & Valiant, L. G. (1988). Computational limitations on learning from examples. Journal of the ACM,
35, 965-984.



Many-Layered Learning 23

Quartz, S. R., & Sejnowski, T. J. (1997). The neural basis of cognitive development: A constructivist mani-
festo. Behavioral and Brain Sciences, 20, 537-596.

Redding, N. J., Kowalczyk, A., & Downs, T. (1993). Constructive higher-order network algorithm that is
polynomial in time. Neural Networks, 6, 997-1010.

Rissanen, J., & Langdon, G. G. (1979). Arithmetic coding. IBM Journal of Research and Development, 23,
149-162.

Rivest, R. L., & Sloan, R. (1994). A formal model of hierarchical concept learning. Information and Com-
putation, 114, 88-114.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing. Cambridge, MA: MIT Press.

Sammut, C., & Banerji, R. B. (1986). Learning concepts by asking questions. In Michalski, Carbonell &
Mitchell (Eds.), Machine learning: An artificial intelligence approach. San Mateo, CA: Morgan Kauf-
mann.

Shultz, T. R., & Rivest, F. (2000). Using knowledge to speed learning: A comparison of knowledge-based
cascade-correlation and multi-task learning. Proceedings of the Seventeenth International Conference
on Machine Learning (pp. 871-878). Palo Alto, CA: Morgan Kaufmann.

Shapiro, A. D. (1987). Structured induction in expert systems. Addison-Wesley.
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