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Abstract

Real-time control has become increasingly important as
technologies are moved from the lab into real world sit-
uations. The complexity associated with these systems
increases as control and autonomy are distributed, due to
such issues as temporal and ordering constraints, shared
resources, and the lack of a complete and consistent world
view. In this paper we describe a soft real-time architec-
ture designed to address these requirements, motivated
by challenges encountered in a real-time distributed sen-
sor allocation environment. The system features the abil-
ity to generate schedules respecting temporal, structural
and resource constraints, to merge new goals with exist-
ing ones, and to detect and handle unexpected results
from activities. We will cover a suite of technologies be-
ing employed, including quantitative task representation,
alternative plan selection, partial-order scheduling, sched-
ule consolidation and execution and conflict resolution in
an uncertain environment. Technologies which facilitate
on-line real-time control, including meta-level accounting,
schedule caching and variable time granularities are also
discussed.

1 Overview

In the field of multi-agent systems, much of the research
and most of the discussion focuses on the dynamics and
interactions between agents and agent groups. Just as
important, however, is the design and behavior of the in-
dividual agents themselves. The efficiency of an agent’s
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internal mechanics contribute to the foundation of the
system as a whole, and the degree of flexibility these me-
chanics offer affect the agent’s achievable level of sophis-
tication, particularly in its interactions with other agents
[19, 24]. We believe that a general control architecture,
responsible for both the planning for the achievement of
temporally constrained goals of varying worth, and the se-
quencing of actions local to the agent that have resource
requirements, can provide a robust and reusable platform
on which to build high level reasoning components. In
this article, we will discuss the design and implementa-
tion of the Soft Real Time Architecture (SRTA), a generic
planning, scheduling and execution subsystem designed to
address these needs.

The SRTA architecture [33], a sophisticated agent con-
trol engine with relatively low overhead, provides several
key features:

1. The ability to quickly generate plans and schedules for
goals that are appropriate for the available resources
and applicable constraints, such as deadlines and earli-
est start times.

2. The ability to merge new goals with existing ones, and
multiplex their solution schedules.

3. The ability to efficiently handle deviations in expected
plan behavior that arise out of variations in resource
usage patterns and unexpected action characteristics.

The system is implemented as a set of interacting com-
ponents and representations. A domain independent task
description language is used to describe goals and their
potential means of completion, which includes a quan-
titative characterization of the behavior of alternatives.
A planning engine can determine the most appropriate
means of satisfying such a goal within the set of known
constraints and commitments. This permits the system
to be able to adjust which goals it will achieve, and how
well it will achieve these chosen goals based on the dynam-
ics of the current situation. Scheduling services integrate
these actions and their resource requirements with those
of other goals being concurrently pursued, while a paral-
lel execution module performs the actions as needed. Ex-
ception handling and conflict resolution services help re-
pair and route information when unexpected events take
place. Together, this system can assume responsibility
for the majority of the goal-satisfaction process, which
allows the high-level reasoning system to focus on goal



selection, determining goal objectives and other poten-
tially domain-dependent issues. For example, agents may
elect to negotiate over an abstraction of their activities
or resource allocations, and only locally translate those
activities into a more precise form [25]. SRTA can then
take this description and use it to both enforce the se-
mantics of the commitments which were generated, and
automatically attempt to resolve conflicts that were not
addressed through the negotiation.

Based on this architecture, it should be clear that this
research assumes sophisticated agents are best equipped
to operate and address goals within a resource-bound, in-
terdependent, mixed-task environment. In such a system,
individual agents are responsible for effectively balancing
the resources they choose to allocate to their multiple time
and resource sensitive activities. A different approach
addresses these issues through use of groups of simpler
agents, which may individually act in response to sin-
gle goals and only as a team address large-grained issues.
In such an architecture, either the host operating sys-
tem or increased communication must be used to resolve
temporal or resource constraints, and yet more communi-
cation is required for the agents to effectively deliberate
over potential alternative plans in context. Decompos-
ing the problem space completely to “simple” agents does
not address the problem or remove the information and
decision requirements. We feel that such a design is over-
decomposed, and would more effectively be addressed by
more sophisticated agents capable of directly reasoning
over and acting upon multiple concurrent issues, thereby
saving both time and bandwidth.

In recent work on a distributed sensor network
application[13], which will be discussed in more depth
below, we have exploited SRTA to create a virtual or-
ganization of simple agents which is instantiated within a
(typically smaller) collection of real agents. Conceptually,
each “virtual” agent represents a goal, created as needed
and dynamically assigned to a specific sophisticated “real”
agent, based on information approximating the current re-
source usage of agents and the type of resources available
at each agent. Each “real” agent then performed detailed
planning/scheduling based on local resource availability
and the priority of the goals it possessed, and multiplexed
among the different goals that it was concurrently execut-
ing in order to meet soft real-time requirements. The use
of sophisticated agents has also helped us to construct a
resource negotiation protocol that operates on an abstract
model of resources and does not need to resolve all con-
flicts to be successful [25]. In this case, the agent took on
the responsibility of mapping the abstract resource allo-
cation policy generated by the negotiation protocol into a
detailed resource allocation schedule and where possible,
resolved resource allocation conflicts at the abstract level
through local shifting and modification of tasks.

SRTA operates as a functional unit within a Java-based
agent, which itself it running on a conventional (i.e. not
real-time) operating system. The SRTA controller is de-
signed to be used in a layered architecture, occupying a
position below the high-level reasoning component in an
agent [39, 1] (see Figure 2). In this role, it will accept new

goals, report the results of the activities used to satisfy
those goals, and also serve as a knowledge source about
the potential ability to schedule future activities by an-
swering what-if style queries. Within this context, SRTA
offers a range of features designed to provide support for
operating in a distributed, intelligent environment. The
goal description language supports quantitative, proba-
bilistic models of activities, including non-local effects of
actions and resources and a variety of ways to define how
tasks decompose into subtasks. In particular, the uncer-
tainty associated with activities can be directly modeled
through the use of quantitative distributions describing
the different outcomes a given action may produce. Com-
mitments and constraints can be used to define relation-
ships and interactions formed with other agents, as well
as internally generated limits and deadlines. The plan-
ning process uses this information to generate a number
of different plans, each with different characteristics, and
ranked by their predicted utility. A plan is then used to
produce a schedule of activities, which is combined with
existing schedules to form a potentially parallel sequence
of activities, which are partially ordered based on their
interactions with both resources and one another. This
sequence is used to perform the actions in time, using the
identified preconditions to verify if actions can be per-
formed, and invoking light-weight rescheduling if neces-
sary. Finally, if conflicts arise, SRTA can make use of an
extensible series of resolution techniques to correct the sit-
uation, in addition to passing the problem to higher level
components which may be able to make a more informed
decision.

An important aspect of most real-world systems is their
ability to handle real-time constraints. This is not to say
that they must be fast or agile (although it helps), but
that they should be aware of deadlines which exist in
their environment, and how to operate such that those
deadlines are reasoned about and respected as much as
possible. This notion of real-time is weaker than its rel-
ative, strict real-time, who’s adherents attempt to rig-
orously quantify and formally bound their systems’ exe-
cution characteristics. Instead, systems working in soft
real-time operate on tasks which may still have value for
some period after their deadlines have passed [31], and
missing the deadline of a task does not lead to disastrous
external consequences. Our research addresses a deriva-
tive of this concept, where systems are expected to be sta-
tistically fast enough to achieve their objectives, without
providing formal performance guarantees. This allows it
to successfully address domains with highly uncertain ex-
ecution characteristics and the potential for unexpected
events, neither of which are well suited for a hard real-
time approach. As its name implies, SRTA operates in
soft real-time, using time constraints specified during the
goal formulation and scheduling processes, and acting to
meet those deadlines whenever necessary. In this system,
we have sacrificed the ability to provide formal perfor-
mance guarantees in order to address more complex and
uncertain problem domains. As will be shown shortly,
this technology has been used to successfully operate in a
real-time distributed environment.



To operate in soft-real time, an agent must know when
actions should be performed, how to schedule its activi-
ties and commitments such that they can be performed
or satisfied, and have the necessary resources on hand
to complete them. Our solution to this problem ad-
dresses two fronts. The first is to implement the tech-
nologies needed to directly reason about real-time. As
mentioned above, we begin by modeling the quantitative
and relational characteristics of the goals and activities
the agent may perform, which can be done a priori and
accessed as plan library or through a runtime learning
process[17]. This information is represented, along with
other goal achievement and alternative plan information,
in a TEMS task structure [4, 12] (discussed in more de-
tail in section 3.1). In addition to modeling primitive
actions, it is also possible to model and schedule some
meta-level activities, such as negotiation. This permits a
costing-out of the activity’s characteristics, allowing the
agent to, for instance, directly reason about what sort of
negotiation is appropriate for the given context. A plan-
ning component, the Design-to-Criteria scheduler (DTC)
[35, 37], uses these T/AEMS task structures, along with
the quantitative knowledge of action interdependence and
deadlines, to select the most appropriate plan given cur-
rent environmental conditions. This plan is used by the
Partial Order Scheduler process to determine when indi-
vidual actions should be performed, either sequentially or
in parallel, within the given precedence and runtime re-
source constraints. In general, we feel that real-time can
be addressed through the interactions of a series of com-
ponents, operating at different granularities, speed and
satisficing (approximate) behaviors.

The second part of our solution attempts to optimize
the running time of our technologies, to make it easier
to meet deadlines. The partial order schedule provides
an inherently flexible representation. As resources and
time permit, elements in the schedule can be quickly de-
layed, reordered or parallelized. New goals can also be
incorporated piecemeal, rather than requiring a compu-
tationally expensive process involving re-analysis of the
entire schedule. Together, these characteristics reduce the
need for constant re-planning, in addition to making the
scheduling process itself less resource-intensive. Learning
plays an important role in the long-term viability of an
agent running in real time, taking advantage of the repet-
itive nature of its activities. Schedules may be learned
and cached, eliminating the need to re-invoke the DTC
process when similar task structures are produced, and
the execution history of individual actions may be used
to more accurately predict their future performance. A
similar technique could be used to track the requisite ac-
tions and time needed to devote to particular goals. Be-
cause the planning and execution processes are distinct,
a feedback loop was added to provide the planner with
information describing which actions may potentially run
in parallel in a given environmental or resource context.
This effectively reduces the time it takes to perform a se-
quence of actions, which permits the planner to explore
and suggest more sophisticated plans.

This article will proceed by discussing the problem

Figure 1: High-level distributed sensor allocation archi-
tecture. A) shows the initial sensor layout, decomposition
and allocation of sector managers. B) shows the dissem-
ination of scanning tasks. The new track manager in C)
can be seen coordinating with sensors to track a target,
while the resulting data is propagated in D) for process-
ing.

domain which motivated much of this system. Func-
tional details of the architecture will be covered, along
with further discussion of the various optimizations that
have been added. Experimental traces are also included
demonstrating some of the features that are described.
We will conclude with an overview of related research
and a discussion of overall conclusions, including future
directions.

2 Problem Domain

A distributed resource allocation domain which motivated
much of this work [13] will be used throughout this arti-
cle to ground the topics which are discussed and formulate
examples. This section will briefly describe the environ-
ment and the particular challenges it offers. Components
of the SRTA architecture have also been used successfully
in several other domains, such as intelligent information
gathering [22], intelligent home control [20], and supply
chain [10].

The distributed resource environment consists of sev-
eral sensor nodes arranged in a region of finite area, as can
be seen in Figure 1A. Each sensor node is autonomous,
capable of communication, computation and observation
through the attached sensor. We assume a one-to-one
correspondence between each sensor node and an agent,
which serves locally as the operator of that sensor. The
high level goal of a given scenario in this domain is to
track one or more target objects moving through the en-
vironment. This is achieved by having multiple sensors
triangulate the positions of the targets in such a way that
the calculated points can be used to form estimated move-
ment tracks. The sensors themselves have limited data
acquisition capabilities, in terms of where they can focus
their attention, how quickly that focus can be switched
and the quality / duration tradeoff of its various mea-
surement techniques. The attention of a sensor, or more
specifically the allocation of a sensor’s time to a particular



tracking task, therefore forms an important, constrained
resource which must be managed effectively to succeed.

The real-time requirement of this environment is de-
rived from the triangulation process. Under ideal condi-
tions, three or more sensors will perform measurements at
the same instant in time'. Individually, each sensor can
only determine the target’s distance and velocity relative
to itself. Because each node will have seen the target at
the same position, however, these gathered data can then
be fused to triangulate the target’s actual location. In
practice, exact synchronization to an arbitrarily high res-
olution of time is not possible, due to the uncertainty in
sensor performance and clock synchronization. A reason-
able strategy then is to have the sensors perform mea-
surements within some relatively small window of time,
which will yield positive results as long as the target is
near the same location for each measurement. Thus, the
viable length of this window is inversely proportional to
the speed of the target (in our scenarios we use a window
length of one second for a target moving roughly one foot
per second).

Part of the resource allocation task revolves around how
each node’s sensor capabilities are assigned to various ob-
jectives. A tradeoff exists, for instance, between scan-
ning for new targets in the environment by sensing in the
greatest possible area, and the directed tracking of exist-
ing ones. The potential for multiple targets means that
a given sensor may be able to obtain data from different
sources, but because the sensor measurements cannot dis-
tinguish between targets the sensor itself can be used to
gather data from only one at a time. This means both
that the sensor array as a whole must be allocated appro-
priately to maximize their usefulness, and that individual
measurements must be handled and interpreted carefully
to avoid fusing data from disparate targets, which would
lead to a highly inaccurate result.

Competing with the sensor measurement activity are a
number of other local goals, including sector management
(Figure 1A), target discovery scanning (1B), measurement
tasks for other targets (1C), and data processing (1D). We
don’t see these as separate agents or threads, but rather
as different objectives/goals that an agent is multiplexing.
Note in 1C the sensor performing the track negotiation is
one that previously received a scanning task. Meta-level
functionality such as negotiation, planning and scheduling
also contend for local resources. To operate effectively,
while still meeting the deadlines posed above, the agent
must be capable of reasoning about and acting upon the
importance of each of these activities.

In summary, our real-time needs for this application
require us to synchronize several measurements on dis-
tributed sensors with a granularity of one second. A
missed deadline may prevent the data from being fused,

If the tracking of the vehicle in previous time frames was
very accurate relative to where the vehicle actually was, only
two sensors would be needed for triangulation (where uncer-
tainty between multiple candidate points is resolved by using
the track information). However, the uncertainty of the prior
track, coupled with the potential for poor quality measure-
ments leads us to use more sensors where possible.

or the resulting triangulation may be inaccurate - but no
catastrophic failure will occur. This provides individual
agents with some minimal leeway to occasionally decom-
mit from deadlines, or to miss them by small amounts of
time, without failing to achieve the overall goal. At the
same time, there is a great deal of uncertainty in when
new tasks will arrive, and how long individual actions will
take, so a strict timing policy is too restrictive. Thus, our
notion of real-time here is relatively soft, enabling the
agents to operate effectively despite uncertainty over the
behavioral characteristics of computations and their re-
source requirements.

Further details on this domain and the multi-agent ar-
chitecture designed to address it can be found in [13].

3 Soft Real-Time Control Architecture

Our previous agent control architecture, used exclusively
in controlled time environments, was fairly large grained.
As goals were addressed by the problem solving compo-
nent, they would be used to generate task structures to
be analyzed by the Design-To-Criteria (DTC) scheduler.
The resulting linear schedule would then be directly used
for execution by the agent. Task structures created to ad-
dress new goals would be merged with existing task struc-
tures, creating a monolithic view of all the agent’s goals.
This combined view would then be passed again to DTC
for a complete re-planning and re-scheduling. Execution
failure would also lead to a complete re-planning and re-
scheduling. This technique leads to “optimal” plans and
schedules at each point if meta-level overheads are not in-
cluded. As will be discussed in section 3.2, however, the
combinatorics associated with such large structures can
get quite high. This made agents ponderous when work-
ing with frequent goal insertion or handling exceptions,
because of the need to constantly perform the relatively
expensive DTC process. In a real-time environment, char-
acterized by a lot of uncertainty in the timing of actions
and the arrival of new tasks, where the agent must con-
stantly reevaluate their execution schedule in the face of
varied action characteristics, this sort of control architec-
ture was impractical.

In the SRTA architecture, we have attempted to make
the scheduling and planning process more incremental and
compartmentalized. New goals can be added piecemeal
to the execution schedule, without the need to re-plan all
the agent’s activities, and exceptions can be typically be
handled through changes to only a small subset of the
schedule. Figure 2 shows the new agent control architec-
ture we have developed to meet our soft real-time needs.
We will first present an overview of how it functions, and
cover the implementation in more detail in later sections.
In this architecture, goals can arrive at any time, in re-
sponse to environmental change, local planning, or be-
cause of requests from another agents. The goal is used by
the problem solving component to generate a TAMS task
structure, which quantitatively describes the alternative
ways that goal may be achieved. The TAMS structure
can be generated in a variety of ways; in our case we use a
TAEMS “template” library, which we use to dynamically
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instantiate and characterize structures to meet current
conditions. Other options include generating the struc-
ture directly in code [22], or making use of an approximate
base structure and then employing learning techniques to
refine it over time [17].

The Design-To-Criteria component, used in the origi-
nal controller described earlier, retains a critical role in
SRTA. Where before it was responsible for both selecting
an appropriate plan of activities and producing a schedule
of actions for monolithic structures, SRTA generally ex-
ploits only its planning capabilities for discrete structures.
Using the TAEMS structure mentioned above, along with
criteria such as potential deadlines, minimum quality, and
external commitments, DTC selects an appropriate plan.

The resulting plan is used to build a partially or-
dered schedule, which will use structure details of the
TZAEMS structure to determine precedence constraints and
search for actions which can be performed in parallel.
Several components are used during this final scheduling
phase. A resource modeling component is used during
this analysis to ensure that resource constraints are also
respected. A conflict resolution module reasons about
mutually-exclusive tasks and commitments, determining
the best way to handle conflicts. Finally, a schedule merg-
ing module allows the partial order scheduler to incorpo-
rate the actions derived from the new goal with existing
schedules. Failures in this process are reported to the
problem solver, which is expected to handle them (by, for
instance, relaxing constraints such as the goal completion
criteria or delaying its deadline, completing a substitute
goal with different characteristics, or decommiting from a
lower priority goal or the goal causing the failure).

Once the schedule has been created, an execution mod-
ule is responsible for initiating the various actions in the
schedule. It also keeps track of execution performance and
the state of actions’ preconditions, potentially re-invoking
the partial order scheduler when failed expectations re-
quire it. As will be shown later, the partial order sched-
uler can use a fast action shifting mechanism to resolve
such failures with minimal overhead where possible. A
learning component also monitors execution performance,
which is able to update the TAEMS template library when
new trends are observed.

Except where noted, the system described in this pa-
per is a functional, existing, research-grade artifact. It
is written in Java, with the exception of DTC which was
implemented in C++ and is accessed through a Java na-
tive interface. As alluded to above, SRTA is a collec-
tion of interconnected components, where each compo-
nent represents an encapsulated technique with a well-
defined boundary and purpose. They are currently writ-
ten and distributed as part of the JAF agent framework
[11]. These ten or so components and their supporting
classes comprise roughly 50,000 lines of Java code, while
the DTC planner consists of around 40,000 lines of C++.
The execution characteristics of the engine as a whole de-
pend on the frequency and complexity of goals it is asked
to achieve. On average we observe cycle times of between
50 and 100 milliseconds on 400 Mhz x86-based systems,
where a cycle represents a pass through the SRTA engine
analyzing current goals and executing methods, although
this can jump to a half-second or more if a particularly
complex situation must be analyzed. Because the system
runs on conventional operating systems with no level of
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service guarantee, competing external processes may add
an additional level of performance uncertainty.

To better explain our architecture’s functionality, we
will work through a example in the next several sections,
using simplified versions of task structures in the actual
sensor network application. The initial timeline for this
example can be seen in Figure 3. At time 0 the agent rec-
ognizes its first goal - to initialize itself. After starting the
execution of the first schedule it will receive another goal
to track a target and sent the results before time 2500.
Later, a third goal, to negotiate for delegating tracking
responsibility, is received. We will show how these dif-
ferent goals may be achieved, and their constraints and
interdependencies respected.

3.1 TAMS Generation

Before progressing, we must provide some background on
our task description language, TAMS. TAMS, the Task
Analysis, Environmental Modeling and Simulation lan-
guage, is used to quantitatively describe the alternative
ways a goal can be achieved [4, 12]. A TAEMS task struc-
ture is essentially an annotated task decomposition tree.
The highest level nodes in the tree, called task groups,
represent goals that an agent may try to achieve. The
goal of the structure shown in Figure 4 is Task2. Be-
low a task group there will be a set of tasks and methods
which describe how that task group may be performed, in-
cluding sequencing information over subtasks, data flow
relationships and mandatory versus optional tasks. Tasks
represent sub-goals, which can be further decomposed
in the same manner. Task2, for instance, can be per-
formed by completing subtasks Set-Parameters, Track,
and Send-Results.

Methods, on the other hand, are terminal, and repre-
sent the primitive actions an agent can perform. Methods
are quantitatively described, with probabilistic distribu-
tions of their expected quality, cost and duration. These
quantitative descriptions are themselves grouped together
as outcomes, which abstractly represent the different ways
in which an action can conclude. At runtime, it is the
responsibility of the code executing the primitive action
corresponding to the method to indicate the relevant out-
come that was experienced, the quality it produced and
the cost incurred. Set-Parameters, then, is described
with two potential outcomes, Must-Update-Parameters
and Already-Set-Correctly, each with its relative prob-
ability and description of expected duration. The quality
of the two outcomes are the same, but the former out-
come, which will happen 80% of the time, has a duration

twice as long as the latter, which only occurs 20% of the
time according to the model.

The quality accumulation functions (QAF) below a task
describes how the quality of its subtasks is combined to
calculate the task’s quality. For example, the min QAF
below Task2 specifies that the quality of Task2 will be the
minimum quality of all its subtasks - so all the subtasks
must be successfully performed for the Task2 task to suc-
ceed. On the other hand, the maz below Track says that
its quality will be the maximum of any of its subtasks
- the agent has a choice of one or more alternatives to
complete Track (complete descriptions of these and other
QAFs can be seen in [12]).

Interactions between methods, tasks, and affected re-
sources are also quantitatively described as interrelation-
ships. The enables interrelationships in Figure 4 repre-
sent precedence relationships, which in this case say that
Set-Parameters, Track, and Send-Results must be per-
formed in-order. An analogous disables interrelationship
exists, as well as the softer relations facilitates and hin-
ders. These latter two are particularly interesting because
they permit the further modeling of choice - the agent
might choose to perform a facilitating method prior to
its target to obtain an increase in the latter’s quality, or
ignore the method to save time.

lock2 and release2 are resource interrelationships, de-
scribing, in this case, the consumes and produces effects
method Send-Results has on the resource RF. These in-
dicate that when the method is activated, it will consume
or produce some quantity of that resource. The resource
effect is further described through the limits interrelation-
ship, which defines the changes in the method’s execu-
tion characteristics when that resource is over-consumed
or over-produced. The resource itself is also modeled, in-
cluding its bounds and current value (as shown below the
RF triangle), and whether it is consumable or not (e.g.
printer paper is consumable, where the printer itself is
not). In the model shown in Figure 4, these resource inter-
relationships are being used to describe a simple locking
system, where when a method has “consumed” the RF
resource, it has obtained an exclusive lock on it such that
other RF-using activities cannot operate concurrently.

Together, these descriptions provide the foundation for
the scheduling and planning processes to reason about the
effects of selecting this method for execution, so a planner
can choose correctly when the agent is willing to trade off
uncertainty against quality or some other metric.

The problem solver is responsible for translating its
high-level goals into TAEMS, which serves as a more de-
tailed representation usable by other parts of the agent.
This could be done by building TAMS structures in the
source code, but this tends to be impractical if the agent
must define multiple complex or heterogeneous structures.
On the other hand, the problem solver could read static
structures from a plan library, selecting the one designed
to address the particular goal in question. This works
well, except it lacks the flexibility to easily handle the
minor variations in structure needed when environmental
conditions shift. We developed a hybrid scheme, which
uses a library of TAEMS templates, which are dynamically
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Figure 4: An example TAMS task structure for tracking. The expected execution characteristics are shown below
each method, and the Send-Results method in this figure has a deadline of 2500.

instantiated at runtime, taking into account the agent’s
current working conditions. In this way we can handle
such things as varying execution performance, negotiation
partners and commitment details. A small example of this
is shown in table 1, which compares a template specifica-
tion to a sample of the TAEMS code it might produce. In
figure 4, the Track-Medium method must include timing
and commitment information if it is being performed in
response to a negotiated commitment. Similarly, if the
learning component determined that Track-Medium was
taking longer than expected, this information can be fed
into the template to reflect that change. The template
shown in table 1 shows how such information can be used
to dynamically specify a task structure. The commit-
ment in the figure accepts information describing the re-
mote agent and its desired start time, deadline and mini-
mum quality. The Track-Medium definition includes sim-
ilar fields, and also allows the duration to be modified
(in which case the default at the top will be overridden).
More details on the textual specification of TAMS struc-
tures can be found in [12].

At time 0 the agent will use its template library to gen-
erate the initialization structure seen in Figure 7A. In this
structure, the agent must first Init and then Calibrate
its sensor. Properties passed into the template specify
the particular values used in Init, such as the sensor’s
desired gain settings or communications channel assign-
ment, as well the number of measurements to be used dur-
ing Calibrate. As specified by the enables interrelation-
ship, Init must successfully complete before the agent
can Send-Message, reporting its capabilities to its local
manager. Send-Message also uses resource interrelation-
ships to obtain an exclusive lock on the RF communication
resource. Omnly one action at a time can use RF to send
message, so all messaging methods have similar locking
interrelationships. As we will see later, this indirect in-
teraction between messaging methods creates interesting
scheduling problems. Task2 and Task3, shown in Figures
4 and 7B, respectively, are generated later in the run in a
similar manner.

3.2 DTC Planner / Initial Scheduler

Design-to-Criteria (DTC) scheduling is the soft real-time
process of evaluating different possible courses of action
for an intelligent agent and choosing the course that best
fits the agent’s current circumstances. For example, in a
situation where the RF resource is under a great deal of
concurrent usage, the agent may be unable to send data
using the traditional quick communications protocol and
thus be forced to spend more time on a more reliable, but
slower method to produce the same quality result (anal-
ogous to selecting between a UDP or TCP session). Or,
in a different situation when both time and cost are con-
strained, the agent may have to sacrifice some degree of
quality to meet its deadline or cost limitations. Design-
to-Criteria is about evaluating an agent’s problem solving
options from an end-to-end view and determining which
tasks the agent should perform, when to perform them,
and how to go about performing them. Having this end-
to-end view is crucial for evaluating the relative perfor-
mance of alternative plans able to satisfy the goal.

As TEMS task structures model a family of plans, the
DTC scheduling problem has conceptually certain char-
acteristics in common with planning and certain char-
acteristics of more traditional scheduling problems, and
it suffers from pronounced combinatorics on both fronts.
The scheduler’s function is to read as input a TAMS task
structure (or a set of task structures) and to 1) decide
which set of tasks to perform, 2) decide sequencing con-
straints among the tasks, taking advantage of soft rela-
tionships where possible, 3) to perform the first two func-
tions so as to address hard constraints, e.g., deadlines on
tasks, and to balance the soft design/goal criteria specified
by the designer, to do this computation in soft real-time
so that it can be used online.

One would expect any reasonable planning process to
enforce so-called “hard” constraints - ones which must
be satisfied for a goal to be achieved or a commitment
satisfied. It is DTC’s additional ability to reason about
weaker, optional interactions which sets it apart. The
sum QAF in TAEMS , for instance, defines a task who’s
quality is determined by the sum of all its subtasks’ qual-
ities. In a time critical situation, DTC may opt for a
shorter, but lower quality plan which only calls for one



TAMS Template

Resulting Definition

#if (#ndef $TM_DUR)
#define TM_DUR = 750.0 1.0
#endif

(spec_method
(label Track-Medium)
(agent $AGENT)
(supertasks Track)
#if (#def($EST) == true)
(earliest_start_time $EST)
#endif
#if (#def($DEADLINE) == true)
(deadline $DEADLINE)
#endif
(outcomes
(Dutcome
(density 1.0)
(quality_distribution 5.0 0.5 1.0 0.5)
(duration_distribution $TM_DUR)
(cost_distribution 0.0 1.0)
)
)
)

#if (#def($COMMITID) == true)
(spec_commitment
(label commitment-$COMMITID)
(type deadline)
(from_agent $AGENT)
(to_agent $TOAGENT)

(task Track)
#if (#def ($MINQ)
(minimum_quality $MINQ)

#endif

#if (#def($EST) == true)
(earliest_start_time $EST)

#endif

#if (#def ($DEADLINE) == true)
(deadline $DEADLINE)

#endif

)

#endif

== true)

(spec_method
(label Track-Medium)
(agent Agent_A)
(supertasks Track)
(earliest_start_time 500)
(deadline 2000)
(outcomes
(Dutcome
(density 1.0)
(quality_distribution 5.0 0.5 1.0 0.5)
(duration_distribution 750.0 1.0)
(cost_distribution 0.0 1.0)
)
)
)

(spec_commitment
(label commitment-1)
(type deadline)
(from_agent Agent_A)
(to_agent Agent_B)
(task Track)
(earliest_start_time 500)
(deadline 2000)

Table 1: The pre-TAEMS template specification for a portion of the tracking task, and the resulting structure generated
after values have been specified. When the template was instantiated, the variables AGENT, EST, DEADLINE, COMMITID
and TOAGENT were specified, while TM_DUR and MINQ were left undefined.

of these subtasks to be executed. In more relaxed con-
ditions, more may be added to the plan. Similarly, soft
interrelationships such as facilitates or hinders may be re-
spected or not, depending on their specific quantitative
effects and the current planning context. DTC’s behav-
ior is governed through the use of a criteria description,
which is provided to it along with each TAEMS structure.
This criteria specifies, for example, the desired balance
between plan quality and duration, or what level of un-
certainty is tolerable. From a user’s perspective, these
characteristics can be modeled with a set of sliders, as
shown in Figure 5, each of which define a particular at-
tribute of the criteria[34].

Meeting these objectives is a non-trivial problem. In
general, the upper-bound on the number of possible sched-
ules for a TAEMS task structure containing n actions is
given in Equation 1. Clearly, for any significant task
structure the brute-strength approach of generating all
possible schedules is infeasible — offline or online. This
expression contains complexity from two main sources.
On the “planning” side, the scheduler must consider the
(unordered) O(2") different alternative different ways to

go about achieving the top level task (for a task structure
with n actions). On the “scheduling” side, the scheduler
must consider the m! different possible orderings of each
alternative, where m is the number of actions in the al-
ternative. Despite the fact that DTC is not used for the
actual scheduling of activities in SRTA, the scheduling
analysis is still necessary when quantitatively comparing
candidate plans because an end-to-end view is required to
calculate the properties of a proposed plan.

> (7):

=0

(1)

The types of constraints that may be present in
TAMS and the existence of interactions between tasks
(and the different QAFs that define how to achieve tasks),
prevent a simple, optimal solution approach. DTC copes
with the high-order combinatorics using a battery of tech-
niques. Space precludes detailed discussion of these, how-
ever, they are documented in [35]. From a very high level,
the scheduler uses goal directed focusing, approximation,
scheduling heuristics, and schedule improvement/repair
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Figure 5: The “slider” model for specifying and interpreting the range of criteria DTC uses to weight its plan generation

and selection process.
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Figure 6: Real-Time Control for DTC

heuristics [44, 30] to reduce the combinatorics to polyno-
mial levels in the worst case.

The Design-to-Criteria scheduling process falls into the
general area of flexible computation, [14] but differs from
most flexible computation approaches in its use of multi-
ple actions to achieve flexibility (one exception is [15]) in
contrast to anytime algorithms [3, 29, 42]. We have found
the lack of restriction on the properties of primitive ac-
tions to be an important feature for application in large
numbers of domains. Another major difference is that in
DTC we not only propagate uncertainty [43], but we can
work to reduce it when in the criteria for achieving a goal
designates this characteristic as important.

Until recently, DTC supplied online scheduling and
planning services to other components by being “fast
enough” for the activities being scheduled. For exam-
ple, in the BIG information gathering agent [22], schedul-
ing/planning accounted for less than 1% of the agent’s
execution time - but this was in situations where problem
solving episodes were in the scale of minutes. In tighter
real-time situations, being fast enough may not be suffi-
cient, as discussed in [37]. The current generation sched-
uler supports hard real-time deadlines governing its exe-
cution time at the grainsize afforded by the Unix/Linux

operating system. The control algorithm used by the
scheduler is shown in Figure 6. To meet hard dead-
lines on the amount of time the scheduler can take to
plan/schedule, it first relaxes constraints that are likely
to produce worst-case behavior and schedules. It then
records the most highly rated schedule, restores a portion
of the constraints, and schedules again. This schedule is
also recorded. The scheduler then lessens its degree of
focusing, enabling it to explore a larger percentage of the
schedule solution space, and reschedules. The resulting
schedule is recorded, the degree of focusing is decreased
again, and the scheduler again reschedules. This process
continues until the hard-deadline is met or the scheduler
explores the entire scheduling space. If the hard deadline
occurs before the scheduler is able to produce a single vi-
able schedule, no schedule is returned to the client. For
a specific application, we can thus set a time limit for
DTC to operate within. However, this capability also
allows for the more interesting possibility of a meta-level
control component which adapts scheduling duration over
time[28, 27].

As with most hard real-time applications, there is a
minimum temporal grainsize below which no solutions
will be produced. With TAEMS scheduling, the mini-
mum temporal floor is defined by the characteristics of
the problem instance, e.g., number and types of interde-
pendencies, constraint tightness, existence of alternative
solution methods, classes of QAFs, etc. Predictability
[31] in a hard real-time sense is thus still lacking. In gen-
eral, the issue returns to the grainsize of the problem.
For some applications, a hard scheduling deadline of one
second is reasonable, whereas for others, twenty seconds
may be required to produce a viable result. In the dis-
tributed sensor application, the scheduler grainsize is too
great, particularly when rescheduling occurs frequently, as
discussed below. Thus, additional, secondary measures
were needed to decrease the frequency and duration of
DTC’s scheduling sessions. These tactics included using
a caching system (see section 4.2) and reducing complex-
ity by planning over individual goals whose schedules are
later merged, rather than directly over a single aggregate
goal.

Returning to our example, DTC is used to select the
most appropriate set of actions from the initialization
task structure. In this case, it has only one valid plan:
Init, Calibrate, and Send-Message. A more interest-
ing task structure is seen in Task2 from figure 4, which



has a set of alternative methods under the task Track.
A deadline is associated with Send-Result, correspond-
ing to the desired synchronization time specified by the
agent managing the tracking process. In this case, DTC
must determine which set of methods is likely to obtain
the most quality, while still respecting that deadline. Be-
cause TAEMS models duration uncertainty, the issue of
whether or not a task will miss its deadline involves prob-
abilities rather than simple discrete points. The tech-
niques used to reason about the probability of missing
a hard deadline are presented in [37]. It selects for ex-
ecution the plan Set-Parameters, Track-Medium, and
Send-Results. After they are selected, the plans will be
used by the partial order scheduler to evaluate precedence
and resource constraints, which determine when individ-
ual methods will be performed.

3.3 Partial Order Scheduler

DTC was designed for use in both single agents and agents
situated in multi-agent environments. Thus, it makes no
assumption about its ability to communicate with other
agents or to “force” coordination between agents. This
design approach, however, leads to complications when
working in a real-time, multi-agent environment where
distributed resource coordination is an issue. When re-
sources can be used by multiple agents at the same time,
DTC lacks the ability to request communication for the
development of a resource usage model. This is the
task of another control component that forms schedul-
ing constraints based on an understanding of resource us-
age. In most applications, these constraints are formed
by rescheduling to analyze the implications of particular
commitments. In the real-time sensor application, the
rescheduling overhead is too expensive for forming these
types of relationships. The solution we have adopted is to
use a subset of DTC’s functionality, and then offload the
distributed resource and fine grained scheduling analysis
to a different component - the partial order scheduler.
Specifically, DTC is used in this architecture to reason
about tradeoffs between alternative plans, respect order-
ing relationships in the structure, evaluate the feasibility
of soft interactions, and ensure that hard duration, qual-
ity and cost constraints are met.

DTC presents the partial order scheduler with a linear
schedule meeting the requested deadline. Timing details,
with the exception of hard deadlines generated by com-
mitments to other agents and overall goal deadlines, are
ignored in the schedule, which is essentially used as a plan.
The partial order scheduler uses this to build a partially
ordered schedule, which includes descriptions of the inter-
relationships between the scheduled actions in addition
to their desired execution times. This partially ordered
schedule explicitly represents precedence relationships be-
tween methods, constraints and deadlines. This informa-
tion arises from commitments, resource and method in-
terrelationships, and the QAF's assigned to tasks and is
represented as a precedence graph. This graph can then
be used both to determine which activities may poten-
tially be run concurrently, because they have no prece-

10

dence relation between them or they do not have inter-
fering resource usages?, and where particular actions may
be placed in the execution timeline. Of particular sig-
nificance, this latter functionality allows the scheduler
to quickly reassess scheduled actions in context, so that
some forms of rescheduling can be performed with very
low overhead when unexpected events require it. Much
of this information can be directly determined from the
TAMS task structure.

Consider the tracking task structure shown in Figure 4.
Enables interrelationships between the tasks and meth-
ods indicate a strict ordering is necessary for the three
activities to succeed. In addition (although not shown in
the figure), a deadline constraint exists for Send-Result,
which must be completed by time 2500. Next look at the
initialization structure in Figure 7A. While an enables in-
terrelationship orders Init and Send-Message, it does
not affect the Calibrate method. Internally, the partial
order scheduler will use this information to construct a
precedence graph. In this example, the graph will first be
used to determine that Calibrate may be run in parallel
with the other two methods in its structure. Later, when
Task2 arrives, the updated graph can be used to find an
appropriate starting time for Set-Parameters which still
respects the deadline of Send-Result, which relies upon
it.

An example precedence graph modeling the complete
set of our running activities can be seen in Figure 8. Two
types of precedence interrelationships are shown, static
and dynamic. Static relations are those which can be
derived directly from the structure. This includes con-
straints from interrelationships and QAFs. Dynamic re-
lations are those which are deduced from the execution
context, such as when methods are scheduled or what
resources are available. This includes elements such as
deadline or earliest start time constraints from commit-
ments, and the effects of resource usage. For instance,
note the deadline (2500) constraint on Send-Result,
which causes deadline constraints to be propagated and
recognized for Track-Medium and Set-Parameters. The
RF resource usage, shown abstractly at the bottom of
the graph, is generated using a resource modeler that is
covered in greater detail in the next section. The mu-
tual relationships between those methods demonstrates
the idea that regardless of their actual ordering, the meth-
ods still maintain a resource precondition with one an-
other. Additionally, such resource-based constraints are
only discovered as part of the scheduling process, so some
interactions may not be found until the scheduler actu-
ally searches the space of solutions where they are man-
ifested. In this example, the constraint over the RF re-
source between Send-Message and Send-Result has not

*Note that a method’s expected duration does not imply
use of a (bounded) CPU during that time. Early implemen-
tations of TAMS assumed that a method’s duration implied
the complete use of the local processor during that period.
We now allow methods which are otherwise independent to
run concurrently. The original, single-processor behavior can
be modeled through the use of a shared processor resource,
which is reasoned about like any other resource.
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Figure 8: A partially ordered precedence graph modeling the running example on the task structures shown in Figures
4 and 7. Both static (i.e. those derived from interrelationships, QAFs, etc.) and dynamic (from resources, deadlines,

etc.) constraints are shown.

been found for this reason.

From the partial order scheduler’s point of view, this
model is used to detect and cache resource relationships
that can be used to facilitate the scheduling process just
like any other ordering relationship. In such cases, a re-
lationship can be detected when an attempt to schedule
concurrent resource usages fails. This relationship can
then be used in the future to reduce the resource usage
search space which must be explored.

While the partial order scheduler may directly reason
about direct precedence rules as outlined above, a more
robust analysis is needed to identify indirect interactions
which occur through common resource usage. Because of
uncertain and probabilistic interactions between resources
and actions, both locally and those to be performed by
other agents, a thorough temporal model is needed to cor-
rectly determine acceptable times and limits for resource
usage.

3.4 Resource Modeler

The responsibility of binding (conceptually allocating) re-
sources to specific activities, belongs to a separate com-
ponent called the resource modeler. The partial order
scheduler does this by first producing a description of
how a given method is expected to use resources, if at all.
This description includes such things as the length of the
usage, the quantity that will be consumed or produced,
and whether or not the usage will be done throughout
the method’s execution or just at its start or completion.
The scheduler then gives this description to the resource
modeler, along with constraints on the method’s start and
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finish time, and asks it to find a point in time when the
necessary resources are available.

As with most elements in T/EMS the resource usage is
probabilistically described, so the scheduler must also pro-
vide a minimum desired chance of success to the modeler.
At any potential insertion point, the modeler computes
the aggregate affects of the new resource usage, along with
all prior usages up to the last known actual value of the
resource. The expected usage for a given time slot can
become quite uncertain, as the probabilistic usages are
carried through from each prior slot. If the probability of
success for this aggregate usage lies above the range spec-
ified by the scheduler, then the resource modeler assumes
the usage is viable at that point. Since a given usage
may actually take place over a range of time, this check
is performed for all other points in that range as well.
If all points meet the success requirement, the resource
modeler will return the valid point in time. After this,
the scheduler will insert the usage into the model, which
will then be taken into account in subsequent searches.
If a particular point in time is found to be incompati-
ble, the resource modeler continues its search by looking
at the next “interesting” point on its timeline - the next
point at which a resource modification event occurs. The
search process becomes much more efficient by moving di-
rectly from one potential time point to the next, instead
of checking all points in between, making the search-time
scale with the number of usage events rather than the
span of time which they cover. Caching of prior results,
especially the results of the aggregate usage computation,
is also used to speed up the search process.

Consider our running example involving the three tasks



shown in Figures 4 and 7. Task1 arrives first, followed by
Task?2 around time 260, and Task3 is recognized at time
750. Each of these tasks includes methods which make
use of the RF resource, using the pseudo-locking scheme
described earlier, and as such their respective execution
times will interact with one another. We will consider
first the simple case where each affected method will con-
sume all of the RF resource when it starts, and produces
that same amount when it completes, with a probability
of 1. The start times and finish times will be determinis-
tic single values. In this case, the first scheduled method,
Send-Message, will consume the RF resource at time 260,
the Send-Tracking-Info will consume it at 1375, and
Send-Result will continue that same level of consump-
tion starting from 2000 until 2500. The combined re-
source model for this usage pattern can be seen in Figure
9A. This graph shows what the probability of a given re-
source level will be at a given time. For instance, at time
2000, there is a probability of 100% that the resource will
be at level 0, while a 0% probability it will be at either
41000 or -1000. This is consistent with our description,
which stated that while the method is running, the re-
source should be completely consumed.

A more interesting usage pattern will occur when un-
certainty is introduced into the schedule. Consider the
same set of three methods, with the same level of RF con-
sumption. The difference in this case is that each method
will have both an uncertain start time and uncertain du-
ration, so that where the start time for Send-Message
was [260, 1.0], it will now be [210, 0.25, 260, 0.5, 310,
0.5]; a 25% chance it will start early at time 210, a 50%
chance of starting at the correct start time of 260, and
a 25% chance it will start late at 310. Their durations
are modified similarly. Figure 9B shows what the com-
plete RF resource model would look like after this mod-
ified Send-Message usage is added. Note how the ex-
pected resource levels at the beginning are less precise,
ranging from time 210 to 310, and how this uncertainty in
combination with the modified duration produces an even
less certain finish time, ranging from 660 to 860. A sim-
ilar pattern is seen later in the time line when the usage
from Send-Result is added in Figure 9C. When the usage
from Send-Tracking-Info is added, however, something
different occurs. The interaction between the uncertain
finish time of Send-Tracking-Info and the start time of
Send-Result results in a non-zero probability that the
resource level might exceed its lower bound. Specifically,
Figure 9D shows that around time 2000 there is a 24%
chance that the level of RF resource might reach -1000,
which is below its lower bound of zero, and would cause
one of the methods to fail. This situation can be avoided
by shifting one or both of the methods’ execution times,
so given this condition, the scheduling component could
use this information to reason about the tradeoff between
success probability and any temporal constraints associ-
ated with the activities.

The type of information shown in Figure 9 is used
by the resource modeler to search for appropriate places
where new resource usages may be inserted. In general,
the scheduling process will provide a set of resource usage
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descriptions extracted from methods it is attempting to
schedule, which may affect multiple different resources at
different times, along with start and finish time bounds
and a minimum desired probability of success, and the re-
source modeler will return the first possible match if one
is found. These constraints are then used along with di-
rect structural precedence rules and the existing schedule
to lay down a final schedule.

3.5 Schedule Merging

Once potential interactions, through interrelationships,
deadlines or resource uses are determined, the partial or-
der scheduler can evaluate what the best order of exe-
cution is. Wherever possible, actions are parallelized to
maximize the flexibility of the agent, as was introduced
in section 3.3. In such cases, methods running concur-
rently require less overall time for completion, and thus
offer more time to satisfy existing deadlines or take on
new commitments. Once the desired schedule ordering
is determined, the new schedule must be integrated with
the existing set of actions. The areas of parallelism found
during this stage are cached, along with a description of
the current resource context. If a similar task structure is
instantiated later under a similar resource context, these
parallelism hints are used to mark up the task structure
before it is sent to DTC for planning. These modifications
allow DTC to more accurately reason about the time a se-
ries of actions will actually take when they are performed
(in parallel), potentially allowing it to choose a cheaper
or higher quality plan. This technique will be covered in
more detail in section 4.3.

The partial order scheduler makes use of two other tech-
nologies to integrate the new goal with existing scheduled
tasks. The first is a conflict resolution module, which
determines how best to handle un-schedulable conflicts,
given the information at hand. Most time-constrained
tasks in the agent are added through negotiation with
other agents, which will have assigned an importance
value to their particular commitment. This value remains
associated with the task structure and scheduled meth-
ods as they are created. Thus, when scheduling conflicts
arise, the conflict resolution component can compare the
relative importance of the conflicting actions, and remove
the one of lesser priority. If such a decommittal is made,
or if no valid resolution can be found, the problem solv-
ing component is notified of the situation so that it can
take appropriate action. We are also investigating the
feasibility of “just-in-time” schedule modifications. This
technique would attempt to use the original task struc-
ture to quickly replace an existing infeasible sequence of
actions with an alternative that can satisfy the commit-
ment in the current context. A second component handles
the job of merging the new goal’s schedule with those of
prior goals. The specific mechanism used is identical to
that which determines order of execution. Interdepen-
dencies between this large set of methods, either direct or
indirect, are used to determine which actions can be per-
formed relative to one another. This information is then
used to determine the final desired order of execution.
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the uncertain schedule are added.

To this point in our example, the agent has been asked
to work towards three different goals, each with slightly
different execution needs. Taskl allows some measure
of parallelism within itself, as Init and Calibrate can
run concurrently because no ordering constraints exist be-
tween them. Task2, received some time later, must be run
sequentially, and its method Send-Result must be com-
pleted by time 2500. Task3 is received later still, and also
must be run sequentially. All three, however, require the
use of the RF resource, for communication needs, and are
thus indirectly dependent on one another. The partial or-
der scheduler produces the schedule seen in Figure 10A,
where all the known constraints are met. Some measure
of parallelism can be achieved, seen with Set-Parameters
and Send-Message, and also between Track-Medium and
the methods in Task3. Note that the resource modeler
detected the incompatibility between the methods using
RF (shaded gray), however, and therefore do not overlap.

3.6 Method Execution

The execution details of particular methods specified in
the TAMS structure will vary from one environment to
the next. In all cases, however, they are initiated and
monitored by an execution component resident in SRTA.
During each cycle, the component will analyze the cur-
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rent schedule(s) to find a group of candidate actions which
may be started by comparing their scheduled start times
with the current time. Each member of this group is then
checked to see if its preconditions have been met. This
includes verifying the success of enabling tasks, determin-
ing sufficient resources are available, and meeting earliest
start time criteria. Any methods which fail a precondi-
tion are delayed, using the scheduler’s shifting mechanism
described earlier. Methods which meet their precondi-
tions are started. In subsequent cycles, the execution
component will continue its operation by comparing the
observed performance of the actions against their expecta-
tions as modeled in the schedule. Any differences indicate
a place where the schedule is no longer accurate, so the
schedule is maintained as time progresses to reflect these
changes. A common problem is that an action may take
longer than expected, in these cases the execution com-
ponent will use the partial order scheduler to update the
schedule to reflect the new duration, again shifting depen-
dent methods as necessary. This process will be covered in
more detail in the next section. Finally, when a method
completes, the execution characteristics are recorded in
the TAEMS structure, and also propagated as an event to
the rest of the agent.

How methods are actually performed is a relatively
domain-dependent issue. The execution component as-
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Figure 10: A) Initial schedule produced after all the goals have been received, with a Send-Result deadline of 2500,
B) the invalid schedule showing that constraint broken by the unexpected long duration of Negotiate-Tracking, and

C) the corrected schedule respecting the deadline.

sumes that methods are asynchronous (i.e. that control
returns immediately after the action is initiated), and can
potentially be run in parallel. The component itself is
responsible only for determining when the action should
start and tracking its progress. In other respects, however,
the specific form the action takes is up to the system de-
signer. For example, when running within the MASS sim-
ulation environment[32], actions are sent to the simulator
to be performed. MASS uses the quantitative character-
istics of the TAEMS structure itself (or some variant of it)
to determine what the appropriate execution characteris-
tics are. In real-world systems, the action is performed
locally. The process begins when the execution compo-
nent fires an event indicating that an action has started.
Elsewhere in the agent, domain-specific code would re-
spond to that event by actually performing the action.
This might be accomplished by spawning a new thread,
creating a separate process, or operating intermittently
in response to the agent’s own execution cycle. In the re-
source allocation domain we have been using, sensor ac-
tions (e.g. measurements, changes to various settings) are
relayed to the sensor itself, which performs the operation
asynchronously. Other actions, such as message sending
or data fusion, are performed directly by the agent. It
is important to note that the mechanism employed, and
how it interacts with the underlying operating system and
competing tasks on the local processor can ultimately af-
fect the execution characteristics of the action itself. Like
any other aspect which can affect performance, the de-
sign and qualitative elements of the TZAMS model should
reflect the variance created by these interactions.

3.7 Conflict Resolution

Suppose next that Negotiate-Tracking is taking
longer than expected, forcing the agent to dynam-
ically reschedule its actions.  Because the method
Send-Tracking-Info cannot start before the completion
of Negotiate-Tracking, due to the enables interrelation-
ship shown in Figure 7B, the partial order scheduler must
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delay the start of Send-Tracking-Info. A naive ap-
proach would simply delay Send-Tracking-Info by a
corresponding amount. This has the undesirable conse-
quence of also delaying Send-Result, because of the con-
tention over the RF resource. This will cause Send-Result
to miss its deadline of 2500, as shown in the invalid sched-
ule seen in Figure 10B.

Fortunately, the partial order scheduler was able to
detect this failure, because of the propagation of exe-
cution windows. Send-Result was marked with a lat-
est start time of 2000. This caused the partial order
schedule to try other permutations of methods, which re-
sulted in the schedule shown in Figure 10C, which delays
Send-Tracking-Info in favor of Send-Result. This al-
lows the agent to proceed successfully despite a failed ex-
pectation. This process is accomplished by first delaying
the finish time of the offending method in the schedule
to reflect the current state of affairs, and then recursively
delaying any other methods which are dependent on that
method until a valid solution is found or a recursive limit
is reached. At each step, the schedule generation is per-
formed in the same way the initial schedule was generated,
i.e. through analysis of the precedence graph and resource
usage patterns, Note that this is a “saticificing” process,
which will attempt to find the best solution, but only
guarantees that the minimum set of criteria are met. Not
all permutations are explored, thus an acceptable solution
may exist but not be found.

This type of simple conflict resolution is performed
automatically, through the cooperation of the execution
module, which detects the unexpected behavior, and the
scheduling component which attempts to repair the prob-
lem using the quick shifting technique shown above. In
some cases, in particular when methods actually fail to
achieve their goal, this sort of simple shifting is not suf-
ficient to repair the problem. To handle these cases, we
have developed a conflict resolution module capable of
analyzing a particular situation and suggesting solutions.

Abstractly, the conflict resolution module is a customiz-



able engine, which applies techniques encoded as “plug-
ins” to a particular situation. If the set of techniques
available is not appropriate for the agent designer, they
are free to add or remove techniques as needed. Each tech-
nique plug-in is associated with a discrete numeric priority
rating, typically specified by the designer of the plug-in,
which controls the ordering in which the techniques are
applied. When searching for a conflict resolution, the en-
gine will begin by applying all techniques marked with
the highest priority. If one or more solutions are sug-
gested, then that set of solutions is returned for the caller
to select from. If no solutions are suggested, the engine
will apply the techniques at the second-to-highest level,
and so on. If the designer orders the techniques appropri-
ately, for instance with quick or highly effective techniques
first followed by slower or less applicable ones, the engine
should make efficient use of its time. The ordering of these
plug-ins is currently more art than science, so a certain
amount of domain knowledge and experience is required
on the designer’s part. The engine and resolution tech-
niques described below exist in prototype form, and have
not been extensively tested.

Several different types of conflict resolution techniques
have been implemented. For instance, when DTC gener-
ates plans for a task structure, it automatically produces
a range of plans, from which the best rated is generally
selected for use. A simple and effective resolution tactic is
then to select the next best-rated schedule after the first
which is not affected by the failure, and use that in place
of a failed one. Another plug-in implements a variant of
this technique which allows the modeler to actually pre-
specify an alternate plan, which is then read in and used
similarly. This latter technique is somewhat more costly,
as it involves file access and data parsing, so it would
likely have a lower priority than the first.

If no viable alternate plans are available, the entire
structure can be sent back to DTC for re-planning. Be-
cause the structure would incorporate new information
about the current context (in particular, the conflict or
failure would be modeled), the plans DTC would return
would bear this in mind. For instance, in the example
above where Negotiate-Tracking took too much time,
this updated duration information would be incorporated
into the structure, which would cause DTC to ignore a
subset of schedules which previously would have been
valid. A more expensive version of this technique allows
the TAEMS modeler to explicitly mark up methods such
that they trigger a particular structural change when they
fail. This could, for instance, swap a failed method A
with alternate method or task A’ which would presumably
achieve the same results using a different method. This
structure would also be sent to DTC for re-planning. Fi-
nally, because DTC is somewhat detached from the global
planning process, in that it typically plans for only one
of many possible concurrent goals at a time, a resolution
technique might be to artificially restrict the desired level
of quality, cost or duration exhibited by the plans it pro-
duces. In this way, constraints imposed by goals which
are unrelated, except that they are owned by the same
agent, may be abstractly represented in the structure as
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a limited resource, restrictive criteria, or other artificial
bound. This may result in a different and hopefully more
applicable set of plans being generated. For instance, if
all plans which DTC generates for a particular goal are
incompatible with the existing schedule because they re-
quire more time than is available, one might limit the
desired solution quality to cause DTC to return sched-
ules which it otherwise would have dropped. In another
case, if one goal had a precedence constraint with another
that is currently running, an artificial deadline or earliest
start time could be added to the new goal to allow DTC
to correctly reason about the interaction without actually
possessing direct knowledge of it.

A final efficient way of resolution is to use the knowledge
gained from prior resolved conflicts and cache it for later
use. In this case, the plug-in will monitor both the reso-
lution strategies which are selected to be applied, and the
context in which they were chosen. Later, when the same
context is seen, the earlier solution can be immediately
suggested. If this plug-in is given a high priority, then a
potentially expensive search process may be avoided with
no detrimental effects.

As an example, consider the TAEMS structure shown
in Figure 4. We will assume three different resolution
plug-ins are in use by the agent, corresponding to several
of the techniques outlined above. At the highest priority
level is Check-Cache, which searches for cached resolution
techniques which are applicable to the current problem.
At the next level is Alternate-Plan, which looks for com-
patible results from the previous scheduling activity. At
the lowest priority level is Regenerate-Plans, which uses
DTC to generate a completely new set of viable plans.
The initial schedule generated from this structure would
be { Set-Parameters, Track-High, Send-Results }. In
this instance however, Track-High fails, forcing the con-
flict resolution subsystem to find an appropriate solution.
Check-Cache has never seen this problem and context be-
fore, so it offers no solution. The prior planning activ-
ity, however, returned three different plans, so two po-
tentially viable plans remain for Alternate-Plan to exam-
ine. In this case, the plan { Set-Parameters, Track-Low,
Send-Results } both avoids the failed method and still
fulfills related commitment criteria. This schedule is of-
fered as a solution. Since a solution was offered at a lower
level, Regenerate-Plans is not invoked. Because only one
solution is provided, the execution subsystem will instan-
tiate the Alternate-Plan solution. If multiple solutions
were provided, they would be discriminated through their
respective expected qualities (which can be obtained from
the task structure).

Note that if this problem were seen again, Check-Cache
would recognize the context and provide this same solu-
tion, avoiding further search through the available reso-
lution plug-ins.

4 Optimizations
The high-level technologies discussed above address the

fundamental issues needed to run in real-time. Unfor-
tunately, even the best framework will fail to work in



practice if it does not obtain the processor time needed
to operate, or if activity expectations are repeatedly not
met. A good example of this is the execution subsystem.
It may be that planning and scheduling have successfully
completed, and determined that a particular method must
run at a particular time in order to meet its deadline. If,
however, some other aspect of the agent has control of
the processor when the assigned start time arrives, the
method will not be started on time and may therefore
fail to meet its deadline. In this section we will several
techniques which aim to reduce the overhead of different
aspects of the system, in an attempt to avoid such situa-
tions.

4.1 Meta-Level Accounting

Several issues cause this problem described above. Of pri-
mary concern in this example is the fact that the agent
is not accounting for and scheduling all the activities the
agent is performing. Many systems only schedule for the
low-level tasks they perform - the actions which directly
and tangibly affect the goal at hand. At the same time,
however, there is an entire class of actions which the agent
is performing, and therefore compete for the same process-
ing time, which are not accounted for. Such tasks include
many elements seen in figure 2: communication, negotia-
tion, problem solving, planning, scheduling and the like.
These so-called “meta-level” activities can constitute a
significant fraction of the agent’s running time, but are
not being directly scheduled.

In this research we have added meta-level accounting
of communication and negotiation. Although not strictly
a feature of the architecture itself, it is still a sufficiently
important issue to merit discussion in SRTA’s context.
Reasoning over meta-level costs was accomplished by first
modeling these activities using T/AEMS task structures.
From a planning and scheduling point of view, there is
no difference between low and meta-level actions, so to
account for this time we need just an accurate model
and a component capable performing these actions in re-
sponse to a method execution. Given this, we can use
our existing TAMS processing components to correctly
account for this time. The task structure from our run-
ning example, seen in Figure 7B, models both negotiation
and communication activities. The duration of a negoti-
ation task is relatively deterministic, or at least can be
described within some bounds, so creating the task struc-
tures was a matter of learning the characteristics of our
negotiation scheme. An additional benefit of describing
these activities in TAMS is that it permits the planning
component to reason about the selection of negotiation
schemes. Consider a system where one had several differ-
ent ways to negotiate over a particular commitment, each
with different quality, cost and duration expectations. By
describing these in TAEMS , we can simply pass the struc-
ture the generic DTC planning component, which will de-
termine the most appropriate negotiation scheme for the
current environmental conditions. Furthermore, once a
given scheme is selected, it may also be parallelized by
the partial order scheduler for greater efficiency.
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In future research we hope to model other meta-level ac-
tivities, such as scheduling and planning[28]. These topics
are more complicated due to their non-deterministic na-
ture, i.e. the agent does not necessarily know a priori
how long it will take to schedule an arbitrary set of in-
terdependent actions nor precisely when this activity will
be needed. In addition, the need to quickly schedule and
plan in the face of unanticipated events, and the potential
need to schedule the scheduling of activities itself makes
these processes particularly difficult to account for. We
currently handle the time for these activities implicitly by
adding slack time to each schedule. This is accomplished
by reasoning with the maximum expected duration time
for a given schedule, rather than the average time. This
simple approach works when the variance of the sched-
ule’s duration is not particularly wide; different charac-
teristics might require a more suitable approximation. In
the future, we plan to revise this approach with a more
intelligent accounting of time in the schedule.

4.2 Plan Caching

An issue affecting the agent’s real time performance is
the significant time that meta-level tasks such as planning
and scheduling can take themselves. In systems which run
outside of real-time, the duration performance of a par-
ticular component will generally not affect the success or
failure of the system as a whole - at worst it will make
it slow. In real time, this slowdown can be critical, for
the reasons cited previously. Complicating this issue is
the fact that these meta-level activities may be randomly
interspersed with method executions. New goals, com-
mitments and negotiation sessions may occur at any time
during the agent’s lifetime, and each of these will require
some amount of meta-level attention from the agent in a
timely manner. To address this, our control architecture
attempts to optimize the meta-level activities performed
by the agent.

One particular computationally expensive process for
our agents is planning, primarily because the DTC plan-
ner runs as a separate process, and requires a pair of disk
accesses to use. Unfortunately, this is an artifact caused
by DTC’s C++ implementation; the remainder of the ar-
chitecture is in Java. We noticed during our scenarios that
a large percentage of the task structures sent to DTC were
similar, often differing in only their start times and dead-
lines, and resulting in very similar plan selections. This
is made possible by the fact that DTC is now used on
only one goal at a time, as opposed to our previous sys-
tems which manipulated structures combining all current
goals. To avoid this overhead, a plan caching system was
implemented, shown as a bypass flow in Figure 2. Each
task structure to be sent to DTC is used to generate a key,
incorporating several distinguishing characteristics of the
structure. If this key does not match one in the cache,
the structure is set to DTC, and the resulting plan read
in, and added to the cache. If the key does match one
seen before, the plan is simply retrieved from the cache,
updated to reflect any timing differences between the two
structures (such as expected start times), and returned



back to the caller. This has resulted in a significant per-
formance improvement in our agents, which leaves more
time for low-level activities, and thus increases the likeli-
hood that a given deadline or constraint will be satisfied.
Quantitative effects of the caching system can be seen in
Table 2.

To test the caching subsystem, we performed 1077
runs using eight sensors and one target in the RADSIM
environment?, which models the distributed sensor envi-
ronment discussed in this paper. As shown in the table,
the caching system in these tests was able to avoid calling
DTC 30% of the time, resulting in a significant savings in
both time and computational power.

4.3 Parallel Activity Recognition

The major disparity which exists between the DTC plan-
ning component and the remainder of the SRTA archi-
tecture is its inability to plan for parallel activities*. It
assumes a sequential set of actions, and generates plans
accordingly. Under constrained conditions, this can lead
DTC to eliminate potential candidate plans which would
otherwise have functioned successfully if their innate par-
allelism were recognized and exploited.

One way to solve this problem would be to update
DTC’s logic to directly reason about these types of in-
teractions. After consideration, it was determined that
the amount of effort needed to do this would outweigh
the benefits. In addition, there are certain advantages
in reduced complexity which arise from a layered system,
where some aspects of the problem space are hidden at
different levels. Instead, we have worked around this is-
sue through the use of a mapping function, which is able
to translate some classes of parallelism into an analogous
form in TAEMS which DTC is able to correctly reason
about.

The process is best explained through an example.
Consider the abstract task structure shown in Figure 11A.
This structure has two subtasks, Sub1l and Sub2, which
must both be performed successfully and in order, be-
cause of the enables interrelationship between them and
Task1l’s min QAF. Note that Sub1 also has a min QAF,
so that A and B must both be performed, while Sub2 has
a maz, requiring either or both of C1 and C2. The method
C2 both requires more time to complete and has a higher
expected quality than C1. Finally, the entire structure has
a deadline which must be respected.

The initial DTC plan is shown in 11A which will then
be used by the partial order scheduler to generate the
schedule below it. Note that because A and B could be
performed in parallel, the initial plan does not make effi-
cient use of the available time. In fact, the deadline caused
DTC to select C1 over the higher quality C2, which would
otherwise have had sufficient time to complete in the final

SRADSIM was designed and built by the Air Force Re-
search Laboratory under the direction of Jamie Lawton
(lawton@rl.af.mil).

“To be more precise, DTC does support a particular kind of
parallelism associated with a method’s percentage of processor
usage, but it is not sufficiently general for SRTA’s needs[36].
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schedule. To compensate for this, schedules are analyzed
for these areas of parallelism. If any are found, that in-
formation is used to annotate subsequent TAMS struc-
tures that are structurally identical before they are sent
to DTC. Such a structure is shown in 11B, where a pair
of mutual facilitates relations have been added between
methods A and B. These interrelationships are quantified
in such a way that if either method is performed, the
model indicates that the remaining method will take zero
time. This will be interpreted by DTC as meaning, for
instance, that B may be performed instantaneously once
A has completed, which has roughly the same characteris-
tics as a true parallel schedule. Because of this, more time
will be available within the plan, and the higher quality
C2 method will be selected as shown. This will result in
the higher quality schedule as shown.

The notion of parallel activity recognition is one aspect
of a more general problem where there exists a class of
conditions which a subsystem is unable to detect or ex-
ploit due to its lack of context or functionality. In SRTA,
because DTC may be used to plan for structures without
complete knowledge of potentially competing local sched-
ules, it can produce plans which are unacceptable. To
compensate for this, at runtime one can condition the task
structures given to the subsystem to compensate for this
lack of information. For example, to model the effects of a
concurrent process, DTC might be asked to generate plans
with artificially limited durations by modifying the plan-
ning criteria shown in Figure 5. Similarly, if it is known
that a resource will be restricted in the future, one might
present DTC with a more tightly bounded view of that re-
source to avoid possible conflicts. More generally, we can
address this class of issues by first learning or anticipating
that such conditions will exist, and then augmenting the
information used by the subsystem to provide a suitable
abstraction of the otherwise unobservable constraint.

4.4 Learning

Much of the material discussed in previous sections as-
sumes that the TAMS models describing our activities
are faithful to real world performance. It should be clear
that without accurate models, it will be quite difficult
for the agent to correctly allocate its time. In prior re-
search, [17] some quantitative and structural elements of
TAEMS structures have been shown to be learnable using
off-line analysis of a large corpus of results. While this
technique would work to a certain extent for our applica-
tion, we are more interested in using a lightweight run-
time learning component to give the agent the capability
to dynamically adapt to changing conditions.

Our current learning system automatically monitors all
method executions in the agent, and maintains a set of
the last n results. When queried, the component uses
these results to compute a duration distribution for the
particular method in question. This data can then be
used to condition new task structures, improving their
predictive accuracy and along with the agent’s scheduling
success.

A more ambitious goal that we hope to address in future



Component Average Number of Calls | Execution Time
DTC Scheduler 72.14 300 ms
DTC Caching 31.12 74 ms
Partial Order Scheduler 531.03 36 ms

Table 2: Average results over 1077 runs of 180 seconds each.
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Figure 11: The effects of parallel activity recognition. A) shows the original task structure, which leads to an inefficient
final schedule, B) shows the task structure with modifications, which results in a higher quality schedule.

work is the ability to learn how much time and resources
the meta-level activities associated with a goal require,
and how to better predict and account for interactions
between local activities. This metric could then be used
to augment or annotate the goal’s structure or modify
the objective criteria in such a way that the agent is able
to reason about those requirements. Consider a situa-
tion where the agent uses the resource modeler and the
current schedule to compare the availability of resources
and time in the current context to the agent’s ability to
successfully complete a particular plan or schedule. If a
correlation is able to be drawn from such observations,
future planning instances in similar contexts could imple-
ment a change the criteria to avoid potential pitfalls. In
such cases, by varying the desired quality, duration or cost
in the criteria provided to DTC, more appropriate plans
can be produced. Examples of such changes are covered
in further detail in Section 5.3.

4.5 Time Granularity

The standard time granularity of agents running in our
example environment is one millisecond, which dictates
the scale of timestamps, execution statistics and commit-
ments. Because we run in a conventional (i.e. not real-
time) operating system, in addition to our relatively un-
predictable activity durations, it becomes almost impos-
sible to perform a given activity at precisely its scheduled
time. For instance, some action X may be scheduled for
time 1200. When the agent first checks its schedule for
actions to perform, it is time 1184. In the subsequent cy-
cle, 24 milliseconds have passed, and it is now time 1208.
To maintain schedule integrity (especially with respect to
predicted resource usage), we must shift or reschedule the
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Figure 12: The effect of varying time granularity on agent
behavior. A higher time ratio indicates that a greater
percentage of sequential time units are seen, which should
reduce the need for rescheduling. A higher action ratio
indicates the available time was used more efficiently.

method which missed its execution time before perform-
ing it. Despite our existing optimizations, although each
of these events are individually quite fast, combined in
large numbers they can consume a significant portion of
the agents’ operating time.

To compensate for this, we scale the agents’ time gran-
ularity by some fixed amount. This theoretically trades
off prediction and scheduling accuracy for responsiveness
[6, 7], but in practice a suitably chosen value has few
drawbacks, because the agent is effectively already oper-
ating at a lower granularity due to the real time missed
between agent activity cycles. Using this scheme, if we
say that every agent tick corresponds to 20 milliseconds,
the above action would be mapped to run at time 60. At



time 1184, the agent would operate as if it were time !
while 1208 would become 60, the correct scheduled tis
for X, thus avoiding the need to shift the action. Clea
we can not eliminate the need for rescheduling, due
the inherent uncertainty in action duration in this en
ronment, but the hope is to reduce the frequency it
needed. Experimentation can find the most appropri:
scaling factor for an agent running on a particular syste
by searching for the granularity which optimizes the nu
ber of actions which are able to be performed against t
number of rescheduling events which must take place. O
experiments, the results of which can be seen in Figt
12, resulted in a 35% reduction in the number of shifted
or rescheduled activities by using a time granularity be-
tween 40 and 60 ms. Ideally, the system should “see”
each sequential time click, but as the graph shows, as the
system reaches that point, the coarse timeline unnecessar-
ily restricts the number of actions which may take place,
reducing the overall efficiency.

5 Execution Characteristics

This section will provide more concrete evidence show-
ing how the SRTA architecture performs in practice. We
will begin by showing how SRTA can be used to support
the sort of sophisticated problem solving behavior which
was described in the introduction. We will then show
how commitments and constraints can be used to control
method execution at runtime. Finally, we will show how
alternative plans can be used to encode and support adap-
tive behavior, dependent on the current runtime context.

5.1 Supporting High-Level Reasoning

SRTA supports the problem solving aspects of a sophisti-
cated agent through its capability of responding to “what-
if” style queries, using the TAMS language as the de-
scriptive medium. Consider the case where one agent
is attempting to coordinate with another. In this situa-
tion, the agent must first determine the goals it is capable
of achieving which will satisfy the coordination request.
Next, it must determine the constraints under which the
coordination is being requested, such as deadlines or earli-
est start times. These two features are provided to SRTA,
which takes into account the current activity schedule, en-
vironmental context and existing commitments during its
analysis. SRTA will then both determine if that goal may
be achieved, and if so, what the resulting execution sched-
ule will look like if the needed activities were integrated
with the existing schedule. If no solution is found, the rea-
soning component may decline the commitment or adjust
the goal structure or constraints. If a solution is found,
it may use the resulting schedule to provide the remote
agent with expected completion characteristics.

Using TAEMS , the agent will first model the goal and its
subtasks, along with any constraints that exist. Consider
the schedule shown in Figure 14A. In this scenario, the
agent has previously scheduled two goals, Setup-Sensor
and Perform-Track, as modeled in Figure 13. The three
Track methods in that model each have an expected level
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Figure 13: A pair of abbreviated task structures for cali-
bration and tracking.
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Figure 14: A) The agent’s initial schedule, along with
new actions which describe the what-if condition, been
received, B) The resulting consolidated schedule.

of quality which corresponds to their duration (i.e. long
duration — high quality). Because no competing methods
existed, Track-High was selected for the Perform-Track
goal. No direct interrelationships exist between the activ-
ities, but they do interact indirectly through the shared
resource Sensor. In this case, both Calibrate and the
three tracking methods use the Sensor resource to take
measurements, and thus cannot be performed at the same
time. This would be modeled using a similar locking
mechanism to that used with the RF resource described
earlier. Next, the agent is asked by another if it can
satisfy the goal Perform-Track for it, within a deadline
of 2500. To check this, the agent would pose a what-if
query to SRTA with the appropriate task structure and
the existing schedule, as shown in Figure 14A. Because of
the deadline and the preexisting schedule, SRTA selects
Track-Low to satisfy that goal, as shown in 14B. This re-
sult can then be used to support a commitment structure
with the remote agent.

Note that SRTA did not suggest changing the preexist-
ing method Track-High to a Track-Medium, which might
have resulted in a more equitable arrangement where the
second commitment could have also been accomplished
with Track-Medium. SRTA is a satisficing architecture, to
reduce both the combinatorics of planning and schedul-
ing and the potential need for re-negotiation over exist-
ing commitments it does not optimize over all potential
schedules and thus will not necessarily find the “perfect”
solution. If it were the case that Track-Low was not a vi-
able solution for this goal, it is expected that the reason-
ing component would have removed the method through
a process of task structure conditioning prior to planning.



A) Global view of the task, including the enables, in-
dicating there is a precedence relationship between B
and C, which belong to different agents.

C) The runtime view of
Task2.

The runtime

B)
view of Taskl.

Figure 15: The abstract global view and segregated run-
time structures showing a potential point where coordi-
nation would be needed.

Alternately, it could also validate the expected quality of
the schedule after planning, and generate an appropri-
ately modified what-if query if the initial result did not
meet minimum criteria.

5.2 Modeling and Respecting Commitments

Commitments are an important class of structures be-
cause they allow an agent to formally define an agreement
that it has with a remote party. These agreements, which
can come in many forms in both cooperative and compet-
itive systems, form a part of the foundation of multi-agent
systems by adding structure to the actions that part of
the system will take at the request of another. Because of
this, SRTA provides facilities for both defining potential
points where coordination may be necessary or fruitful,
and mechanisms for defining and respecting commitments
as they are needed.

Abstractly, a commitment is usually formed when the
actions (or their results) of one agent may directly or in-
directly affect the state of another. We have previously
shown in section 3.1 how interrelationships between nodes
in a single structure can model the effects between them.
These types of effects may be simply extended to span
nodes between structural elements belonging to disparate
agents to model inter-agent effects. Refer to Figure 15A,
which represents how a particular goal might be repre-
sented at the global, organizational level. In this case,
Taskl and Task?2 each belong to different agents, so that
the enables relationship between them represents a point
of interaction between them. More specifically, if the
agent pursuing Task2 is to be successful, it must ensure
that the Task1 is successfully completed before it begins
Task2.

At runtime, it is unusual that any one agent would pos-
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sess a complete global view as is shown in 15A. Instead,
each agent would have its own local view of the prob-
lem, as is seen in 15B and C. In this case, we assume
that Taskl agent has no knowledge of the interrelation-
ship. Instead, that information is represented in Task2’s
task structure, which indicates that a nonlocal method B
enables C. Thus, the agent working on Task2 will recog-
nize that B must come before C, B will be performed by
a remote agent, and it must ensure that this condition
is satisfied before proceeding. In a deliberative system,
this would be accomplished through coordination between
the two agents, where the coordination would result in a
commitment specifying how and when B is to be com-
pleted. Note also that while B is represented as a method
in Task?2, it is actually just an abstraction which refers to
a task subtree in Taskl.

These interactions can occur at any point in the task
structure where nodes can both affect one another and
are the responsibility of different agents. For example,
two nodes which are related through a common supertask
might have this characteristic. Shared resources also pro-
vide an indirect point of coordination, where agents may
need to coordinate there activities to ensure the resource
is not over or under-loaded[23].

Once an agent has detected a point of remote interac-
tion, it can then engage in a process of coordination. The
specifics of such a process are beyond the scope of this
article, more details can be found here [21, 5]. More ger-
mane is the concept that the agent must both determine
what sort of commitment is necessary, and how that can
be represented. The example in Figure 15 shows a sit-
uation where the success of one action depended on the
successful completion of another. Thus a commitment is
needed which lets the dependent agent know when that
enabling activity will be completed. We refer to this as
a do commitment. Conversely, if we replace the enables
with a disables relationship, this would indicate that the
dependent action would fail if the disabling action were
successfully completed. In this case, the dependent agent
would require a dont commitment, which indicated that
the action would not performed within some window in
time. The commitments themselves may be represented
directly in TEMS The structure allows one to define the
commitment type, participating agents, relevant methods,
relative importance, deadlines, earliest start times, and
other relevant details. During planning and scheduling,
these commitments are included with the TAEMS struc-
ture itself, enabling those components to use that data to
influence their respective activities.

During commitment formation, the agent would use the
what-if capability described in the previous section to de-
termine if the commitment could be satisfied. Once it has
been agreed upon the commitment is added to the agent’s
local structure, where SRTA may use it do drive local be-
havior. For example, return to the agents working on
Taskl and Task2 above. In this case, Task2 agent would
initiate coordination with another agent capable of com-
pleting B. That remote agent would use the requested ex-
ecution characteristics to create a commitment and pose
a what-if query to SRTA seeking a candidate schedule.



In this case, depending on the temporal constraints, the
schedule may include either or both of B1 and B2, which
will affect the solution quality the agent can offer. We as-
sume they both agree on the proposed commitment, and
Taskl will then instantiate a task structure containing
B. Meanwhile, Task2 agent would also instantiate, plan
and schedule its task structure. Task2’s activities would
start, but immediately be suspended because the enable-
ment from B is not active. This will continue until that
enablement is activated (either by the local agent acting
on the assumption B has completed, or from an explicit
message from Task2), when that schedule will resume and
complete.

Many of the details of coordination are left intentionally
unspecified, to avoid restricting the designer to a partic-
ular class of interactions. SRTA instead tries to provide
a suitably general set of modeling, analysis and execution
primitives which can be used as a foundation for a range
of different coordination alternatives.

5.3 Adapting to Environmental Conditions

An agent’s ability to adapt to changing conditions is es-
sential in an unpredictable environment. SRTA supports
this notion with TAMS , which provides a rich, quanti-
tative language for modeling alternative plans, and DTC
and the partial order scheduler, which can reason about
those alternatives. As discussed previously, this combina-
tion can also make use of activity and resource constraints
in addition to results of completed actions, providing the
necessary context for analysis and decision making.

Consider the model shown in Figure 16, where a va-
riety of strict and flexible options are encoded. Because
Goal has a seg_sum QAF, it will succeed (e.g. accrue
quality) if all of its subtasks are completed in sequence.
The quality it does accrue will be the sum of the qualities
of it’s subtasks. The structure indicates that D must be
performed for Task2 to succeed, and also that the agent
cannot execute E after F. Taskl and Task2 have slightly
more flexible satisfaction criteria. Their sum QAF's spec-
ify that they will obtain more quality as more subtasks
are successfully completed — without any ordering con-
straints. Finally, the facilitates relationships between A, B
and C model how the agent can improve C’s performance
through the successful prior completion of one or more of
A or B. Specifically, A will augment C’s quality by 25%,
while B will both increase C’s quality by 75% and reduce
its cost by 50%.

There are several other classes of alternatives which are
not shown in the figure. Resource interrelationships, for
example, may be used to model a variety of effects on
both the resources and the activities using them. The
presence or absence of nonlocal activities, as discussed
in the previous section, can indicate alternative means
of accomplishing a task. Multiple outcomes on methods
may indicate alternative solutions which may arise from
a method’s execution, so the probability densities asso-
ciated with each outcome provide an additional source
of discriminating information which can help control the
uncertainty of generated plans. The individual probabil-
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ity distributions for the quality, cost and duration of each
outcome serve in the same capacity, as do analogous prob-
abilities modeling the quantitative effects of interrelation-
ships. The available time, desired quality, and maximum
cost, along with other execution constraints provide the
context in which to generate and evaluate the alternative
plans such a structure may produce.

To demonstrate how the system adapts to varying con-
ditions, several plans derived from the task structure in
Figure 16 are shown in Table 3. These plans are produced
for different environmental conditions that place different
resource constraints on the agent. As one would expect,
when the agent is completely unconstrained and has a
goal to maximize quality, the plan shown in row one is
produced. Note that the selected plan has an expected
quality of 49.9, expected cost of 7.0, and an expected du-
ration of 90.0. The quality in this case is not a round
integer even though the qualities shown in Figure 16 are
integers because methods A and B facilitate method C
and increase C’s quality when they are performed before
method C.5

Row two shows the plan selected for the agent if it has
a hard deadline of 40 seconds. This is the path through
the network with the shortest duration that enables the
agent to perform each of the major subtasks. Note the
difference in quality, cost, and duration between rows one
and two.

Row three shows the plan selected for the agent if it is
given a slightly more loose deadline of 50 seconds. This
case illustrates an important property of scheduling and
planning with TAEMS - optimal decisions made locally
to a task do not combine to form decisions that are op-
timal across the task structure. In this case, the agent
selected methods ADEF. If the agent were planning by sim-
ply choosing the best method at each node, it would se-
lect method C for the performance of Task 1 because C
has the highest quality. It would then select D as there is
no choice to be made with respect to method D. It would
then select method E because that is the only method that
would fit in the time remaining to the agent. The plan
CDE has an expected quality of 25, cost of 10, and dura-
tion of 50. Scheduling and planning with TAEMS requires
stronger techniques than simple hill climbing or local de-
cision making. This same function holds when tasks span
agents and the agents work to coordinate their activities,
evaluate cross agent temporal constraints, and determine
task value.

Row four shows the plan produced if the agent is given
a hard deadline of 76 seconds. What is interesting about
this choice is that DTC selected BCDEF over ACDEF even
though method B has a lower quality than method A and
they both require the same amount of time to perform.
The reason for this is that B’s facilitation effect (75%
quality multiplier) on method C is stronger than that of
method A (which has a 25% quality multiplier). The net
result is that BCDEF has a resultant expected quality of
43.5 whereas ACDEF has a resultant expected quality of

SRecall that facilitation models one process having a pos-
itive impact on another, e.g., producing a result that enables
the other to do a better job or take less time to perform.



outcome (100.0%)  outcome (100.0%)

Q:[2.0,1.0] Q:[1.0,1.0] Q:[10.0, 1.0]
C:[0.0, 1.0] C:[0.0, 1.0] C:[10.0, 1.0]
D:[15.0, 1.0] D:[15.0, 1.0] D:[25.0, 1.0]

outcome (100.0%)

outcome (100.0%)
Q:[10.0, 1.0]
C:[0.0, 1.0]
D:[20.0, 1.0]

outcome (100.0%) outcome (100.0%)

Q:[5.0,1.0] Q:[10.0, 1.0]
C:[0.0, 1.0] C:[2.0, 1.0]
D: [5.0, 1.0] D:[10.0, 1.0]

Figure 16: A TAMS task structure modeling several different ways to achieve the same goal.

Conditions Schedule Q C D
1 Unconstrained | ABCDETF|499 7.0 90.0
2 Deadline 40 ADE 17.0 0.0 40.0
3 Deadline 50 ADETF 27.0 2.0 50.0
4 Deadline 76 BCDETF 43.5 7.0 75.0
5 Cost 3 ABDETF 28.0 2.0 65.0
6 Balanced ADETF 27.0 2.0 50.0

Table 3: A variety of schedules,
in Figure 16 under different conditions.

39.5.

Row five shows the plan produced by DTC if the agent
has a soft preference for schedules whose cost is under
three units. In this case, schedule ABDEF was selected over
schedules like ADEF because it produces the most qual-
ity while staying under the cost threshold of three units.
DTC does not, however, deal only in specific constraints.
The “criteria” aspect of Design-to-Criteria scheduling also
expresses relative preferences for quality, cost, duration,
and quality certainty, cost certainty, and duration cer-
tainty. Row six shows the plan produced if the scheduler’s
function is to balance quality, cost, and duration. Con-
sider the solution space represented by the other plans
shown in Table 3 and compare the expected quality, cost,
and duration attributes of the other rows to that of row
six. Even though the solution space represented by the
table is not a complete space, once can see where the so-
lution in row six falls relative to the rest of the possible
solutions — it is a good balance between maximizing qual-
ity while minimizing cost and duration.

These examples do not illustrate DTC’s ability to
trade-off certainty against quality, cost, and duration.
The examples also omit the quality, cost, and duration
distributions associated with each item that is sched-
uled/planned for and the distributions that represent the
aggregate behavior of the schedule/plan. All computation
in TEMS and DTC is performed via discrete probability
distributions. The role of uncertainty and its advantages
are more completely documented in [38].

An additional example of adaptation taken from the
distributed sensor domain is shown in Figure 17. The
architecture we have developed to address this domain
uses a notion of periodic commitments along a discrete
timeline to reduce negotiation complexity. Specifically,
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and their expected qualities, costs and durations, generated from the TAEMS structure
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Figure 17: Monitoring track measurement quality under
different temporal conditions.

the timeline is conceptually broken into a number of re-
peating periods, each of which is comprised by a set of
equal-duration slots. Agents negotiate over these slots in
such a way that a given commitment (which in our case
represents a sensor measurement action which should take
place) is satisfied by an action taken within one of these
slots. Thus, the length of the slot represents a limiting fac-
tor, which will directly control the maximum duration of
individual activities, and indirectly affect the total num-
ber of activities which may take place over time.

Figure 17 shows how our system adapts to varying this
slot length. The task structure in Figure 4 is used, which
provides the agent with three different types of tracking
measurements to perform, each with a quality propor-
tional to its duration. Thus, we would hope given these
different alternatives, SRTA would adapt to increasing
slot length by choosing higher quality measurements, off-



setting the effect of a reduced number of total activities.
The graph shows, as we would expect, that the total num-
ber of activities performed by the agent reduces as the slot
length grows. It also shows that the aggregate quality of
the measured sensor data followed more of a saw-tooth
pattern. In this case, each jump in the pattern represents
a slot length threshold which permitted the use of a higher
quality, higher duration measurement activity. Following
these jumps, the trend falls with a rate comparable to the
number activities until it is able to schedule the next best
measurement type. We can infer that further increasing
the number of alternatives available to SRTA would lead
to greater quality stability, by allowing it to more fre-
quently “jump” to a more appropriate set of activities.

6 Related Work

It is important to note that the architecture presented
here falls into the soft real-time computation class. In
contrast to architectures like CIRCA [26], we cannot make
performance guarantees [31] about agent control. How-
ever, in contrast to CIRCA, the approach presented here
operates on multiple distributed agents and the statisti-
cally “fast enough” model addresses the requirements of
this application. In addition, action primitives are permit-
ted to have unpredictable performance results across sev-
eral dimensions. In the future, hard real-time approaches
for multiple distributed agents may be possible, but, cur-
rently, the complexity of the distributed agent control
problem, particularly when agents have complex activities
and are situated in dynamic and uncertain environments,
prevents such approaches.

PRS [16] and the more recent work on UMPRS [18]
both offer architectures capable of operating effectively in
unpredictable domains. Like SRTA, PRS can use context
to select from among alternative goal satisfaction plans,
and its continuous reevaluation of these intentions allows
it to be more responsive to unexpected events. This re-
active nature prevents it from forming a complete end-
to-end view of activity, so, unlike SRTA, future behavior
cannot be predicted. PRS does offer blocking points, so
synchronization messages can be used to facilitate more
reactive coordination among agents [2].

Our work also relates to [41], which provides a scheme
for selecting control policies in context through the use
of progressive reasoning and opportunity cost. This tech-
nique, operating in an environment consisting of a set of
tasks which may have uncertain qualities and duration,
reactively chooses subsets of modules from a progressive
processing unit in response to newly arrived goals. Each
subset of modules is compared using a characterization of
its expected execution performance, and the most appro-
priate plan chosen based on opportunity cost. Although
using opportunity cost to discriminate among plans does
implicitly consider their time-related interactions, SRTA
is able to reason more directly over temporal constraints,
such as deadlines and earliest start times, between both
goals and the individual actions which are used to achieve
a goal. SRTA also differs in its use of satisfying techniques
for plan selection, and its ability to directly reason about
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task and method interactions, resource consumption and
the external constraints needed to coordinate with other
agents.

The DECAF framework [9] and associated DRU sched-
uler [8] are closely related to this work, the latter hav-
ing been leveraged from SRTA’s DTC scheduler. Like
TAEMS , the DECAF language allows the designer to
model tasks and actions, and includes notions similar to
quality accumulation functions and enablement. It does
not have support for the explicit modeling of resource in-
teractions, and also does not have a notion of soft interre-
lationships. In general, this framework trades off the ad-
ditional complexity seen in SRTA to achieve performance
improvements through reduced combinatorics. In addi-
tion, the DRU scheduler uses a potentially more efficient,
threaded execution process which can take advantage of
multiple processor environments.

The partially ordered schedule representation used by
SRTA is also similar to that used in [40], although that
framework has a simpler model of resource interactions.
In comparison to SRTA’s satisficing technique, this frame-
work also employs a more formal search process which will
lead to an optimal schedule if one exists.

7 Conclusion and Future Directions

The SRTA architecture has been designed to facilitate the
construction of sophisticated agents, working in soft-real
time environments possessing complex interactions and
a variety of ways to accomplish any given task. With
TAMS , it provides domain independent mechanisms to
model and quantify such interactions and alternatives.
DTC and the partial ordered scheduler reason about these
models, using information from the resource modeler, cur-
rent execution characteristics, and the runtime context to
generate, rank and select from a range of candidate plans
and schedules. An execution subsystem executes these
actions, tracking performance and rescheduling or resolv-
ing conflicts where appropriate. The engine is capable
of real-time responsiveness, allowing these techniques to
be used to analyze and integrate solutions to dynamically
occurring goals.

SRTA’s objective is to provide domain independent
functionality enabling the relatively quick and simple con-
struction of agents and multi-agent systems capable of
exhibiting complex and applicable behaviors. It’s abil-
ity to adapt to different environments, respond to unex-
pected events, and manage resource and activity-based in-
teractions allow it to operate successfully in a wide range
of conditions. We feel this type of system can form a
reusable foundation for agents working in real-world en-
vironments, allowing designers to focus their efforts on
higher-level issues such as organization, negotiation and
domain dependent problems.

More generally, the significance of the work presented
in this paper comes from its demonstration that it is pos-
sible to perform in soft real-time the complex modeling,
planning and scheduling that has been described in our
prior research. Previously, these techniques were analyzed
only in theory or simulation, and it was not clear that



our heuristic approach would be sufficiently responsive
and flexible to address real-world problems. The SRTA
architecture shows that engineering can be used to com-
bine and streamline these approaches to make a viable,
coherent solution.

There are several technical directions that we think are
important in developing this framework further. While
the current architecture does work in soft real-time in the
domain described in this paper, that is no guarantee it
will do so in other domains with different problem char-
acteristics and responsiveness constraints. Allowing indi-
vidual components to operate in an anytime [43] or time-
bounded fashion would allow the system’s performance to
be more predictable. DTC already provides this capabil-
ity to a certain degree. An efficient meta-meta reasoning
component would allow the agent to directly decide how
much effort to allocate to the DTC component in the cur-
rent situation[27]. Another role for this new component is
to decide where and how much slack to put in the sched-
ule to accommodate unexpected primitive and meta-level
activities. As we discussed earlier in the paper, we do not
explicitly allocate slack time for unexpected meta-level
events such as planning and scheduling. Direct account-
ing for this time would better equip the agent to meet
strict deadlines.

SRTA also is currently unable to provide a meaningful
description in case of failure, which makes it unclear how
to react in these situations. For example, when a schedule
or plan cannot be found within the provided context, no
feedback is available to help determine what aspects of
the context were most restrictive. It could be useful, to
know if a resource is unavailable, a deadline was too tight,
or if the desired quality level was unachievable. Similarly,
when an action fails during execution, it is primarily the
responsibility of the high-level reasoning component to
determine why it failed and how to recover if the built-in
conflict resolution system is unable to do so. Improv-
ing this capability, particularly in a domain independent
fashion, is an area of future work.
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