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Abstract While the design of garbage collection algorithms has come of age, the anal-
ysis of these algorithms is still in its infancy. Current analyses are limited to
merely documenting costs of individual collector executions; conclusive results,
measuring across entire programs, require a theoretical foundation from which
proofs can be offered. A theoretical foundation also allows abstract examination
of garbage collection, enabling new designs without worrying about implemen-
tation details. We propose a theoretical framework for analyzing garbage collec-
tion algorithms and show how our framework could compute the efficiency (time
cost) of garbage collectors. The central novelty of our proposed framework is its
capacity to analyze costs of garbage collection over an entire program execution.
In work on garbage collection, one frequently uses heap traces, which require

determining the exact point in program execution at which each heap allocated
object “dies” (becomes unreachable). The framework inspired a new trace gen-
eration algorithm, Merlin, which runs more than 800 times faster than previous
methods for generating accurate traces [11]. The central new result of this paper
is using the framework to prove that Merlin’s asymptotic running time is optimal
for trace generation.

1. Introduction
Most modern computer languages use a heap to hold objects allocated dynamically

during the running of a program and a garbage collector to remove no longer needed
objects from the heap. As use of these modern computer languages is increasing dra-
matically, it is very important that garbage collection run quickly. Towards this goal,
many different garbage collection algorithms, optimizations, and techniques have been
proposed and studied, e.g., [1, 2, 3, 10, 12, 19]. The experimental results document
running times, relative volume of objects examined and copied, and other dynamically
generated metrics from a small set of benchmarks. While this information illustrates
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and convinces, it is unable to prove the arguments being made. For conclusive results,
arguments need a theoretical foundation from which proofs can be offered. A strong
theoretical foundation also supports abstract analyses of garbage collection, enabling
a more thoughtful look at where opportunities for improvement exist.
This paper presents a new theoretical framework for examining garbage collection.

Our framework is robust enough to capture the behavior of a garbage collector over
the execution of a program, but abstract enough not to require any specific fashion
of implementation. This allows the framework to be used with most garbage collec-
tion algorithms, to prove that collectors have several important properties, and to be
expanded easily to include other analyses. While this is an important feature of our
framework, its key feature is computing a garbage collector’s asymptotic running time
(or other costs) over an entire program execution, and not just a single invocation.
With this, our framework can be used to prove optimality for garbage collection and
related algorithms.
As an example of our framework’s usefulness, we analyze the Merlin trace gen-

eration algorithm. Prior research has described Merlin and discussed its running
time [11]; using our framework, we formally prove its asymptotic running time and
that this time is optimal for trace generation.
Sections 2 and 3 of this paper discuss the structures and graphs that make up our

framework. Section 4 uses the framework in a series of proofs of algorithmic re-
quirements, asymptotic running times, and optimal running times. Finally, Section 7
summarizes these results.

2. Structures Used
Many modern computer languages allow objects to be allocated dynamically into

a heap during program execution. This makes writing the program easier, but requires
that objects be freed during program execution to avoid running out of memory. Many
languages (such as Lisp, Smalltalk, and Java) use garbage collection (GC) to reclaim
memory automatically, because GC increases program safety and makes the program-
mer’s job easier. Difficulty arises in limiting the amount of time used for automated
memory reclamation.
It has long been understood that a program’s heap memory can be envisioned as a

graph. Thus, our framework presents the analyses as graph theoretic problems. We
first explain how a program allocates objects dynamically and how garbage collectors
determine which objects may be freed. We then propose a series of graphs that model
the heap and capture the execution of the program and garbage collector.

2.1. Program Structures
Before explaining our framework, it is important to understand what “objects” are

and how programs use objects allocated dynamically into the heap.
Objects and References— We model each object as a finite mapping of keys to

reference values, i.e., locations in the heap; each key names a uniquefield of the object.
The fields are typed; they may contain values of primitive data types (such as integers)
or may reference other objects. A referring field may refer to an object within the
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heap or may be null (i.e., does not refer to any object). Because garbage collection
is concerned only with how objects refer to one another, our framework considers the
content only of fields that may contain references to other objects. When primitive
data types and referring types cannot be disambiguated (e.g., C++ integer fields may
contain references), the framework must consider the contents of all fields.
The Heap and ProgramRoots—Aprogram’s heap exists within an address space

and holds the objects dynamically allocated during the program’s execution. When
allocating an object into the heap, the memory manager reserves space in the heap for
each field and sets the map from the object’s keys. Typically, the memory for an object
is contiguous and a field’s mapping key is the offset from the start of the object to that
field. Objects reside in the heap because the program needs them; unneeded objects
may be removed from the heap. A garbage collector reclaims these obsolete objects.
Determining which objects are no longer needed (will not be used again) requires

knowledge of the future. As this is not always possible (true liveness is an undecid-
able property), reachability-based garbage collectors reclaim only objects they can
demonstrate that the program will not use.
Objects within the heap are allocated during program execution; the program, not

knowing where in memory the objects reside, cannot access them directly. To access
the heap the program relies on its root set, locations the program accesses directly
that may hold references into the heap. Like an object, the root set is a mapping
of keys (each representing a unique root with a referring type) to reference values.
Unlike an object, this mapping is neither bounded nor fixed. Keys may be added and
removed, because root references are found in, for example, the program stack and
the static and global variable table, which change size during execution. The program
uses dynamically allocated objects only through the root set; objects not reachable
from the root set cannot be used by the program. Garbage collectors determine which
objects the program may use and which may be safely removed from the heap by
analyzing reachability from the root set. For convenience we use “reachable” and
“live” interchangeably, and likewise “unreachable” and “dead”.

2.2. Heap State
The current state of the heap is defined by the objects and references within the

heap and the program’s root set. To allow for further analyses, we also include the set
of objects that have been identified by the collector as unreachable. We represent the
heap state (the current state of the heap) as a rooted, directed multi-graph. We call this
multi-graph the heap state multi-graph, and express it as H L D r E .1
The set of vertices of H, V L D, includes a vertex for each object allocated in

the heap, and a special vertex, called the root vertex and designated as r, representing
the root set. The set D contains the vertices identified as dead, while L includes the
remaining vertices (L V D, so L D /0). Since roots are always reachable, r
must be in L. Vertices represent only the existence of an object. This representation

1Other elements could exist within the heap state multi-graph; we include only those elements needed for
this paper.
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makes modeling garbage collectors easier by abstracting away implementation details
of objects’ actual locations in the address space.
Edges in the multi-graph represent references to objects in the heap. The edge

multiset, E, contains an edge v n o if and only if object v at the field mapped to by
key n contains a reference to object o. Notice that v may be r, in which case n is the
key to a root that refers to o.
This structure is not a graph, but a multi-graph, because an object may have multi-

ple fields that refer to the same object. Likewise, there may be multiple root locations
that refer to the same object. Just as a garbage collector analyzes the heap using the
root set and objects, this multi-graph can be analyzed for the relationships between the
root vertex and other vertices.

2.3. Reachability
GivenH L D r E , we say v refers to o (inH), written refersH v o , if and only

if v has at least one field that refers to object o: refersH v o n v n o E .
Extending this definition, we say v reaches o (in H), written reachesH v o , if and

only if v and o are equal or o is in the transitive closure of objects to which v refers:
reachesH v o v o p refersH v p reachesH p o .
Given the importance of objects that the program can access from the root set, an

object o is reachable (inH) if and only if r reaches o (reachableH o reachesH r o ).
Reachable objects may be used in the future by the program. Objects not reachable
in the heap state (e.g., objects not in the transitive closure of the root set) cannot be
accessed by the program, so garbage collectors remove only unreachable objects.
A heap state multi-graphH L D r E is well-formed if and only if all reachable

objects are in L: L o reachableH o . From here on we are concerned only with
well-formed heap state multi-graphs.

2.4. Program Actions
The heap state and its corresponding graph are useful for analyzing snapshots of a

program. But programs and their heaps are dynamic entities: the program mutates its
heap as it runs. These changes include objects being dynamically allocated, fields of
objects being updated, and objects being passed to and from functions. These changes
occur throughout program execution and a dynamicmemorymanager must be capable
of handling all of them.
Interesting Program Actions— While programs perform many operations, our

framework is interested only in those actions that affect the heap. Though the causes
of these mutations are language-specific, we group actions by their effect on the heap:
object allocation, root creation, root deletion, field reference creation, field reference
deletion, and program termination.2

2Other actions could be included; these primitives are quite general and can be combined. We distinguish
root and heap reference actions because many algorithms treat them differently. We specifically exclude
GC behavior from program actions.
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Action Name Effect Precondition

Object Allocation Lt 1 Lt o ; o Lt Dt
Et 1 Et r n o o r n o Et

Root Creation Et 1 Et r n o reachableHt o
o r n o Et

Root Deletion Et 1 Et r n o r n o Et
Heap Reference Creation Et 1 Et v n o reachableHt v reachableHt o

o v n o Et
Heap Reference Deletion Et 1 Et v n o reachableHt v v n o Et
Program Termination Et 1 Et None

r n o r n o Et

Table 1. Definition of action at . Only changes from Ht to Ht 1 are listed.

We describe the effect each action has on the heap state with respect to the heap
state multi-graph at time t, Ht Lt Dt r Et , and the multi-graph following the ac-
tion, Ht 1 Lt 1 Dt 1 r Et 1 .3 We additionally describe the preconditions neces-
sary within Ht for the possible actions at . A precise mathematical definition of these
effects and limitations can be found in Table 1. The following paragraphs provides a
simple description of each of the actions:
Object Allocation actions occur when an object is allocated in the heap. An object

allocation action defines a new vertex to be added to the set of live vertices and the
key value of the root that references the newly allocated vertex.
Root Creation actions occur when a root reference to an object is created. The root

creation action defines an new edge to be added to the edge set from the root vertex to
a reachable vertex.
Root Deletion actions remove an existing edge from the root vertex to a vertex in

the set of live vertices. This action is equivalent to deleting a root reference or making
a root null.
Heap Reference Creation actions occur when the program updates a heap object’s

unused field updated to reference another object. These actions add an edge to the
edge set from the source vertex to the target vertex.
Heap Reference Deletion actions specify an edge in the edge set between two ver-

tices that is removed. Heap reference deletion actions occur whenever an object in the
heap has a non-null field made null.
Program Termination actions occur when the program execution ends. Program

termination may occur at any time and deletes the root set (removes any edge whose
source is the root vertex).
In our framework, as in program execution, only existing references may be re-

moved, each object field contains at most one reference, and only reachable objects
may be involved in actions. Since the heap state multi-graph reflects the heap, the

3Actions may also be considered functions producing Ht 1 from Ht ; we do this when it is convenient.
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Figure 1. Example Program History

program actions mirror the changes in the heap. By construction programs cannot
attempt actions whose preconditions are not met, so we need not consider the possi-
bility. Further, it is easy to see that program actions preserve well-formedness of heap
state multi-graphs (since they cannot remove vertices nor cause unreachable objects to
become reachable).

2.5. Program History
Every program begins with the same heap. This initial heap state is represented by

the multi-graph H0 L0 D0 r E0 . This graph has only one vertex (the root vertex)
and an empty edge multiset (L0 r DO /0 E0 /0).
We also consider a program’s heap state following program termination. Final

heap state multi-graphs, designated HT LT DT r ET , have a vertex (in LT DT )
for each object allocated into the heap, plus the root vertex. Final heap state multi-
graphs cannot contain edges from the root vertex, so only the root vertex is reachable
in these multi-graphs.
The initial and final heap states do not contain much information about the program

execution, but the entire run is necessary to analyze GC algorithms and optimizations.
To record this information, our framework uses a program history. The program his-
tory begins with the initial heap state multi-graph, H0, and the first program action,
a1. From this multi-graph and action, we build the successor heap state multi-graph,
H1, then add action, a2, and so on. The program history continues up to the program
termination action (aT ) and final heap state multi-graph, HT . Figure 1 illustrates a
program history.
Since all programs start from the initial heap state, and each program action is

deterministic, the actions alone are sufficient to recreate the program history. By re-
playing the actions, GC can be simulated or, via profile feedback [4], tuned. Files
called heap traces store the actions (and an additional piece of information, as we
explain in Section 3) for these purposes. Since it works in a manner similar to heap
traces, our program history is intuitive to use.

2.6. Null and Reachable Multi-Graphs
Using the program history, our framework can compute the null heap state multi-

graph for each time step. The null heap state multi-graph at time t,H /0
t L /0t D /0

t r Et ,
is the heap state multi-graph where no objects have been determined to be dead (e.g.,
D /0
t /0).
Using the program history, the time when each object becomes unreachable can

be determined. Given Ht Lt Dt r Et , the reachable heap state multi-graph is
Ht Live Ht Lt Dt r Et . The reachable multi-graph specially defines L and D:
Lt v Lt reachableHt v ; Dt Vt Lt , that is, Lt is exactly the set of reachable



Framework for Analyzing Garbage Collection 7

vertices, and Dt the remainder (the superscript is intended to suggest the optimal,
i.e., smallest possible, Lt set.)
Given a heap state multi-graph Ht , we define the reduced heap state multi-graph,

HR
t Reduce Ht , as the heap state multi-graph LRt DR

t r ERt , where: LRt Lt DR
t

/0 ERt v n o Et v Lt . This reduction removes those vertices identified as
dead, and any edges from these vertices, from the multi-graph. By removing edges
and vertices that are known to be unnecessary, the reduced heap state multi-graph
resembles the physical heap following GC.
Finally, given a heap state multi-graph Ht , we define the reduced reachable heap

state multi-graph,Ht , as the heap state multi-graph Reduce Live Ht .
The null, reachable, and reduced reachable heap state multi-graphs are similar:

their reductions via Reduce Live are the same. Further, since program actions can
manipulate only reachable objects, if we apply at 1 to H /0

t , Ht , and Ht , we get anal-
ogous results, a fact we state precisely and prove in a moment. First we argue that if
we have a well-formed heap state H /0

t and corresponding action at 1, then at 1 is legal
for Ht and Ht .

Lemma 1 If H /0
t fulfills the preconditions of at 1, then so do Ht and Ht .

Proof Assume Ht satisfies the preconditions of at 1. First, we note that all vertices
reachable in H /0

t are in Lt and thus in Lt , and that Lt Dt Lt Dt Lt Dt . Thus
if at 1 is an object allocation, its precondition is satisfied in Ht and Ht . Reference
creation and deletion preconditions are trivially satisfied because they mention only
reachable objects and edges between reachable objects.

Now we state and prove a stronger relationship for program histories and their
corresponding reachable and reduced reachable heap states:

Theorem 2 If at 1 takes Ht to Ht 1, then at 1 Live takes Ht to Ht 1 and at 1
Live Reduce takes Ht to Ht 1.

Proof Assume Ht at Ht 1 (interpreting at as a function, and implying that Ht 1 is
well-formed and meets the preconditions of at ). Ht 1 differs from Ht 1 only in the
partitioning of the vertices into L and D sets, and both are well-formed. The same
is true of Ht at Ht 1 and at Ht 1 . Since the edges are the same between these
two graphs, their sets of reachable objects are the same, so applying Live to each of
them gives the same result. Hence Live Ht Live at Ht 1 . But Live Ht Ht by
definition, proving the first part of the theorem.
The second part of the theorem follows if

Reduce Live at Ht 1 Reduce Live at Reduce Ht 1

Let Lx and Dx be the L and D sets of Ht 1. Since Reduce does not affect L sets, and
program actions do not add to D sets, the L sets of at Ht 1 and at Reduce Ht 1 are
the same. Since at applies and preserves well-formedness, the L sets of Live at Ht 1
and Live at Reduce Ht 1 are also the same, and consist of exactly those objects
reachable in Ht . Finally, applying Reduce gives heap states with the same L set and
an empty D set. Thus the L and D components of the two heap states are the same.
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Figure 2. Expanded Program History, including the null (H/0) and reachable (H ) heap states.

Their r component is trivially the same (none of our functions changes r). Their
E component is the same for reachable nodes, but after applying Live then Reduce,
those are the only nodes in the graph. Finally, their w component is the same for the
reachable nodes (which is all the nodes).

2.7. Modeling Collector Behavior
We model garbage collector behavior by following each program action at with

a garbage collector action gt . Thus, we form Ht by first applying program action at
to Ht 1, and then applying collector action gt . A collector action potentially iden-
tifies some unreachable objects as dead. In fact, we will equate gt with the set of
objects it identifies as dead, and define its effect on the heap state as mapping heap
state H L D r E to L gt D gt r E , with the precondition that gt L o
L reachableH o . When convenient, we will also use the notation gt for the function
that the collector action induces on heap states.
The simplest collector, which we call the null collector, never identifies any objects

as unreachable. We write its actions as g /0t ; it induces the identity function on heap
states.
The most “aggressive” collector, which we call the comprehensive collector, al-

ways identifies all unreachable objects. We write it as gt and the function it induces is
complementary to Live (i.e., it identifies the unreachable objects).
Figure 2 shows how the null (H /0) and reachable (H ) heap state multi-graphs relate

to null and comprehensive collector actions.
Real collectors are bounded (in what they reclaim) by the null and comprehensive

collectors. Further, many collectors identify unreachable objects only occasionally.
For example, they may allow a portion of the heap to fill, and identify unreachable
objects in a batch only after the space is full. While we model only the end result
(e.g., the set of objects identified as dead), in applying the framework it is easy to
associate costs with collector action gt and derive the effort taken by the collector at
each time step.

2.8. Some Possible Extensions
While the framework as presented forms a base adequate for the purposes of this

paper, and perhaps for considerable analysis of garbage collection, we have envisioned
some possible extensions that make it even more broadly applicable.
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At present we do not model program and collector behavior; that is, we take the
at and gt as given, and model their effects on the heap state, but we do not model
generating the at and gt themselves. If we add to the heap state multi-graph a system
state component, which holds all other relevant aspects of program and collector state,
then we can model the overall system as a generalized state machine, even allowing it
to interact with an environment that supplies input, etc. Formally, we would extendHt
with an additional component, !t , giving

Ht Lt Dt r Et !t

The extended Ht , along with input it , would determine the action at and the collector
action gt . A desirable property of such a system is that the gt do not affect the sequence
of at . To that end, one would want to demonstrate that gt does not affect any aspect of
the state ! that can determine future actions a. Hence, one might want to partition the
state into a program state component and a collector state component, etc. We leave
the details to future work.
The state machine approach could bridge between algorithmic descriptions of pro-

grams, and collectors, and their representation in the model. The state machine ap-
proach also has the virtue that the cost of collector actions might be easier to model,
in that we would be modeling how a collector determines which objects to add to D,
not just the end result of that process.

3. Heap Traces
When exploring the performance of a new garbage collector, one can often work

faster by using a simulator. For this, one runs a program in a system instrumented to
produce a collector-neutral heap trace. The simulator accepts the trace as an input and,
given the GC algorithm, system parameters, and algorithm tuning parameters (such as
the maximum heap size allowed), estimates the work needed by the algorithm for the
traced instance of the program.
A heap trace is a time-ordered sequence of records. The records are of these kinds:

object allocation, giving the new object’s size and a unique identifier; object death,
giving the dying object’s unique identifier; heap reference update, giving the source
object, field key, and target object or null value; and root reference update, giving
a location of the root, and the target object or null value. (The update records also
implicitly define a reference deletion if the field/root previously contained a reference).
With a perfectly accurate trace the simulator could determine when each object dies,
but it is easier to write the simulator, and the simulator runs much faster, if the death
times are provided in the trace. This is since a single trace file is used in many different
simulations, it is cheaper to compute the death times once in advance.
One way to obtain death times for traces is to perform a comprehensive collection

whenever a collection could occur in practice. Since most collectors attempt collection
only in response to an allocation (i.e., when they require additional space in the heap),
this requires doing a collection just prior to each allocation. This is the brute force
approach to trace generation. As these constant collections take a substantial amount
of time, researchers often use traces generated with less frequent comprehensive col-
lections, resulting in traces that may distort simulator results significantly [11]. We
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now extend our framework to model object death times, in preparation for presenting
and analyzing the Merlin trace generation algorithm.

3.1. Object Death Time Multi-Graph
We add to our framework the object death time multi-graph. This multi-graph dif-

fers from the others because it concerns only the efficiency of a collector. It is not
related to the heap at any moment of the program history; rather it exists to prove
the minimum information and work needed to determine the earliest time each object
could be reclaimed. This multi-graph can also compare the efficiency of comprehen-
sive collectors by analyzing the relative work needed to populate and analyze this
multi-graph. Before describing the new graph, we discuss a concept upon which it
relies: final reference deletion time.
An object’s final reference deletion time is the last time at which the object has an

incoming reference deleted (by a root or heap reference deletion action or at program
termination). Because each object is allocated with a reference from the root set, and
the program termination action removes any root references that exist, each object has
a final reference deletion time. This time occurs between the object’s allocation and
program termination. We define the function f to map each vertex to its final reference
deletion time. Given a vertex v, f is defined as: f v maxi T o n o n v
Ei o n v Ei 1 . An object may have incoming references at its final reference
deletion time, provided that the remaining incoming references are not deleted by a
program action; in the name, “final” modifies “deletion”, not “reference”.
With this definition, we present the last graph structure of the paper. The object

death time multi-graph is also a directed, rooted multi-graph, F V ET f , where
f is the final reference deletion time function from above. The multi-graph’s set of
vertices V contains a vertex for each object allocated in the heap, i.e., V VT r .
The multi-graph’s edge multiset, ET , is the edge multiset of the final heap state.
As the name implies, the multi-graph determines the death time for each object.

An object’s death time is the time at which it becomes unreachable—the time the
corresponding vertex would be included in a g action. As the following theorem
shows, this time can be computed in the object death time multi-graph as each vertex’s
latest reaching final reference deletion time, the latest final reference deletion time
among the vertices that reach each vertex.

Theorem 3 The latest reaching final reference deletion time to a vertex in F is the
time the corresponding object in the heap became unreachable.

Proof Objects become unreachable only when references are removed; thus object
death times occur only at actions that remove references. Since unreachable vertices
cannot be involved in program actions, only final reference deletions cause objects to
become unreachable: if an earlier reference deletion left an object unreachable, the
object could not be involved in the later action! Therefore, object deaths occur only at
final reference deletions.
Not all final reference deletions leave a vertex unreachable, however. From the

definition of reachable, reachable v is true when v is in the transitive closure of the
root vertex, regardless of final reference deletion times. If v is the target of an edge



Framework for Analyzing Garbage Collection 11

from a reachable vertex, reachable v is true. If v’s final reference deletion time has
passed, v becomes unreachable at the latest time that a referring vertex becomes un-
reachable. By this logic, each vertex becomes unreachable at the latest final reference
deletion time for it or any vertex that reaches it (since the vertices reaching it may be
reachable only because they are referred to by still other vertices). Thus, any object
in the transitive closure set of an object at its final reference deletion time may be-
come unreachable at that time. These transitive closure sets are defined by the final
pointers—the object death time multi-graph’s edge multiset.
Therefore, vertices become unreachable at the latest reaching final reference dele-

tion time. As reachability in the heap state reflects reachability in the heap, this time
is the corresponding object’s death time.

We note that this multi-graph is similar to HT (V DT and ET ET ) as one would
expect, given its function. Using this multi-graph, we can compute object death times
in asymptotically optimal time, as we show in the next section.

4. Merlin Algorithm Analysis
The Merlin trace generation algorithm, proposed by Hertz et al., generates traces

over 800 times faster than the previous method of trace generation [11]. The Merlin
algorithm, shown in Figure 3, achieves its speedup by performing a small amount of
work with (some) program actions and can thus delay performing more costly anal-
yses until necessary. Designed using insights gained from this research, the Merlin
algorithm computes each object’s final reference deletion time in conjunction with
program actions and analyzes the object death time multi-graph that it constructs with
this information. From this analysis, the Merlin algorithm can easily and quickly de-
termine each object’s death time for trace generation.
This section shows that our framework can help one to discover new insights about

garbage collection and also prove asymptotic running times for garbage collection al-
gorithms. We begin by proving the asymptotic running time for the Merlin algorithm.
We then prove that this running time is optimal for heap trace generation.

4.1. Merlin’s Running Time
Brute force trace generation, discussed in Section 3, computes object death times

by performing a reachability analysis whenever it wants object death times. Comput-
ing which objects are reachable in the heap state is equivalent to solving the single-
source/multi-sink reachability problem from the root vertex, which requires O LRt
ERt time. Since this reachability analysis must be repeated throughout the running of
the program, brute force trace generation can require up to "Tt 1O LRt ERt time!
To generate traces, Merlin must compute when each object becomes unreachable.

For this, Merlin builds and analyzes the object death time multi-graph as the program
runs. Using the object death time multi-graph, finding when objects become unreach-
able requires comparing the reaching final reference deletion times for each vertex;
this processing seems analogous to computing all of the transitive closures sets, re-
quiringO VT ET time [5, p. 766].
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if (action = create root reference to o) then
rootReferences[o]

else if (action = create heap reference) then
No action needed

else if (action = delete root reference to o) then
rootReferences[o]
finalReferenceDeletionTime[o] current time

else if (action = delete heap reference to o) then
finalReferenceDeletionTime[o] current time

else if (action = allocate object o) then
rootReferences[o] 1
finalReferenceDeletionTime[o] 0

else if (action = program termination) then
for each vertex v do
if rootReferences[v] 0 then
finalReferenceDeletionTime[v] current time

for each vertex v by decreasing final reference deletion time do
push v onto the stack

while (the stack is not empty) do
pop v from the stack
workingTime finalReferenceDeletionTime[v]
for each non-null w to which v refers do
if (finalReferenceDeletionTime[w] workingTime) then
finalReferenceDeletionTime[w] workingTime
push w onto the stack

Figure 3. The Merlin Trace Generation Algorithm

Solving the transitive closures determines when each object can be reclaimed, but
requires more work than is needed. Object death times are the latest reaching final
reference deletion times; to find death times, Merlin requires a single depth-first search
from each vertex in reverse order of vertex final reference deletion times.

Lemma 4 When computing object death times, each vertex and each edge need be
processed only once.

Proof With the depth-first search, Merlin needs to process each vertex only once,
because repeat visits to a vertex are computing equal or earlier reaching final reference
deletion times. As only the latest time matters, processing these repeat visits will not
change any object death times. Assume that by not processing subsequent visits an
incorrect death time is computed for a vertex. For this to hold, a repeat visit must
compute a later reaching final reference deletion time. But the depth-first search from
the vertex with the later final reference deletion time must begin before, not after, the
initial object death time was found. This contradiction invalidates our assumption;
processing each vertex once correctly computes object death times.
With the framework, we can now prove Merlin’s asymptotic running time.
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Theorem 5 Merlin requires O T time to create the Object Death Time Multi-Graph
and then O VT ET time to compute the object death times.

ProofFrom the algorithm in Figure 3, theMerlin algorithm takes constant time at each
program action to build the object death time multi-graph. For T actions, this clearly
takes O T total time.
Given the object death time multi-graph, the time required to find all object death

times isO VT ET . The Merlin algorithm begins by sorting the vertices by their final
reference deletion time. As these times must lie between 1 and T , a radix sort can
order the vertices; this sorting taking O VT time. Since each vertex and edge needs
to be processed only once, the depth-first searches also take O VT ET total time.
Therefore, the Merlin algorithm computes object death times in total time O VT
ET O T O T , since O VT ET O T (there were only T actions, so one
cannot have created more than O T vertices or edges).
This leads to an additional theorem.

Theorem 6 The Merlin algorithm computes object death times in asymptotically op-
timal time for trace generation.

Proof Each program action during a program’s execution may define an action that is
necessary in order to compute object death times (e.g., object allocations and program
termination). Therefore any on-line algorithm to compute object death times requires
at least# T time. Since the Merlin algorithm completes in this time, its$ VT ET
T $ T time is optimal. To build the object death time multi-graph, the vertices,
final pointers and final reference deletion times are needed. To find the vertices, each
object allocation action must be handled. Since knowing which references are final
pointers and which reference deletions are final is not computable until termination,
all reference creations and deletions must be processed. This takes # T time.
Consider an object death time multi-graph where no two vertices share a final ref-

erence deletion time and an edge exists between two vertices if and only if the source
vertex has an earlier final reference deletion time than the target vertex. As the reach-
ing final reference deletion times to the vertices are the consecutive subsequences
of final reference deletion times that begin with the earliest time, computing the ob-
ject death times within this multi-graph requires completely ordering the object death
times. This ordering requires as much time as sorting the vertices, which a radix sort
accomplishes in # VT time.
Without knowing the target of an edge, we cannot determine if the edge is on the

path of the target’s latest reaching final reference deletion time. If the edge is on this
path, it must be processed; this cannot be determined, however, without examining
the edge source and target. Therefore, every algorithm also requires # ET time to
compute object death times.
Combining the arguments of the previous three paragraphs, we conclude that# T

time is required to build the object death multi-graph and # VT ET time is needed
to compute object death times. As the Merlin algorithm completes in this time, its
$ VT ET $ T time is optimal.



14

5. Related Work
This section discusses the two lines of research from which our framework grows.

One line of research investigated the space needed to allocate objects dynamically,
while the other developed systems and models to analyze garbage collection imple-
mentations.
Dynamic Storage Allocation

Trying to arrange objects allocated dynamically into a fixed-size heap is known as
the Dynamic Storage Allocation (DSA) problem. For an in-depth review of over four
decades of research into this problem, see [20]. Typically, the problem is stated as:
given the allocation time and size of each object and object death times (g ), compute
the size of the smallest heap that could hold the objects. Requiring the fields of an
object to be contiguous and objects to remain in place once allocatedmakes this simple
problemNP-complete [17]. If algorithmsmust process object allocation and g actions
on-line, computing the optimal heap size is EXPTIME-complete [18].
For the well-known First-Fit DSA algorithm [13], researchers have used graph

theory to prove its worst-case space bound and that First-Fit’s space bound is opti-
mal [7, 8, 14]. Studies have also used graph theory to present other DSA algorithms
and prove these other algorithms can approximate DSA solutions to within a small
constant factor [7, 8].
This prior research was among the first to consider the total asymptotic running

time of memory managers and to solve program memory usage problems via graph
theory. While the aims and results of our research are quite different, our framework’s
approach shows the influence of this earlier research.
Analysis of Garbage Collectors

Given the difficulty of allocating space, other studies investigated how to ensure gar-
bage collectors work properly. Using Larch [9], Nettles implemented a copying gar-
bage collector and proved, albeit informally, that the garbage collector was both cor-
rect (i.e., wouldn’t crash) and complete (i.e., could eventually collect all unreachable
objects) [16]. For region-based memory allocators (which are similar to garbage col-
lectors), Crary et al. developed the Capability Calculus. This strongly-typed language
can prove if region-based memory managers programmed within it can guarantee cor-
rectness and completeness [6]. In both studies, the systems could draw conclusions
only about algorithms implemented within them. Also unlike our framework, nei-
ther system could compare different collectors nor could they compute the asymptotic
running time of an algorithm over a program’s execution. But because they enable
researchers to offer (limited) proofs about collectors, these systems are an important
precursor to our work.
Closest to the work presented here, is the development of the lambda calculus %gc

by Morrisett, et al. [15]. This research developed a series of rules describing how a
garbage collected heap can change and, from these rules, created models of garbage
collection that are independent of any specific system implementation. Like the other
research, however, %gc focused on proving algorithms were correct and complete.
While both %gc and our framework create a set of generic rules describing the behavior
of a program, the former is ill-suited for determining a collector’s total asymptotic
running time or comparing different collectors. But, describing garbage collection



Framework for Analyzing Garbage Collection 15

and memory management in purely theoretical terms laid the foundation upon which
our framework rests.

6. Future Work
Our framework has been designed to be abstract and yet robust. We demonstrate

how it can be used to easily prove asymptotic running times, optimal running times,
and space bounds for garbage collection. It is our hope that we, and other researchers,
use and extend this framework to fully develop a theoretical underpinning for garbage
collection. There are, in particular, several areas in which we hope to expand upon the
work in this paper.
Collector Efficiency Analysis

In this research we analyzed properties of comprehensive garbage collection. Using
this framework, we hope to perform a similar analysis for non-comprehensive collec-
tors and help focus research seeking faster algorithms. One approach for this future
work is to find and recast the important features for the collector state multi-graph
much as the object death time multi-graph distills the important features of the reach-
able multi-graph.
Collection Optimization Analysis

Another direction in which we wish to expand this work is determining the value of
different optimizations. By using our framework to measure both the asymptotic cost
and potential savings for a variety of optimizations, we could better understand what
limits garbage collector speed and how best to overcome it.

7. Summary
This paper introduces several structures and analyses for garbage collectors. With

the new structures, we prove the running time of the Merlin trace generation algorithm
and show that this time is optimal for computing object death times.
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