Requirements-Based Design Guidance: A Process-Centered Consistency
Management Approach

Aaron G. Cass

Leon J. Osterweil

Department of Computer Science
University of Massachusetts
Ambherst, MA 01003-4610
+1 413 545 2013

{acass, ljo}@cs.umass.edu

Abstract

In previous work, we have argued that constraints on the
relationships between requirements elements and design el-
ements can be used to guide designers in making design de-
cisions. We have also argued the importance of controlling
which constraints to apply, when to apply them, and what
responses to take on constraint failure in order to make this
guidance effective. Our suggestion, to control the appli-
cation of constraints with a formalized, executable process
program, offers the benefit of not applying all constraints at
all times and therefore not overwhelming designers with in-
put, most of which is not applicable at all times. Rather, our
approach offers the possibility of identifying and exploit-
ing the most appropriate constraints at the most opportune
times.

In this paper we present results of our experiments in ap-
plying this approach to a UML design based on require-
ments specified as use cases. The paper emphasizes two
observed benefits of our approach. First, we note that our
approach enhances traceability in that it facilitates control
of the execution of constraints. Second, we note that our
approach enables the specification of consistency rules for
design milestones, thereby guiding designers without sac-
rificing important latitude and flexibility during the design
process.

1 Introduction

Software systems consist of multiple development artifacts,
with complex relationships between them — the design must
satisfy the requirements and be implementable, the code
must implement the design and be testable, and the tests
must exercise the code and test according to the require-
ments. An effective model of a software system is one in
which this rich web of relationships exists between artifacts
and in which well-formedness constraints on those relation-

ships are satisfied. Our ongoing research is concerned with
helping software developers to manage these relationships
and constraints and therefore to build better software.

In particular, we are interested in developing technologies to
provide guidance to designers in the development of good
designs. Because designs must satisfy the given require-
ments of a software system, we aim to provide guidance for
the designer to make effective design decisions based on
those requirements. In previous work [5], we have argued
that constraints on the relationships between requirements
elements and design elements can be used to guide design-
ers in making design decisions. By controlling constraint
application with a formalized, executable process program,
we can control which constraints to apply at which times
and what response should be taken if any of the constraints
fail. We have argued that controlling the application of con-
straints has the benefit of not overwhelming the designer
with reports of the failures of many inapplicable consistency
constraints.

In this paper, we present the results of our further exper-
imentation toward a design environment that supports de-
signers by controlling the application of consistency con-
straints. In our latest experiments, we have used the ap-
proach for a UML [12] design process which guides de-
signers to produce class diagrams (design elements), given
use cases with activity diagrams (requirements elements).
From this experimentation, we observe that controlling con-
straint application with a formalized process program has
many benefits for designers. In this paper, we highlight two
such benefits. First, we note that our approach can be used
enhance requirements-design traceability because the pres-
ence or absence of traceability relationships can be speci-
fied by constraints to be applied. Second, we note that our
approach enables the specification of design milestones to
guide designers without overwhelming them with superflu-



ous input and while not sacrificing important latitude and
flexibility during the design process.

2 Related Work

There is a long history of proposing processes, both for-
mally and informally defined, aimed at arriving at high-
quality designs. For example, the design patterns commu-
nity [7] suggests first deciding what will vary in the system
and then choosing a pattern that encapsulates in such a way
as to allow for that variability. This and other approaches
promise to help designers to arrive at high-quality designs.
However, we are interested in two objectives that are gener-
ally not addressed:

1. Active guidance, during development, for designers to
follow the process

2. Active guidance, during development, for ensuring
that the design, whatever its other qualities, actually
satisfies the intended requirements — that the system
model has a high level of desired consistency

To pursue these objectives, we are interested in managing
consistency of system models with respect to some consis-
tency rules. However, as Emmerich, et al. [6] argue, it is
not desirable to enforce consistency (in their case, standards
compliance) at all times during development. They propose
an approach that controls when properties are checked. Our
approach is similar in that we control consistency checking
with a process model. However, their approach is based on
watching for and reacting to trigger events, while our ap-
proach uses a proactive process specification. Another dif-
ference is in the flexibility of reaction to constraint failures
— they allow pre-programmed reactions to be performed by
the system, while we allow any action which the process
programmer can assign to any participant in the process,
human or automated.

Others have proposed approaches that use consistency rules
to provide guidance to designers while they work. A no-
table system is Argo/UML [10], a UML model-editing tool
in which critics [11] check, after each addition to a system
model, that certain rules are satisfied. If any of the rules are
not satisfied, an item is added to the user’s prioritized to-do
list indicating the problem and offering suggestions about
how to fix the problem. One problem with the Argo/UML
approach is that there is no automatic control over which
critics are active at which times. This generally results in
many to-do list items identifying shortcomings of the cur-
rent system model, many of which are errors of omission
for which the user has not previously had an opportunity to
add the model elements that would have satisfied the con-
sistency rules. There is, however, manual control available
to turn critics on and off.

Argo/UMLs critics are written in Java for maximum flex-

ibility. Others, however, have proposed formal languages
to be used to specify consistency rules. The standard con-
straint language for UML models is the Object Constraint
Language (OCL) [2], which allows the identification, using
path selection operations, of sets of model elements and the
specification of constraints on relationships between those
elements using first-order logic. This has been used in the
definition of the semantics of UML. However, because OCL
is based on first-order logic, transitive closure is not avail-
able, thereby reducing the potential usefulness for specify-
ing consistency rules.

xlinkit [8] is similar in that it allows the identification of sets
of elements, though it works on XML-encoded documents
and uses XPath [15] expressions for path selection. It is also
based on first-order logic! but adds transitive closure. Since
many UML tools, including Argo/UML will output UML
models using XMI [9], an XML-based standard encoding
of UML models, xlinkit can be used to specify and check
consistency rules for UML system models.

3 Our Approach

Our approach is to define software design as a formally-
defined process program. For this purpose, we use our pro-
cess language, Little-JIL [14, 13], which defines processes
in terms of a hierarchy of steps to be performed. In our
approach, we attach consistency checks to specific steps in
the process program, usually post-requisites of other steps
— at those points the consistency rules can be checked on
the appropriate development artifacts. If any of the artifacts
fail the consistency checks, an exception will be thrown for
which there can be a response programmed into the process
program.

An Example

In recent experimentation, we have applied this approach to
create a process for developing a UML design, with the in-
tention of providing an environment to guide a designer in
the development of a good design — one that is consistent
with the requirements for the software system. To explain
the approach, we now give an example from those experi-
ments.

In the example scenario, the designer’s goal is to develop a
design for a validated graph editor. The graph editor will al-
low users to create nodes, annotate them, and connect them
with edges which can also have annotations. Throughout,
the graph editor should flag those portions of the graph that
are invalid with respect to certain rules and disallow the cre-
ation of invalid graphs.

The project starts with the creation of a set of use cases
whose functional requirements are described by activity di-

Ixlinkit actually restricts consistency rules to start with the quantifier
, but this does not restrict the rules we can express.



O
v Develop A

£

W7 Requirements A N/ Design A\

q

v Create Use Case DiagramA

T/ Create Activity Diagram gy Activity Diagram Check

Figure 1: Example Little-JIL Process Program

[Click is in Empty Space]

Add Nade 10 Graph

User Adds £dge to Graph
((UserAdds oce Annoratory
[Mode and Egde are Valid]
INode Annotation is Yalidl
Add Edge To Graph (P Fose dmosation )

(Llserdds Edge Annotatis

J/[Edgg Annotation is Valid]

(Add Edge Annuiauur\) (p\dd Node An

(User.ﬂdds Node Annma(mn) {Hods and Edge are valid]

[Neds Annotation is valid]

notatio r\>

234 Edge To Graph

CJserAdds Nade Annuia{mn)

J/[Nude Annotation i alid]

(Add Node Annotation

CLlsarAdds Edge Annma!inn)

[Edge Annatation is Valid]

C\na Edge Armmannn)

Figure 2: Example Use Case Activity Diagram

O
v Design A

-

v Mew Class A

o

v Create C|355A VAssociate with other CIassesA

Figure 3: Example Little-JIL Process Program(continued)

agrams. Figure 1 shows the first part of the process to ac-
complish this. The process is a collection of steps (the black
bars) that are hierarchically organized and, as indicated by
the right-pointing arrow in the Develop and Requirements
steps, sequenced from left to right. The plus sign above
Create Activity Diagram indicates that this step will be per-
formed 1 or more times, at the discretion of the participants
in the process. A darkened triangle after a step indicates a
post-requisite, which is a reference to a separate step that
must be executed upon completion of the step. Notice in
the example process that Activity Diagram Check is a post-
requisite of Create Activity Diagram. In this example, the
intention is to have Activity Diagram Check perform con-
sistency checks for a single diagram. These will be intra-
diagram checks which will of course be needed to produce
a good, complete model of the system. In the rest of the
paper, however, we will focus on inter-diagram consistency
checking.

Figure 2 shows an activity diagram for a use case that might
be created by the process described so far. This activity
diagram is for the use case describing how the user might
add a node to an existing graph. This use case describes the
case where a user adds a node and then connects it to the
rest of the graph.

Figure 3 shows an elaboration of the Design step from the
process in Figure 1. In this part of the process, the designer
creates a class diagram for the software system. Again, at
specified points in the process, consistency checks can be
performed, with the aim of producing a high-quality design
by the end of the process. Figure 4 shows a possible incom-
plete class diagram that might be created with this process.

We will use this example process program to highlight, in
the following sections, two benefits of using this approach.

Improving Traceability
Clearly, some of the consistency rules that govern whether
the design is a good one or not will rely on the existence in



WiewController

=< Inte rface = = Validator

Modelliste ner

+update § <] _____

+update §

1.*%

Model

+addNade )
+ registe riliste ne riMode [Liste ne o)

Figure 4: Example Class Diagram

the model of certain traceability information. It will there-
fore be profitable to require the traceability information to
be entered in the model as part of the development activ-
ity. Our approach of checking consistency rules at specified
points in the process can be used to accomplish this.

For example, after each class is created (as a post-requisite
on the Create Class step), we can check that each method
of the class is related to an action state in one of the activity
diagrams, via an — j;,plements Telationship. The rule can be
represented by the following consistency rule?:

Yo € operations :
ds € actionStates : (1)

O —implements S

If this consistency rule is satisfied, this will ensure that ev-
ery class we create is related to some element of the require-
ments specification. In the example class diagram in Fig-
ure 4, if the addNode method on Model has an — ;,prements
dependency with the Add Node to Graph state from Fig-
ure 2, then addNode will satisfy the consistency rule from
Rule 1, but the register method does not. In the process pro-
gram, we can respond to this exception by requiring the de-
signer to add this traceability information. Figure 5 shows a
revision of the Design step that indicates where these checks
can be performed and how to respond to failure. The Add
Traceability step is a handler for the exception which might
2In this and the following formalizations of consistency rules, we as-
sume two sets have been defined: operations is the set of all operations

(methods) on classes in the model and actionStates is the set of all action
states in activity diagrams.

o
v Cesign &

v MNew Class &

v Add Traceability&

All Operations
v Create Class‘cmlrer states

VAssociate with other Classes&

Figure 5: Example Little-JIL Process Program(revised)

be thrown by the All Operations Cover States step (a post-
requisite of Create Class). The right-pointing arrow on the
edge to Add Traceability indicates that once the traceability
information is added, the designer can continue on to the
next step, in this case Associate with other Classes.

We would also, in the course of design, like to ensure not
only that all operations respond to some portion of the re-
quirements, but also that every requirement is covered. This
can be formalized with the following consistency rule:

Vs € actionStates :
Jo € operations : 2)

0 —implements S

Of course, this rule will not be satisfied during most of the
development of the design — not until all classes are declared
is it reasonable to expect that all requirements have been
covered. Figure 6 shows a further revision of the Design
step to check conformance only after the class diagram is
complete. Notice that to accomplish this, we have added an
extra scope, called Create Class Diagram, so that the pos-
sible exception can be contained within the Design step’s
hierarchy. In this revision, we have added a post-requisite
to the Create Class Diagram step to check conformance
with the consistency rule. By waiting until after the Cre-
ate Class Diagram step is completed to apply this rule, we
avoid checking that the requirements are all covered before
the designer has had a chance to give the full design.

As was the case in the previous rule, a response to a failure
of this rule will throw an exception which can be handled
by the rest of the process program. In this case, we give



O
v Design A

v Fix Design A

All states
W/ Create Class Diagram‘cnve"e‘j

+

N7 New Class A VAdd Tracaah\lity& VAdd o Des\gnA

VAdd Traceab\lltyA

All Operations
%/ Create C\ass‘cm’er States

W/ Associate with other Classes A\

Figure 6: Example Little-JIL Process Program(revised)

the designer a choice (as indicated by the circle and line
icon on the Fix Design step) between adding traceability in-
formation and adding to the design to cover the rest of the
requirements.

Milestones

While Rules 1 and 2 can be used in a process program to
ensure that all operations cover requirements and that all
requirements are covered in this way, they do not ensure
that the relationship between operations and states is one-
to-one. The following consistency rule can be used to check
that states are not covered by multiple operations:

Vs € actionStates; ol, 02 € operations :

ol —implements S N\ 02 —implements S 3)

= 0l = 02

Of course, this is not a consistency rule that would be re-
quired of the finished system model — a designer might cre-
ate several operations that together implement a single ac-
tion state from the requirements. However, this rule and
ones like it can be used as milestones.

In a consistency management approach in which consis-
tency rules are always applied (like the default behavior of
Argo/UML) or only applied at one time (such as when the
user saves a model to disk), there is only one set of rules
to apply and rules that are not applicable to finished models
will not be included in the rule set. However, because we
allow the specification of which rules to apply when, rules
can be used as milestones during a process even though en-
forcement is not desired on the final product.

In particular, in designing a system for guiding novice de-
signers to make effective decisions, it might be desirable to

guide the designer to such intermediate states. With these
states marking milestones in the process we can guide the
designer to create a high quality final solution. By setting
these milestones, we narrow the design requirements and
therefore give the novice more direct guidance about what
to do instead of leaving the designer to make intelligent de-
cisions in the face of many, perhaps overwhelming, options.

In the case of the —piements relationship between re-
quirements and design, an intermediate system design in
which the design has a single method for each state in the
requirements might be a good starting point for elaborating
the design. After that point in the process, the consistency
rules can be relaxed (in this case, by removing Rule 3 from
the rule set).

4 Experience and Future Work

Our experiments with this approach has, to this point, been
mostly concerned with issues of feasibility. Thus we have
been attempting to answer questions such as the following:

e Is it feasible to control application of constraints using
a formalized process program?

e What effect, if any, does adding consistency checking
have on a design process?

Feasibility

To investigate the feasibility of the approach, we are build-
ing an infrastructure based on Juliette [3, 4], the run-time
system for Little-JIL. In an Little-JIL process program, ev-
ery step has a specification of an execution agent which is
responsible for carrying out the step. In the example in Fig-
ure 1, the Requirements step would specify that it needs a
requirements engineer, while the Design step would specify
a need for a designer. At run-time, Juliette reads in a Little-
JIL program and determines which agents to bind to step
instances and then assigns those step instances to the agents
in the sequence specified by program. Agents interact with
Juliette by way of an agent API or, in the case of human
agents, a user interface written to this API.

In order to integrate consistency checking, we have devel-
oped an automated agent that uses the xlinkit [8] consis-
tency checker to check the appropriate rules on the appro-
priate UML model, both of which are passed as parame-
ters to the agent. The agent specifications on the the post-
requisites in Figures 1, 3, 5, and 6 indicate a need for
this new type of agent. At run-time, Juliette assigns these
post-requisites to the new agent, which executes the xlinkit
check. If xlinkit finds an inconsistency with respect to any
of the rules, the agent throws an exception which can be
handled in the rest of the process program, as shown in the
process examples in this paper.

In order to use xlinkit, we had first to write the rules using
xlinkit’s rule language and get our UML models in an XML



form for xlinkit to use them. We are using Poseidon [1], a
commercial version of Argo/UML, as our UML-modeling
tool because it is freely available and because it will out-
put directly to XMI. We should note, however, that because
Poseidon does not fully support UML’s dependency associ-
ations, the consistency rules are slightly more complex than
presented in this paper. We have had to represent the rela-
tionships with tagged values, which Poseidon does support,
and then use an extra quantifier in the rules to select the
appropriate tag. In the design example, & — implements 0
is represented as a tag on a named “implements” and with
value b. Using tagged values gives us the flexibility to de-
fine any dependency we wish between any two elements in
the model, not just those elements that a particular UML
model-editing tool allows.

Our experiments to date indicate that the approach is feasi-
ble using Little-JIL and an infrastructure can be built to turn
the Little-JIL process into a design environment that does
automated consistency checking at the appropriate times.

Effect on the process

As can be seen by comparing the process models in Figures
3 and 6, the addition of consistency checks sometimes has
the effect of requiring an extra level of scope for the excep-
tion handlers so that a step can continue to contain failures.
By adding a scope in this way, the change is localized, be-
cause the change is not revealed above the new scope. In
the example, the Design step does not expose that anything
is different, because its interface does not change.

While this has the disadvantage of requiring that new scopes
be added during the development of the process, the dis-
advantages can be minimized by localizing the required
changes. The advantage of being able to automate effec-
tive use of consistency rule checking seems to out-weigh
this disadvantage.

Future Experiments

While our experiments so far indicate that the approach is
feasible, we need further experiments to determine the use-
fulness of the approach for providing design guidance. Our
plan is to continue to develop the infrastructure to better in-
tegrate system modeling with the consistency checking and
the process. We can then carry out experiments in which
designers use the approach to design a piece of software.

We are particularly interested in determining what level of
granularity of action is appropriate for the process. Should
steps be broken into many sub-steps to give designers fine-
grained guidance, or should steps be higher-level to give
designers freedom? We expect this will depend on the ex-
perience of the designers. Clearly, the answers to these
questions have implications for the tightness of integration
needed between the modeling tools and the process run-

time environment.

S Conclusions

In this paper, we have presented an approach to design guid-
ance using consistency management under the control of a
formalized process program and we have presented details
for our infrastructure which will support this approach. We
have given examples from our experiments that highlight
key benefits of the approach.

We have demonstrated how the approach might be used to
ensure that traceability information, which might be used in
later consistency checks, is present in the model. We have
also shown that the approach can be used to establish mile-
stones to guide a designer even if enforcement of the rules
for the milestones are not desirable in the finished product.

The approach represents one way to help software devel-
opers effectively manage the rich web of relationships be-
tween artifacts and well-formedness rules on those relation-
ships.

Acknowledgements

The authors would like to thank Christian Nentwich and
Anthony Finkelstein for their help obtaining and using
xlinkit, and for their quick response to problems and sug-
gestions.

We would also like to thank David Jensen for the inspiration
for the graph editor example system — it is similar to the
project for the undergraduate software engineering course
that one of the authors recently taught and for which Pro-
fessor Jensen acted as the customer.

This research was partially supported by the Air Force Re-
search Laboratory/IFTD and the Defense Advanced Re-
search Projects Agency under Contract F30602-97-2-0032
and by the U.S. Department of Defense/Army and the De-
fense Advance Research Projects Agency under Contract
DAAHO01-00-C-R231. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied of the Defense Advanced Research
Projects Agency, the Air Force Research Laboratory/IFTD,
the U.S. Dept. of Defense, the U. S. Army, or the U.S. Gov-
ernment.

References

[1] Poseidon UML
www.gentleware.com.

Community Edition.

[2] Object Constraint Language Specification, Sept.
1997. version 1.1.



(3]

[4]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A.G.Cass,B.S.Lerner, E.K.McCall, L.J. Osterweil,
S. M. Sutton, Jr., and A. Wise. Little-JIL/Juliette: A
process definition language and interpreter. In Proc. of
the 22" Int. Conf. on Soft. Eng., June 2000. Limerick,
Ireland.
A.G.Cass,B.S.Lerner, E.K.McCall, L.]J. Osterweil,
and A. Wise. Logically central, physically distributed
control in a process runtime environment. Technical
Report 99-65, U. of Massachusetts, Dept. of Comp.
Sci., Nov. 1999,

A. G. Cass and L. J. Osterweil. Design guidance
through the controlled application of constraints. In
Proc. of the Tenth Int. Workshop on Soft. Specification
and Design, Nov. 5-7,2000. San Diego, CA.

W. Emmerich, A. Finkelstein, C. Montangero, S. An-
tonelli, S. Armitage, and R. Stevens. Managing
standards compliance. [EEE Trans. on Soft. Eng.,
25(6):836-851,1999.

E.Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

C. Nentwich, L. Capra, W. Emmerich, and A. Finkel-
stein. xlinkit: A consistency checking and
smart link generation service. ACM Trans. on
Internet Tech., 2002. To appear. Available at
www.cs.ucl.ac.uk/staft/A Finkelstein/papers.

Object Management Group. OMG XML Meta-
data Interchange (XMI) Specification version
1.2. Object Management Group, Jan. 2002.
www.omg.org/technology/documents/formal/xmi.htm.
J. E. Robbins, D. M. Hilbert, and D. F. Redmiles.
Argo: A design environment for evolving software ar-
chitectures. In Proc. of the Nineteenth Int. Conf. on
Soft. Eng., pages 600-601, May 1997.

J. E. Robbins and D. F. Redmiles. Software ar-
chitecture critics in the Argo design environment.
Knowledge-based Systems, 11(1):47-60, 1998.

J. Rumbaugh, I. Jacobson, and G. Booch. The Uni-
fied Modeling Language Reference Manual. Addison-
Wesley, 1999.

A. Wise. Little-JIL 1.0 Language Report. Technical
Report 98-24, U. of Massachusetts, Dept. of Comp.
Sci., Apr. 1998.

A. Wise, A.G. Cass,B. S. Lerner, E. K. McCall, L. J.
Osterweil, and S. M. Sutton, Jr. Using Little-JIL to
coordinate agents in software engineering. In Proc.
of the Automated Software Engineering Conf., Sept.
2000. Grenoble, France.

World Wide Web Consortium. XML Path Language
(XPath) version 1.0. World Wide Web Consortium,
Nov. 1999. http://www.w3.org/TR/xpath.



