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1 Introduction

Many complex POMDPs have optimal or near-optimal policies that can
be represented by small finite-state controllers. This fact has motivated
researchers to develop POMDP planning algorithms that search in the space
of such controllers (Hansen, 1998; Meuleau, Kim, Kaelbling & Cassandra,
1999).

These algorithms can solve some small problems efficiently, but they take
far too long to find good policies for more complex problems. One common
way of speeding up planning is to incorporate prior knowledge in the form
of a pre-specified macro-action hierarchy. For example, it has been shown
that options can accelerate planning in MDPs, as long as the options are
chosen intelligently (Sutton, Precup & Singh, 1999). Can we scale up the
aforementioned POMDP planning algorithms in a similar way?

In this report I describe preliminary worked aimed at answering this
question. First, I formally define observation-based options (or obtions)
for POMDPs. Next, I extend Hansen’s policy iteration algorithm to work
with obtions. Finally, I present experimental results with different obtion
sets in a simple domain. Although the results are not conclusive, I learned
some important lessons from my experiments. I saw that planning with
obtions can be faster than planning with just primitive actions. However,
using primitive actions to refine an obtion-based policy can be difficult.
I also learned that obtions which are useful regardless of the initial state
distribution are probably the best kind to use with Hansen’s policy iteration.

There has been recent related work on this problem. Hernandez-Gardiol
and Mahadevan (2000) supply knowledge in the form of a partial policy
and learn the missing pieces using the Nearest Sequence Memory algorithm
(McCallum, 1995). Theocharous and Mahadevan (2002) extend the hierar-
chical hidden Markov model to allow for actions and rewards, and present
heuristics for solving the resulting problem. The main difference between



my work and the work I just mentioned is that I use finite-state controllers
at each level of the hierarchy. Since each level is a finite-state controller, the
entire hierarchy can be “unrolled” into one large finite-state controller. This
homogeneity helps us smoothly integrate hierarchy into existing algorithms
and maintain formal convergence guarantees.

2 POMDPs and Obtions

Recall that a POMDP is a tuple (S, A, P, R,Q, O, II), where S is a state set;
A is an action set; P is a table of transition probabilities; R is a reward
function; 2 is an observation set; O is a table of observation probabilities;
and II is an initial state distribution.

I define an observation-based option (obtion) for a POMDP to be a pair
(C,m). The continuation set, C C Q* is the set of observation sequences for
which the obtion policy is defined. We require that ¢ € C, where € is the
empty sequence. The policy w: C' — A assigns an action to each observation
sequence in the continuation set. The obtion chooses actions according to
m and terminates when the sequence of observations since initiation falls
outside of C. Note that a primitive action is just an obtion with C = {e}.

Suppose we are given a POMDP and an obtion set B. A policy over
obtions is a mapping v : Q* — B. The value of a policy ~ is the expected
discounted reward from executing < from the initial state distribution. An
optimal policy over obtions is simply one with maximal value.

It is important to note the differences between obtions and options for
MDPs (Sutton, Precup & Singh, 1999). In an MDP, the first action taken by
an option can depend on the state from which the option was initiated, and
the option can terminate upon a transition to a certain state. The obtions
that I have defined for POMDPs are “shifted” in time. They both start and
end with an action being taken. Thus it is not possible to design an obtion
that tells a robot to move forward until it observes a wall. It must take
one more action after it reaches the wall. Also, since obtions begin with an
action, there is no way to restrict the set of states from which the obtion
can be executed. The main reason why I define obtions this way is that it
turns out to be a useful definition for most POMDP planning algorithms.
For future work, it would be nice to devise a more natural definition that
still works with existing algorithms.

I should also note that one could define obtions that call other obtions
instead of just primitive actions. I do not formally define obtions this way,
but I believe it is straightforward to extend all of the results in this report



to these more general obtions.

3 Obtions as Finite-State Controllers

One natural way to express obtions is with finite-state controllers. A finite-
state controller (FSC) is a tuple (M, «, §,T), where M is a set of controller
states, with mg a distinguished initial state; o : M — A is a mapping from
controller states to actions; § : M x Q — M is a transition function; and
T C M is a set of terminal states. The controller takes as input a sequence
of observations and makes state transitions accordingly. The policy for the
corresponding obtion is determined by the actions taken from each of the
controller states. The observation sequences contained in the continuation
set are exactly those with no prefix leading the finite-state controller into a
terminal state.

For this paper, I restrict attention to obtions that are represented as
FSCs. It should be noted, however, that there are obtions which cannot be
represented with any finite-state controller. For instance, suppose we have a
POMDP with action set A = {ay, a1} and observation set Q = {0g, 01}. One
obtion for this POMDP that can’t be represented as an FSC has C = Q*, and
7(0) = ap if and only if © has an equal number of 0y’s and o7’s. Intuitively,
this cannot be represented with an FSC because it requires an unbounded
amount of memory.

4 Hansen’s Policy Iteration

In this section I will briefly summarize Hansen’s policy iteration algorithm
for planning with primitive actions in infinite-horizon POMDPs (which I
will hereafter refer to as HPI). A more detailed description can be found in
(Hansen, 1998). The algorithm represents policies as FSCs with no special
initial states or terminal states. It starts with an arbitrary FSC, and each
iteration produces a new FSC. The algorithm terminates when the Bellman
residual for the current FSC falls below a small value.

An iteration consists of three phases: policy evaluation, policy improve-
ment, and pruning. First, the current controller is evaluated, yielding a
piecewise linear value function with a vector for each machine state. Next,
a dynamic programming update (in my implementation, incremental prun-
ing) is used to back up the value over one step, and a new piecewise linear
value function is created. For each new vector that is added in the update,
a new state is added to the machine. Finally, some of the useless controller



states are pruned away. One nice property is that it is possible for the FSC
to shrink as well as grow over the course of the algorithm.

When executing an FSC policy in a POMDP, the initial machine state
for the controller is set to be the one that has the highest value with respect
to the start state distribution of the POMDP.

5 Policy Iteration with Obtions

5.1 Planning with Just Obtions

The way I have defined obtions makes it relatively easy to extend HPI to
work with them. Each obtion is an FSC, so a policy over obtions can still be
represented as an FSC. Policy evaluation is similar to the original algorithm,
except now vectors are produced only for the initial states of the obtions in
the policy. The internal obtion states are in a sense not “accessible”, so
their values do not need to be computed. Pruning remains the same with
obtions, except now whole obtions are pruned at once.

The dynamic programming update requires a bit of explanation. The
best way to understand the difference between the primitive action case
and the obtion case is to look at the worst case run times for each. In
the primitive action case, suppose the current FSC has n states. We must
consider all possible ways of taking an action and transitioning to a controller
state. For each action there are n/!l ways of transitioning. Thus the DP
update takes |A|n/®l steps. In the obtion case, suppose the current FSC has
n obtions (and thus n different initial obtion states). We must consider all
possible ways of executing an obtion and transitioning to the initial state
of an obtion in the FSC. Recall that T is the set of termination states for
an obtion. For each obtion, there are n/Tl® possible ways of transitioning.
Now the DP update is exponential in another parameter: the number of
terminal states for the obtions.

I believe that with the appropriate modifications, HPI is guaranteed to
converge to the optimal policy with respect to whatever obtion set it is given.
I leave the formal proof of this to future work.

5.2 Refining an Obtion-Based Policy

I have argued that, in theory, it is not difficult to extend HPI so that it con-
verges to the optimal policy with respect to any given obtion set. However,
what if we have an optimal policy for an obtion set, and we want to reintro-
duce primitive actions to get convergence to a truly optimal policy? If we
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Figure 1: A simple POMDP.

can do this efficiently, then we will have a well-behaved anytime algorithm.
It turns out that we can smoothly transition from obtions to primitive ac-
tions in HPI. At any point, we can take the current controller involving
obtions, and view each obtion not as indivisible but as a mini-FSC that can
be adapted. We then have an FSC over FSCs, which is just a big FSC over
primitive actions. This controller can be used as the starting point for HPI
with primitive actions, and we are guaranteed convergence to optimality in
the limit.

6 Experiments

6.1 A Simple POMDP

For experimentation, I used a simple seven-state gridworld POMDP (see
Figure 1). The agent starts at either the far left or the far right, each with
equal probability. The goal state is located in the middle. Upon entry into
the goal state, the agent receives a reward of 1, and rewards of zero from
then on. The discount rate is set to 0.75 to encourage the agent to reach the
goal state as quickly as possible. The agent has four actions: move left (ML),
move right (MR), observe left (OL), and observe right (OR). If the agent
executes ML or MR and does not have a wall in its way, it deterministically
moves one step in the corresponding direction, and observes nothing. If there
is a wall in the way, the agent remains in its previous state and observes
nothing. When the agent executes OL, it is told whether or not it has a wall
directly to the left of it, and similarly for OR.

One optimal policy contains OL as the first action, and then MR three
times in a row or ML three times in a row, depending on what was observed.
The controller for this policy is shown in Figure 2. Its value is 0.421875.

6.2 Primitive Actions

My first experiment consisted of running HPI on the problem, using only
primitive actions. This took 7 iterations to converge. Some of the controllers
produced are shown in Figure 3. Table 1 shows the size of the controller,
the value of the controller, and the total time after each iteration. (It is



Figure 2: An optimal controller for the POMDP.

Table 1: Comparison of the different obtion sets

Iter. Primitive Useful Better

size | value | time | size | value | time | size | value | time
1 | 0.281 | 0.00 1 0.281 | 0.00 | 1 — 3 | 0.421 | 0.00
2 | 0.281 | 0.00 2 0.399 | 0.00 7 0.421 | 0.01
3 | 0.281 | 0.00 2 0.399 | 0.00 14 0.421 | 0.02
6 |0.399 | 0.00 | 2—6 | 0.399 | 0.00 13 0.421 | 0.06
10 | 0.421 | 0.01 12 0.421 | 0.01 11 0.421 | 0.08
13 | 0.421 | 0.04 17 0.421 | 0.04
12 | 0.421 | 0.06 11 0.421 | 0.07
10 | 0.421 | 0.09 10 0.421 | 0.09
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questionable how much information is contained in the total time, as this
depends heavily on implementation details, which I didn’t pay much atten-
tion to for this project.)

6.3 A Useful Obtion Set

Next, I created a set of two obtions that seemed like they would be useful
for this problem. The obtions are to move left three times in a row (GL) and
move right three times in a row (GR). The optimal policy for this option
set was found after three iterations. It is shown in Figure 4, along with the
equivalent controller involving just primitive actions. I used this controller
as the starting point of HPI with primitive actions. This converged after
four more iterations. The time and controller size data are contained in the
table.
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Figure 3: The sequence of controllers produced by HPI.



Figure 4: The optimal policy for this option set.

As expected, we get faster convergence to optimality w.r.t. the obtion
set. However, it is interesting that in the process of refining this controller,
we produce one with 17 states — more than any produced in the previous
experiment.

6.4 A Better Obtion Set

I decided to repeat the previous experiment with an obtion set containing
only one obtion — the optimal policy described earlier. One might expect
that with this controller as a starting point, HPI would converge after just
one iteration. Somewhat surprisingly, the algorithm actually requires four
iterations to converge (see the table for details). This result becomes less
surprising when we analyze HPI more carefully. It turns out that HPI
completely ignores the initial state distribution of the POMDP. It does not
converge until it has found a controller that is optimal regardless of the
initial state distribution.

Suppose that instead of the initial state distribution I used, I had one in
which the initial state set included the states directly adjacent to the end
states. Neither of these states is next to a wall, so observing on the first
step is suboptimal. The optimal policy actually involves going out to the
wall and then moving back towards the center. Thus the obtion I started
with was too specific to the initial state distribution.



7 Conclusions and Future Work

I described an approach to extending Hansen’s policy iteration for POMDPs
to work with obtions. It is possible to do this and see benefits, but the
benefits depend largely on the particular set of obtions used. I learned
two important lessons from my experiments. First, refining an obtion-based
controller to get the truly optimal policy can result in large controllers being
formed. Second, obtions whose utility is strongly dependent on the start
state distribution are not the best type to use with policy iteration.

I don’t have a solution to the first problem, and there may be no elegant
solution. But for the second, it may be possible to integrate obtions into
POMDP algorithms that don’t ignore the initial state distribution. An
example of such an algorithm is Hansen’s heuristic search for POMDPs
(Hansen, 1998). This algorithm replaces the policy improvement part of
policy iteration with a search that looks forward from the actual initial
state distribution.

Another avenue for future work is to study the literature on automata
minimization to see whether there are ideas that apply to solving POMDPs.
If a finite-state controller possesses symmetry, then there may exist a con-
troller with less states that produces the exact same behavior. Despite the
fact that Hansen’s algorithm prunes states at each iteration, it is unknown
whether the reduced automaton is guaranteed to be minimal. (Hansen be-
lieves that this guarantee exists, but I have yet to see a convincing argu-
ment.) Automata minimization ideas seem to become more relevant when
we consider POMDPs with options. Sometimes there may be no symmetry
in a controller unless it is looked at from a high level perspective. Perhaps
there are ways to construct obtions to increase the likelihood that controllers
using them possess symmetry.

Finally, in order to really understand the behavior of policy iteration
with obtions, we need to run experiments in more complex domains. A
major challenge is to choose domains and obtion sets in such a way that the
controllers produced by policy iteration don’t get too large too quickly.
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