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Abstract 
 

Software modification can require as much time, 
human effort, and expense as the original development, so 
considerable software engineering research has been 
directed toward identifying ways in which software can be 
developed to facilitate subsequent change. One highly 
successful approach is to develop software using 
modules, or objects, each of which seals within itself 
decisions or secrets that are key to successfully 
addressing its requirements. When one of these 
requirements changes, it should be expected that the need 
to meet this changed requirement is to be satisfied by 
making appropriate changes to the module intended to 
satisfy that requirement. These changes are usually done 
manually and off-line. In our work we are exploring an 
approach where software systems make changes to 
themselves while executing.. Our approach is based on 
Containment Units, which are modules able to self-
diagnose the need for changes based on  their operational 
characteristics and then to make a limited set of changes 
aimed at meeting these needs. 

 
 
1. Introduction 
 

One of the most fundamental changes in attitude about 
software has been the realization that software must be 
expected to change over time. Accordingly approaches to 
facilitating software change are of great interest in 
contemporary software engineering. The current situation 
is that a software modification can require as much time, 
effort, and expense as the original development—and 
perhaps even more. Further, software modification is often 
done hastily and poorly, rendering subsequent 
modifications increasingly difficult and costly. 
Considerable software engineering research has been 

directed towards identifying ways in which software can 
be developed to facilitate subsequent change. 

One highly successful approach is to develop software 
using modules, or objects, each of which seals within 
itself decisions or secrets that are key to successfully 
addressing its requirements. When one of these 
requirements changes, it should be expected that the need 
to meet this changed requirement is to be satisfied by 
making appropriate changes to the module intended to 
satisfy that requirement. In the past such changes to 
modules were typically carried out by humans, who either 
modified affected modules, or replaced them outright with 
alternatives deemed better suited to meeting the new 
requirements. Having humans make these changes 
“offline” generally takes a period of days, weeks, months, 
or even years. But, the world has become a very fast-
paced place that demands more rapid changes. 

In our work we are exploring an approach to 
supporting the ability of software systems to make 
changes to themselves while they are still executing. The 
approach suggests how to develop software systems that 
can automatically diagnose the need for certain types of 
changes, hypothesize how to make some limited kinds of 
changes, evaluate the hypothesized changes, and then 
effect those changes, all while the software is continuing 
to execute. While ultimately we intend to use our 
approach to support more radical modifications, in the 
near term the changes we envisage are of a relatively 
modest sort, being based upon module substitution and 
resource reassignment, all within existing architectures 
that would not change during execution. We refer to this 
type of change as adaptation, suggesting that the software 
is to be responsible for making alterations to itself within 
a well-circumscribed range in order to render itself more 
suitable. 

Our approach is based on Containment Units, which 
are modules able to self-diagnose the need for changes in 
their operational characteristics and also able to make a 



 

 

limited set of changes aimed at meeting these needs. In an 
important sense, a containment unit is intended to 
guarantee that it will maintain its capabilities in the face of 
a range of changes in operational conditions by 
automatically making internal adjustments. We envisage 
that, by composing systems out of configurations of 
containment units, we should be able to construct more 
adaptable systems that should need less human 
involvement in making relatively modest modifications. 
Such systems should be adaptable to important types of 
changes in operational environment in seconds or minutes, 
rather than days or months. 

Initially we expect that each containment unit will 
support only a limited number of adaptations. But systems 
composed from a number of containment units should 
support a number of adaptations that is the product of the 
number of adaptations of its different containment units. 
This number could easily surpass the number of different 
variants of a system that might be built and evaluated in 
advance of deployment. Thus, this approach would 
thereby offer the additional advantage of increased system 
flexibility. 
 
2. Our Approach 
 

To understand the ideas underlying the containment 
unit concept it seems useful to begin with some 
observations about the general notion of software 
modification. 

2.1. Some General Architectural Features 
 
Most fundamentally, we observe that software 

modification is a process. Figure 1 is a very high level 
data flow diagram conceptualizing the four main phases of 
a software modification process. Note that modification 
begins by evaluating the behavior of the currently 
deployed executing system. Not too surprisingly, 
evaluation often indicates the need for change. At that 
point, the formulation of a system modification takes 
place, followed by some alteration of the system, 
reevaluation of the alteration to determine if it is effective, 
and the utilization of the modified system. The modified 
system then becomes the subject of a new round of 
observation, evaluation, and alteration. This process is 
presumably iterated continuously throughout the lifetime 
of the system.  

One key to understanding this process is to recognize 
that the process could itself be software and, like all types 
of software, is intended to satisfy specific requirements. In 
this case, the requirements with which we are primarily 
concerned involve improvements of some kind. Thus, for 
example, increasing reaction speed, adding facilities for 
handling new cases or contingencies, or incorporating 
more effective response to failure, are all examples of 
possible objectives of a modification process. Although 
the specific modifications made will vary from one 
modification to another, these different modifications 
share a common process. 

Examination of Figure 1 suggests that there are two 
distinct types of activities entailed in software system 
modification, namely evaluation and alteration. We 
propose that each of these capabilities be assigned as the 
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specific responsibility of a different modification process 
component, as these two capabilities correspond to 
separate concerns. We thus arrive at a high level 
representation of the architecture of a generic 
modification process. This architecture is shown in Figure 
2. In this architecture, there are evaluator and alterer 
components that use and perhaps modify the deployed, 
operational system and its architecture. 

 
2.2 Containment Units 

 
A containment unit is a module that, like other 

modules, encapsulates some functionality and implements 
that functionality in such a way as to meet specific 
requirements. Specifically, we represent a containment 
unit interface, CUINT, with a tuple (F, R, CP, ENV, FC). F 
represents the functionality of the containment unit. R 
represents the resource requirements including time, 
memory, and other shared physical resources such as 
special processors, sensors, and actuators. CP represents 
the communication protocol defining the input expected, 
output produced, and faults reported by the containment 
unit. ENV represents the environmental constraints under 
which the containment unit can operate. These will 
typically be related to the physical resources. For 
example, sensors may require a certain amount of light to 
operate well. Finally, FC represents the faults contained 
explicitly. These identify the exceptional situations that 
are contained by the containment unit, that is, situations 

that the containment unit guarantees it can handle 
internally.  

A containment unit implementation, CUIMP is 
represented as a tuple, (Op, Eval, Adapt). Op is a set of 
operational components, Op = {opi}, which provide the 
functionality of the containment unit. Generally Op will 
contain several operational components that can be 
selected alternatively depending upon the environmental 
conditions. In many cases, an opi may itself be a 
containment unit, which we refer to as a subcontainment 
unit. This is the principal way in which to create a 
hierarchy of containment units. Eval is a set of evaluators, 
Eval = {evali}, that dynamically monitor the performance 
of the operational components to ensure that the 
containment unit interface is being satisfied. There may be 
one or more evaluators. For example, it would be common 
to have one evaluator monitor execution speed and 
another monitor memory usage, and still another evaluate 
the quality of the functional results. The adapter, Adapt, is 
a capability for adaptation in the event that one of the 
evaluators identifies that the containment unit is not 
operating satisfactorily. The adaptation process generally 
consists either of putting into execution a different opi as a 
substitution for the currently executing opi, or 
alternatively by reallocating the resources that are 
available to the containment unit. The purpose of the 
operational components is to provide the containment 
unit’s functionality within the specified time, memory, and 
resource limitations. Each operational component within a 
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containment unit has a specification that is not 
inconsistent with the specification of its encompassing 
containment unit. In particular, the functionality provided 
by an operational component must be at least as 
comprehensive as that provided by the containment unit 
itself. On the other hand, the time, memory, and resource 
requirements might well be expected to be less stringent. 
By doing this, we can be certain that any operational 
component will be able to satisfy the containment unit’s 
functional requirements. But each operational component 
will probably have environmental constraints that 
constrain it to be effective in only a subset of the 
operational environments supported by the overall 
containment unit. In particular, the environmental 
constraints of a containment unit are generally a 
disjunction of the environmental constraints of the 
enclosed operational components. This allows the adapter 
to use information about current environmental conditions 
to select an appropriate operational component. Due to 
this similarity between operational component 
specifications and containment unit specifications, it is 
possible to compose containment units hierarchically. 

As mentioned above, each operational component is 
not required to contain the faults that the enclosing 
containment unit contains. Instead, the role of the 
evaluator and adapter is to ensure that, should a fault 
arise, the containment unit will adapt either by running an 
alternative operational component or by changing 
resource allocations so that the fault is handled within the 
containment unit. Should the containment unit be unable 
to deal with the fault it must then signal a fault that can, in 
turn potentially be handled by higher level containment 
units. 

The purpose of the evaluators is to guarantee that the 
containment unit specification is satisfied by dynamically 
monitoring the behavior of the active operational 
component. Should the result quality or performance of 
the active operational component fall outside the 
containment unit guarantees, the evaluator signals an error 
to the adapter. The adapter’s job is to turn off the current 
operational component and select an alternative 
component better suited to the current environment or an 
alternative allocation of resources to the active component 
and then to continue. Because of the semantic richness 
associated with each operational component we expect 
that the containment unit should be effective in making 
modifications across the full range of semantics addressed 
by the interface specification. The containment unit 
architecture described above is undergoing evaluation. 
Our expectation is that it will work well in environments 
in which alternative algorithms and/or resources are 
required in different environmental situations, but where 
the environmental situations either cannot be predicted in 
advance or are susceptible to change during execution. In 
these cases, we believe the rich interface specifications, 

the continuous monitoring of operational behavior, and 
the ability to dynamically adapt to the changing 
circumstances will all be of value in supporting the design 
of more resilient systems. Example domains for which this 
will be applicable include robotics and smart home 
applications. 

 
3. Experiences with Containment Units 
 

One of our early demonstrations provides a useful 
example of the value of our ideas about containment units. 
In this early demonstration we are building a software 
system to use sensors, vision analysis software, and 
electrical socket controls to provide continuing 
illumination of a human subject as the subject moves 
around a room. We assume that the room has a set of 
electric lights all under computer control, and that the 
room is instrumented with a variety of sensors. It is our 
intention to show that containment units are useful in 
developing a software system that can continue to keep 
the human subject illuminated as the human moves from 
place to place, despite such changes in operational 
environment as variation in illumination levels, changes in 
ambient conditions in the room (e.g. presence of smoke), 
and the failure of various devices (e.g. a light bulb).  

The hardware devices we are using as resources consist 
of a set of effectors, which are devices that are capable of 
switching electrical power on and off, and a set of sensors 
capable of detecting the presence of a human. The 
effectors implement the commercial X10 standard for 
receiving signals and using them to either turn on or turn 
off the power coming from electrical sockets. In our 
demonstration, these sockets contain light bulbs intended 
to provide illumination for a sector of a room. The sensors 
are both optical and pyroelectric sensors, each capable of 
detecting the presence of humans. In the case of the 
optical sensors, this is done by generating images that then 
undergo analysis by any of a variety of vision analysis 
software modules. In the case of the pyroelectric sensors, 
this is done by detecting the heat generated by a human 
body and analyzing the heat spectrum received. The 
sensors are directional, and can be turned on axis to locate 
subjects. Once a subject has been detected, the sensors 
can then report the angular heading at which the subject 
was detected, and this information can then be used to 
identify nearby lighting sources, which can then be turned 
on to keep the subject illuminated. Lighting sources that 
are no longer in the vicinity of the human are then to be 
turned off.  

We are seeking to assure that our system remains 
effective even in the face of a variety of complicating 
factors. For example, the sensors are assumed to remain in 
fixed positions, while the human subject is free to move 
around. Thus, different sensors must be used as the human 



 

 

moves from place to place. Some sensors are more 
effective than others in low lighting conditions. Some (e.g. 
the pyroelectric sensors) do not require light at all. Some 
of the vision analysis software to be used to identify 
humans is faster than some other software. Some software 
works more effectively in the presence of smoke, and in 
low light conditions, etc. We also assume that some light 
sources may fail (e.g. lights may burn out), and some X10 
signals may not be received due to interference on the 
electrical lines. We seek to develop a software system that 
will be robust in the face of all of these difficulties.  

A principal vehicle for assuring this robustness is the 
provision of ample resources to allow for flexibility in 
pursuing the human tracking activity. Thus, sensors may 
overlap in the areas that they cover, and in the way in 
which they work. Vision analysis software components 
may have overlapping capabilities, but may have different 
degrees of effectiveness under different operating 
conditions. And different illumination sources will be able 
to provide illumination to some of the same areas. By 
providing these redundant and overlapping resources it 
should be possible to provide substantial robustness. 
Clearly we would like to assure that more lavish supplies 
of resources lead to more robustness. But programming a 
software system to assure all of this remains a challenge. 
It is to meet such challenges that we have designed the 
notion of a containment unit. 

To achieve the robustness just described we are 
building a hierarchy of containment units. At the top of 
the hierarchy is a containment unit called Track_Human 
that is assigned a variety of resources and has a 
considerable amount of flexibility in assigning them to 
subcontainment units in order to continue doing its job.  

Thus, we are defining Track_Human to be the tuple (F, 
R, CP, ENV, FC), where:  

• F is a function that continues to report the (x,y) 
location of a human as the human continues to 
move around the room;  

• R consists of an array of illumination sources 
placed redundantly around the room, as well as an 
array of both vision and pyroelectric sensors also 
placed redundantly around the room;  

• CP consists of a definition of the stream of output 
locations generated by this containment unit, as 
well as a definition of the faults reportable 
(presumably that the human was no longer being 
tracked), as well as an indication of the conditions 
that combined to cause this fault (for example 
human moved too quickly in low light conditions):  

• ENV consists of a specification of the maximum 
speeds at which humans can move under various 
illumination conditions: and finally  

• FC represents such faults as low light, smoky room 
conditions, and single illumination source failure.  

Encapsulated within Track_Human is a collection of 
subcontainment units, each of which is able to track a 
human, but each under somewhat different circumstances, 
and each with a somewhat different complement of 
resources. Thus, for example, one of these subcontainment 
units, Track_Human_Pyro, is able to track a human using 
only a pyroelectric sensor, but can do so in the dark. This 
sensor, however, suffers from a relative lack of precision, 
and is relatively poor in tracking humans who move 
relatively rapidly. The tuple defining Track_Human_Pyro 
is quite similar to the tuple defining Track_Human. For 
example, its F and CP components would be the same. 
But R, its resource complement, would contain only the 
pyroelectric sensors, ENV would be a specification of the 
maximum speed at which the pyroelectric sensors can 
track humans, and FC represents the fault that occurs 
when humans move faster than the speed at which the 
pyroelectric sensors are effective.  

The adaptor component of Track_Human is 
programmed to switch to this subcontainment unit when 
another subcontainment unit throws an exception 
indicating that it is unable to track a human because of 
insufficient light. That exception might be thrown, for 
example, by Track_Human_Panos, which is another 
subcontainment unit. The subcontainment unit uses two 
redundant panoramic sensors, each of which is able to 
track a human using vision software components. This 
containment unit is relatively robust, but fails when the 
subject is not illuminated at all. With sufficient 
illumination, however, one of the panoramic vision 
sensors can track a human rapidly and accurately. If this 
panoramic sensor fails, then the adaptor component of this 
containment unit is programmed to switch over to a 
second panoramic sensor, which is being held in reserve 
as a backup resource by this containment unit. 

At the bottom of this hierarchy of containment units are 
some low level containment units that are designed to be 
robust with respect only to a small number of very 
narrowly defined failures. Thus, for example, one of these 
low level containment units, Illuminate_xyz, is designed 
only to assure that an illumination source actually 
provides the requested illumination. For this containment 
unit:  

• F represents an illumination level above specified 
threshold level at location (x,y,z);  

• R consists of two redundant illumination sources, 
each of which is capable of providing a satisfactory 
level of illumination at (x,y,z);  

• CP consists of a specification of how (x,y,z) is to 
be delivered as input, how the illumination level 
observed at (x,y,z) is to be delivered as output, and 
a specification of the fault that sufficient 
illumination was not deliverable;  



 

 

• ENV specifies that the proper working of the 
illumination detector is required; and  

• FC specifies that the failure of a single illumination 
source (but not two illumination sources) is 
contained by this containment unit.  

While we have begun to define several of these 
containment units, we have to date implemented relatively 
few of them. We have implemented a preliminary version 
of Illuminate_xyz, for example. Recall that a containment 
unit implementation, CUIMP, is represented as a tuple, (Op, 
Eval, Adapt), where Op is a set of operational 
components, Op = {opi}, which provide the functionality 
of the containment unit. Eval is a set of evaluators Eval = 
{evali} that dynamically monitor the performance of the 
operational components to ensure that the containment 
unit interface is being satisfied. And Adapt, is a capability 
for adaptation in the event that one of the evaluators 
identifies that the containment unit is not operating 
satisfactorily. 

In our initial implementation of Illuminate_xyz:  
• Eval consists of a component for monitoring to 

assure that the light level at (x,y,z) is sufficiently 
high. This procedure makes use of a photoelectric 
cell (which is part of the resources allocated to this 
containment unit) that will report whether the 
command to turn on the illumination source 
actually resulted in sufficient illumination. Failure 
of the light to illuminate will cause Eval to throw an 
exception that triggers Adapt. 

• Op consists of two different X10 units controlling 
the flow of electricity to the two different light 
sources that are nearest to (x,y,z). Each is capable 
of modifying the level of illumination in the subject 
area.  

• Adapt responds to notification from Eval that there 
is insufficient illumination by moving the flow of 
electricity from the primary (i.e. Closest) X10 
device to the device that is next closest to (x,y,z). 
Adapt responds to notification that this has been 
inadequate by signaling a fault for this containment 
unit as a whole. Presumably there is a higher level, 
containing, containment unit that will take this fault 
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and pursue further remedial actions (e.g. 
illuminating another light, notifying a human, or 
attempting some other kind of repair.  

As our work proceeds we are implementing 
increasingly complex containment units, with the goal of 
completing the implementation of the full Track_Human 
structure. It should be emphasized, however, that this nest 
of containment units is designed to be robust only with 
respect to specific contingencies. As the need to deal with 
additional contingencies arises (e.g. the sudden arrival in 
the room of additional humans) additional containment 
units and structural complexity will be needed. 
Understanding how to deal with this growing complexity 
is one of the key goals of this research. 
 
4. Using Little-JIL to Define Containment 

Units 
 

Our Little-JIL language has turned out to be very 
effective in defining containment units. The details of the 
Little-JIL language are provided in other papers [1, 19], 
and space does not permit us to repeat them here. Instead 
we use Figure 3, a Little-JIL specification of a generic 
containment unit, both to emphasize some of our points 
about the structure of a containment unit, and Little-JIL's 
suitability for representing it. The Little-JIL step 
construct, depicted as a solid black bar with 
accompanying badges, is the central feature of the 
language, and is particularly appropriate as a vehicle for 
representing containment units.  

The Little-JIL step synthesizes notions of proactive 
control, reactive control, resource specification, 
concurrency, artifact flow, real time specification, and 
exception management in ways that provide the power 
needed to specify a containment unit. Little-JIL steps are 
hierarchical compositions of lower level steps. Thus, for 
example Figure 3 depicts the step, “Adaptive Execution”, 
which is decomposed into the structure of the substeps 
shown below it. The second level steps represent the fact 
that “Adaptive Execution” is called iteratively after each 
“System Adaptation” activity has taken place, thereby 
representing the unceasing nature of adaptation. “System 
Adaptation” itself is composed of two parallel activities, 
namely “Execute System” and “Monitor and Adapt”, 
which represents the fact that monitoring goes on 
continually during execution of the subject system. 
“Monitor and Adapt” in turn consists of two parallel types 
of monitoring activities (static and dynamic), and a 
programmed response to the identification of the need to 
adapt the system. This response is shown as being 
exception driven, rather than proactive. At the bottom of 
this hierarchy are abstract representations of functions 
implemented as executable code. As in the case of 
containment units, Little-JIL steps need not form a strict 

tree structured hierarchy. Lower level steps (and 
containment units) may be contained as part of more than 
one higher level step (or containment unit). In addition, 
Little-JIL steps include (optional) prerequisites and 
postrequisites. Both can be used to specify where 
evaluation activities are to occur and, as both of these 
structures are full Little-JIL steps, the structures may be 
used to specify to arbitrary levels of detail just how the 
evaluation is to take place. Thus, note that in Figure 3 the 
“Preliminary Evaluation” step has a postrequisite step, 
“Suitable,” which represents a potentially complex 
process of deciding if the proposed reconfiguration is 
going to be suitable.  

It is important to note that steps such as “Preliminary 
Evaluation” and “Offline Static Analysis”, which effect 
evaluation, are indeed specifications of procedures and 
methods belonging to Eval, the evaluator module of the 
containment unit, even though one (“Preliminary 
Evaluation”) is shown being used to support the 
modification activity. The Little-JIL step decomposition 
structure is used to indicate which actions are to be carried 
out at what times and in what ways. Clearly some of these 
actions at times both invoke, and are invoked by Adapt, 
that adaptor module. Conversely, as noted, adaptor 
module actions are invoked, through the Little-JIL 
contingency handling capability, from evaluator actions. 
Our early experiences are suggesting that Little-JIL 
language structures are quite useful in specifying intricate 
control and artifact flow in containment units that are 
complex syntheses of diverse evaluation and adaptation 
capabilities. Figure 3 is a very high level representation of 
a generic reconfiguration process. Little-JIL supports the 
incremental addition of further detail quite nicely. Thus, 
for example, it is possible to use Little-JIL to elaborate on 
the “Offline Static Analysis” step, to provide details of the 
intricate interplay between dynamic analysis and static 
analysis. Some indications of the nature of this interplay 
are provided in [11, 12]. 

Clearly Little-JIL is a graphical language, and our 
experience suggests that its carefully chosen iconic 
representations help to make complex process 
specifications clearer. In addition, however, we believe 
that additional clarity is attributable to Little-JIL's uses of 
higher level semantic notions as the basis for its 
specifications. This clarity seems to be one of the key 
benefits to using Little-JIL, rather than a lower level 
programming language for representing containment units. 
Process specifications are interpreted by the Juliette 
process interpreter, a distributed system described in [2]. 
Juliette enables support for the late binding of 
containment units to adaptation processes, thereby 
allowing for the continuous incorporation of new 
containment units without the need to modify Little-JIL 
adaptation processes. In order to explain this we now 
introduce the Little-JIL resource management capability.  



 

 

Every Little-JIL step may (optionally) specify a set of 
resources that it requires in order to perform its assigned 
task. These specifications may take the form of requests 
for specific resources, but are more commonly requests 
for types of resources. At runtime, the Juliette interpreter 
passes these requests on to a separate resource allocation 
module. This resource allocation module has the 
responsibility for maintaining complete information about 
which resources are allocated to support execution of the 
process, and which are currently available. If requested 
resources are not available, the resource manager 
indicates this, and the requesting step fails and throws an 
exception that is handled as indicated above. If a resource 
is available, it is bound to the requesting step and 
execution proceeds.  

The adaptor module of a containment unit uses this 
facility, in that the pool of resources and alternative 
functional modules available for substitution in Op, the 
operational system, are considered to be resources. Thus, 
those methods and functions of the adaptor that must deal 
with this pool of resources, their characteristics, and 
ontologies, would require the ability to access information 
about this pool. The specification of this pool would be a 
resource specification for the steps representing those 
methods and functions. It is most important to note that, as 
the resource pool is a separate module, it is quite free to 
evolve itself, independently of the reconfiguration of the 
operational software. Thus, we anticipate that new 
operational modules and resources might very well be 
added to the resource pool continuously as they become 
available. Because resources are bound to Little-JIL steps 
at runtime, modifier steps needing operational modules or 
new resources would be able to utilize newly added 
modules or resources as soon as they are made available 
through the resource manager. This assures that systems 
implemented as containment unit structures using Little-
JIL will be able to evolve in new ways, as soon as new 
operational modules and resources are created and made 
available. 
 
5. Related Work 
 

Perhaps the earliest work that has addressed adaptation 
to faults was the work of Randall on recovery blocks [17]. 
In this work the suitability of a software function was 
evaluated, and when found to be inadequate, a recovery 
block was called to try to mitigate the effects of the 
inadequate code. This early work was quite static in 
nature, requiring that the conditions to be examined, and 
the recovery strategies be hard coded in advance. This 
approach seems insufficient to achieve the kind of flexible 
and rapid adaptation to fluid situations that is required in 
modern systems. The sort of late-binding approach 

described here seems more appropriate to these 
demanding requirements. 

Earlier work with real time systems has some 
relationship to this project as well. The work of [16], [9], 
[8], and [5], for example, suggest the use of a framework 
within which to describe operational components and the 
real time constraints on their performance. These 
approaches tend to use the real time constraints primarily 
to determine whether proposed module configurations 
would necessarily meet real time constraints. In this work, 
however, unacceptable configurations were often simply 
not deployed or ad hoc responses were generated. Our 
work differs in that we use language constructs to define 
programmed strategies for dealing with such constraint 
violations. Like some of these authors we use module 
replacement as the basis of our work.  

Our work is also related to earlier efforts in software 
reuse. This work, like ours, emphasized the importance of 
repositories of reusable modules, and the use of 
architectural frameworks within which to insert them. 
These approaches are presented in work such as [6, 15, 
18]. Our work takes these approaches further in using 
explicit, rigorous process representations to effect the 
module reuse. 

The work that this project most closely resembles, 
however, is work in the areas of software architecture and 
domain specific software. Numerous authors have 
suggested the use of architectures to guide the 
composition of software system out of components or 
modules (e.g., [4, 13, 14]). Our specific approach to 
module interchange is similar to that suggested by [10], 
and [3] who propose the use of a defined architecture as 
the framework within which different components can be 
interchanged, although we believe that the range of 
reconfiguration issues that we address in our work is 
broader than in these earlier efforts. Another closely 
related project is Chamelon [7], which has been used to 
develop ARMORS that add fault tolerance by wrapping 
existing software. It might be possible to build 
containment units uses ARMORs.  
 
6. Future Directoins 
 

There are ongoing joint efforts between software 
engineering, robotics, and computer vision researchers to 
encapsulate various combinations of sensors into 
containment units capable of tracking humans in a room. 
In the intermediate future we expect to complete work on 
prototype capabilities in this area and to integrate them 
with smart illumination containment units to fully 
implement the containment unit structure described earlier 
in this paper. This work will help us to validate our 
notions of containment units. In particular the 
development of ambitious structures of containment units 



 

 

will help us to determine how well these ideas scale to 
address the need for highly dynamic self-adaptation in 
response to broad ranges of contingencies. 

This work is also providing continuing validation of 
the Little-JIL process definition capabilities and our initial 
notions of the value and their use in implementation of 
containment units. We shall continue these activities in 
collaboration with our research colleagues in the other 
areas, eventually leading to prototype demonstrations of 
unusually adaptive robotic systems, and deeper 
understandings of the nature of reconfiguration and 
mechanisms for achieving it. 
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