

Architecting Dynamic Systems Using Containment Units

Leon J. Osterweil, Alexander Wise,
Jamieson M. Cobleigh, Lori A. Clarke

Laboratory for Advanced Software Engineering Research
Department of Computer Science

University of Massachusetts
Amherst, MA 01002

USA
{ljo, wise, jcobleig, clarke}@cs.umass.edu

Barbara Staudt Lerner
Department of Computer Science

Williams College
Williamstown, MA 01267

USA
lerner@cs.williams.edu

Abstract

Software modification can require as much time,
human effort, and expense as the original development, so
considerable software engineering research has been
directed toward identifying ways in which software can be
developed to facilitate subsequent change. One highly
successful approach is to develop software using
modules, or objects, each of which seals within itself
decisions or secrets that are key to successfully
addressing its requirements. When one of these
requirements changes, it should be expected that the need
to meet this changed requirement is to be satisfied by
making appropriate changes to the module intended to
satisfy that requirement. These changes are usually done
manually and off-line. In our work we are exploring an
approach where software systems make changes to
themselves while executing.. Our approach is based on
Containment Units, which are modules able to self-
diagnose the need for changes based on their operational
characteristics and then to make a limited set of changes
aimed at meeting these needs.

1. Introduction

One of the most fundamental changes in attitude about
software has been the realization that software must be
expected to change over time. Accordingly approaches to
facilitating software change are of great interest in
contemporary software engineering. The current situation
is that a software modification can require as much time,
effort, and expense as the original development—and
perhaps even more. Further, software modification is often
done hastily and poorly, rendering subsequent
modifications increasingly difficult and costly.
Considerable software engineering research has been

directed towards identifying ways in which software can
be developed to facilitate subsequent change.

One highly successful approach is to develop software
using modules, or objects, each of which seals within
itself decisions or secrets that are key to successfully
addressing its requirements. When one of these
requirements changes, it should be expected that the need
to meet this changed requirement is to be satisfied by
making appropriate changes to the module intended to
satisfy that requirement. In the past such changes to
modules were typically carried out by humans, who either
modified affected modules, or replaced them outright with
alternatives deemed better suited to meeting the new
requirements. Having humans make these changes
“offline” generally takes a period of days, weeks, months,
or even years. But, the world has become a very fast-
paced place that demands more rapid changes.

In our work we are exploring an approach to
supporting the ability of software systems to make
changes to themselves while they are still executing. The
approach suggests how to develop software systems that
can automatically diagnose the need for certain types of
changes, hypothesize how to make some limited kinds of
changes, evaluate the hypothesized changes, and then
effect those changes, all while the software is continuing
to execute. While ultimately we intend to use our
approach to support more radical modifications, in the
near term the changes we envisage are of a relatively
modest sort, being based upon module substitution and
resource reassignment, all within existing architectures
that would not change during execution. We refer to this
type of change as adaptation, suggesting that the software
is to be responsible for making alterations to itself within
a well-circumscribed range in order to render itself more
suitable.

Our approach is based on Containment Units, which
are modules able to self-diagnose the need for changes in
their operational characteristics and also able to make a

limited set of changes aimed at meeting these needs. In an
important sense, a containment unit is intended to
guarantee that it will maintain its capabilities in the face of
a range of changes in operational conditions by
automatically making internal adjustments. We envisage
that, by composing systems out of configurations of
containment units, we should be able to construct more
adaptable systems that should need less human
involvement in making relatively modest modifications.
Such systems should be adaptable to important types of
changes in operational environment in seconds or minutes,
rather than days or months.

Initially we expect that each containment unit will
support only a limited number of adaptations. But systems
composed from a number of containment units should
support a number of adaptations that is the product of the
number of adaptations of its different containment units.
This number could easily surpass the number of different
variants of a system that might be built and evaluated in
advance of deployment. Thus, this approach would
thereby offer the additional advantage of increased system
flexibility.

2. Our Approach

To understand the ideas underlying the containment
unit concept it seems useful to begin with some
observations about the general notion of software
modification.

2.1. Some General Architectural Features

Most fundamentally, we observe that software

modification is a process. Figure 1 is a very high level
data flow diagram conceptualizing the four main phases of
a software modification process. Note that modification
begins by evaluating the behavior of the currently
deployed executing system. Not too surprisingly,
evaluation often indicates the need for change. At that
point, the formulation of a system modification takes
place, followed by some alteration of the system,
reevaluation of the alteration to determine if it is effective,
and the utilization of the modified system. The modified
system then becomes the subject of a new round of
observation, evaluation, and alteration. This process is
presumably iterated continuously throughout the lifetime
of the system.

One key to understanding this process is to recognize
that the process could itself be software and, like all types
of software, is intended to satisfy specific requirements. In
this case, the requirements with which we are primarily
concerned involve improvements of some kind. Thus, for
example, increasing reaction speed, adding facilities for
handling new cases or contingencies, or incorporating
more effective response to failure, are all examples of
possible objectives of a modification process. Although
the specific modifications made will vary from one
modification to another, these different modifications
share a common process.

Examination of Figure 1 suggests that there are two
distinct types of activities entailed in software system
modification, namely evaluation and alteration. We
propose that each of these capabilities be assigned as the

Operation of
System

Evaluation of
System

Adaptation/
Evolution

Reevaluation
of System

Observed
Behaviors

Suggested
Evolution

Candidate
Evolved System

New
System

Operation of
System

Evaluation of
System

Adaptation/
Evolution

Reevaluation
of System

Observed
Behaviors

Suggested
Evolutio

Candidate
Evolved System

New
System

Figure 1: Phases of software modification

specific responsibility of a different modification process
component, as these two capabilities correspond to
separate concerns. We thus arrive at a high level
representation of the architecture of a generic
modification process. This architecture is shown in Figure
2. In this architecture, there are evaluator and alterer
components that use and perhaps modify the deployed,
operational system and its architecture.

2.2 Containment Units

A containment unit is a module that, like other

modules, encapsulates some functionality and implements
that functionality in such a way as to meet specific
requirements. Specifically, we represent a containment
unit interface, CUINT, with a tuple (F, R, CP, ENV, FC). F
represents the functionality of the containment unit. R
represents the resource requirements including time,
memory, and other shared physical resources such as
special processors, sensors, and actuators. CP represents
the communication protocol defining the input expected,
output produced, and faults reported by the containment
unit. ENV represents the environmental constraints under
which the containment unit can operate. These will
typically be related to the physical resources. For
example, sensors may require a certain amount of light to
operate well. Finally, FC represents the faults contained
explicitly. These identify the exceptional situations that
are contained by the containment unit, that is, situations

that the containment unit guarantees it can handle
internally.

A containment unit implementation, CUIMP is
represented as a tuple, (Op, Eval, Adapt). Op is a set of
operational components, Op = {opi}, which provide the
functionality of the containment unit. Generally Op will
contain several operational components that can be
selected alternatively depending upon the environmental
conditions. In many cases, an opi may itself be a
containment unit, which we refer to as a subcontainment
unit. This is the principal way in which to create a
hierarchy of containment units. Eval is a set of evaluators,
Eval = {evali}, that dynamically monitor the performance
of the operational components to ensure that the
containment unit interface is being satisfied. There may be
one or more evaluators. For example, it would be common
to have one evaluator monitor execution speed and
another monitor memory usage, and still another evaluate
the quality of the functional results. The adapter, Adapt, is
a capability for adaptation in the event that one of the
evaluators identifies that the containment unit is not
operating satisfactorily. The adaptation process generally
consists either of putting into execution a different opi as a
substitution for the currently executing opi, or
alternatively by reallocating the resources that are
available to the containment unit. The purpose of the
operational components is to provide the containment
unit’s functionality within the specified time, memory, and
resource limitations. Each operational component within a

System to be
Evolved
(Subject)

Observation,
Measurement, Modification

System
(Evaluator)

System
Architecture

System to do the
Evolution
(Evolver)

substitutable
modules

System to do the
Evolution
(Evolver)

substitutable
modulesControl Flow

Data and Event Flow

Figure 2: Self-Adaptive System: Data and Control Flows

containment unit has a specification that is not
inconsistent with the specification of its encompassing
containment unit. In particular, the functionality provided
by an operational component must be at least as
comprehensive as that provided by the containment unit
itself. On the other hand, the time, memory, and resource
requirements might well be expected to be less stringent.
By doing this, we can be certain that any operational
component will be able to satisfy the containment unit’s
functional requirements. But each operational component
will probably have environmental constraints that
constrain it to be effective in only a subset of the
operational environments supported by the overall
containment unit. In particular, the environmental
constraints of a containment unit are generally a
disjunction of the environmental constraints of the
enclosed operational components. This allows the adapter
to use information about current environmental conditions
to select an appropriate operational component. Due to
this similarity between operational component
specifications and containment unit specifications, it is
possible to compose containment units hierarchically.

As mentioned above, each operational component is
not required to contain the faults that the enclosing
containment unit contains. Instead, the role of the
evaluator and adapter is to ensure that, should a fault
arise, the containment unit will adapt either by running an
alternative operational component or by changing
resource allocations so that the fault is handled within the
containment unit. Should the containment unit be unable
to deal with the fault it must then signal a fault that can, in
turn potentially be handled by higher level containment
units.

The purpose of the evaluators is to guarantee that the
containment unit specification is satisfied by dynamically
monitoring the behavior of the active operational
component. Should the result quality or performance of
the active operational component fall outside the
containment unit guarantees, the evaluator signals an error
to the adapter. The adapter’s job is to turn off the current
operational component and select an alternative
component better suited to the current environment or an
alternative allocation of resources to the active component
and then to continue. Because of the semantic richness
associated with each operational component we expect
that the containment unit should be effective in making
modifications across the full range of semantics addressed
by the interface specification. The containment unit
architecture described above is undergoing evaluation.
Our expectation is that it will work well in environments
in which alternative algorithms and/or resources are
required in different environmental situations, but where
the environmental situations either cannot be predicted in
advance or are susceptible to change during execution. In
these cases, we believe the rich interface specifications,

the continuous monitoring of operational behavior, and
the ability to dynamically adapt to the changing
circumstances will all be of value in supporting the design
of more resilient systems. Example domains for which this
will be applicable include robotics and smart home
applications.

3. Experiences with Containment Units

One of our early demonstrations provides a useful
example of the value of our ideas about containment units.
In this early demonstration we are building a software
system to use sensors, vision analysis software, and
electrical socket controls to provide continuing
illumination of a human subject as the subject moves
around a room. We assume that the room has a set of
electric lights all under computer control, and that the
room is instrumented with a variety of sensors. It is our
intention to show that containment units are useful in
developing a software system that can continue to keep
the human subject illuminated as the human moves from
place to place, despite such changes in operational
environment as variation in illumination levels, changes in
ambient conditions in the room (e.g. presence of smoke),
and the failure of various devices (e.g. a light bulb).

The hardware devices we are using as resources consist
of a set of effectors, which are devices that are capable of
switching electrical power on and off, and a set of sensors
capable of detecting the presence of a human. The
effectors implement the commercial X10 standard for
receiving signals and using them to either turn on or turn
off the power coming from electrical sockets. In our
demonstration, these sockets contain light bulbs intended
to provide illumination for a sector of a room. The sensors
are both optical and pyroelectric sensors, each capable of
detecting the presence of humans. In the case of the
optical sensors, this is done by generating images that then
undergo analysis by any of a variety of vision analysis
software modules. In the case of the pyroelectric sensors,
this is done by detecting the heat generated by a human
body and analyzing the heat spectrum received. The
sensors are directional, and can be turned on axis to locate
subjects. Once a subject has been detected, the sensors
can then report the angular heading at which the subject
was detected, and this information can then be used to
identify nearby lighting sources, which can then be turned
on to keep the subject illuminated. Lighting sources that
are no longer in the vicinity of the human are then to be
turned off.

We are seeking to assure that our system remains
effective even in the face of a variety of complicating
factors. For example, the sensors are assumed to remain in
fixed positions, while the human subject is free to move
around. Thus, different sensors must be used as the human

moves from place to place. Some sensors are more
effective than others in low lighting conditions. Some (e.g.
the pyroelectric sensors) do not require light at all. Some
of the vision analysis software to be used to identify
humans is faster than some other software. Some software
works more effectively in the presence of smoke, and in
low light conditions, etc. We also assume that some light
sources may fail (e.g. lights may burn out), and some X10
signals may not be received due to interference on the
electrical lines. We seek to develop a software system that
will be robust in the face of all of these difficulties.

A principal vehicle for assuring this robustness is the
provision of ample resources to allow for flexibility in
pursuing the human tracking activity. Thus, sensors may
overlap in the areas that they cover, and in the way in
which they work. Vision analysis software components
may have overlapping capabilities, but may have different
degrees of effectiveness under different operating
conditions. And different illumination sources will be able
to provide illumination to some of the same areas. By
providing these redundant and overlapping resources it
should be possible to provide substantial robustness.
Clearly we would like to assure that more lavish supplies
of resources lead to more robustness. But programming a
software system to assure all of this remains a challenge.
It is to meet such challenges that we have designed the
notion of a containment unit.

To achieve the robustness just described we are
building a hierarchy of containment units. At the top of
the hierarchy is a containment unit called Track_Human
that is assigned a variety of resources and has a
considerable amount of flexibility in assigning them to
subcontainment units in order to continue doing its job.

Thus, we are defining Track_Human to be the tuple (F,
R, CP, ENV, FC), where:

• F is a function that continues to report the (x,y)
location of a human as the human continues to
move around the room;

• R consists of an array of illumination sources
placed redundantly around the room, as well as an
array of both vision and pyroelectric sensors also
placed redundantly around the room;

• CP consists of a definition of the stream of output
locations generated by this containment unit, as
well as a definition of the faults reportable
(presumably that the human was no longer being
tracked), as well as an indication of the conditions
that combined to cause this fault (for example
human moved too quickly in low light conditions):

• ENV consists of a specification of the maximum
speeds at which humans can move under various
illumination conditions: and finally

• FC represents such faults as low light, smoky room
conditions, and single illumination source failure.

Encapsulated within Track_Human is a collection of
subcontainment units, each of which is able to track a
human, but each under somewhat different circumstances,
and each with a somewhat different complement of
resources. Thus, for example, one of these subcontainment
units, Track_Human_Pyro, is able to track a human using
only a pyroelectric sensor, but can do so in the dark. This
sensor, however, suffers from a relative lack of precision,
and is relatively poor in tracking humans who move
relatively rapidly. The tuple defining Track_Human_Pyro
is quite similar to the tuple defining Track_Human. For
example, its F and CP components would be the same.
But R, its resource complement, would contain only the
pyroelectric sensors, ENV would be a specification of the
maximum speed at which the pyroelectric sensors can
track humans, and FC represents the fault that occurs
when humans move faster than the speed at which the
pyroelectric sensors are effective.

The adaptor component of Track_Human is
programmed to switch to this subcontainment unit when
another subcontainment unit throws an exception
indicating that it is unable to track a human because of
insufficient light. That exception might be thrown, for
example, by Track_Human_Panos, which is another
subcontainment unit. The subcontainment unit uses two
redundant panoramic sensors, each of which is able to
track a human using vision software components. This
containment unit is relatively robust, but fails when the
subject is not illuminated at all. With sufficient
illumination, however, one of the panoramic vision
sensors can track a human rapidly and accurately. If this
panoramic sensor fails, then the adaptor component of this
containment unit is programmed to switch over to a
second panoramic sensor, which is being held in reserve
as a backup resource by this containment unit.

At the bottom of this hierarchy of containment units are
some low level containment units that are designed to be
robust with respect only to a small number of very
narrowly defined failures. Thus, for example, one of these
low level containment units, Illuminate_xyz, is designed
only to assure that an illumination source actually
provides the requested illumination. For this containment
unit:

• F represents an illumination level above specified
threshold level at location (x,y,z);

• R consists of two redundant illumination sources,
each of which is capable of providing a satisfactory
level of illumination at (x,y,z);

• CP consists of a specification of how (x,y,z) is to
be delivered as input, how the illumination level
observed at (x,y,z) is to be delivered as output, and
a specification of the fault that sufficient
illumination was not deliverable;

• ENV specifies that the proper working of the
illumination detector is required; and

• FC specifies that the failure of a single illumination
source (but not two illumination sources) is
contained by this containment unit.

While we have begun to define several of these
containment units, we have to date implemented relatively
few of them. We have implemented a preliminary version
of Illuminate_xyz, for example. Recall that a containment
unit implementation, CUIMP, is represented as a tuple, (Op,
Eval, Adapt), where Op is a set of operational
components, Op = {opi}, which provide the functionality
of the containment unit. Eval is a set of evaluators Eval =
{evali} that dynamically monitor the performance of the
operational components to ensure that the containment
unit interface is being satisfied. And Adapt, is a capability
for adaptation in the event that one of the evaluators
identifies that the containment unit is not operating
satisfactorily.

In our initial implementation of Illuminate_xyz:
• Eval consists of a component for monitoring to

assure that the light level at (x,y,z) is sufficiently
high. This procedure makes use of a photoelectric
cell (which is part of the resources allocated to this
containment unit) that will report whether the
command to turn on the illumination source
actually resulted in sufficient illumination. Failure
of the light to illuminate will cause Eval to throw an
exception that triggers Adapt.

• Op consists of two different X10 units controlling
the flow of electricity to the two different light
sources that are nearest to (x,y,z). Each is capable
of modifying the level of illumination in the subject
area.

• Adapt responds to notification from Eval that there
is insufficient illumination by moving the flow of
electricity from the primary (i.e. Closest) X10
device to the device that is next closest to (x,y,z).
Adapt responds to notification that this has been
inadequate by signaling a fault for this containment
unit as a whole. Presumably there is a higher level,
containing, containment unit that will take this fault

Adaptive Execution

Adaptive Execution System Adaptation

Respond to Contingency

Evaluation of Contingency

Preliminary Evaluation

install adaptation

Sequencing Badges:
 Sequential
 Parallel
 Choice

Execute System Monitor and Adapt

Dynamic Monitoring Offline Static Analysis

Propose Adaptation
suitable

change fails

quiesce system

Synthesis of new system
initialize new system

Try

not suitable

= X

X

Prerequisite
Postrequisite

Exception Continuations

Complete
Continue
Restart
Rethrow

Figure 3: A portion of a process for performing a specific type of evolution of a software system

and pursue further remedial actions (e.g.
illuminating another light, notifying a human, or
attempting some other kind of repair.

As our work proceeds we are implementing
increasingly complex containment units, with the goal of
completing the implementation of the full Track_Human
structure. It should be emphasized, however, that this nest
of containment units is designed to be robust only with
respect to specific contingencies. As the need to deal with
additional contingencies arises (e.g. the sudden arrival in
the room of additional humans) additional containment
units and structural complexity will be needed.
Understanding how to deal with this growing complexity
is one of the key goals of this research.

4. Using Little-JIL to Define Containment

Units

Our Little-JIL language has turned out to be very
effective in defining containment units. The details of the
Little-JIL language are provided in other papers [1, 19],
and space does not permit us to repeat them here. Instead
we use Figure 3, a Little-JIL specification of a generic
containment unit, both to emphasize some of our points
about the structure of a containment unit, and Little-JIL's
suitability for representing it. The Little-JIL step
construct, depicted as a solid black bar with
accompanying badges, is the central feature of the
language, and is particularly appropriate as a vehicle for
representing containment units.

The Little-JIL step synthesizes notions of proactive
control, reactive control, resource specification,
concurrency, artifact flow, real time specification, and
exception management in ways that provide the power
needed to specify a containment unit. Little-JIL steps are
hierarchical compositions of lower level steps. Thus, for
example Figure 3 depicts the step, “Adaptive Execution”,
which is decomposed into the structure of the substeps
shown below it. The second level steps represent the fact
that “Adaptive Execution” is called iteratively after each
“System Adaptation” activity has taken place, thereby
representing the unceasing nature of adaptation. “System
Adaptation” itself is composed of two parallel activities,
namely “Execute System” and “Monitor and Adapt”,
which represents the fact that monitoring goes on
continually during execution of the subject system.
“Monitor and Adapt” in turn consists of two parallel types
of monitoring activities (static and dynamic), and a
programmed response to the identification of the need to
adapt the system. This response is shown as being
exception driven, rather than proactive. At the bottom of
this hierarchy are abstract representations of functions
implemented as executable code. As in the case of
containment units, Little-JIL steps need not form a strict

tree structured hierarchy. Lower level steps (and
containment units) may be contained as part of more than
one higher level step (or containment unit). In addition,
Little-JIL steps include (optional) prerequisites and
postrequisites. Both can be used to specify where
evaluation activities are to occur and, as both of these
structures are full Little-JIL steps, the structures may be
used to specify to arbitrary levels of detail just how the
evaluation is to take place. Thus, note that in Figure 3 the
“Preliminary Evaluation” step has a postrequisite step,
“Suitable,” which represents a potentially complex
process of deciding if the proposed reconfiguration is
going to be suitable.

It is important to note that steps such as “Preliminary
Evaluation” and “Offline Static Analysis”, which effect
evaluation, are indeed specifications of procedures and
methods belonging to Eval, the evaluator module of the
containment unit, even though one (“Preliminary
Evaluation”) is shown being used to support the
modification activity. The Little-JIL step decomposition
structure is used to indicate which actions are to be carried
out at what times and in what ways. Clearly some of these
actions at times both invoke, and are invoked by Adapt,
that adaptor module. Conversely, as noted, adaptor
module actions are invoked, through the Little-JIL
contingency handling capability, from evaluator actions.
Our early experiences are suggesting that Little-JIL
language structures are quite useful in specifying intricate
control and artifact flow in containment units that are
complex syntheses of diverse evaluation and adaptation
capabilities. Figure 3 is a very high level representation of
a generic reconfiguration process. Little-JIL supports the
incremental addition of further detail quite nicely. Thus,
for example, it is possible to use Little-JIL to elaborate on
the “Offline Static Analysis” step, to provide details of the
intricate interplay between dynamic analysis and static
analysis. Some indications of the nature of this interplay
are provided in [11, 12].

Clearly Little-JIL is a graphical language, and our
experience suggests that its carefully chosen iconic
representations help to make complex process
specifications clearer. In addition, however, we believe
that additional clarity is attributable to Little-JIL's uses of
higher level semantic notions as the basis for its
specifications. This clarity seems to be one of the key
benefits to using Little-JIL, rather than a lower level
programming language for representing containment units.
Process specifications are interpreted by the Juliette
process interpreter, a distributed system described in [2].
Juliette enables support for the late binding of
containment units to adaptation processes, thereby
allowing for the continuous incorporation of new
containment units without the need to modify Little-JIL
adaptation processes. In order to explain this we now
introduce the Little-JIL resource management capability.

Every Little-JIL step may (optionally) specify a set of
resources that it requires in order to perform its assigned
task. These specifications may take the form of requests
for specific resources, but are more commonly requests
for types of resources. At runtime, the Juliette interpreter
passes these requests on to a separate resource allocation
module. This resource allocation module has the
responsibility for maintaining complete information about
which resources are allocated to support execution of the
process, and which are currently available. If requested
resources are not available, the resource manager
indicates this, and the requesting step fails and throws an
exception that is handled as indicated above. If a resource
is available, it is bound to the requesting step and
execution proceeds.

The adaptor module of a containment unit uses this
facility, in that the pool of resources and alternative
functional modules available for substitution in Op, the
operational system, are considered to be resources. Thus,
those methods and functions of the adaptor that must deal
with this pool of resources, their characteristics, and
ontologies, would require the ability to access information
about this pool. The specification of this pool would be a
resource specification for the steps representing those
methods and functions. It is most important to note that, as
the resource pool is a separate module, it is quite free to
evolve itself, independently of the reconfiguration of the
operational software. Thus, we anticipate that new
operational modules and resources might very well be
added to the resource pool continuously as they become
available. Because resources are bound to Little-JIL steps
at runtime, modifier steps needing operational modules or
new resources would be able to utilize newly added
modules or resources as soon as they are made available
through the resource manager. This assures that systems
implemented as containment unit structures using Little-
JIL will be able to evolve in new ways, as soon as new
operational modules and resources are created and made
available.

5. Related Work

Perhaps the earliest work that has addressed adaptation
to faults was the work of Randall on recovery blocks [17].
In this work the suitability of a software function was
evaluated, and when found to be inadequate, a recovery
block was called to try to mitigate the effects of the
inadequate code. This early work was quite static in
nature, requiring that the conditions to be examined, and
the recovery strategies be hard coded in advance. This
approach seems insufficient to achieve the kind of flexible
and rapid adaptation to fluid situations that is required in
modern systems. The sort of late-binding approach

described here seems more appropriate to these
demanding requirements.

Earlier work with real time systems has some
relationship to this project as well. The work of [16], [9],
[8], and [5], for example, suggest the use of a framework
within which to describe operational components and the
real time constraints on their performance. These
approaches tend to use the real time constraints primarily
to determine whether proposed module configurations
would necessarily meet real time constraints. In this work,
however, unacceptable configurations were often simply
not deployed or ad hoc responses were generated. Our
work differs in that we use language constructs to define
programmed strategies for dealing with such constraint
violations. Like some of these authors we use module
replacement as the basis of our work.

Our work is also related to earlier efforts in software
reuse. This work, like ours, emphasized the importance of
repositories of reusable modules, and the use of
architectural frameworks within which to insert them.
These approaches are presented in work such as [6, 15,
18]. Our work takes these approaches further in using
explicit, rigorous process representations to effect the
module reuse.

The work that this project most closely resembles,
however, is work in the areas of software architecture and
domain specific software. Numerous authors have
suggested the use of architectures to guide the
composition of software system out of components or
modules (e.g., [4, 13, 14]). Our specific approach to
module interchange is similar to that suggested by [10],
and [3] who propose the use of a defined architecture as
the framework within which different components can be
interchanged, although we believe that the range of
reconfiguration issues that we address in our work is
broader than in these earlier efforts. Another closely
related project is Chamelon [7], which has been used to
develop ARMORS that add fault tolerance by wrapping
existing software. It might be possible to build
containment units uses ARMORs.

6. Future Directoins

There are ongoing joint efforts between software
engineering, robotics, and computer vision researchers to
encapsulate various combinations of sensors into
containment units capable of tracking humans in a room.
In the intermediate future we expect to complete work on
prototype capabilities in this area and to integrate them
with smart illumination containment units to fully
implement the containment unit structure described earlier
in this paper. This work will help us to validate our
notions of containment units. In particular the
development of ambitious structures of containment units

will help us to determine how well these ideas scale to
address the need for highly dynamic self-adaptation in
response to broad ranges of contingencies.

This work is also providing continuing validation of
the Little-JIL process definition capabilities and our initial
notions of the value and their use in implementation of
containment units. We shall continue these activities in
collaboration with our research colleagues in the other
areas, eventually leading to prototype demonstrations of
unusually adaptive robotic systems, and deeper
understandings of the nature of reconfiguration and
mechanisms for achieving it.

7. Acknowledgements

We wish to thank the dozens of colleagues who have
participated in this project through their work in robotics,
computer vision, real time programming and multiagent
systems. We are particularly grateful to Aaron Cass for his
many stimulating and insightful discussion of this work. In
addition we would like to thank Krithi Ramamritham and
Harikrishna Shrikumar for their work in designing and
implementing the earliest containment units, Rod Grupen,
Elizeth Araujo, and Patrick Deegan for their work in
identifying robotic functions to be encapsulated, Ed
Riseman, Alan Hanson, Deepak Karrupiah, and Zhigang
Zhu for their work in identifying and helping to
encapsulate computer visions functions, and Victor
Lesser, Regis Vincent, Tom Wagner, Anita Raja, and
Shelley Zhu for their work in establishing interfaces
between our resource management system and their
multiagent schedulers. Finally, the work of Rodion
Podorozhny and Anoop George Ninan in developing our
resource manager was of great value to this project.

This research was partially supported by the Air Force
Research Laboratory/IFTD and the Defense Advanced
Research Projects Agency under Contract F30602-97-2-
0032, by U.S. Department of Defense/Army and the
Defense Advance Research Projects Agency under
Contract DAAH01-00-C-R231 The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright
annotation thereon.

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, the Air Force Research
Laboratory/IFTD, the U. S. Army, or the U.S. Dept. of
Defense.

Bibliography

[1] A. G. Cass, B. S. Lerner, E. K. McCall, L. J.

Osterweil, S. M. Sutton Jr., and A. Wise, “Little-
JIL/Juliette: A Process Definition Language and
Interpreter,” presented at ICSE 2000,
International Conference on Software
Engineering, Limerick, Ireland, 2000.

[2] A. G. Cass, B. S. Lerner, E. K. McCall, L. J.
Osterweil, and A. Wise, “Logically Central,
Physically Distributed Control in a Process
Runtime Environment,” University of
Massachusetts, Computer Science Department,
Amherst, MA, Technical Report UM-CS-1999-
065, November 1999.

[3] C. Dellarocas, M. Klein, and H. Shrobe, “An
Architecture for Constructing Self-Evolving
Software Systems,” presented at Third
International Software Architecture Workshop
(ISAW-3), 1998.

[4] D. Garlan and D. Perry, “Introduction to the
Special Issue on Software Architecture,” IEEE
Transaction on Software Engineering, vol. 21,
April 1995.

[5] O. J. Gonzalez-Gomez, H. Shrikumar, K.
Ramamritham, and J. A. Stankovic, “Adaptive
Fault Tolerance and Graceful Degradation Under
Dynamic Hard Real-Time Scheduling,”
presented at Eighteenth IEEE Real-Time Systems
Symposium, 1997.

[6] M. L. Griss and K. D. Wentzel, “Hybrid
Domain-Specific Kits for a Flexible Software
Factory,” presented at 1994 ACM Symposium on
Applied Computing (SAC 94), New York, 1994.

[7] Z. T. Kalbarczyk, S. Bagchi, K. Whisnant, and
R. K. Iyer, “Chameleon: A Software
Infrastructure for Adaptive Fault Tolerance,”
IEEE Transactions on Parallel and Distributed
Systems, vol. 10, pp. 560-579, 1999.

[8] J. H. Lala, R. Harper, and A. L. A., “Design
Approach for Ultrareliable Real-Time Systems,”
IEEE Computer, vol. 24, 1991.

[9] J.-C. Laprie, J. Arlat, and C. Beounes,
“Definition and Analysis of Hardware- and
Software-Fault-Tolerant Architectures,” IEEE
Computer, vol. 23, 1990.

[10] P. Oreizy, N. Medvidovic, and R. N. Taylor,
“Architecture-Based Runtime Software
Reconfiguration,” presented at 20th International
Conference of Software Engineering, Kyoto,
Japan, 1998.

[11] L. J. Osterweil, “A Strategy for Integrating
Program Testing and Analysis,” in Computer
Program Testing, B. Chandrasekaran and S.
Radicchi, Eds. Amsterdam: North-Holland,
1981, pp. 187-229.

[12] L. J. Osterweil, “Perpetually Testing Software,”
presented at 9th International Software Quality
Week, 625 Third St. San Francisco CA, 1996.

[13] D. L. Parnas, “Designing Software for Ease of
Extension and Contraction,” IEEE Transactions
on Software Engineering, vol. SE-5, pp. 128-
138, 1979.

[14] D. E. Perry and A. L. Wolf, “Foundations for
Study of Software Architecture,” ACM SIGSOFT
Software Engineering Notes, vol. 17, pp. 40-52,
1992.

[15] R. Prieto-Diaz, “Status Report: Software
Reusability,” IEEE Software, vol. 10, pp. 61--66,
May 1993.

[16] K. Ramamritham, J. A. Stankovic, and P. Shiah,
“Efficient Scheduling Algorithms for Real-Time
Multiprocessor Systems,” Transactions on
Parallel and Distributed Systems, vol. 1, pp.
184-194, 1990.

[17] B. Randell, “System Structure for Software Fault
Tolerance,” IEEE Transactions On Software
Engineering, vol. 1, pp. 220-232, June 1975.

[18] W. Tracz, Confessions of a Used Program
Salesman: Addison-Wesley, 1995.

[19] A. Wise, “Little-JIL 1.0 Language Report,”
Department of Computer Science, University of
Massachusetts at Amherst, Technical Report 98-
24, April 1998.

