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Abstract—
Since web workloads are known to vary dynamicallywith

time, in this paper, we argue that dynamic resource alloca-
tion techniques are necessary in the presence of such work-
loads to provide guarantees to web applications running on
shared data centers. To address this issue, we present an
analytic model of a server resource that services multiple
applications using generalized processor sharing (GPS). Us-
ing this model, we present online workload prediction and
optimization-based techniques to dynamically allocate re-
sources to competing web applications running on shared
servers. Our techniques can react to changing workloads
by dynamically varying the resource shares of applications,
and unlike some prior techniques, can handle the nonlin-
earity in system behavior. We evaluate our techniques using
simulations with synthetic as well as real-world web work-
loads. Our results show that these techniques can multiplex
the resource better than static provisioning, especially un-
der transient overload conditions.

I. INTRODUCTION

A. Motivation

The growing popularity of the World Wide Web has
led to the advent of Internet data centers that host third-
party web applications and services. A typical web ap-
plication consists of a front-end web server that services
HTTP requests, a Java application server that contains the
application logic, and a backend database server. In many
cases, such applications are housed on managed data cen-
ters where the application owner pays for (rents) server
resources, and in return, the application is provided guar-
antees on resource availability and performance. To pro-
vide such guarantees, the data center—typically a clus-
ter of servers—must provision sufficient resources to meet
application needs. Such provisioning can be based either
on a dedicated or a shared model. In the dedicated model,
some number of cluster nodes are dedicated to each appli-
cation and the provisioning technique must determine how

many nodes to allocate to the application. In the shared
model, which we consider in this paper, an application can
share node resources with other applications and the pro-
visioning technique needs to determine how to partition
resources on each node among competing applications.

Since node resources are shared, providing guarantees
to applications in the shared data center model is more
complex. Typically such guarantees are provided by re-
serving a certain fraction of node resources (CPU, net-
work, disk) for each application. The fraction of the re-
sources allocated to each application depends on the ex-
pected workload and the QoS requirements of the appli-
cation. The workload of web applications is known to
vary dynamically over multiple time scales [12] and it
is challenging to estimate such workloads a priori (since
the workload can be influenced by unanticipated external
events—such as a breaking news story—that can cause
a surge in the number of requests accessing a web site).
Consequently, static allocation of resources to applica-
tions is problematic—while over-provisioning resources
based on worst case workload estimates can result in po-
tential underutilization of resources, under-provisioning
resources can result in violation of guarantees. An al-
ternate approach is to allocate resources to applications
dynamically based on the variations in their workloads.
In this approach, each application is given a certain min-
imum share based on coarse-grain estimates of its re-
source needs; the remaining server capacity is dynami-
cally shared among various applications based on their in-
stantaneous needs. To illustrate, consider two applications
that share a server and are allocated 30% of the server
resources each; the remaining 40% is then dynamically
shared at run-time so as to meet the guarantees provided
to each application. Such dynamic resource sharing can
yield potential multiplexing gains, while allowing the sys-
tem to react to unanticipated increases in application load
and thereby meet QoS guarantees. Dynamic resource al-
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location techniques that can handle changing application
workloads in shared data centers is the focus of this paper.

B. Research Contributions
In this paper, we present analytic techniques for dy-

namic resource allocation in shared servers. We model
various server resources using generalized processor
sharing (GPS) [23] and assume that each application is
allocated a certain fraction of a resource. Using a combi-
nation of online measurement, prediction and adaptation,
our techniques can dynamically determine the resource
share of each application based on (i) its QoS (response
time) needs and (ii) the observed workload.
We make three specific contributions in this paper. First

we present an analytic model of a server resource that
supports multiple application-specific queues; each queue
represents the workload from an application and is ser-
viced using GPS. Such an abstract GPS-based model is
applicable to many server resources—both hardware and
software—such as the network interface, the CPU, the
disk and socket accept queues. Using this model, we
derive an online optimization-based approach to dynam-
ically determine the resource share of each application
based on its workload and QoS requirements. An impor-
tant feature of our optimization-based approach is that it
can handle non-linearity in the system behavior.
Determining resource shares of applications using such

an online approach is crucially dependent on an accurate
estimation of the workload. A second contribution of our
work is a prediction algorithm that estimates the workload
parameters using online measurements, and uses these pa-
rameters to predict the expected load in the near future to
enable better resource allocation.
Third, we evaluate the effectiveness of our online pre-

diction and allocation techniques using simulations. We
use both synthetic workloads and real-world web traces
for our evaluation and show that our techniques adapt
to changing workloads fairly efficiently, especially under
transient overload conditions.
The rest of the paper is structured as follows. We

formulate the problem of dynamic resource allocation in
GPS systems in Section II. Section III presents our online
prediction and optimization-based techniques for dynamic
resource allocation. Results from our experimental evalu-
ation are presented in Section IV. We discuss related work
in Section V and present our conclusions in Section VI.

II. PROBLEM FORMULATION AND SYSTEM MODEL

In this section, we first present an abstract GPS-based
model for a server resource and then formulate the prob-
lem of dynamic resource allocation in such a GPS-based
system.

A. Resource Model
Wemodel a server resource using a system of queues,

where each queue corresponds to a particular application
(or a class of applications) running on the server. Requests
within each queue are assumed to be served in FIFO order
and the resource capacity is shared among the queues
using GPS. To do so, each queue is assigned a weight and
is allocated a resource share in proportion to its weight.
Specifically, a queue with a weight is allocated a share

(i.e., allocated units of the resource
capacity when all queues are backlogged). Several prac-
tical instantiations of GPS exist—such as weighted fair
queuing (WFQ) [13], self-clocked fair queuing [15], and
start-time fair queuing [16]—and any such scheduling al-
gorithm suffices for our purpose. We note that these GPS
schedulers are work-conserving—in the event a queue
does not utilize its allocated share, the unused capacity
is allocated fairly among backlogged queues. Our ab-
stract model is applicable to many hardware and software
resources found on a server; hardware resources include
the network interface bandwidth, the CPU and in some
cases, the disk bandwidth, while software resource in-
clude socket accept queues in a web server servicing mul-
tiple virtual domains [19], [24].

B. Problem Definition
Consider a shared server that runs multiple third-party

applications. Each such application is assumed to spec-
ify a desired quality of service; the QoS requirements are
specified in terms of a target response time. The goal
of the system is to ensure that the mean response time
seen by application requests (or some percentile of the re-
sponse time) is no greater than the desired target response.
In general, each incoming request is serviced by mul-

tiple hardware and software resources on the server, such
as the CPU, NIC, disk, etc. We assume that the speci-
fied target response time is split up into multiple resource-
specific response times, one for each such resource. Thus,
if each request spends no more than the allocated target
on each resource, then the overall target response time for
the server will be met.1
Since each resource is assumed to be scheduled using

GPS, the target response time of each application can be
met by allocating a certain share to each application. The
resource share of an application will depend not only on
the specific response time but also the load in each appli-
cation. Since the workload seen by an application varies
The problem of how to split the specified server response time into

resource-specific response times is beyond the scope of this paper. In
this paper, we assume that such resource-specific target response times
are given to us.
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dynamically, so will its resource share. In particular, we
assume that each application is allocated a certain mini-
mum share of the resource capacity; the remaining
capacity is dynamically allocated to various
applications depending on their current workloads (such
that their target response time will be met). Formally, if
denotes the target response time of application and
is its observed mean response time, then the applica-

tion should be allocated a share , , such that
.

Since each resource has a finite capacity and the ap-
plication workload can exceed capacity during periods of
heavy loads, the above goal can not always be met (espe-
cially during transient overloads). Consequently, we rede-
fine our system goal to account for overloads as follows.
We use the notion of utility to represent the satisfaction of
an application based on its current allocation. An applica-
tion remains satisfied so long as its allocation yields a
mean response time no greater than the target (i.e.,

). The discontent of an application grows as its
response time deviates from the target . This discontent
can be captured in many different ways. In the simplest
case, we can use a piecewise linear function to represent
discontent:

if
if (1)

In this scenario, the discontent grows linearly when the
observed response time deviates from (and exceeds) the
specified target . The overall system goal then is to as-
sign a share to each application, , such that
the total system-wide discontent is minimized. That is,
the quantity

is minimized.
We use this problem definition to derive our dynamic

resource allocation mechanism, which is described next.

III. DYNAMIC RESOURCE ALLOCATION
To perform dynamic resource allocation based on the

above formulation, each GPS-based resource on the
shared server will need to employ three components: (i)
a monitoring module that measures the workload seen by
each application (e.g., the response time needs to be
measured to determine the current application discontent),
(ii) a prediction module that uses the measurements from
the monitoring module to estimate the future workload,
and (iii) an allocation module that uses these workload
estimates to determine resource shares such that overall
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Fig. 1. Dynamic Resource Allocation

system-wide discontent is minimized. Figure 1 depicts
these three components.
In the rest of this section, we first present our dynamic

resource allocation techniques and then present mecha-
nisms to predict the future workload based on current ob-
servations.

A. Allocating Resource Shares to Applications
The allocation module is invoked periodically to dy-

namically partition the resource capacity among the var-
ious applications running on the shared server. As ex-
plained earlier, the share allocated to an application de-
pends on its specified target response time and the esti-
mated workload. We now present an online optimization-
based approach to determine resource shares dynamically
assuming the workload estimates for each application are
known. In the next section, we show how to derive such
workload estimates from past observations.
The allocation module needs to determine the resource

share for each application such that the total discontent
is minimized. This problem translates to

the following constrained optimization problem:

minimize

subject to the constraints

and

where is a function that represents the discontent of
a class based on its current response time . The two
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Fig. 2. Two different variants of the discontent function. A piecewise
linear function and a continuously differentiable convex functions are
shown. The target response time is assumed to be .

constraints specify that (i) the total allocation across all
applications should not exceed the resource capacity, and
(ii) the share of each application can be no smaller than its
minimum allocation and no greater than the resource
capacity.
In general, the nature of the discontent function has

an impact on the allocations for each application. As
shown in Equation 1, a simple discontent function is one
where the discontent grows linearly as the response time
deviates from (and exceeds) the target . Such a ,

shown in Figure 2, however, is non-differentiable. To
make our constrained optimization problem mathemati-
cally tractable, we approximate this piece-wise linear
by a continuously differentiable function:

where is a constant. Essentially, the above func-
tion is a hyperbola with the two piece-wise linear portions
as its asymptotes and the constant governs how closely
this hyperbola approximates the piece-wise linear func-
tion. Figure 2 depicts the nature of the above function.
The resulting optimization problem can be solved using

the Lagrangian multiplier method [8]. In this technique,
the constrained optimization problem is transformed into
an unconstrained optimization problem where the original
discontent function is replaced by the objective function:

(2)

The objective function needs to be minimized sub-
ject to the bound constraints on . Here denotes the
shadow price for the resource. Intuitively, each applica-
tion is charged a price of per unit resource it uses. Thus,
each application attempts to minimize the price it pays for

its resource share, while maximizing the utility it derives
from that share.
The Lagrangian multiplier method involves solving the

following system of partial differential equations

(3)

and
(4)

The solution to this system of equations, derived either
using analytical or numerical methods, yields the shares
that should be allocated to each application to minimize

the system-wide discontent.
We note that the above set of equations are being op-

timized with respect to , while the discontent function
is represented in terms of the response time . Conse-
quently, we need the relation between response time of
an application and its resource share , so that can be
expressed (rewritten) in terms of in order to solve the
above differential equations. We use the queuing dynam-
ics of the system to derive such a relationship next.

A.1 Deriving a relation between and

To derive a relation between and , let us assume
that the adaptation algorithm is invoked every time
units. is also referred to as the adaptation window. Let
denote the queue length at the beginning of an adapta-

tion window. Let denote the estimated request arrival
rate and denote the estimated service rate in the next
adaptation window (i.e., over the next time units) Then,
assuming the values of and are constant, the length
of the queue at any instant within the next adaptation
window is given by

(5)

Intuitively, the amount of work queued up at instant is
the sum of the initial queue length and the amount of
work arriving in this interval minus the amount of work
serviced in this duration. Since the queue length is non-
negative, we denote it by , which is an abbreviation for

.
Since the resource is modeled as a GPS server, the ser-

vice rate of an application is effectively , where
is the resource capacity, and this rate is continuously

available to a backlogged application in any GPS system.
Hence, the request service rate is

(6)
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where is the estimated mean service demand per request
(such as number of bytes per packet, or CPU cycles per
CPU request, etc.).
Note that, due to the work conserving nature of GPS,

if some applications do not utilize their allocates shares,
then the utilized capacity is fairly redistributed to back-
logged applications. Consequently, the queue length com-
puted in Equation 5 assumes a worst-case scenario where
all applications are backlogged and each application re-
ceives no more than its allocated share (the queue would
be smaller if the application received additional unutilized
share from other applications).
Given Equation 5, the average queue length over the

adaptation window is given by:

(7)

Depending on the particular values of , the arrival rate
and the service rate , the queue may become empty

one or more times during an adaptation window. To in-
clude only the non-empty periods of the queue when com-
puting , we consider the following scenarios, based on
the assumption of constant and :
1) Queue growth: If , then the application
queue will grow during the adaptation window and
the queue will remain non-empty throughout the
adaptation window.

2) Queue depletion: If , then the queue starts
depleting during the adaptation window. The instant
at which the queue becomes empty is given by

If , then the queue becomes empty within
the adaptation window, otherwise the queue contin-
ues to deplete but remains non-empty throughout
the window (and is projected to become empty in
a subsequent window).

3) Constant queue length: If , then the queue
length remains fixed ( ) throughout the adapta-
tion window. Hence, the non-empty queue period is
either 0 or depending on the value of .

Let us denote the duration within the adaptation win-
dow for which the queue is non-empty by ( equals
either or depending on the various scenarios). Then,
Equation 7 can be rewritten as

(8)

(9)

Having determined the average queue length over the
next adaptation interval, we can derive the average re-
sponse time as the sum of the mean queuing delay and
the request service time. We use Little’s law to derive the
queuing delay from the mean queue length.2 Thus,

(10)

Substituting Equation 6 in this expression, we get

(11)

where is as given by equation 9. The values of , ,
and are obtained using measurement and prediction

techniques discussed in the next section.
Using this relation between and , we can rewrite

the discontent function in terms of the resource share
and solve the system of differential equations to obtain
values of for the next time units.
The above optimization-based approach has the follow-

ing salient features:
As shown in Equation 11, our techniques assume a
non-linear relationship between the response time
and the resource share , implying a non-linear op-
timization.
The share allocated to an application depends on its
current workload characteristics ( , ) and the cur-
rent system state ( ). Consequently, our techniques
can operate in an online setting and react to sudden
(or gradual) changes in the workload on time-scales
of tens of seconds or minutes.

B. Workload Prediction Techniques
The online optimization-based allocation technique de-

scribed in the previous section is crucially dependent on
an accurate estimation of the workload likely to appear in
each application class. In this section, we present tech-
niques that use past observations to estimate the future
workload for an application.
The workload seen by an application can be charac-

terized by two complementary distributions: the request
arrival process and the service demand distribution. To-
gether these distributions enable us to capture the work-
load intensity and its variability. Our technique measures
the various parameters governing these distributions over
a certain time period and uses these measurements to pre-
dict the workload for the next adaptation window.
Note that the application of Little’s Law in this scenario is more

accurate when the size of the adaptation window is large compared to
the average request service time. Otherwise, this is an approximation.
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In what follows, we will first present an overview of
the monitoring module that is responsible for online mea-
surements and then present techniques for predicting the
arrival rate and service demand based on these measure-
ments.

B.1 Online Monitoring and Measurement

The online monitoring module is responsible for mea-
suring various system parameters and workload charac-
teristics. These measurements are based on the following
time intervals (see Figure 3):

Measurement interval (I): is the interval over which
various parameters of interest are sampled. For in-
stance, the monitoring module tracks the number of
requests arrivals ( ) in each interval and records
this value.
The choice of a particular measurement interval de-
pends on the desired responsiveness from the system.
If the system needs to react to workload changes on
a fine time-scale, then a small value of (e.g.,
second) should be chosen. On the other hand, if the
system needs to adapt to long term variations in the
workload over time scales of hours or days, then a
coarse-grain measurement interval of minutes or tens
of minutes may be chosen.
History (H): The history represents a sequence of
recorded values for each parameter of interest. Our
monitoring module maintains a finite history consist-
ing of the most recent values for each such param-
eter; these measurements form the basis for predict-
ing the future values of these parameters.
Adaptation Window (W): As mentioned in the previ-
ous section, the adaptation window is the time inter-
val between two successive invocations of the adap-
tation algorithm. Thus the past measurements are
used to predict the workload for the next time
units.

B.2 Estimating the Arrival Rate

The request arrival process corresponds to the workload
intensity for an application. The crucial parameter of in-
terest that characterizes the arrival process is the request

arrival rate . An accurate estimate of allows the al-
location module to estimate the average queue length for
the next adaptation window.
To do so, the monitoring module measures the num-

ber of request arrivals in each measurement interval .
The sequence of these values represents a stochas-
tic process . Since this stochastic process can be non-
stationary, instead of trying to compute the rate for the
process as a whole, our prediction module attempts to
predict the number of arrivals for the next adaptation
window. The arrival rate for the window, is then ap-
proximated as where is the window length. We
represent at any time by the sequence of
values from the history .
To predict , we model the process as an AR(1) pro-

cess [6] (autoregressive of order 1). This is a simple lin-
ear regression model in which a sample value is predicted
based on the previous sample value 3.
Using the AR(1) model, a sample value of is esti-

mated as

where, and are the autocorrelation and mean of
respectively, and is a white noise component.

We assume to be 0, and to be estimated values
for . The autocorrelation is defined as

(12)
where, is the standard deviation of and is the lag
between sample values for which the autocorrelation is
computed.
Thus, if the adaptation window size is intervals (i.e.,

), then, we first compute us-
ing the AR(1) model, where, denotes estimated value
of for interval . Then, the estimated number of arrivals
in the adaptation window, , is given by

and

Even though an AR(1) model may not represent accurately, the
primary reason for choosing an AR(1) model over more sophisticated
models, such as AR(n) models ( ), ARMA or ARIMA models, is
the ease of parameter estimation. Also, we are interested in online es-
timation, while determination of an appropriate model would require
offline post-processing of data or a computationally expensive analy-
sis.
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B.3 Estimating the Service Demand

The service demand of each incoming request repre-
sents the load imposed by that request on the resource.
Two applications with similar arrival rates but different
service demands (e.g., different packet sizes, different per-
request CPU demand, etc.) will need to be allocated dif-
ferent resource shares.
To estimate the service demand for an application, the

prediction module computes the probability distribution
of the per-request service demands. This distribution is
represented by a histogram of the per-request service de-
mands over some history. Upon the completion of each
request, this histogram is updated with the service de-
mand of that request. The distribution is used to deter-
mine the expected request service demand for requests
in the next adaptation window. could be computed as
the mean, the median, or a percentile of the distribution
obtained from the histogram. For our experiments, we
use the mean of the distribution to represent the service
demand of application requests.
Note that, unlike the arrival rate, we do not use a regres-

sion model for estimating the service demand . This is
because, using service demand values from the recent past
does not seem to be indicative of the demands of future
requests. To verify this observation, we used the request
trace of a real web server (the details of which are given
in the next section), and measured the average service de-
mand over fixed-size measurement intervals. We treated
the time series of these values as a stochastic process. As
shown in figure 4, the autocorrelation values for this pro-
cess are nearly 0 at all lags, which implies that knowledge
of the recent past does not help in estimating future ser-
vice demands. Hence, it is sufficient to estimate the ser-
vice demands using a static distribution rather than using
an autoregressive stochastic process. We can then use the
mean or a high percentile value of the static distribution
as our estimate.

B.4 Measuring the Queue Length
A final parameter required by the allocation model is

the queue length of each application at the beginning of
each adaptation window. Since we are only interested in
the instantaneous queue length and not mean values,
measuring this parameter is trivial—the monitoring mod-
ule simply records the number of outstanding requests in
each application queue at the beginning of each adaptation
period .

IV. EXPERIMENTAL EVALUATION
We demonstrate the efficacy of our prediction and allo-

cation techniques using a simulation study. In what fol-
lows, we first present our simulation setup and then our
experimental results.

A. Simulation Setup and Workload Characteristics
Our simulator models a server resource with multi-

ple application specific queues; the experiments reported
in this paper specifically model the network interface
on a shared server. We assume that requests in vari-
ous queues are scheduled using weighted fair queuing—
a practical instantiation of GPS. Our simulator is based
on the NetSim library [17] and DASSF simulation pack-
age [18]; together these components support network el-
ements such as queues, traffic sources, etc., and provide
us the necessary abstractions for implementing our simu-
lator. The adaptation and the prediction algorithms were
implemented using Matlab [22] (which provides various
statistical routines and numerical non-linear optimization
algorithms); the Matlab code is invoked directly from the
simulator for prediction and adaptation.
We use two types of workload in our study—synthetic

and trace-driven. Our synthetic workloads use Poisson
request arrivals and assume deterministic request sizes.
Our trace workload is based on the World Cup Soccer ’98
server logs [4]—a publicly available web server trace. We
use a portion of the trace that is 22 hours long and con-
tains a total of 680,645 requests at a mean request arrival
rate of 8.6 requests/sec, and a mean request size of 8.83
KB. We use this trace workload to evaluate the efficacy
of our prediction and allocation techniques; this workload
was also used to determine the correlation between ser-
vice demands of requests in Section III-B.3 (Figure 4).
Next, we evaluate our prediction techniques and then

study our dynamic resource allocation technique.

B. Prediction Accuracy
Our first experiment examines the effectiveness of the

prediction algorithm for predicting the arrival rate of re-
quests. As described in section III-B.2, we use an AR(1)
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Fig. 5. Prediction error comparison

model to predict the number of arrivals for the next adap-
tation window. We compare this technique to two other
prediction mechanisms: (i) prediction using the mean rate
over the history and (ii) prediction using the most recent
value of arrival rate. We used the three predictors to es-
timate the request arrival rate for the World Cup Soccer
trace using measurement intervals of and 20
minutes.
To quantify the prediction accuracy, we use the nor-

malized root mean square error (NRMS) between the pre-
dicted and actual trace values as the metric, which is de-
fined as:

where, RMS is the root mean square error of the predicted
values and is the standard deviation of the trace
values respectively. This metric indicates how much
worse the prediction is compared to the variation in the
trace itself. An NRMS value would indicate that the
prediction is better than picking a value randomly from
the distribution of trace values.
Figures 5(a) and (b) show these errors for the three pre-

dictors for measurement intervals of 1 and 5 minutes re-
spectively, with varying history sizes. As can be seen from
the figures, the AR(1) technique has the smallest predic-
tion error. Predicting using the mean arrival rate yields in-
creasing errors with increasing history sizes (since a larger
history results in the use of outdated values for predic-
tion). Prediction using the most recent arrival rate yields
the same error irrespective of the history size, because it
only considers one observation for each estimate. Its er-
ror is nevertheless higher than the AR(1) technique (since
it does not take into account the long term trend of the
arrival process).
Figure 6 depicts the actual arrival rate for the World

Cup Soccer workload and the predicted arrival rate using
the AR(1) model. As can be seen from the figure, there

is a good match between the two values, thereby demon-
strating the effectiveness of our prediction technique.
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C. Dynamic Resource Allocation
In this section, we evaluate our dynamic resource allo-

cation technique. We conduct two experiments, one with a
synthetic web workload and the other with the trace work-
load and examine the effectiveness of dynamic resource
allocation. For purposes of comparison, we repeat each
experiment assuming static resource allocation and com-
pare the behavior of the two systems.

C.1 Synthetic Web Workload

To demonstrate the behavior of our system, we con-
sidered two web applications that share a server. The
benefits of dynamic resource allocation accrue when the
workload temporarily exceeds the allocation of an appli-
cation (resulting in a transient overload). In such a sce-
nario, the dynamic resource allocation technique is able
to allocate unused capacity to the overloaded application,
and thereby meet its QoS requirements. To demonstrate
this property, we conducted a controlled experiment using
synthetic web workloads. The workload for each appli-
cation was generated using Poisson arrivals. The mean
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Fig. 7. Comparison of static and dynamic resource allocations for a synthetic web workload.

request rate for the two applications were set to 100 re-
quests/s and 200 requests/s. Between time t=100 and 110
sec, we introduced a transient overload for the first appli-
cation as shown in Figure 7(a). The two applications were
initially allocated resources in the proportion 1:2, which
corresponds to the average request rates of the two ap-
plications. was set to 20% of the capacity for both
applications and the target delays were set to 2 and 10s, re-
spectively. Figure 7(b) depicts the total discontent of the
two applications in the presence of dynamic and static re-
source allocations. As can be seen from the figure, the dy-
namic resource allocation technique provides better utility
to the two applications when compared to static resource
allocation and also recovers faster from the transient over-
load.

C.2 Trace-driven Web Workloads

Our second experiment considered two web applica-
tions. In this case, we use the World Cup trace to generate
request arrivals for the first web application; the request
size was deterministic (our next experiment examines the
impact of heavy-tailed request sizes that are characteristic
of this trace). The second application represents a back-
ground load for the experiment; its workload was gener-
ated using Poisson arrivals and deterministic request sizes.
For this experiment, was chosen to be 30% for both
applications and the initial allocations are set to 30% and
70% for the two applications (the allocations remain fixed
for the static case and tend to vary for the dynamic case).
Figure 8(a) shows the workload arrival rate (as a per-

centage of the resource service rate) for the two applica-
tions, and also the total load on the system. As can be
seen from the figure, there are brief periods of overload in
the system. Figure 8(b) plots the resource share allocated
to the two applications by our allocation technique, while
Figures 9(a) and (b) show the system discontent values
for the dynamic and the static resource allocation scenar-

ios. As can be seen from the figures, transient overloads
result in temporary deviations from the desired response
times in both cases. However, the dynamic resource allo-
cation technique yields a smaller system-wide discontent,
indicating that it is able to use the system capacity more
judiciously among the two applications.

To validate the accuracy of the queuing model used in
our allocation algorithm, we compare the system discon-
tent values measured by the simulation to those computed
by the model. We conduct the comparison using two dif-
ferent sets of workload parameters as the model inputs:
(i) the actual parameters as measured by the monitoring
component, and (ii) the predicted parameters as estimated
by the prediction algorithm. The first comparison mea-
sures the accuracy of the model with complete knowledge
of the actual workload in the system, while the second
comparison determines the model performance when cou-
pled with the prediction algorithm. Figures 10 (a) and
(b) show the results of these comparisons over a portion
of the trace, where the resource was overloaded. As can
be seen from the figures, there is a close match between
the simulation and the model results in both cases. This
demonstrates the fact that the queuing model’s estimation
is accurate to a large extent using both actual as well as
predicted parameters.

Since the above experiment was performed using de-
terministic request sizes, we repeated the experiment us-
ing the actual request sizes from the trace workload (thus,
both request arrivals and request service demands were
generated using the trace). Note that the request sizes are
heavy-tailed, as is common for such workloads. Figure 11
depicts the resulting workload for the two applications and
Figure 11(b) plots the resulting resource share allocations
for the applications. Figures 12(a) and (b) plot the system-
wide discontent for the dynamic and static resource allo-
cation techniques. Similar to the previous experiment, we
find that dynamic resource allocation yields lower discon-
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Fig. 8. The nature of the workload and the resulting allocations
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Fig. 9. Comparison of static and dynamic resource allocations for a trace web workload.
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Fig. 10. Validation of Queuing Model by comparison to simulation results

tent values than static allocations.
Together these experiments demonstrate the effective-

ness of our prediction and dynamic resource allocation
techniques in meeting the QoS requirements of applica-
tion in the presence of varying workloads.

V. RELATED WORK

Several research efforts have focused on the design of
adaptive systems that can react to workload changes in
the context of storage systems [3], [20], general operat-
ing systems [26], network services [7], web servers [5],

[19], [24], [9], [11] and Internet data centers [2], [25]. In
this paper, we focused on an abstract model of a server re-
source with multiple class-specific queues and presented
analytic techniques for dynamic resource allocation; our
model and allocation techniques are applicable to many
scenarios where the underlying system or resource can be
abstracted using GPS.

Recently adaptive techniques for web servers based on
a control theoretic approach have been proposed [1], [19],
[21], [27]. Most of these techniques (with the exception
of [21]) use a pre-determined system model. In contrast,
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Fig. 12. Comparison of static and dynamic resource allocations in the presence of heavy-tailed request sizes and varying arrival rates.

our technique focuses on online workload characterization
and prediction. Further, these techniques use a linear re-
lationship between the QoS parameter (like target delay)
and the control parameter (such as resource share). This
is in contrast to our technique that employs a non-linear
model derived using the queuing dynamics of the system.
Recently, a queuing model with non-linear optimization

has been proposed for scheduling requests in web servers
[9]. The primary difference between this paper and the
present work is that they use steady-state queue behavior
to drive the optimization, whereas we use transient queue
dynamics to control the resource shares of applications.
Thus, our goal is to devise a system that can react to tran-
sient changes in workload, while they attempt to schedule
requests based on the steady-state workload.
Optimization techniques for reducing energy consump-

tion in hosting centers has been studied in [10]. The
optimization model attempts to use as few servers as
possible to meet the service level agreements for vari-
ous applications—they maximize the number of unused
servers so that they can be powered down to reduce en-
ergy consumption.
Two recent efforts have focused on workload-driven al-

location in dedicated data centers [14], [25]. In these ef-

forts, each application is assumed to run on some number
of dedicated servers and the goal is to dynamically allo-
cate and deallocate (entire) servers to applications to han-
dle workload fluctuations. These efforts focus on issues
such as how many servers to allocate to an application,
how to migrate applications and data, etc., and thus are
orthogonal to our present work on shared data centers.

VI. CONCLUSIONS
In this paper, we argued that dynamic resource alloca-

tion techniques are necessary in the presence of dynam-
ically varying workloads to provide guarantees to web
applications running on shared data centers. To address
this issue, we modeled a shared server resource as a GPS
server with multiple queues. Using this model, we pro-
posed an optimization-based allocation technique along
with an online workload prediction technique to dynam-
ically allocate resources to competing web applications
running on shared servers. Our techniques can react to
changing workloads by dynamically varying the resource
shares of applications, and unlike some prior techniques,
can handle the nonlinearity in system behavior. We eval-
uated our techniques using simulations with synthetic as
well as real-world trace workloads, and showed that these
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techniques can multiplex the resource better than static
provisioning, especially under transient overload condi-
tions.
As part of future work, we plan to investigate the utility

of these techniques for systems employing other types of
schedulers (e.g., non-GPS schedulers such as reservation-
based). We also intend to implement these techniques in a
real system to investigate their performance with real ap-
plications. We would also like to explore other optimiza-
tion techniques using different utility functions and QoS
goals.
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