
Fault-tolerant Distributed Information Retrieval For
Supporting Publius Servers and Mobile Peers

Katrina M. Hanna Brian Neil Levine R. Manmatha
Department of Computer Science
University of Massachusetts

Amherst, MA 01003
hanna, brian, manmatha @cs.umass.edu

Abstract—
We show how dividing a database and replicating docu-

ments and indicies in an overlapping manner provides re-
silience in the face of node failures, malicious attacks, cen-
sorship attempts, and network partitions. This property of
fault tolerance is beneficial for a wide range of scenarios,
and we examine it in the context of two applications: an IR
collection distributed over a set of mobile peers with wire-
less interfaces; and an IR collection distributed over servers
set up to support censorship-resistant peer-to-peer file shar-
ing and web publishing systems, such as Publius. Our use of
random replication and split document sources makes it dif-
ficult for attackers to remove specific indexed content from
the system. Moreover, we show the system is able main-
tain high IR performance even when 45 out of 50 nodes are
unavailable. For mobile nodes, we have show that our de-
sign manages the randomness of mode mobility. Nodes are
able to contact only direct neighbors who change frequently,
not use ad hoc routing protocols, and still maintain good IR
performance. This makes our design applicable to mobility
situations where routing partitions are common. Our eval-
uation show nodes require only low additional storage on
average.

I. INTRODUCTION

Information Retrieval (IR) systems aim to satisfy a user
need by retrieving documents and articles from collec-
tions that are the most relevant to a client-supplied query.
IR manages unstructured, full-text documents, while tra-
ditional database retrieval requires that documents either
be highly structured or tagged with meta information (e.g.,
“name” or “address”). For example, Google offers an IR
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search service in a centralized form. IR databases can
also be divided among a set of peers. We show how di-
viding a database and replicating documents and indicies
in an overlapping manner provides resilience in the face
of node failures, malicious attacks, censorship attempts,
and network partitions. This property of fault tolerance
is beneficial for a wide range of scenarios, and we exam-
ine it in the context of two applications: an IR collection
distributed over a set of mobile peers with wireless in-
terfaces; and an IR collection distributed over servers set
up to support censorship-resistant peer-to-peer file sharing
and web publishing systems, such as Publius [21].
Mobile users who lack connectivity to a centralized,

Internet-based IR collection, can benefit significantly
from the ability to search documents stored by a network
of peers. Commonly, mobile devices are resource-poor
and there may not be a single node in a federation of mo-
bile hosts that is capable of indexing voluminous content
or responding to numerous queries. A group of mobile
peers can share the work of indexing documents, storing
those indicies, and responding to queries while provid-
ing coverage in a partitioned wireless environment. As an
example, a set of doctors managing a refugee camp may
desire access to a large collection of medical literature on
diseases. In the scheme we propose here, they would each
carry a small portion of such a collection (e.g., on a PDA)
and resolve queries for other peers. Our evaluations show
that our system is fault tolerant and successfully manages
unavailability of other peers due to network partitions or
attacks.
Publius [21] is a censorship-resistant, distributed file

system. An important property of the Publius system is
deniability, which is the ability of volunteers storing in-
formation to plausibly deny knowledge of the content they
store. Servers in the Publius system maintain deniability
by storing only encrypted content and never seeing plain-
text versions; this makes indexing of content infeasible.
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We propose that a separate group of volunteer peers acting
together to index documents and respond to queries can
provide a valuable IR service for the Publius system. By
only maintaining an index and not the documents stored
in the Publius system, the search engine peers can main-
tain this deniability just as Publius servers do. Further-
more, our system is robust against denial of service attacks
against servers and therefore has the same fault tolerance
characteristics as Publius.
While these two scenarios differ, our proposal supports

both. We have the following assumptions common to both
scenarios. We assume the presence of a group of search
engine peers (peers, for short) that are willing to be re-
sponsible for storing indicies of documents in the system
and responding to queries. In the ad-hoc scenario, we ex-
pect the peers to be mobile devices; for Publius, we expect
that dedicated servers will function as peers. In this work
we address the fundamental question: Can randomized
replication of document indices across a group of peers
provide the fault tolerance necessary to these and other
scenarios, while providing accurate IR results and rea-
sonable resource requirements? Our results show that:
fix Our methods work well.
In the remainder of this paper we summarize related

work (Section II); overview the application of our designs
to Publius and Mobile devices (Section III); review our
experimental methodology and evaluate our system de-
signs (Section IV); and offer conclusions in Section V.
An appendix offers additional related results.

II. RELATED WORK

Our work is related to past work in peer-to-peer sys-
tems (including mobility and secure file systems) and dis-
tributed information retrieval. Although our work con-
tains elements of both fields, it differs from existing work
in important ways. Most previous work in peer-to-peer
systems is focused on searching for files using well-
known identifiers or a limited set of key words.
The goal of distributed IR is to find a subset of

databases appropriate to a specific query, search that sub-
set of databases, and then merge the ranked list obtained
from each database into a single ranked list. Thus, pre-
vious work in distributed IR has concentrated on the
database selection problem as well as the merging of re-
sults. In contrast the focus of our system here is to provide
a fault tolerant, full-text search and retrieval capability for
information spread over a nodes or peers. This fault tol-
erance enables resistance to censorship, terrorist attacks,
disasters or mobile peers moving out of range. The fault
tolerance is achieved by doing a certain amount of random
replication.

A. Peer-to-peer systems

The first peer-to-peer application to gain widespread
popularity was Napster [13], a network for trading mu-
sic files in the mp3 format. Napster used a centralized
approach to enable users to find desired files. A partici-
pant logging on to the Napster network would register the
songs she wished to share with the Napster server. To find
a desired song, she would submit a query to the server
based on the artist’s name or song title. The server would
search its list of songs offered by current users and return
a list of matches. The user would then connect to a peer
chosen from the list and retrieve the desired file.
Gnutella [19], another popular peer-to-peer file sharing

utility, is fully distributed, employing limited-scope flood-
ing search. The extent of the search is controlled by a
time-to-live field in the protocol’s query message. The
Gnutella protocol allows the query search criteria to be of
arbitrary length and specifies no content type. In practice,
the search criteria is a file name or keyword.
Chord [18] and CAN [17] use consistent hashing tech-

niques to provide a location service. These systems map
identifiers to nodes in large-scale distributed systems. Al-
though these and other related systems may be suitable
for searches based on keywords, they are not likely to be
useful for full-text search, as each word in the document
collection would be an identifier.
Papadopouli and Shulzrinne have proposed a related

system for mobility. Their system, called 7DS [14], al-
lows mobile peers to share cached data with other peers in
an ad hoc system. In contrast with our system, 7DS finds
only matches with exact data (e.g., an exact URL). Addi-
tionally, the same authors have evaluated power manage-
ment schemes in broadcast and multicast search schemes
for mobile devices [15] that could be applied to our work.
1) Secure Distributed File Systems: Publius is a

censorship-resistant web publishing system that provides
anonymity to publishers of content, and some deniability
of the content of files to storers of data. Files in Publius
are replicated across servers and stored in an encrypted
form. Shamir’s secret sharing is utilized to make decryp-
tion keys available to those wishing to retrieve files, while
denying the storers of data local access to useful keys. A
Publius URL encodes the locations of a file and its asso-
ciated key shares. Publius currently provides no search
mechanism and requires that a user have access to a direc-
tory of URLs to be able to retrieve documents. There are
three problems with this approach to accessing material.
First, with large numbers of documents, it is impractical
for a person to navigate a directory. A search mechanism
on the other hand would simplify access to documents.
Second, if a content storer has access to the URLs it can
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decode the locations, retrieve the necessary keys, and ex-
amine the content it stores. The easier it is for a content
storer to access lists of URLs, the more her deniability is
eroded. Third, the ability for consumers to find desired
content via text search provides a higher level of deniabil-
ity than publishing directories of Publius URLs.
Many secure, fault-tolerant, distributed file systems re-

lated to Publius have been proposed. These works in-
clude Freenet [6], Eternity [2], Mnemosyne [8], and Tan-
gler [20], among others. Intermemory [5] is perhaps the
system closest to ours in approach. It randomly replicates
data using erase codes and therefore tolerates a number of
node failures in the system (up to 17 in the current imple-
mentation). Our work is differentiated in that we are not
trying to locate a specific document, but rather any data
relevant to a user query. Though we provide details on
our inter-operation with Publius here, it would be possi-
ble to extend our work to other secure file systems where
the location of content at peers is not very dynamic.

B. Distributed IR

The traditional model of information retrieval systems
assumes a centralized search engine (examples include
Google.com or INQUERY [3]). In many situations, in-
formation is distributed over multiple databases and a cen-
tralized search engine may not be able to access it because
it may not have direct access to the content of one or more
databases. This may happen because the databases are
private and access is limited or the network connectivity
is poor. In such situations, the only direct access to such
databases may be through a search interface specific to the
database. The field of distributed information retrieval [4]
focuses on searching a set of distributed database and re-
turning a merged set of results.
Distributed IR requires first characterizing a subset of

databases to find which ones are most likely to contain
the answer, searching that subset of databases, and then
merging the results to create a single ranked list. This
model assumes that each search engine indexes a specific
database or collection of documents (the databases may
or may not overlap). Moreover, this model assumes that
the included databases are highly available; if a partic-
ularly good collection is not reachable, accuracy results
suffer. The main challenges in distributed IR are on deter-
mining how a client decides which database to search and
how the results from multiple databases can be merged
to produce a single rank ordering. Clients can pick dif-
ferent databases based on resource descriptions of each
database. The resource descriptions could be provided by
the owner of the database. STARTS, for example, is a

standard format for describing and communicating the re-
sources of each database [7].
Such protocols assume cooperation between providers

which may be reasonable within an organization but may
not be reasonable when many different entities are in-
volved. For example, database providers could be unco-
operative (because it is not in their interest) or may delib-
erately provide misleading information (say to drive traf-
fic to their sites). Callan [4] describes a query based sam-
pling technique to find such resource descriptions. After
some subset of databases is selected based on these re-
source descriptions, they are then individually searched.
The results from searching each of these databases must
then be combined into a single ranked list. This is a dif-
ficult problem since the scores produced by search en-
gines on different databases are usually not comparable.
A number of approaches using some kind of normalized
scores or other heuristic techniques have been developed
[4]. More principled methods have been investigated for
combining search engines [11] but the extension to multi-
ple databases is non-trivial.

III. SYSTEM MODEL

Peers or distributed systems that cooperatively provide
an IR service face several challenges in maintaining avail-
ability of the service. For example, adversaries may at-
tempt to launch denial-of-service attacks on Publius peers,
or disrupt nodes or routes in an ad hoc network of wire-
less peers. Additionally, network partitions are frequent in
a wireless environment, and node mobility makes it diffi-
cult to determine or predict exactly what nodes are going
to be neighbors or clustered. Network partitions may also
occur in the Internet environment in which Publius is as-
sumed to operate.
Often, collections of documents have a natural content

overlap, and many documents may be relevant to a clients
query. However, when peers are unavailable to clients, a
portion of the collection of documents are therefore also
unavailable for query retrieval.
We propose that a strategy of intentionally replicating

indicies (and documents if desired) at many peers trades
storage resources for greater accuracy and robustness in
the face of node failure or attack. We also expect replica-
tion to manage network partitions and balance work load.
For this initial study, we assume the following simple

replication strategy:
1) An initial peer receives a new document, and in-
dexes it with probability chosen from a uniform
distribution.

2) Regardless of whether the document is indexed, the
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Fig. 1. A Group of mobile peers. Colored nodes have a particular
document. The circle represents a collection of a node’s neighbors
within radio range.

...

...

Then retrieve content.

Users queries a subset of 
search engine peers 

Publius Content Servers

Search
Engine
Peers

Fig. 2. Search and Retrieval of content in Publius.

peer then passes the document along to all its neigh-
bors, who follow the same algorithm.

(In fact, documents need not be circulated; indicies of the
documents, which are smaller may be compressed and
distributed to peers instead.)
Accordingly, we assume the distributed set of peers in

the Publius scenario are arranged in some logical topol-
ogy, and ad hoc peers follow the topology provided by the
underlying unicast routing services. In place of unicast
routing, an efficient flooding or multicast strategy may be
used.
Figure 1 shows a diagram of a sample system. The

system shown contains 20 nodes; the five shaded nodes
represent peers that have probabilistically indexed a given
document. The subset in the upper, left corner represents
a possible set of nodes to query.
Clients (or peers in the ad hoc system) initiate a query

by selecting an initial peer. Given the random replication

strategy, it is likely that neighbors have indexed a differ-
ent, though not disjoint, subset of documents. In general
terms, the more neighboring nodes the initial peer con-
tacts to assist in resolving a query, the more accurate the
merged results will be; however, contacting more neigh-
bors delays the response and requires more work from the
collective system.
Below, we outline the specific operation of our replica-

tion and retrieval scheme with Publius and mobile peers.

A. Supporting Publius
In December 2001, there were 47 servers listed on the

Publius web site. We don’t have an estimate of how much
content each server hosts, nor the amount of space re-
quired to index that content. Typically, indexing requires
less than half the size of the documents; therefore, it is
safe to assume that the number of peers required to index
the Publius system is no more than 47, assuming they vol-
unteer resources roughly equivalent to those of the Publius
servers. Accordingly, in this paper, we explore and evalu-
ate the use of 50 peers. We expect this set of peers to be
relatively static, thus the client will be free to choose the
peer with whom to initiate a query.
The Publius protocol for publishing documents can be

easily modified to include the operation of our peers. Pub-
lishers already must contact servers in the system each
of which must store the document. In order to have their
documents indexed and search able in our peers, they must
either contact some fraction of all available peers; or
they can contact all peers, who would index the document
with probability ; or they can contact one peer, who will
pass the document to all other peers for possible indexing.
Which method is used is a matter of trust. Any methods
used in Publius to contact servers anonymously can also
be used to contact search engine peers anonymously.

B. Supporting Mobile Nodes
Mobile, ad-hoc networks are formed opportunistically

from heterogeneous groups of devices moving within
communication range of one another. Routing in these
networks is cooperative, with nodes constructing paths
through other nearby nodes, possibly to a stationary node,
then onto the Internet.
In most cases, accessing desired information from peers

in the ad-hoc network rather than from a server on an-
other network is more efficient and does not require ac-
cess points or base stations. Here we conceive of a group
of users in a mobile, ad-hoc network as a group of peers.
In contrast to the Publius example, this is a more tradi-
tional peer-to-peer application. Here nodes are both pro-
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ducers and consumers, indexing available content as well
as searching for that content.
We expect that documents can be pre-loaded onto de-

vices when users are federated. With our techniques
emergency rescue and medical workers could arrive at
a remote disaster location (e.g., tornado, refugee camp,
or other long-term, sub-acute disasters) with information
such as: GIS information, medical algorithms and liter-
ature chemical hazard sheets; field medical manuals; the
World Health Organization disaster medicine library (and
images); immunization algorithms; and local or commu-
nity info, such as information on health, fire, and police
agencies, as well as Incident Command System job ac-
tion sheets and command structures. All this information
could not fit on a single (inexpensive) mobile device; but
would be accessible in a federated set of devices.
Alternatively, as documents can be added interactively

(as they are for Publius): they can be broadcast to all
peers as the documents are brought into the system. Each
peer would index the document with some pre-established
probability .
One assumption that we make for both scenarios, is

that nodes are homogeneous in the resources that have
available to them. As with any file system and retrieval
technique, the hardware determines the real limit on the
amount of content that can be stored. However, in a later
section we do discuss the storage requirements of each
node in the system. This is a challenges that pertains more
to peer resources. Hand held wireless devices typically
have limited storage capabilities, and are often limited in
communication range. The greater the replication of doc-
uments and indices, the more storage space we require of
an individual peer. On the other hand, if indices are more
highly replicated, the number of peers it is necessary to
search is smaller; and thus, the work required of each peer
is less.
In this application, the number of peers can vary

greatly, from tens of users in a small corner of campus to
thousands of users attending a large sporting event. How-
ever, for both applications we find 50 nodes to be a rea-
sonable number to investigate.

IV. EXPERIMENTAL METHODOLOGY

The quality of the information returned in an IR system
may be evaluated by computing the precision of the sys-
tem at retrieved documents. Precision is the proportion
of the information retrieved that is relevant to the query.
In this section we describe our experiments for evaluat-
ing the precision of a variety of systems and present our
results.

In this experiment we examined the IR performance
achieved by our model as well as others and at what sys-
tems cost. The source databases we use in our experi-
ments are from the Text Retrieval Conferences (TREC)
run by the National Institute of Standards and Technol-
ogy (NIST). Specifically we use volumes 1, 2, and 3 from
TREC. The approximately 3.2 gigabytes of data is divided
by source and publication year. We used a set of short
query strings related to a range of topics covered by the
databases. The queries are standard TREC queries; the
relevance scores of documents in relation to these queries
have been pre-established by NIST.
When initiating a set of queries, we randomly chose

subsets of nodes from the entire set of peers. Strategies for
distributing document indices across nodes greatly affect
the IR performance of such a scheme. They also affect the
amount of space required at each node and in the system
as a whole. These strategies can be roughly categorized
as replicated or not, and consisting of homogeneous or
heterogeneous content. We refer to the latter two cate-
gories as sources-together and sources-split respectively.
In our experiment, the distinction between the two lies in
whether we distributed indices with document-level gran-
ularity, or as one or more chunks of a database from a sin-
gle source (e.g., Wall Street Journal articles from 1999).
We compared the four combinations of the above cate-

gories:
Not Replicated, Sources-Together: Database
sources are divided into 50 roughly equal-sized
chunks, with all indices from a chunk placed on one
node.
Not Replicated, Sources-Split: We distribute the
document indices over the set of nodes in round-
robin fashion. Each index is placed on exactly one
node.
Replicated, Sources-Together: All of the indices
from a given database source are copied to three
randomly-chosen nodes.
Replicated, Sources-Split: This is our proposed dis-
tribution strategy as outlined in Section III. Each
document index is placed on each node with some
probability .

These four distribution strategies require very different
amounts of disk space. Table I shows the total space re-
quired to store the documents in TREC 1-2-3 as well as
the minimum and maximum at a single node. The table
also shows that the variation of storage costs at nodes is
smaller with our scheme, which is essential for our as-
sumption of heterogeneity. Figure 4 shows more detail on
the replicated, source-split strategy that we advocate, in-
cluding the average indexing and document costs per node
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Strategy Total Space Min node Max node
(all nodes) MB MB MB

Not replicated, sources-split 3,185 60 66
Not replicated, sources-together 3,185 15 451
Replicated, sources-together 5,170 33 345
Replicated, sources-split ( ) 2,831 54 59
Replicated, sources-split ( ) 7,086 138 144
Replicated, sources-split ( ) 14,203 278 290

TABLE I
DISK SPACE REQUIRED TO STORE DOCUMENTS (MBYTES).

in terms of .
One disadvantage of the replication strategies is that

there is no guarantee that documents will be archived. A
minor modification of our strategy could be made to en-
sure that the probability of archiving any document be one
by simply ensuring that the first peer to receive a new
document indexes it with probability one. However, a
stronger constraint can be made. In the Appendix, we
present an analysis using Chernoff bounds to determine
bounds on the probability necessary to ensure that a spe-
cific document is available with high probability within
the set of nodes. However, such analysis does not di-
rectly tell us the probability of finding a relevant docu-
ment since search engines do not necessarily find every
document that is indexed but only some fraction of all
the relevant documents indexed. When we factor this in,
the probabilities of replication necessary to achieve good
replication performance are much lower (if the search en-
gine can only find 50% of the relevant documents then
clearly it is not necessary to have all 100% of the relevant
documents in the subset). Since search engines are quite
difficult to model the appropriate probabilities of replica-
tion to achieve good retrieval performance must be deter-
mined empirically which we do below.
For our queries we used the INQUERY system [3].

INQUERY implements an inference net model for full-
text retrieval. In conjunction with INQUERY, we used
CORI [4], which allows retrieval from a distributed set
of document databases. In its default mode of operation,
CORI characterizes the content of the databases and when
presented with a query, chooses the best databases to con-
tact. Ranked results from different databases can usu-
ally not be compared directly [4]; CORI uses a heuristic
method to normalize document scores based on the max-
imum and minimum score the document could achieve,
allowing rankings to be merged.
In our experiments we specified the peers to use in a

particular query, bypassing CORI’s selection mechanism.
We used CORI’s heuristic method for combining the re-
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Fig. 4. Example storage requirements of each node for the rep-split
scheme with increase probabilities of storage and indexing.

sults returned by peers.
In this experiment, for each strategy, we exam-

ined the performance of querying subsets of
and nodes. For each subset size we ran-

domly chose nodes, then ran 50 queries to the chosen
nodes. For each subset size, we repeated this 20 times,
averaging the results, shown in Figure 3. Error bars on all
graphs represent standard deviations.

A. Results
The four plots of Figure 3 show the results for retrieval

of different numbers of documents ranging from 10 to
200. As is well known in IR, as more documents are re-
trieved by users, precision tends to drop. This is because
a larger set of results makes it more challenging to locate
only relevant results. A number of observations can be
made from the graphs.
First, the replicated-source-split (rep-split, for short)

strategy achieve higher accuracy than the other three sce-
narios for values of from to . For exam-
ple, for retrieval of 20 documents, with subsets of five,
rep-split with has a increase in precision
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Fig. 3. Precisions comparison of all techniques and varying probabilities of indexing for different numbers of retrieved documents: (Top Left)
10 documents; (Top Right) 20 documents; (Bottom Left) 100 documents; (Bottom Right) 200 documents.

from to as compared to the non-replicated/split
strategy. Moreover, the increase is greater over the
no-replication/no-split and replicated/no-split strategies.
When there is not an advantage to our proposed
strategy, and this is also where the (total) storage costs
are no greater (see Figure I). Hence, we see a direct re-
lationship between the cost of in terms of storage and
increased precision.

B. Evaluations of Mobile Hosts
Second, the other scenarios suffer from a high variance

in their performance and disk space required at nodes.
Here we see an advantage of splitting up collections at
the document level.
Third, increased subset size does not make a significant

difference in performance. From here we conclude that
most of the advantage of contacting multiple servers is
gained for lower subset sizes. We find this to be a particu-
lar advantage in application to Publius and mobility for a
number of reasons that we describe presently.
In the Publius scenario, firstly this means that the IR

performance of the system remains adequate even if only

a very small number of servers remain (e.g., 5 out of 50)
after a denial of service attack. Secondly, the replication
at nodes removes the need for complicated methods of se-
lecting servers based on relevance (e.g., CORI [10]) — it
doesn’t matter which subset of nodes is chosen by clients;
instead, servers can be selection based on their network
performance, a characteristic commonly ignored by IR
server selection techniques. Finally, the amount of work
required of each server is low since only a small subset of
servers need be contacted by each user.
In the mobile scenario, the implication is that ad hoc

routing is not required if enough neighbors are in range.
In fact, in our evaluations of mobile nodes, presented in
the next section, we do not employ any ad hoc routing
between nodes. This simplifies the operational complex-
ity of devices, reduces traffic on the network caused by
flooded route requests (e.g., as done by AODV [16] or
DSR [9]), and reduces work required of peers.
For Publius peers, we assume that servers are unavail-

able to nodes mainly because of attacks and outages.
However, for mobile nodes, other peers may be unreach-
able simply due to network partitions that result from node
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Fig. 5. Density of neighbors in the two mobile environments. (Left) 500m-by-500m. (Right) 1000m-by-1000m.

mobility and physical interference. If ad hoc routing pro-
tocols are in place (e.g., AODV or DSR), nodes can query
any peer to which it has a route. We evaluated our method
under the stricter assumption that nodes can only con-
tact neighbors to which they are within broadcast range.
Therefore, it is the density of nodes that most affects the
performance of our scheme.
Accordingly, we set up simulations of two environ-

ments using the Rice University Monarch mobility ex-
tensions to NS2 [1]. For both simulations, we assumed
50 nodes moving in the random waypoint model. (This
single mobility model was sufficient as a preliminary ex-
amination of the effects of node density.) Nodes moved
at a speed of 2 meters per second and paused at their
randomly-chosen destinations for 20 seconds. In the first
scenario, the nodes moved in a field without obstructions
500m-by-500m. In the second scenario, we kept all pa-
rameters the same and increased the area of the field to
1000m-by-1000m. Figure 5 shows the density of each
scenario; the plots show, for example, that in the smaller
field, almost all the nodes had at least two neighbors 85%
of the time. In the larger field, only about 45% of the
nodes had at least 2 neighbors 85% of the time. Each node
in the simulation is configured to simulate the range of an
802.11 interface. On average, nodes in the dense scenario
had 16 neighbors with a standard deviation of 5.1; in the
sparse scenario, nodes had 5.2 neighbors on average with
a standard deviation of 2.7.
In our simulations, starting at 50 seconds into the simu-

lation and then every 18 seconds, a node queries its direct
neighbors (i.e., no ad hoc routing is used). We evaluated
the precision of queries initiated by five randomly chosen
nodes; this number was due only to the extremely long
processing time of our simulation. Data for number of
neighbors of each specific node we evaluated is shown in
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Figure 6.
Figure 7 shows the precision of the nodes for both dense

and sparse simulations for a range different numbers of
retrieved documents. The results show that the rep-split
strategy is able to manage node mobility quite well. Be-
cause documents are randomly replicated, which neigh-
bors are near to a node is now of no consequence. Further-
more, no ad hoc routing was employed in the simulation,
which reduces the amount of work and complexity of the
system.
Evaluating the amount of work performed by nodes in

the simulation is simple. If we assign a unit cost to a query
and each response, then the amount of work performed by
any node is not more than the number of neighbors it has
during the simulation — on average, the amount of work
performed per query is proportional to the average number
of neighbors it had, shown in Figure 6.
The TREC 1-2-3 database we examined requires 3.2

Gb of storage, however, even with , nodes in
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Fig. 7. Averaged information retrieval performance of five peers:
(top) 500m-by-500m environment; (bottom) 1000m-by-1000m envi-
ronment.

our simulation require on average only 141Mb of storage
space for documents and 81 Mb for indicies; this is within
the hardware resources of even a currently available Com-
paq iPAQ 3580. Even with only five neighbors available
on average, the nodes were able to retrieve documents
with high accuracy. We expect our technique will scale
to much larger databases as each individual mobile device
is capable of storing more data. For example, Compaq
IPaq 3850s accepts SD memory cards; currently, 512 Mb
SD cards are available and cards up to 4 Gb are planned.
Extrapolating our results, with 4Gb on each mobile de-
vice, a database of over 60 Gb could be distributed over
50 peers when .

V. CONCLUSION
We have designed and evaluated a protocol for fault tol-

erant distributed information retrieval. We have shown
the broad applicability of our design by considering two
scenarios. First, IR search engines for Publius that are
robust against denial-of-service attacks. Random repli-
cation of split sources makes it difficult for attackers to

remove specific indexed content from the system. More-
over, by setting our indexing probability to low values
below 0.1, the system is able to return relevant results even
when 45 out of 50 nodes are unavailable. Second, for mo-
bile nodes, we have shown that our design manages the
randomness of mode mobility. Nodes are able to contact
only direct neighbors who change frequently, not use ad
hoc routing protocols, and still maintain good IR perfor-
mance. This makes our design applicable to mobility situ-
ations where routing partitions are common. Our evalua-
tion of storage requirements show that nodes require about
the same about of storage, making our system ideal for
collections of homogeneous hardware. Additionally, the
value of is directly proportional to the amount of work
required of peers. As we able to good results for low val-
ues of , we expect our system to be applicable to low
resource devices such as PDAs.
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APPENDIX

The probabilistic document indexing strategy results in
a random distribution of indices across peers. In order to
search for desired content, some subset of the peers must
be queried. In this section, we concern ourselves with how
the size of such a subset, denoted by , affects and the
guarantees that a document will be indexed in the subset.
Consider an example in which we have peers

in the entire system and we wish to have . We
want to be able to find a high percentage of the content,
e.g. 95%, by searching no more than nodes. Let be
the desired number of peers to index a particular docu-
ment. We want an arbitrary document, , to be indexed
by at least of the ; so when , on average,

. Or, in another example, if
we want , then must be indexed by, on average,

nodes and . Generally, .
The relationships are clear: as decreases, increases and
each node is required to provide more storage and do more
work answering queries.
Chernoff bounds [12] allow us to consider deviation of

a random variable from its expectation as follows.
(1)

The right-hand side of Eq. 1 provides an approximation
of the probability that deviates from the expected
value by a factor of . We can use this equation to
calculate a bound on the probability that at least one node
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Fig. 8. The probability that member of a subset has indexed a
document.

in the subset has indexed the document by calculating the
complement. We let and therefore .
The calculation is straightforward:

(2)

Figure 8 shows the relationship between values of ,
the probability of indexing, and the probability that one
peer out of a subset of size has indexed a document (the
complement of Eq. 2). The x-axis shows the values of
in increments of ; the y-axis is the probability that at
least out of nodes has indexed a document. Each plot
represents a different value of .
As expected, the probability that out of nodes has

indexed a document is greater for higher values of . Con-
sider the following examples. If we have and
want nodes to store a document, we have, on average,

. The value of given by the Chernoff Bound is
about . The corresponding probability that node out
of a subset of has indexed the document is about .


