Using Little-JIL to Define Containment Units

Barb ara Staudt Lemer
Willams College
Computer Science Department
Willamstown, MA 01267
+1-413-597-4215

lemer@cs.wiliams.edu

ABSTRACT

Self-healing systems must be able to adapt to errors and
changing resource environments without human intervention.
We propose an architectural style, called Containment Units,
particularly intended for self-healing systems. Containment
Units feature the use of operational, evaluator, and change
agent modules to encapsulate different activities required in
self-healing systems. We present this architectural style along
with the use of Little-JIL, a visual coordination language, to
describe the high-level interactions among the modules of a
containment unit.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture -
domain-specific architectures, languages.

General Terms
Design, Languages.

Keywords

Adaptive systems, Containment Units, self-healing systems.

1. INTRODUCTION

Experience has shown that software development is highly
error-prone, particularly if poor software engineering practices
are used. Self-healing systems are likely to be even more
difficult to build well due to the variety of situations in which
they will be expected to operate without human intervention.
Our approach to self-healing systems focuses on describing
and reasoning about adaptation at the architectural level.
Thus, our work is in the same spirit as recent work on
architectural adaptation, such as [3, 5, 6, 7]. Our particular
goal is to explore strategies to build self-healing systems that
are amenable to analysis so that developers can gain
confidence in the correctness of these complex systems prior
to deploying them.

Our approach builds upon two well-accepted software
engineering principles: modularization and static analysis.
Specifically, we propose designing self-healing systems using
an architectural style that we call Containment Units and then

Jamieson M. Cobleigh, Leon J. Osteweil, Alexander Wise

University of Massachusetts, Amherst
Computer Science Department
Amherst, MA 01003
+1-413-545-2186

jcob keig,ljio,wise @cs.umass.edu

using static analysis to demonstrate that the Containment Unit
satisfies specified desirable properties.

A Containment Unit consists of three types of modules:
operational components, evaluators, and a change agent. An
operational component implements the functionality of the
Containment Unit. A Containment Unit may have more than
one operational component. These components are
functionally redundant with each other, but are designed to
operate in different resource environments. Collectively, they
enable a Containment Unit to operate in a range of situations,
such as different network connectivity, different memory
availability, different CPU availability, etc. At any time at
most one operational component will be in use.

An evaluator monitors the behavior of the active operational
component to ensure that it is behaving appropriately.
Additional evaluators may also monitor the resource
environment to ensure that the environment is still
appropriate for the use of the current operational component.

If an evaluator determines that the operational component is
not behaving satisfactorily, it notifies the change agent. It is
the responsibility of the change agent to determine how to
handle the current situation, often by activating a new
operational component.

The purpose of a Containment Unit is to prevent certain faults
from spreading outside its control. The idea is that there are
collections of faults an operational component cannot handle
itself but that can be handled by replacing the active
operational component with another. These faults are thus
“contained” by the Containment Unit. One of the chief uses of
static analysis in the context of Containment Units is to verify
that those faults are indeed managed within the Containment
Unit and do not spread to other parts of the system.

We believe that building a self-healing system using the
modular constructs of Containment Units makes the
Containment Units easier to build correctly, to understand,
and to analyze. In this paper we focus on the use of Little-JIL,
a coordination language, to express the architectural style of
Containment Units in a manner that makes it easy to see the
high-level modularization of the Containment Units. In a
separate paper we discuss the Containment Unit architectural
style more fully and our preliminary results in performing
static analysis on Containment Units [4].

£

The CU can throw exceptions for
the errors it cannot contain O

v Run Containment Unit&

Configure the CU by
selecting an appropricte
component to run.

\——___‘—_‘———.
\—‘___Q—

o

If the monitor detects
a problem, the CU is

““'““‘-b adapted.

—_

v Select Cumpunent& v Run & Monitor Cumpunent& v Adapt Containment Unit&

L

Run the selected component.
It should run to completion
or until told to stop.

Throw an exception if
problems are detected,

a

v Run Cumpunent& v Monitor Component & En\rirunment&

Figure 1: Generic Containment Unit

2. LITTLE-JIL - A VISUAL
COORDINATION LANGUAGE

Little-JIL is a visual agent coordination language. The
graphical syntax of Little-JIL represents a system as a
collection of hierarchically decomposed steps. The steps are
the nodes in the graph while edges represent connections to
substeps, exception handlers, and event handlers. An operator
within the step icon represents control flow and concurrency
among the steps. One can thus easily see the control flow
within a system, using the hierarchical decomposition to view
a system at varying levels of abstraction. Dataflow
information and resource needs are visible through
annotations on the graph.

The details of the Little-JIL language are provided in other
papers [2, 8] and space does not permit us to repeat them here.
Instead we use Figure 1, a Little-JIL specification of a generic
Containment Unit, both to emphasize some of our points
about the structure of a Containment Unit, and Little-JIL's
suitability for representing it.

The Little-JIL step is depicted as a solid black bar with
accompanying badges. Figure 1 depicts the step, “Run
Containment Unit”, which is decomposed into the structure of
substeps shown below it. The arrow in the “Run Containment
Unit” step indicates that it is a sequential step, where the
substeps are performed in order from left to right. In this case,
there are two substeps: “Select Component” and “Run &
Monitor Component”. “Select Component” initializes the
Containment Unit and selects the first operational component.

“Run & Monitor Component” is a parallel step, indicated by
the parallel lines in the step icon. This means that the
substeps “Run Component” and “Monitor Component &
Environment” are done concurrently. “Run Component” is the
operational ~ component. “Monitor Component &
Environment” represents the monitors. Most likely, in a
complete system, “Monitor Component & Environment”
would be further decomposed into a collection of monitors
executing in parallel, each with one monitoring responsibility.

For example, one might ensure that the running component is
meeting its deadlines, a second that it is obeying its memory
constraints, a third that it is producing results of sufficient
quality, etc. If either the running component itself or the
monitor detects a problem, it throws an exception. This starts
the exception handler “Adapt Containment Unit” (the change
agent), attached to the X in the “Run Containment Unit” step.
The edge connecting the exception handler to the step has a ¢
on the edge. This indicates that the “Run Containment Unit”
step should restart, causing the Containment Unit to continue
running after the adaptation.

Neither Containment Units nor Little-JIL steps need to form a
strict tree structured hierarchy. Lower level steps (and
Containment Units) may be contained as part of more than one
higher level step (or Containment Unit). In addition, Little-JIL
steps include (optional) prerequisites and postrequisites.
Both can be used to specify where evaluation activities are to
occur and, as both of these structures are full Little-JIL steps,
the structures may be used to specify to arbitrary levels of
detail just how the evaluation is to take place

Clearly Little-JIL is a graphical language, and our experience
suggests that its iconic representations help to make the high-
level control flow of systems clearer. In addition, however, we
believe that additional clarity is attributable to Little-JIL's
uses of higher level semantic notions as the basis for its
specifications. This clarity seems to be one of the key benefits
to using Little-JIL, rather than a lower level programming
language for representing Containment Units. Another key
feature is that Little-JIL is an executable language, making it
more powerful than typical modeling languages. Little-JIL
system specifications are interpreted by the Juliette process
interpreter [1]. Juliette enables distributed execution of
systems, managing the necessary synchronization and
communication specified in Little-JIL. Juliette also supports
late binding of operational components and evaluators to
steps, thereby allowing for the continuous incorporation of
new Containment Units without the need to modify the Little-
JIL specification. In order to explain this we now introduce
the Little-JIL resource management capability.

Throws ;
MoSsensor,
MoTarget

v Obtain H:—:ading&

a

Throws :
NoSensor

v Select S:—:nsur&

v Run Cumpunent&

v Run Saccade-Foveate B—Pgm&v Process Sensor Data&

Throws :

TargetlLost

v Run & Monitor Cumpunent&

v Monitor Cumpunent&

TargetLost,
MoTarget,
SensorFault

v Monitor Sensurﬁ v Stop Run Cumpunentﬁ

Figure 2: Obtain Heading Containment Unit

Every Little-JIL step may specify a set of resources that it
requires in order to perform its assigned task. These
specifications may take the form of requests for specific
resources, but are more commonly requests for types of
resources. At runtime, the Juliette interpreter passes these
requests on to a separate resource allocation module. This
resource allocation module has the responsibility for
maintaining complete information about which resources are
allocated to support execution of the process, and which are
currently available. If requested resources are not available,
the resource manager indicates this, and the requesting step
fails and throws an exception that is handled as indicated
previously. If a resource is available, it is bound to the
requesting step and execution proceeds.

The change agent of a Containment Unit is expected to use this
facility, in that the operational components available for
substitution in the operational system are modeled as
resources. Their entries in the resource model further indicate
what other resources they depend upon. The change agent can
use this information to select the most appropriate operational
component given the currently available resources. It is
important to note that, as the resource model is separate from
the Containment Unit, it is free to evolve itself, independently
of the Containment Unit. Thus, we anticipate that new
operational components would be added to the resource model
as they become available. The change agent will thus have a
larger collection of components to select from at later
adaptation points. This assures that Containment Units
implemented through Little-JIL will be able to evolve in new
ways, as soon as new operational modules and their evaluators
are created and made available.

3. SAMPLE LITTLE-JIL CONTAINMENT
UNITS

In this section we present Little-JIL descriptions of three
Containment Units. The first two are designed for a robotic
sensor system. In this system, a room is equipped with a
collection of sensors. The sensors are placed in different parts
of a room. The room itself contains obstructions, such as
furniture and office partitions so that no sensor can “see” the
entire room. The goal of this system is to track the motion of a
person through the room, using a minimal number of sensors
for the task and switching sensors when necessary. These were
experiments in expressing Containment Units in Little-JIL,
but were never actually executed with sensors.

The third Containment Unit is for a simpler domain,
controlling a collection of lights, ensuring that an area stays
lit even if one or more lights fail. While the domain is simpler,
this example demonstrates that executing Containment Units
written in Little-JIL is feasible.

3.1 Obtain Heading Containment Unit

Figure 2 shows the Little-JIL description of the Obtain
Heading Containment Unit. This Containment Unit takes as
resources a set of sensors that it will use to track the target. It
begins by selecting a sensor to use in the “Select Sensor” step.
Once this is done, the “Run & Monitor Component” step is
executed. This step has two substeps, “Run Component” and
“Monitor Component”, which can be executed in parallel. The
“Run Component” step uses the sensor to obtain the heading
in the “Run Saccade-Foveate B-Pgm” step and reads the
heading in the “Process Sensor Data” step. This latter step

Throws:

NoPartition,
NoTarget
VTraLk Heading&
Throws: ColinearityFault
MoPartitieon HeSEnaan
%/ Partition Sensors /M, % GetData [
v Run Cumpunent& v Monitor Cumpunent_/_\
Throws :
ColinearityFault

%/ Use Partition & (e partition 5/ Triangulate Heading/, %7 Stop Monitor Componenty, %7 Monitor Colinearity/ Stop Run Component

Obtain Heading v Stop Run Cumpunent&

Figure 4: Track Heading Containment Unit

posts the heading read into a global data space so that the data
is available for use by whomever needs it.

While these steps are executing, the “Monitor Sensor” step can
execute and it also observes the sensor, but watches for the
error messages that can be reported. There are three errors
which are shown as the exceptions “Target Lost”, “No Target”,
and “Sensor Fault”. When an exception is thrown, it is first
handled by the “Monitor Component” step, which sends a
message so that the agents executing the “Run Saccade-
Foveate B-Pgm” and “Process Sensor Data” steps know to stop.
“Monitor Component” then rethrows the exception, which will
reach the “Obtain Heading” step. If the problem was a “No
Target” exception, the Containment Unit terminates, since we
currently have no way to deal with this kind of fault. On a
“Sensor Fault” a restart handler is encountered, causing the
Containment Unit to begin again by selecting a sensor in the
“Select Sensor” step. On a “Target Lost” exception, the
Containment Unit knows that there is a target to be tracked,
but it may be that the target is moving too fast to be tracked by
the current sensor. To handle this, a restart handler is used to
cause another, presumably faster, sensor to be selected. If
“Select Sensor” cannot select a sensor, because none are
working or a faster sensor is not available, the step throws a
“No Sensor” exception, which causes the Containment Unit to
terminate.

3.2 Track Heading Containment Unit

The Little-JIL description of the Track Heading Containment
Unit is shown in Figure 3. This Containment Unit takes as
input a set of sensors. It begins by dividing the sensors into
two disjoint subsets in the “Partition Sensors” step. Each of
these sensor sets will be used by an Obtain Heading
Containment Unit to determine a heading towards a target. If
no partitioning is possible (because there is only one sensor

available, for example), then this step throws a “No Partition”
exception and the Containment Unit terminates. If a
partitioning is possible, the “Get Data” step is started. This
step tries to run two tasks in parallel. The first is the “Run
Component” step, which invokes two instances of the Obtain
Heading Containment Unit and a step to compute the Heading
based on the outputs of the Obtain Heading Containment
Units.

The second is the “Monitor Component” step, which uses the
“Monitor Colinearity” step to detect if the target being tracked
has become colinear with the two sensors and that the target's
position cannot be determined. If this happens, this step
throws a “Colinearity Fault”. It is important to note that
colinearity cannot be detected or handled in either of the
Obtain Heading Containment Units, since each of these only
has access to a single heading. The Track Heading
Containment Unit has access to both headings and can
determine when colinearity occurs. This exception gets
propagated to the “Track Heading” step, which handles the
exception by restarting the “Track Heading” step, causing a
repartitioning of the sensors.

The Obtain Heading Containment Units may terminate with
one of two exceptions: “No Sensor” and “No Target”. If a “No
Target” exception occurs, then the Track Heading Containment
Unit will terminate. However, if a “No Sensor” exception
occurs, then this gets propagated up to the “Track Heading”
step, which invokes a restart handler, causing a repartitioning
to occur. In this way, the Track Heading Containment Unit can
handle a fault of one of the Obtain Heading Containment Units
it uses to perform its task.

®
v Lamp CuntruIA

Initialize

sends X180 messages

in X1@ message

out failed unit resource

® @
v Menitor SensurA v Handle FailureA v Handle RepairA

v Determine UnitAv Exclude Unit A Turn On Lamp CU

Figure S : Light Control Containment Unit

3.3 Lamp Control Containment Unit

The lamp control test bed is built using off-the-shelf X-10
home automation components. A Little-JIL agent serves as an
interface between the X-10 network and the Juliette run-time
system. The lights are actuated using control modules, and
modified “dusk/dawn” sensors are used to monitor the states
of the lamps. The resource manager keeps track of which lamps
are functional, or have failed, and models the relationships
between the sensors and the lamps. Resource queries are used
to select functional lamps and to determine which lamp has
failed in response to a report from a sensor.

The Little-JIL description of a Lamp Control Containment Unit
is shown in Figure 4. This Containment Unit seeks to ensure
that an area is illuminated by guaranteeing that one of a set of
lamps is always illuminated. The Containment Unit takes as
input the set of lamps and begins by initializing the
configuration to ensure that one of the lamps in the set is
turned on (the “Initialize” step), and then begins to monitor
the sensors associated with the lamps. When a sensor detects
that the illuminated lamp fails, the containment unit reacts by
executing the “Handle Failure” step. This step determines
which lamp failed by examining the failure message, removes
the failed lamp from the available resources, and finally uses
“Turn On Lamp CU” to turn on an alternate lamp from the
available resources. “Turn On Lamp CU” is not shown here,
but is similar to the Lighting Control Containment Unit
presented in [4]. For simplicity, "Handle Repair" is elided in
this example. It is similar to "Handle Failure" except that the
repaired unit is added to the resource pool.

4. FUTURE WORK

There are several key directions in which we expect to take this
work. A central focus of all of them is to be able to reason
effectively about the ability of Containment Units to be relied
upon to actually contain and respond to faults.

One such direction is to continue our work in analysis of
Containment Units. In our previous work we have applied
finite state verification tools and technologies to demonstrate
that Containment Units do indeed respond as claimed to
detected needs for adaptation [3]. This early work seems to us
to have demonstrated the feasibility of such reasoning. But
this work has succeeded in verifying only a modest set of

adaptation properties and responses. In future work we will
investigate the ability to do more powerful reasoning about
wider classes of properties. We expect that this work will
indicate the need for different and more powerful reasoning
tools and technologies.

Related to the above, we will also investigate extensions to the
specification formalisms for Containment Units. One area in
which this seems particularly important is the specification of
resources. We are currently adding increasingly
comprehensive resource specifications, focusing on
specification of relations and aggregations among resources.
We expect this to enable us to specify Containment Units more
accurately, to select operational components more effectively,
and to perform further reasoning about Containment Units.

Also, we expect to continue our focus on Containment Units
designed to deal with physical resources. Our early work with
robotics convinces wus that this is a fertile area of
investigation, as it deals with diverse devices having a rich
range of failure modes. It is our belief that future systems will
be interesting and complex synergies among software systems,
hardware devices, and humans, with each having an important
role to play in assuring adequate response to failures. We
expect our Containment Units will need to be correspondingly
complex and diverse. Thus our work will be broad enough to
encompass responses to failures in all three domains.

Finally, this work is already suggesting that specification of
Containment Units using Little-JIL indicates the need for
changes in the language itself. Thus, as we continue this work
we expect to find that Little-JIL itself will need to incorporate
changed and new semantic features. One direction we will
investigate is the ability to customize Little-JIL to support
domain-specific abstractions such as Containment Units more
directly.

5. ACKNOWLEDGMENTS

We wish to thank Lori Clarke for many helpful discussions on
the analysis of Containment Units. Aaron Cass has been
involved in discussions of Containment Units and also
helpful as the implementor of Juliette. Rodion Podorozhny,
Anoop George Ninan, and Joel Sieh have contributed through
their work on resource management.

This research was partially supported by the Air Force
Research Laboratory/IFTD and the Defense Advanced Research
Projects Agency under Contract F30602-97-2-0032, the U.S.
Department of Defense/Army and the Defense Advanced
Research Projects Agency under Contract DAAHO01-00-C-
R231, the National Science Foundation under Grant CCR-
9708184 and Grant CCR-9988254, and IBM Faculty
Partnership Awards. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, the Air Force Research Laboratory/IFTD, the
U. S. Army, the U.S. Dept. of Defense, the U.S. Government, the
National Science Foundation, or of IBM.

6. REFERENCES

[1] Cass, A. G., Lemer, B. S., McCall, E. K., Osterweil, L. J. and
Wise, A. Logically central, physically distributed control
in a process runtime environment, TR 99-65, University
of Massachusetts, Amherst, Department of Computer
Science, 1999, ftp://ftp.cs.umass.edu/pub/
techrept/techreport/1999/UM-CS-1999-065.ps

[2] Cass, A. G., Lerner, B. S., McCall, E. K., Osterweil, L. J.,
Sutton, Jr., S. M. and Wise, A. Little-JIL/Juliette: A
process definition language and interpreter, in
Proceedings of the 22" International Conference on
Software Engineering (Limerick, Ireland, June 2000), 754-
757.

(3]

(4]

(5]

(6]

[7]

(8]

Cheng, S., Garlan, D., Schmerl, B., Sousa, J. P., Spitznagel,
B., and Steenkiste, P. Using architectural style as a basis
for system self-repair, in Proceedings of the Working
IEEE/IFIP Conference on Software Architecture 2002
(Montreal, August 2002).

Cobleigh, J. M., Osterweil, L. J., Wise, A. and Lerner, B. S.
Containment Units: A hierarchically composable
architecture for adaptive systems, in Proceedings of the
10™ International Symposium on the Foundations of
Software Engineering (Charleston, South Carolina,
November 2002).

Dellarocas, C., Klein, M., and Shrobe, H., An architecture
for constructing self-evolving software systems, in the
Proceedings of the 3™ International Software Architecture
Workshop (Orlando, Florida, November 1998).

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D.,
Johnson, G., Medvidovic, N., Quillici, A., Rosenblum, D.
S., and Wolf, A. L. An architecture-based approach to self-
adaptive software, IEEE Intelligent Systems (May/June
1999), 54-62.

Wermelinger, M., Lopes, A., Fiadeiro, J. L. A graph based
architectural (re)configuration language, in Proceedings
of the Joint 8" European Software Engineering
Conference and the 9" Symposium on the Foundations of
Software Engineering (Vienna, September 2001), 21-32.

Wise, A., Little-JIL 1.0 language report, TR 98-24,
University of Massachusetts, Amherst, Department of
Computer Science, 1998, ftp://ftp.cs.umass.edu/pub/
techrept/techreport/1998/UM-CS-1998-024.ps

