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Abstract

QGRAPH is a new visual language for querying and updating graph databases. In QGRAPH the user can draw a
query consisting of some vertices and edges with specified relations between their attributes. The response will be
the collection of all subgraphs of the database that have the desired pattern. QGRAPH is very useful for knowledge
discovery. QGRAPH has a powerful and elegant counting feature that enables the user to easily specify how many of
certain objects and links should exist in order for a subgraph to match a query. QGRAPH has a clean formal semantics
which we describe in detail. We show that QGRAPH has expressive power corresponding to a well-defined subset of
FO(COUNT), i.e., first-order logic with counting quantifiers.

1 Introduction
QGRAPH is a new visual language for querying and updating graph databases. A key feature of QGRAPH is that the
user can draw a query consisting of vertices and edges with specified relations between their attributes. The response
will be the collection of all subgraphs of the database that have the desired pattern.

QGRAPH is a full-fledged query and update language which can create new objects and links and can update the
attributes of existing objects and links wherever a subgraph matching a given query pattern occurs. QGRAPH has
a powerful and elegant counting feature (numeric annotation) that enables the user to easily specify how many of
certain objects and links should exist in order for a subgraph to match a query. QGRAPH is designed to apply to graph
databases with multiple attributes attached to objects and links. Each attribute consists of a set of values.

QGRAPH has a clean formal semantics which we describe in detail (Section 3). When queries are written using
such a simple, intuitive tool it is crucial to give precise semantics, so that the interpretation of a query does not depend
on possibly diverging intuitions. We show that QGRAPH has expressive power corresponding to a well-defined subset
of FO(COUNT), i.e., first-order logic with counting quantifiers. QGRAPH bears some relation to another visual query
language, GraphLog, which, in the presence of ordering, has query expressibility FO TC NSPACE [CM].
There are also weaker relationships with languages designed to query XML, or semi-structured data [AQM, ABS].

We have designed QGRAPH to be useful for knowledge discovery and data mining in large graph databases. Our
knowledge discovery algorithms [JN, NJ] construct probabilistic models of the dependencies among the attributes of
objects and links in a local neighborhood. We also wish to support the ad hoc exploration of databases that is essen-
tial for effective knowledge discovery in practical applications. These uses are enabled because QGRAPH provides
numerical annotations, returns complex objects in response to queries, and admits very efficient query evaluation.

In Section 5 we discuss some future work in which we plan to optimize QGRAPH query evaluation given statistical
information about the database. We discuss plans to allow the QGRAPH interface to estimate the size of matches and
time needed to produce them. We will also consider adding stronger features such as transitive closure in this context,
i.e., with warnings to the user when the processing of a query might be prohibitive.

2 Language description
A QGRAPH query is a labeled graph in which the vertices correspond to objects and the edges to links. We use the
terms vertex and edge when referring to the query, object and link when referring to the database. The query specifies
the desired structure of vertices and edges. It may also place boolean conditions on the attribute values of matching
objects and links, as well as global constraints relating one object or link to another. Each vertex and edge of a
QGRAPH query has a unique label. The query must be a connected graph.

A query consists ofmatch vertices and edges and optional update vertices and edges. The former determine which
subgraphs in the graph database constitute a match for the query. The latter determine what modifications are made
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Figure 1: Graphical data fragment from a movie database
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X

Figure 2: Find all Person, ActorIn, Movie subgraphs

to the matching subgraphs. A query with only match vertices and edges serves to identify and display a collection
of subgraphs. To match the query, a subgraph must have the correct structure and satisfy all the boolean conditions
and constraints. A query with both match and update vertices and edges can be used for attribute calculation and for
structural modification of the database. The query processor first finds the matching subgraphs using the query’s match
elements, then makes changes to those subgraphs as indicated by the query’s update elements.

Figure 1 is an example of the graph databases for which we designed QGRAPH. Our database consists of objects,
binary links, and attributes that record features of the object or link. An object or link can have zero or more attributes.
All attributes are set-valued. For example, a person can have multiple names. The figure shows a fragment from a
database about movies. The labels on the objects indicate their name, and the labels on links indicate their type. Not
shown in the figure are other attributes of objects, such as the year a movie was released or the location of a studio.
Similarly, links could have attributes, such as the salary an actor received for starring in a given movie.

2.1 Conditions
The query in Figure 2 finds all subgraphs with an ActorIn link between a Person and a Movie. The type restric-
tions are expressed by conditions on the two vertices and one edge of the query. In this example only one attribute is
tested in each condition; in general a condition can be any boolean combination of restrictions on attribute values.
A, B, and X are unique labels assigned to each vertex and edge in the query. We use letters at the beginning of

the alphabet for vertices, and those from the end of the alphabet for edges. The labels have no intrinsic meaning and
do not indicate anything about the type of object or link that would match the labeled element. Where desired, type
restrictions are enforced with conditions on vertices and edges.

For the sample database of Figure 1, this query produces 8 matches (Figure 3). Unlike the SELECT statement
in SQL, a QGRAPH query does not specify which attributes of matching objects and links should be included in the
result. Evaluating a QGRAPH query returns a collection of all the matching subgraphs from the database. The user can
examine any subgraph in the resulting collection, and any object or link in that subgraph, with the user interface. All
the object and link attributes, not just those mentioned in the query conditions, are available for inspection.

2.2 Numeric annotations
To group the actors together for each movie, we add a numeric annotation to the Person vertex (Figure 4). Executing
this query against the database produces 4 matches (Figure 5), one for each movie, compared with 8 matches for the
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A B

ObjType = Person !
Gender = Female 

LinkType = ActorIn

ObjType = Award !
AwardType = Oscar

X

[0..2]

C
LinkType = Awarded

Y

ObjType = Movie !
Genre = Mystery

[0]

Figure 6: Mysteries with fewer than 3 female actors and no Oscar awards

A B
Y

X

[0]

ObjType = Movie
ObjType = Award !
AwardType = Oscar !
Category = BestPicture !
Year = 1997

LinkType = Awarded

LinkType = Nominated

Figure 7: Movies nominated for Best Picture in 1997 that did not win

Figure 4 to be [1..2] instead of [1..], then the subgraph on the right-hand side of 5 would no longer be a match for the
query. The subgraphs on the left-hand side would still be matches.

The edge X of Figure 4 also has an annotation . An edge incident to an annotated vertex must itself be
annotated. The annotation on the vertex takes precedence over the annotation on the edge. We first find all the actors
for a specific movie, then for each of those actors we find all the ActorIn links that connect the actor to the movie.
For example, an actor who played multiple roles in a particular movie might have multiple ActorIn links to the
same Movie object. The annotation groups all these links into a single match. To avoid clutter in the following
examples, we have omitted the annotation from the edges adjacent to annotated vertices. The annotation is
implicit unless some other annotation is specified on the edge.

The query of Figure 6 selects mystery movies that never received an Oscar and have fewer than three female actors.
A movie that has won no awards at all, or has won awards that are not Oscars, could match this query. The movie
Sleuth (1972) is a match. Sleuth had only one female actor (Eve Channing) and won no Oscars, although it did win
an Edgar Allan Poe Award and a New York Film Critics Circle Award. If we wanted only movies that have won no
awards at all, we would drop the conjunct AwardType Oscar from the condition on node C.

A negated element (annotation ) does not show up in the results of a query, because a subgraph matches the
query only if it has no object (or link) matching the negated vertex (or edge). For the query of Figure 6, no Award
objects or Awarded links would appear in the results. Person objects and ActorIn links would appear only in
matches for movies that had exactly one or two female actors, such as Sleuth. They would not appear in matches for
movies that had no female actors.

The query of Figure 7 selects movies that were nominated for the Best Picture Oscar in 1997 but did not win. This
query illustrates a numeric annotation on a link. The movies As Good as It Gets, The Full Monty, Good Will Hunting,
and L.A. Confidentialmatch this query.

2.3 Projecting over subgraph structure
For many queries, the user does not need to see the entire matching subgraph. For the query of Figure 7, there is no
need to include the Award object and the Nominated link in every subgraph of the resulting collection. The focus
of interest is the movie. To see only Movie objects in the results, we highlight vertexA in the query (leaving the other
vertex and the edges unhighlighted). This highlighting is analogous to the projection operator in relational algebra. In
QGRAPH, we project over structures by highlighting the elements that interest us. Highlighting does not change how
the query is evaluated against the database. It changes how the matching subgraphs are displayed. Only those objects
and links that match highlighted vertices and edges are displayed.
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Figure 8: Remake, original pairs where one won Best Picture and the other did not

A

B D

C

X

W

Z

Y

ObjType = Movie

ObjType = MovieObjType = Person

ObjType = Person

LinkType = ActorIn

LinkType = ActorIn

LinkType = DirectorOf

LinkType = DirectorOf

[1..]

[1..]

Figure 9: Pairs of people such that each has acted in movies directed by the other

2.4 Undirected edges
The data model underlying QGRAPH is a directed graph; it has no undirected links. Nevertheless, QGRAPH allows
undirected edges for queries in which we do not know, or choose to ignore, the directionality of the relationship. For
example, in the movie database the RemakeOf link goes from a new remake to the older original. Suppose we want
to find remake, original pairs such that one of the two movies received an Oscar for Best Picture while the other
did not. This query can be succinctly expressed with an undirected RemakeOf edge between the two Movie vertices
(Figure 8). The silent classic Ben-Hur (1925) and the 1959 remake starring Charlton Heston match this query. The
1959 film won the Oscar for Best Picture; the original predated the Oscar awards.

2.5 Constraints
The query of Figure 9 selects pairs of people such that each has acted in one or more movies directed by the other.
This query matches the database fragment shown in Figure 10. Burt Reynolds directed The End (1978) in which David
Steinberg acted, and Steinberg directed Paternity (1981) in which Reynolds acted.

This query also matches any director who has acted in his own movies. Multiple vertices of a query can match
a single database object provided the object satisfies the conditions on all the vertices. Likewise two or more edges
having the same start- and endpoints can match a single link in the database. In the case of an actor-director, the
vertices A and B match the same Person, C and D the same Movie, W and X the same ActorIn link, Y and Z
the same DirectorOf link. For example, this query would match John Sayles and all the films he both directed

DirectorOfBurt Reynolds

Paternity

The End

ActorIn

ActorIn

DirectorOfDavid Steinberg

Figure 10: Database fragment for Burt Reynolds and David Steinberg
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A B

ObjType = Person ObjType = Award

X
C

LinkType = Awarded

Y
ObjType = Movie

[3..]

[1..]

LinkType = DirectorOf

Figure 11: Directors of movies that have won three or more awards each

and appeared in: Return of the Secaucus 7 (1980), Lianna (1983), The Brother from Another Planet (1984),Matewan
(1987), Eight Men Out (1988), City of Hope (1991), Passion Fish (1992).

To eliminate the actor-director matches, we add two inequality constraints to the query: A B and C D.
(Inequality constraints on the vertices force the edges to be distinct as well.) Inequality constraints are necessary
whenever we want to ensure that two vertices (or edges) map to distinct database objects (or links), unless the con-
ditions on the two query elements are incompatible anyway. In addition to inequality constraints, a constraint can
relate attribute values of one object or link to those of another in the matching subgraph. For example, suppose the
ActorIn link has a Salary attribute recording the amount the actor earned for that appearance. With constraints,
we can compare the salaries of two different actors, or the salaries of the same actor for two different movies.

Both conditions and constraints restrict the matches to a query. Conditions on a vertex (or edge) involve only the
attributes of the corresponding object (or link). Constraints relate one vertex (or edge) of the query to another vertex
(or edge), by asserting that the two are distinct or by comparing their attribute values. No inequality or other constraint
is allowed between two vertices that both have numeric annotations, for the same reason that two vertices joined by an
edge cannot both be annotated. Likewise no constraint may mention two annotated edges. However, a constraint may
mention an annotated vertex and an annotated edge that is incident to that vertex.

2.6 Subqueries and Union
A subquery is a connected subgraph of vertices and edges that can be treated as a logical unit. It has one or more edges
that leave the subquery box and attach the subquery to some vertex or vertices of the main query (or a higher level
subquery). A subquery enables the user to attach a numeric annotation to a connected group of vertices and edges,
instead of just a single vertex or edge. A query or subquery may also be written as the union of two or more queries as
long as they all have identically named unannotated vertices and edges.

Figure 11 shows a query that finds people who have directed very successful movies, where a movie is considered
“very successful” if it has won three or more awards. The numeric annotation on the subquery box will group
together all the successful movies for a given director into one match for the query. Without the subquery box, one
match would be returned for each successful movie of each director. The director Steven Spielberg matches this query.
His very successful movies include Raiders of the Lost Ark (1981), 4 Oscars; E.T. the Extra-Terrestrial (1982), 4
Oscars; Jurassic Park (1993), 3 Oscars; Schindler’s List (1993), 7 Oscars; and Saving Private Ryan (1998), 5 Oscars.
The entire subgraph shown in Figure 12 constitutes one match for the query in Figure 11.

2.7 Data transformation
In addition to its convenient features for data extraction, QGRAPH is a flexible language for data transformation in
graph databases. We can add new objects, links, and attributes, or delete existing ones. Conceptually, QGRAPH query
processing comprises two phases: match and update. The match phase determines which subgraphs of the database
are selected by the query’s match vertices and edges (with their associated conditions, constraints, and numeric anno-
tations). The update phase performs all indicated updates in parallel to the selected subgraphs. Applying one update
cannot create a new match for another update within the same query.
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A B

ObjType = Person ObjType = Award

X
C

LinkType = Awarded

Y
ObjType = Movie

[3..]

[i := 1..]

LinkType = DirectorOf
MeasureSuccess := i

Figure 13: Add measure of success as attribute of director

A B CX Y
ObjType=Person ObjType=Movie ObjType=Studio

LinkType=ActorIn LinkType=StudioOf

LinkType:=EmployeeOf
TotalSalary:=SUM(X.Salary)

[1..]

Figure 14: Add link from actor to studio with total salary

2.9 Counter variables in attribute updates
Figure 13 shows a variation on the query from Figure 11 in which we store the number of very successful movies as
a new attribute of the director. The numeric annotation on the subquery box illustrates the use of a counter
variable that is set to the number of matches for the subquery. Any or all of the numeric annotations in a query may be
augmented with counter variables, so long as the variable names are unique within the query. The variable counts the
number of movies by this director that have received three or more awards. This value is copied into a new attribute
MeasureSuccess on the Person object. The italic font and assignment operator indicate an attribute update.

2.10 Adding a link
The query of Figure 14 creates an EmployeeOf link between an actor and a studio if the actor has appeared in movies
made by that studio. The query calculates the total salary the actor earned from all his appearances in the studio’s
movies and records the figure as as an attribute of the new link. This example illustrates the use of an aggregation
function to calculate the actor’s total salary. Aggregation functions such as SUM, AVG, MIN, and MAX may be used
in a QGRAPH constraint or attribute update. The expression SUM(X.Salary) calculates the sum of the Salary
attribute for all the ActorIn links X connecting the actor to a movie made by the studio. The numeric annotation on
the movie vertex is essential for the calculation of TotalSalary. The annotation groups together into one match all
the movies for a given actor, studio pair. Without the numeric annotation, a separate link from actor to studio would
be created for each actor, movie, studio triple, and the value of the TotalSalary attribute on the link would be
the salary for that particular movie.

A new EmployeeOf link is created for each actor, studio pair that matches the query. The salary is summed
over just the movies involving that actor, studio pair. If the actor has worked for several different studios, the query
creates an EmployeeOf link to each studio with a corresponding value for the TotalSalary attribute. If we
wanted to create the new link only in cases where the actor had earned one million dollars or more working for the
studio, we would add a constraint to the query: SUM(X.Salary) .

2.11 Adding an object
QGRAPH also allows the creation of new objects. To add an object to the database, we must also add one or more links
to connect the new object to existing ones. Figure 15 shows how the manager of a cinema complex would create an
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A B CX Y
Name=Faye Dunaway ObjType=Movie ObjType=Award

LinkType=ActorIn LinkType=Awarded

ObjType:=FilmSeries

[2..]
LinkType:=InSeries

[1..]

Figure 15: Film series of Faye Dunaway movies with two or more awards

object representing a film series. The manager wants to present a retrospective of Faye Dunaway’s work. To weed out
the less appealing films, she selects only those that received at least two awards. Each of the Faye Dunaway movies
is connected to the FilmSeries object by a InSeries link. This query adds one new object but as many links as
there are movies in the database that satisfy the awards criterion. If we augmented the database fragment of Figure 1
with award information for all its movies, evaluating this query would result in a film series with three items: Network,
and both versions of The Thomas Crown Affair (1968 and 1999). The Handmaid’s Tale won only one award.

3 QGRAPH semantics
We now present a complete formal semantics for the match portion of the QGRAPH language in first order logic with
two sorts: objects and links. Having a formal semantics is essential for QGRAPH to be understood consistently by
a wide variety of users. The diagrams of QGRAPH and other visual languages seem intuitive, but different users
might have divergent intuitions and interpret the same diagram in different ways. The formal semantics of QGRAPH
establishes the authoritative interpretation for each query.

We use a two-sorted logic: are object variables; are link variables. A query has

unannotated vertices annotated vertices
unannotated edges annotated edges

subqueries.

Edges that cross a subquery boundary are considered part of the subquery. These edges must be annotated because the
subquery is annotated.

Higher-order semantics is the most natural way to represent the meaning of a QGRAPH query. Subqueries are
defined inductively and the meaning of a subquery is the same as if it were a query all by itself. However, the answer
to a QGRAPH query is a set of graphs, so the real semantics of QGRAPH is simply the flattening of the higher-order
semantics. stands for higher-order semantics and for flat semantics. Here “flatten” replaces each subquery,

, recursively with the sets of all vertices and edges that occur in
any instance of . The meaning of the top level query is flatten .

The semantics of a QGRAPH query is defined inductively as follows:

1 Add unannotated vertex : Add to the result tuple, and replace by . is the default condition,
initially just .

2 Add annotated vertex : Add to the result tuple, and replace by where
. We use the notation to mean that the number of ’s such that is between and .

3 Add directed, unannotated edge from unannotated vertex to unannotated vertex : Add to the result tuple,
and replace by . An undirected edge requires a trivial change. If is an
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undirected edge between vertices and (annotated or not), replace by
throughout the semantics. Everything we write hereafter for directed

edges applies equally to undirected edges.

4 Add directed, annotated edge from unannotated vertex to unannotated vertex : Add to the result
tuple, and replace by where .

5 Add directed, annotated edge from unannotated vertex to annotated vertex : Add to the result tuple,
replace by , and let

. The occurrence of in the second formula refers to the new . (If is from to
then just switch and in the above.)

6 Replace any condition by : Just replace throughout semantics by .

Constraints between two annotated vertices or two annotated edges are illegal in QGRAPH. In general, a constraint
can involve at most one annotated vertex or annotated edge. However, a constraint can mention an annotated vertex
and an adjacent annotated edge. This is the only form of constraint that involves more than one annotated element.

7 Add constraint that does not refer to any annotated edge or vertex: Replace by .

8 Add constraint that depends on annotated vertex B and no annotated edge: Replace by .

9 Add constraint that depends on annotated edge Y (and perhaps on adjacent annotated vertex B): Replace by
.

10 Add subquery : Add to the result tuple, and replace by

are the unannotated vertices and edges within the subquery .

11 Union of queries: If two queries (or subqueries) have the same unannotated vertices and edges, i.e., and
with , then

If the same annotated vertex or edge, say , occurs in both and , then the new would be
.

The example in Figure 16 illustrates the semantics of a simple query with a constraint. , and are
conditions on , , and , respectively. The constraint involves both vertices and the edge.

where

A B
Y

[i..j]
[k..l]

"A "Y

"B

#

Figure 16: Simple query with constraint involvingA, Y, and B
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It is interesting to note that a QGRAPH query that has no subqueries has depth of nesting of quantifiers at most
two, corresponding to the existence of an annotated vertex, , and within that an annotated edge, . The only way
to write queries with a greater depth of quantification is by nesting subqueries. For this reason, a relatively simple
looking query tends to be relatively simple to evaluate. We next discuss the evaluation of QGRAPH queries.

5 Evaluation of QGRAPH queries
It is relatively straight-forward to evaluate a QGRAPH query, , using the semantics that we described in Section 3.
We start by choosing an unannotated vertex . We find all the objects in the database that match . We next choose
some unannotated edge, , adjacent to , and the other adjacent vertex . For each object in our current match for
, we follow its adjacency list to find all links satisfying that are also adjacent to an object satisfying . We

continue in this way until all tuples of unannotated vertices and edges have their potential matches.
Next, for each edge, , with annotation , adjacent to an unannotated vertex, , and another vertex , we

collect the set of links satisfying whose other endpoints satisfy . These should be maintained in a B-tree, sorted
by the pair of endpoints, with the current count of such links for each pair of endpoints. If any of these counts are less
than the lower limit , then the associated links are removed. After all remaining links and constraints for the endpoints
have been evaluated, those links with counts greater than are also removed.

Edges from into a subquery, , are evaluated in a similar way, with a B-tree maintaining the counts of the
tuples of unannotated objects in , for each tuple of annotated vertices including that have edges into .

In future work, we plan to maintain statistical information concerning our database. We will use this information
to automatically estimate the size of QGRAPH queries, and report these sizes to the user. We will make use of these
estimates to decide in which order to evaluate the queries.
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