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Abstract

This paper presents a distributed, incremental approach to self-
organization through bottom-up coalition formation applied to a dis-
tributed sensor network. The agents engage in negotiations that lead
to more efficient allocations of resources and better performance when
tasks are assigned to the organization as a whole.

We take advantage of the cooperativeness of the system by allowing
the agents to share information before they allocate resources. We
have tested a range of protocols that agents can implement in order
to make decisions that will affect the coalition formation. On one
extreme these protocols are based on local utility computations, where
each agent negotiates based on its own local perspective. From there,
due to the cooperative character of the system, there is a continuum
of additional protocols that can be studied. These protocols are based
on marginal social utility, where each agent bases its decisions on the
combination of its marginal utility and that of others. We present a
formal framework that allows us to quantify how social an agent can
be and how the choice of a certain level affects the decisions made by
the agents and the global utility of the organization obtained.

* A version of this paper is under review for The Second International Joint Conference
on Autonomous Agents and Multi Agent Systems (AAMAS2003 Melbourne, Australia).



Our results show that by implementing more social agents, we ob-
tain an organization with a high global utility even though the agents
do not negotiate over complex contracts. Our algorithm is incremen-
tal and therefore the organization that evolves can adapt and stabilize
even if some of the agents become inactive during task execution.

1 Introduction

The process of self-organization in a large-scale, open system is of key im-
portance to the performance of the system as a whole. An appropriate
organization can limit control and communication costs thus significantly
improving system performance. We have observed improved system per-
formance with an organization consisting of as few as sixteen agents [3].
Re-organization is necessary during system operation when agents and re-
sources are removed or added, or when their performance characteristics are
changed. In this paper we present a distributed, incremental approach to
self-organization through bottom-up coalition formation that we have ap-
plied to the distributed sensor network of the EW Challenge Problem [3].
The process uses negotiation to enable managers of coalitions to refine the
set of coalitions in the system to achieve efficient allocations of sensors iter-
atively and adapt dynamically to environmental changes.

Horling et al. [3] give a detailed description of the EW Challenge Prob-
lem domain. In brief, it consists of a distributed network of homogeneous
sensor agents distributed throughout a region. The sensor agents are fixed
and communicate using an eight-channel RF system in which an agent can-
not use more than one channel simultaneously. An organization in such a
domain is important to facilitate the efficient assignment of tracking tasks
to particular agents and to limit contention on communication channels.
We employ a one-level hierarchy in which sensor agents are distributively
divided into sectors, each of which has a manager. The manager monitors
what is currently being tracked by its sector and, as new data arises, de-
termines whether it needs to assign a new tracking task to an agent in its
sector. To do this the manager must model what is currently being tracked
and the internal states of the agents in its sector. Furthermore, when it
assigns tracking tasks, the manager attempts to minimize contention on any
one channel. Therefore, the division of the agents into sectors helps to mini-
mize not only the computational load on the managers but also the number
of messages sent on any one channel. For our self-organization techniques,
we assume all sector managers communicate with each other over channel
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Figure 1: EWChallenge Domain

zero and that the sector managers assign channels other than zero to agents
as they enter the sector.

Figure 1 illustrates the domain. The “clouds” represent sectors. The
empty circles, such as S12, are sector managers and the filled-in circles are
sensor agents that are not managers. The areas of overlap show where the
regions covered by one sector intersect with those covered by another. Note
that the agents located in an overlap belong only to one sector although
they can request sensor data from an agent in another sector. In the figure,
S7 and S16 both belong to Sector 3. In order best to track a vehicle, at
least three sensor agents are required to triangulate the position of a vehicle
moving through the region. In addition, although each agent has three
sensor heads and can sense with only one head at a time, for the purposes
of this paper we assume agents have a viewable area of 360°.

We also assume that there is an overhead associated with passing a
tracking task from one sector to another and that accessing sensor data
of agents outside of the sector responsible for tracking a vehicle may incur
communication delays due to multiple hops or channel contention. It is



desirable, therefore, for a sector to track well for as long as possible to
minimize how often a tracking task is passed off to another sector, how often
a tracking agent must access sensor data from agents in different sectors, and
how often tracking agents must negotiate over sensor allocation.

Given the need for an organization such as that described above, the mo-
tivation for applying self-organization techniques is the need to move from
predefined, hand-generated configurations of sensors and organizational re-
lationships to arbitrary configurations and dynamic construction of organi-
zational structure. To achieve this, we use a bottom-up coalition formation
technique to enable the agents in the system to construct the organization
dynamically in a decentralized manner.

Coalition formation is the process whereby agents in a large system faced
with a set of tasks partition themselves such that system performance is
greatest. In effect, through coalition formation, the system moves from be-
ing a set of single agents to a set of either disjoint or overlapping coalitions
of agents. Our algorithm enables self-organization through coalition forma-
tion by having the agents discover their organizational relationships while
partitioning themselves around the subtasks of a high-level task.

Our approach is similar to that of Shehory and Kraus [8, 9] in that it
applies to a cooperative system of agents in an environment that is not
super-additive. We assume that there is an overhead associated with each
new member of a coalition and that a coalition reaches a point beyond
which it is no longer beneficial to add a member. Beyond these common
assumptions our approach varies considerably from that of [8, 9]. In their
work agents have a more global view of other agents in the system. The
agents may not be aware of every other agent, but the assumption is that
the agents know of a large number of other agents. Given this knowledge,
each agent calculates a subset of the possible coalitions it may belong to.
The system then engages in a greedy process of choosing coalitions based on
their computed coalitional values. If the population changes, the coalition
formation process must restart. In contrast, our approach is an incremental,
local one in which agents need not know of that many other agents around
them and the process of coalition formation can continue and adapt if the
population changes. Another difference is that Shehory and Kraus [9] allow
for overlapping coalitions. In our current work, we restrict our attention to
disjoint coalitions although for future work, we plan to extend our techniques
to overlapping coalitions where sensor agents that can see into multiple
sectors may have membership in more than one sector.

Two other sets of related work are [2] and [4]. While the work of Horling



et al. [2] does involve a local adaptation process, their process uses eval-
uations of system performance to adapt an organization. Organizational
adaptation in the work of Ishida et al. [4] is based on the tasks that enter
the system and the current load on the system. Unlike our approach, neither
is an iterative search process designed to converge on a good organization.
The adaptations may be revised as the situation changes, but the process
of adapting is a single shot.

Finally, the classic coalition formation problem can be formulated as
follows: Given a fixed set of tasks and a set of cooperative agents, how can
we best pick from those agents the groups most well suited to handle those
tasks? Our problem is slightly different and resembles the work in Goldman
and Rosenschein [1] aimed at partitioning information domains in order to
facilitate future information retrieval requests. In our distributed sensor
network, the system is given the high-level task of providing coverage for
a region. This task encompasses the future tracking tasks that the system
will need to perform but does not know a priori. The goal is to subdivide
the region and assign portions of it to sectors (coalitions) of agents so that
each sector is best able to perform the tracking tasks that it encounters.

Sections 2 and 3 present our model. Section 4 describes empirical results
from testing different negotiation protocols that lead to different stable orga-
nizations. In Section 4, we also analyze the performance of the organizations
evolved in terms of the number of nodes used to track and the message traf-
fic that sectors incur when actual tracking tasks are assigned to the sensors.
We conclude in Section 6 after presenting a formal framework in Section 5
that allows us to analyze the decisions that the agents make as a function
of the value of the information they hold. We distinguish between local in-
formation agents and ksocial agents who may be able to obtain information
about k other transactions happening at the same time.

2 Problem Description

In order to formalize our problem, we present the following assumptions and
definitions.
2.1 Assumptions

In addition to the assumptions stated in the Introduction, we make the
following assumptions:



e Although agents are arbitrarily distributed, there are a sufficient num-
ber of them and they are arranged such that every point in the region
assigned to the system has at least one sensor that can see it.

e Although agents may enter or leave the system at any time, the agent
population does not vary dramatically from one instance to the next.
If the population were to fluctuate wildly, attempting to build organi-
zational structure would be futile.

e A good sector has between eight and ten agents in it and at least three
agents can see every point in the region it is responsible for.

2.2 Definitions

At any time t we have a set of agents in the system, A = {44, As,...A,}, and
each agent A; has a vector of capabilities B = {b, b}, ..., b} }. For example,
in the sensor domain presented, each agent controls the sensor associated
with it and the capabilities are the regions each is able to cover. Differ-
ent organizations can result from a given set A of agents with their corre-
sponding capabilities. These organizations are instantiations of organization
templates as defined below:

Definition 1 (An Organization Template) — An organization template
is given by 1 ) the topology of the organization, 2) the communication model,

3) the cost model and 4) a vector of capabilities that are required to be a sec-

tor manager.

Our implementation instantiates a simple template in which agent orga-
nizations are built using a single level hierarchy.

A sector S; is a coalition of agents drawn from A that work together to
accomplish a task. A sector manager SM is a representative of its sector
that is responsible for handling negotiations with other sectors (as well as
task and channel allocation within the sector). The manager is chosen by
the other agents and may not remain constant throughout the life of the
sector. Since the agents in A are homogeneous, any agent can serve as a
sector manager.

Each sector has an area defined by the viewable areas of the sensor agents
that it is responsible for as shown in the cloud in Figure 1. We denote this
as Areag;. Each sector has a utility value Ug, that is a function of the
number of agents in the sector and how well the sector can provide coverage



of the sub-region it is responsible for. For instance, a sector with low utility
may have eight agents, but they are so spread out that it is impossible to
triangulate the position of any vehicles traveling though it.

The coalition formation process results in a set of sectors called a coali-
tion structure [6] C'S = {S1, So, ..., Sm } where S; is the i*! sector in C'S. A
coalition structure’s global utility is the sum of the utilities of the individual
sectors in it:

Ucs = Y Us,
ieC'S

When a high-level task T is assigned to the system, the coalition forma-
tion process decomposes T' into subtasks {t1,t2, ..., t, } which may overlap
and are assigned to the different sectors. In the sensor network, two cover-
age subtasks overlap if Areag;, N Areas; # (. Figure 1 shows that all three
sectors illustrated have areas of overlap.

Each agent is able to perform a portion of the subtask assigned to the
sector based on its capabilities. In the sensor network example, an agent is
able to provide partial coverage of the region its sector is responsible for.

With the assumptions and definitions above, we can formulate the self-
organization problem as follows: Given a high-level task T and a set of
agents A, subdivide T into m subtasks {t1,t2, ..., t,} and A into a coalition
structure C'S = {51, So, ..., Si } of m sectors such that each of the subtasks
is assigned to one sector, where |J.S; = A and Vi # j,5;NS; = 0 and Ucg
is maximal.

2.3 Market Analogy Definitions

Because our approach involves an iterative negotiation process, comparing
the system of agents to a marketplace is useful. A buyer is a sector manager
whose sector does not have the necessary sensor resources to perform its
subtask adequately. In other words, the sensor agents that comprise the
sector do not provide sufficient coverage of the area for which the sector is
responsible. A seller is a sector manager whose sector has sensor agents
able to provide coverage of a region the buyer would like to cover. Coalition
managers can be buyers and sellers simultaneously. Also, note that the
only agents involved in the negotiations of this marketplace are the sector
managers, not every agent.

The product in the sensor network is the ability to provide coverage
for a certain region and is transfered from one sector manager to another

'In our case the high-level task is to provide coverage for the entire region.



through the exchange of sensor agents between sectors. The product is the
resource the buyer needs to improve its performance of its subtask. Finally,
the value of a product to a buyer or seller is a function of the buyer’s
and the seller’s marginal utility gains from the transaction and depends on
the negotiation strategy they are using. When determining with whom to
transact, buyers and sellers may consider either their own local marginal
utility gain or the social marginal utility. The local marginal utility is
the difference between a sector’s utility before a transaction and the utility
after the transaction. The social marginal utility is the sum of the local
marginal utilities of both the buyer and the seller. In the local case, the
buyer and seller value products differently. In the social case, they value
products the same.?

With this analogy, the problem of bottom-up coalition formation trans-
lates into deciding which sellers the buyers should attempt to buy from
and which buyers the sellers should sell their products to such that Ucg is
maximized.

3 Negotiation Strategies

A well-known strategy for assigning resources that has also been used to or-
ganize a distributed sensor network is the Contract Net Protocol (CNET') [10].
The CNET provides a general framework to describe negotiation processes
between agents. The CNET in its original version involved agents’ making
decisions based on each agent’s own perspective. For the distributed sen-
sor network domain, an example of how the CNET enables agents to build
an organization is as follows: A task manager with a task to be fulfilled
(such as finding a sensor agent to provide signal data) broadcasts a task
announcement with a deadline for receiving bids. Just before the deadline,
agents capable of performing the task send their bids to the manager who
then evaluates the bids and awards contracts appropriately. Once an agent
receives a contract, that agent is committed to it. Note that this protocol
does not take into account the effect of the quality of the contract on the
global utility of the system.

In our example, many agents may be able to provide coverage for the
same area, but assigning the task to different agents may lead to different

2 Although the analogy to a marketplace is useful, it is worth noting that our system is
indeed cooperative and, therefore, agents may be willing to negotiate at the social level.
This is not reasonable in a competitive market.



global utilities. In the CNET each task that is assigned by a task manager
(at its highest abstraction level)® was assumed to be independent of other
tasks, so that the order of processing tasks by different task managers did
not affect the global utility of the system. In fact, no utility measure was
considered in the CNET, only whether a task could be performed by some
deadline.

We are interested in evaluating the performance of the whole organiza-
tion in terms of the agents’ decisions and the structure that results from
these decisions. We assume that all agents are interested in maximizing the
global utility of the system and, therefore, require a negotiation protocol to
enable this. The CNET in its original formulation is not sufficient for this
purpose. For example, assume agents A; and As are both able to cover a
region that sector manager SM; needs covered, but only A, is able to cover
a region SM> needs covered. If SM; awards a contract to Az, A2 may no
longer be available to SMj.

In order to correct for the above problem, we have developed two general
classes of negotiation protocol for self-organizing through coalition formation
in the marketplace of Section 2.3: local marginal utility based and social
marginal utility based. In our case, because agents negotiate, even if As
initially joins SMy, SM; and SM> may be able to adjust the allocation of
sensors to coalitions such that As moves to SMs and Ay joins SM;.

For an illustration of the dynamics of the protocols we have developed,
refer to Figure 2. In the local marginal utility based protocols, a round of
negotiation proceeds as follows: A buyer broadcasts a message (1) requesting
coverage of a region. Each manager within range, who has an agent that can
cover that region and whose local marginal utility of giving up the agent is
positive, responds with a message (2) stating that it could provide coverage
to the buyer. Unlike in the CNET, the seller is not bound to honor this
offer. The seller is free to make offers to as many buyers that send requests
as it likes.

The buyer waits for a period of time, collecting responses from sellers.
When the period is over, the buyer selects the seller whose product would
provide the buyer with the greatest local marginal utility gain and sends a
message (3) to that seller requesting the coverage offered.

Finally, given the multiple responses from buyers that the seller receives,
the seller chooses to give its product to the buyer that maximizes the seller’s
local utility (4).

3This task may be sub-contracted and its sub-parts are indeed dependent.
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Figure 2: Social Negotiation Message Types
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1. Buyers request. 2. Seller’s potential utility change. 3. Buyer chooses
seller. 4. Seller chooses buyer.

Negotiation in the social case is similar. As in the local case, the buyer
sends its product request (1). This time, however, the seller responds with
an offer even if its change in local utility would be negative and reports to
the buyer what its local utility change would be (2). The buyer collects
responses from sellers and chooses to request the product it needs from the
seller that maximizes the sum of the buyer’s local marginal utility and the
seller’s local marginal utility assuming the sum is positive. The buyer reports
the sum (3) to the seller (i.e., the buyer requests the coverage offered).

Given the product requests the seller receives, it chooses to give the
product to the buyer that reported the highest social marginal utility to it
(4). Although the social marginal utility gain will be positive, the seller’s
or even the buyer’s (but not both) local change in utility may be negative.
In Figure 2 both Buyer 1 and Buyer 2 accept the offers Seller 2 made to
them. Seller 2 then chooses (as seen by message (4) in the Figure) to give
the product to Buyer 1 because the social marginal utility reported by Buyer
1 was higher than that reported by Buyer 2.

In addition to negotiation, we assume that a discovery process occurs
when an agent enters the system; it must learn of the other agents near it
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and they must learn of it. To make this happen quickly, an entering agent
joins the nearest sector to it, by listening for beacons on channel zero. If
there is no sector within range, the agent elects itself manager of a new
sector and begins attracting entering agents to it by broadcasting a periodic
beacon on channel zero. It also starts negotiating with other managers over
the resources it needs to perform its subtask.

We also assume that a maintenance process occurs throughout the life
of the system. Sector managers must make sure that the members of their
sectors still exist and members must make sure that their managers still
exist. In our approach each member of a sector periodically sends a brief
message to its manager on the manager’s channel. If the manager does not
receive a message from a member, the manager assumes the agent is no
longer a member of the coalition and adjusts its evaluation of the coalition
accordingly. Likewise, the manager periodically sends a message to each
of its members on the channel the member uses. If the member does not
receive a message from its manager, that member assumes the manager is
no longer active as a manager and joins the nearest coalition to it (as if it
were entering the system for the first time).

4 Results

To examine the classes of protocols described above on large numbers of
agents, we built an asynchronous simulator that enables us to use the EW
Challenge sensor network domain as a testbed. The sizes of the configu-
rations tested in this work are too large to generate optimal values. The
simulator employs simple agents instantiated as objects in a single process.
The agents become active at randomly different times, and what stage of a
negotiation they are in is dependent only on when they become active, not
on a schedule imposed by the simulator. One limitation of the simulation
is that it does not model delays due to computation time. In order to deal
with this, the simulator has the ability to add random delays to messages
that are sent. In future work we plan to explore how increased delays affect
overall system performance.

4.1 Organization Results

We compared the performance of local utility based negotiation mechanisms
and socially based ones. In both classes of protocol, we varied factors such
as when agents can initiate and respond to negotiation requests, whether
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or not sellers can initiate negotiations by advertising available coverage,
and how many agents a seller can transfer to a buyer during any given
negotiation cycle. For each variation, we also compared our results to those
generated by the CNET. In the CNET adapted for our domain, a buyer
sends out a message requesting a product. The seller collects requests for
a time and responds with an offer that the seller is obliged to fulfill if the
buyer accepts it. This is different from the protocols we have developed
and are comparing to the CNET. Since we are dealing with cooperative
agents whose main priority is the welfare of the system, in our protocols we
do not include the restriction that a seller must honor an offer. Although
agents using both locally based protocols and CNET make decisions only on
local information, the agents following CNET will only respond to a single
request, while agents that use our locally based protocols may respond to
several requests at the same time.

In total we tested fourteen protocols. We ran 100 experiments each on
40, 70, and 90 node configurations in 100 x 100 foot regions where agents
were arbitrarily distributed and had viewable sensor regions with radii of 20
feet. For a given number of nodes, we generated an arbitrary configuration
and then ran each of the 14 protocols on that configuration. By far the best
performing protocols were those that were socially based.

Because of space limitations, we include results from the following six
protocols with the following characteristics:

e Single-Node Social Protocol (SNSoc): Only single nodes are
transferred per negotiation cycle. Sector managers are simultaneously
buyers and sellers. Sellers advertise regions of coverage they are willing
to give up. Value is based on social marginal utility.

e Multiple-Node Social Protocol (MNSoc): Same as above, but
either one or two nodes may be transferred per negotiation cycles.

e CNET Single-Node Social Protocol (CNETSoc): Socially based
CNET with single node transfer.

e Single-Node Local Protocol (SNLoc): Same as SNSoc except
that value is based on local marginal utility.

e Multiple-Node Local Protocol (MNLoc): Same as MNSoc ex-
cept that value is based on local marginal utility.
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e CNET Single-Node Local Protocol (CNETLocal): Same as
CNETSoc, but locally based.

Out of the fourteen protocols Single-Node Social Protocol and Multiple-
Node Social Protocol performed best. It makes sense that SNSoc and MNSoc
would perform better than the locally based protocols because of their in-
creased social context. It is difficult to understand, however, why MNSoc,
in which complex transfers of agents are allowed, does not perform better
than SNSoc. We were surprised by this result since Sandholm [5] suggests
that a contract over multiple objects can help avoid local maxima that result
from single object contracts. One possible explanation is that transferring
more than one agent in a single transfer causes the system to become stable
more quickly. As a result the system falls into local maxima more often
than it does when only transfers of single agents are allowed. For example,
if a sector manager gives up two nodes to another at time ¢ then the set
of possible actions that the same sector manager can take at time ¢ + 1 is
reduced, and it may not be able to make a socially beneficial transfer that
was unknown at time ¢. This conclusion is supported by the fact that the
number of negotiation cycles required to reach a stable state when MNSoc
is used is less than the number when SNSoc is used. The conclusions in
[5] consider a non-cooperative multi-agent system. In our cooperative orga-
nizations, the need for larger contracts is lessened by a more informative,
social utility function.

Tables 1, 2, and 3 summarize the results for the protocols above for
40, 70, and 90 node configurations. They show the average change in global
utility from the initial state to a stable state and the approximate number of
negotiation cycles required to reach the stable state. From the experimental
data obtained, the fewer nodes in a configuration there are, the greater the
difference is between the socially based utility and the locally based utility.
One explanation is that when there are many nodes in a fixed space it is
easier for these nodes to partition themselves to cover a given region. Thus,
individual negotiation decisions in a dense region do not have as great of
an effect on the ultimate social utility of the configuration as they do in
less dense regions. While the more informed decisions possible through
the socially-based utility functions certainly produce large improvements in
utility in dense regions, their greatest impact is seen in less dense regions.

13



Single Multiple CNet
local | social || local | social || local | social
AUcs | 6.5% | 61.2% | 6.3% | 60.6% || 2.1 | 15.6%
Cycles 3 18 2 13 1 3

Table 1: 40 Node Configuration

Single Multiple CNet
local | social || local | social || local | social
AUcs | 24.6% | 50.0% | 23.6% | 47.8% | 14.7 | 14.7%
Cycles 7 22 5 18 2 2

Table 2: 70 Node Configuration

4.2 Message Traffic and Fault Tolerance

So far we have discussed the system’s organizational performance in terms
of global utility only. In an environment such as the sensor network domain,
the real test is how well the system is able to track the vehicles that enter
its region. Furthermore, it is very important that the system be able to
reorganize itself and continue to track well after several of its nodes go
down. Also, as we mentioned in the Introduction, we want to keep to a
minimum the number of messages used for tracking that are sent between
sectors.

To examine the system’s ability to track and message traffic while track-
ing, we built a mathematical model of the system that for a given organi-
zation of sectors generates tracks through the environment and calculates

Single Multiple CNet
local | social || local | social || local | social
AUcs | 44.2% | 70.9% || 42.7% | 67.6% || 36.7 | 39.7%
Cycles 7 24 5 15 3 4.3

Table 3: 90 Node Configuration
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H 70 Nodes ‘ 90 Nodes ‘

Avg. AUcs after deactivation -58.4% -58.04%
Avg. AUcg after reorganization 69.0% 67.9%

Table 4: Percent utility changes due to 25% node deactivation

the number of messages within a sector used for tracking and the number of
messages between sectors used for tracking. Because the quality of tracking
increases as the number of nodes used to track increases, the model also
calculates the average number of nodes used to track vehicles.

For Single-Node Social Protocol described in Section 4.1 we examined the
system’s ability to reorganize itself after 25% of the nodes were deactivated.
We ran 100 experiments each for 70 and 90 node configurations, letting the
system reach a stable state and then deactivating the nodes.

Table 4 summarizes the changes in utility. In each case the system util-
ity decreased by approximately 58% after deactivation. The system then
reorganized itself to a new stable state with a system utility within approx-
imately 30% of the original. Put another way, killing off nodes caused a
sharp decrease in utility. The system then reorganized itself increasing the
global utility from the diminished value by approximately 68%.

Tables 5 and 6 summarize how deactivating nodes affected the messages
used for tracking. For the 70-node configuration before deactivation, approx-
imately 186 messages within sectors were used versus 31 between sectors.
After deactivation 141 messages were within sectors and 25 were between.
Then, after reorganization, 170 messages were within sectors and 31 were be-
tween. For the 90-node configuration, the results were similar. These results
show that the incremental self organization algorithm successfully divides
the agents into coalitions such that most of the messages occur inside a
coalition and fewer messages are needed across coalitions.

Table 7 shows how many nodes were used to track before, after deacti-
vation and after achieving again a stable organization.

As a final test, we compared the organization achieved by a 70-node
configuration to that achieved when a stable 90-node configuration has 20
of its nodes deactivated and then reorganizes. We ran 100 experiments on
90-node configurations, letting the system reach a stable state each time and
then deactivating 20 nodes in order to have the system reorganize itself. We
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‘ H Within Sector ‘ Between Sectors ‘

Before deactivation 186 mssgs 31 mssgs
After deactivation 141 mssgs 25 mssgs
After reorganization 170 mssgs 31 mssgs

Table 5: Message traffic before and after deactivation for 70 node configu-
ration

‘ H Within Sector ‘ Between Sectors ‘

Before deactivation 193 mssgs 30 mssgs
After deactivation 156 mssgs 29 mssgs
After reorganization 179 mssgs 31 mssgs

Table 6: Message traffic before and after deactivation for 90 node configu-
ration

then used each set of 70 nodes as a starting configuration and let the system
organize itself from scratch.

The utilities achieved in the two cases differed by only 0.06% on average.
The number of nodes used to track and the number of messages between
sectors and within sectors were also practically the same. The amount of
time it took for the systems to organize themselves, however, did differ
considerably. After the 20 nodes were deactivated, the system needed an
average of 18 negotiation cycles to reorganize itself while the system that
used the 70 nodes as the initial configuration required 22 cycles.

‘ H 70 nodes ‘ 90 nodes ‘

Before deactivation 48 50
After deactivation 33 39
After reorganization 42 45

Table 7: Number of nodes used to track before and after deactivation.
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5 Theoretical Model

In addition to experimental work to assess the protocols we have developed,
we have built a theoretical model of the negotiation process that builds on
the idea that increased social context can improve system performance.

Due to the cooperative nature of our system, we may assume that agents
can share information, although the process of obtaining this information
may be costly or time consuming when this information is distributed (e.g.,
geographically). In a distributed sensor system, decisions about which agent
covers which area are affected by the interdependencies that exist between
the agents.

Definition 2 (Interdependency) Given that sector managers SM; and
SM; are responsible for tracking tasks in sectors S; and S;, we define an
interdependency between these two sector managers if

Areag; ﬂ Areas; #

A chain of interdependencies is given by an ordered list of sector managers
SM;,,SM;,,...,SM;, ,,SM;, such that their corresponding sectors follow

Areas; (| Areas, #0 ... Areas,  []Areas, #0

We denote by n the mazximal length of a possible chain of interdependencies
in a given system.*

Then, agents can be distinguished based on the information horizon they
can see, that is the information agents can gather up to some horizon that
is given by the length of an interdependencies’ chain. We define an agent
that knows the information in a chain of k& interdependencies as follows:

Definition 3 (An Agent is ksocial, k < n) An agent A is ksocial if its
deciston about the action it will perform is based on the information known
by all the agents in the chain of interdependencies of length k and whose
first element is the agent A.

To explain the decision process in which an agent (a buyer or a seller) is
involved when it is facing a decision as to which offer to accept, or to whom
it should sell a resource, we refer the reader to Figure 3.

“In general, an interdependency exists if the set of resources needed by two agents
making a decision intersect.
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Figure 3: A Decision Tree example for n = 3.

We first build a tree describing the chain of interdependencies® assuming

that each node in this tree represents a sector manager, and each edge
represents an interdependency. In the simple example shown in the figure
assume that the numbers at each node in the tree stand for the names of the
sector managers. The depth of the tree is the length of the interdependencies
chain. Assume in this simple example that n = 3. The root is at level k£ = 0.
The agent at the root (i.e., agent 1) is the agent that is going to make a
decision.

In Figure 3, the root 1 needs either to decide to whom to sell a resource
that 1 currently owns, or it has to decide from whom it will buy a resource it
needs. In order for 1 to make this decision, we denote by A;; the change in
t’s utility caused by agent j’s selling to or buying from agent ¢. If 1 is local
(k = 0) it does not care at all about the others and it compares Ajs and
A3 and chooses to interact with either 2 or 3 based on the larger change in
its own utility caused by each one of these interactions. This is analogous to
the protocols described above in which sector managers value transactions
based on their own local marginal utility.

If 1 is k = lsocial it compares Ao + Aoy to A1z + Asz;. In this case,
2 and 3 may be interacting at the same time with other agents, but 1 sees
only up to horizon 1 so it cannot know what other decisions will be taken
beyond the horizon of 1. So 1’s decision may be wrong because if it accepts

®The interdependencies may actually be represented by a graph, because there may
be cycles of interdependencies among the resources. So this tree is a mapping from this
graph to a tree, i.e., whenever a node i that already appeared in the tree needs to appear
again this node is set to be a leaf.
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the transaction with 2 based on its comparison of Ajs + Az to Az + Az,
it may lose if 2 does not accept 1 and chooses 4, for example. 1 could not
have known about this and therefore chooses mistakenly 2 instead of 3 who
would not have rejected it. We have not implemented a protocol in which
the agents are k = lsocial. If we had, it would proceed as follows: 1) A
buyer broadcasts a request for coverage. 2) A seller responds with an offer
(if it has an agent that can provide the coverage). 3) The buyer does not
walit to collect responses from sellers; it simply responds to the seller, telling
it what the buyer’s local change in utility would be if it were to receive the
seller’s offer. 4) The seller ranks all responses it receives based on the sum of
its local marginal utility and the reported buyer’s utility. The seller chooses
the buyer that gives the highest sum.

If 1 is k = 2social then it also knows whether 2 is negotiating with 4
and 5 at the same time 2 is negotiating with 1. Now agent 1 decides based
on the following reasoning: It computes

maz{As + Ar2, max{Ass + Ayo, Aos + As2}}

If the “winner” of this maximum is Ag; + Aqo, it means that sector
manager 2 will not transact with 4 or 5. Therefore, sector manager 1 to
make his decision compares As; + Aqs and Aq3 + As; and chooses 2 or 3
accordingly. If the “winner” of the above maximum is Agg+Ags or Ags+Asg,
then the value for max{Aa1 + A1, max{Ags + Ag2, Aos + As2}} is set to
—o00, so that 1 does not take 2 as an option in its decision because from
its perspective 2 will accept the transaction either with 4 or 5 but will not
accept the transaction with 1, so 1 considers its other options; in this case it
chooses 3. The change in the system’s utility because of 1’s decision will be,
following this example, either Ays + Aoy or Ays + Az based on the winner
in 1’s decision.

The above k = 2social case is analogous to the social marginal utility
protocols we have developed, although in our experiments n >> 3. In
those protocols, the seller at the root of the tree does not actually do all of
the calculations described above, however. Rather, parts of the calculation
are done further down in the tree and propagated up. For example, if the
root 1 in Figure 3 is a seller, then 2 is a buyer and calculates maz{As +
Alz, max{A24 + A42, A25 + A52}} and then if the “winner” is A21 + A12, 2
propagates this value up to 1. Otherwise, it does not and 1 knows only to
consider negotiating with 3.

Notice that Sandholm and Lesser [7] assume that the agents were self-
interested, and therefore the agents are necessarily k& = 0Osocial. In their
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case, agents must transact on more complex deals in order to approximate
the maximal utility (i.e., large-transfer contracts, multi-agent contracts and
swaps). The information about the other agents in the negotiation processes
(that is the information in the nodes at some depth k£ > 0) is not available
to self-interested agents. We take advantage of the cooperativeness of the
system by allowing the agents to be more social (i.e., we allow the sector
managers to base their decisions on k values larger than 0) and thus obtain
better deals in terms of the complete system without the need to transact
over more complex deals.

6 Conclusions and Future Work

This paper presents an incremental approach to self-organization based on
bottom-up coalition formation. Agents negotiate during the process of self-
organization in order to maximize the global utility of the system. The
algorithm proposed in this work approximates the optimal value. This is
achieved by the negotiation process the agents are involved in, where in a
distributed manner they try to maximize their local or social utility. The
decisions made by the agents at each negotiation step affect the structure
and the performance of the resulting organization.

Our approach is novel in the sense that it allows for different levels of
social agents to be tested. That is, our protocols can represent a complete
continuum of agents: from locally-oriented (also applicable for selfish agents)
to fully-informed agents (when each agent knows exactly the decisions faced
by each one of the other agents). Empirical results show that social agents do
attain higher utilities than locally-based or CNET-based agents do. That is,
although stable organizations are achieved in all the cases tested, negotiating
with social awareness in an incremental fashion avoids many of the local
maxima yielded in non-social utility based cases. We also show that the
organizations obtained are robust to agent failure, i.e., the agents do indeed
reorganize after some percentage of them are deactivated. Furthermore, the
reorganized system is as good as the one that would have been achieved if
the organizational process had restarted completely.

Future work will look at other types of organization templates. At the
topology level, we will study more complex topologies, for example orga-
nizations based on hierarchies with multiple levels. These topologies may
require various communication models for the exchange of information at
the different levels. Other cost models that are worth studying include the
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computation of the global utility resulting from agents’ negotiating based
on combinations of local utilities and social marginal utilities. Adding ex-
plicitly the cost of sending a message (e.g., given by delays) and analyzing
the trade-off faced by agents between obtaining more accurate information
and the time it may take to gather it deserves more research. In this work,
we have assumed that all the agents are homogeneous. Further work will
look at systems where the sector managers require certain computational
capabilities that only some of the agents have.
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