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Abstract

In this paper, we address the problem of dynamic allocation
of storage bandwidth to application classes so as to meet their
response time requirements. We present an approach based on
reinforcement learning to address this problem. We argue that
a simple learning-based approach may not be practical since
it incurs significant memory and search space overheads. To
address this issue, we use application-specific knowledge to
design an efficient, practical learning-based technique for dy-
namic storage bandwidth allocation. Our approach can react
to dynamically changing workloads, provide isolation to ap-
plication classes and is stable under overload. We implement
our techniques into the Linux kernel and evaluate it using pro-
totype experimentation and trace-driven simulations. Our re-
sults show that (i) the use of learning enables the storage sys-
tem to to reduce the number of QoS violations by a factor of
2.1 and (ii) the implementation overheads of employing such
techniques in operating system kernels is small.

1 Introduction

Enterprise-scale storage systems may contain tens or
hundreds of storage devices. Due the sheer size of these
systems and the complexity of the application workloads
that access them, storage systems are becoming increas-
ingly difficult to design, configure, and manage. Tradi-
tionally, storage management tasks have been performed
manually by administrators who use a combination of ex-
perience, rules of thumb, and in some cases, trial and er-
ror methods. Numerous studies have shown that manage-
ment costs far outstrip equipment costs and have become
the dominant fraction of the total cost of ownership of
large computing systems [14]. These arguments motivate

the need to automate simple storage management tasks so
as to make the system self-managing and reduce the total
cost of ownership.

In this paper, we address the problem of automating
the task of storage bandwidth allocation to applications.
We assume that the storage system is accessed by ap-
plications that can be categorized into different classes;
each class is assumed to impose a certain response time
requirement. The workload seen by an application class
varies over time, and we address the problem of how to
allocate storage bandwidth to classes in presence of vary-
ing workloads so that their response time requirements
are met. Since data accessed by applications may be
stored on overlapping set of storage devices, the system
must dynamically partition the device bandwidth among
classes to meet their needs.

Our work on dynamic storage bandwidth allocation
has led to several contributions. First, we identify sev-
eral requirements that should be met by a dynamic al-
location technique. We argue that such a technique (i)
should adapt to varying workloads, (ii) should not violate
the performance requirement of one class to service an-
other class better, and (iii) should exhibit stable behavior
under transient or sustained overloads.

Second, we design a dynamic bandwidth allocation
technique based on reinforcement learning to meet these
requirements. The key idea in such an approach is to
learn from the impact of past actions and use this in-
formation to make future decisions. This is achieved
by associating a cost with each action and using past
observations to take an action with the least cost. We
show that a simple learning approach that systematically
searches through all possible allocations to determine the
“correct” allocation for a particular system state has pro-



hibitive memory and search space overheads for practi-
cal systems. We design an enhanced learning-based ap-
proach that uses domain-specific knowledge to substan-
tially reduce this overhead (for example, by eliminating
searching through allocations that are clearly incorrect
for a particular system state). A key advantage of using
reinforcement learning is that no prior training of the sys-
tem is required; our technique allows the system to learn
online.

Third, we implement our techniques into the Linux
kernel and evaluate it using prototype experimentation
and simulation of synthetic and trace-driven workloads.
Our results show that (i) the use of learning enables the
storage system to to reduce the number of QoS violations
by a factor of 2.1 and (ii) the implementation overheads
of employing such techniques in operating system ker-
nels is small. Overall, our work demonstrates the feasi-
bility of using reinforcement learning techniques to auto-
mate storage bandwidth allocation in practical systems.

The rest of the paper is structured as follows. In
Section 2, we define the problem of dynamic storage
bandwidth allocation. Section 3 presents a learning-
based approach for dynamic bandwidth allocation. Sec-
tion 4 presents details of our prototype implementation in
Linux. Section 5 presents the results of our experimental
evaluation. Section 6 discusses related work, and finally,
Section 7 presents our conclusions.

2 Dynamic Storage Bandwidth Allocation:
Problem Definition

2.1 Background and System Model

An enterprise storage system consists of a large number
of disks that are organized into disk arrays. A disk array
is a collection of physical disks that presents an abstrac-
tion of a single large logical storage device to the rest of
the system; we refer to this abstraction as a logical unit
(LU). An application, such as a database or a file system,
is allocated storage space by concatenating space from
one or more logical units; the concatenated storage space
is referred to as a logical volume (LV). Figure 1 illustrates
the mapping from logical volumes to logical units.

We assume that the workload accessing each logical
volume can be partitioned into application classes. This
grouping can be determined based on the files accessed
by requests in each class or the QoS requirements of these
requests. Each application class is assumed to have a cer-
tain response time requirement. Application classes com-
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Figure 1: Relationship between application classes, logical
volumes and logical units. Logical volumes on the extreme
right and left are accessed by two application classes each, and
the one in the center by a single application class. The storage
system sees a total of five application classes. Disks compris-
ing the left LU see requests from classes 1,2 and 3; disks on
the right LU see workload from all 5 application classes.

pete for storage bandwidth and the bandwidth allocated
to a class governs the response time of its requests.

To enable such allocations, each disk in the system is
assumed to employ a QoS-aware disk scheduler (such as
[7, 17, 22]). Such a scheduler allows disk bandwidth
to be reserved for each class and enforces these alloca-
tions at a fine time scale. Thus, if a certain disk re-
ceives requests from n application classes, then we as-
sume that the system dynamically determines the reser-
vations Rj, R, --- R, for these classes such that the re-
sponse time needs of each class are metand) ;| R; =1
(the reservation R; essentially denotes the fraction of the
total disk bandwidth allocated to class 7; 0 < R; < 1).

2.2 Key Requirements

Assuming the above system model, consider a band-
width allocation technique that dynamically determines
the reservations R;, Rp,...., R, based on the require-
ments of each class. Such a bandwidth allocation scheme
should satisfy the following key requirements.

o Should meet class response time requirements: As-
suming that each class specifies a target response-
time d;, the bandwidth allocation techniques should
allocate sufficient bandwidth to each class to meet



its target response-time requirements. Whether this
goal can be met depends on the imposed by each
application class and the aggregate load. In scenar-
ios where the response time needs of a class can not
be met (possibly due to overload), the bandwidth al-
location technique should attempt to minimize the
difference between the observed and the target re-
sponse times.

e Performance isolation: Whereas the dynamic al-
location technique should react to changing work-
loads, for example, by allocating additional band-
width to classes that see an increased load, such in-
creases in allocations should not affect the perfor-
mance of less loaded classes. Thus, only spare band-
width from underloaded classes should be reallo-
cated to classes that are heavily loaded, thereby iso-
lating underloaded classes from the effects of over-
load.

e Stable overload behavior: Transient or sustained
overload is observed when the aggregate workload
exceeds disk capacity, causing the target response
times of all classes to be exceeded. The bandwidth
allocation technique should exhibit stable behavior
under overload. This is especially important for a
learning-based approach, since such techniques sys-
tematically search though various allocations to de-
termine the correct allocation; doing so under over-
loads can result in oscillations and erratic behavior.
A well-designed dynamic allocation scheme should
prevent such unstable system behavior.

2.3 Problem Formulation

To precisely formulate the problem addressed in this pa-
per, consider an individual disk from a large storage sys-
tem that services requests from n application classes. Let
di,ds, ..., d, denote the target response times of these
classes. Let Rty, Rts, ..., Rt, denote the response time
of these classes observed over a period P. Then the dy-
namic allocation technique should compute reservations
Ry, Ry, -, R, such that Rt; < d; for any class ¢ sub-
ject to the constraint ), R; = 1 and 0 < R; < 1. Since
it may not always be possible to meet the response time
needs of each class, especially under overload, we mod-
ify the above condition as follows: instead of requiring
Rt; < d;, Vi, we require that the response time should
be less than or as close to the target as possible. That

is, (Rt; — d;)™ should be equal to or as close to zero as
possible (the notation ™ equals z for positive values of
z and equals O for negative values). Instead of attempt-
ing to meet this condition for each class, we define a new
metric

sigmaf; =Y (Rt; — d;) " (1)
=1

and require that sigma;; be minimized. Observe that,
sigma;';5 represents the aggregate amount by which the
response time targets of classes are exceeded. Minimiz-
ing a single metric sigma;, enables the system to col-
lectively minimize the QoS violations across application
classes.

We now present a learning-based approach that tries to

minimize the sigma; observed at each disk.

3 A Learning-based Approach

In this section, we first present some background on re-
inforcement learning and then present a simple learning-
based approach for dynamic storage bandwidth alloca-
tion. We discuss limitations of this approach and present
an enhanced learning-based approach that overcomes
these limitations.

3.1 Reinforcement Learning Background

Any learning-based approach essentially involves learn-
ing from past history. Reinforcement learning involves
learning how to map situations to actions so as to max-
imize a numerical reward (equivalent of a cost or utility
function) [20]. It is assumed that the system does not
know which actions to take in order to maximize the re-
ward; instead the system must discover (“learn”) the cor-
rect action by systematically trying various actions. An
action is defined to be one of the possible ways to react to
the current system state. The system state is defined to be
a subset of what can be perceived from the environment
at any given time.

In the dynamic storage allocation problem, an action
is equivalent to setting the allocations (i.e., the reserva-
tions) of each class. The system state is the vector of the
observed response times of the application classes. The
objective of reinforcement learning is to maximize the
reward despite uncertainty about the environment (in our
case, the uncertainty arises due to the variations in the
workload). An important aspect of reinforcement learn-
ing is that, unlike some learning approaches, no prior



training of the system is necessary—all the learning oc-
curs online, allowing the system to deal with unantic-
ipated uncertainties (e.g., events, such as flash crowds,
that can not have been anticipated in advance). It is this
feature of reinforcement learning that makes it particu-
larly attractive for our problem.

A reward function defines the goal in the reinforce-
ment learning; by mapping an action to a reward, it de-
termines the the intrinsic desirability of that state. For the
storage allocation problem, we define the reward function
to be —sigma,’, —maximizing reward implies minimiz-
ing sigma,’; and the QoS violations of classes. In rein-
forcement learning, we use reward values learned from
past actions to estimate the expected reward of a (future)
action.

With the above background, we present a reinforce-
ment learning approach based on action values to dynam-
ically allocate storage bandwidth to classes.

3.2 System State

A simple definition of system state is a vector of the
response times of the n classes: (Rt, Rto, ..., Rt,),
where Rt; denotes the mean response time of class 4 ob-
served over a period P. Since the response time of a class
can take any arbitrary value, the system state space is the-
oretically infinite. Further, the system state by itself does
not reveal if a particular class has met its target response
time. Both limitations can be addressed by discretizing
the state space as follows: partition the range of the re-
sponse time (which is [0, 00)) into four parts

{l0,d; — 7], (di — 73, ds), (di, di + 73], (d; + 73,00)}

and map the observed response time R¢; into one of these
sub-ranges (7; is a constant). The first range indicates
that the class response time is substantially below its tar-
get response time (by a threshold 7;). The second (third)
range indicates that the response time is slightly below
(above) the target and by no more than the threshold 7.
The fourth range indicates a scenario where the target
response time is substantially exceeded. We label these
four states as lo—, lo, hi and hi™, respectively, with the
labels indicating different degrees of over- and under-
provisioning of bandwidth (see Figure 2). The state of
a class is defined as S; € {lo™,lo, hi, hi™ } and the mod-
ified state space is a vector of these states for each class:
S = (51,S52,...,Sy). Observe that, since state of a class
can take only four values, the potentially infinite state
space is reduced to a size of 4”.

Response Time Requirement = d
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Figure 2: Discretizing the State Space

3.3 Allocation Space

The reservation of a class R; is a real number between
0 and 1. Hence, the allocation space (Ry, Ro,...,Ry)
is infinite due to the infinitely many allocations for each
class. Since a learning approach must search through
all possible allocations to determine an appropriate al-
location for a particular state, this makes the problem in-
tractable. To discretize the allocation space, we impose a
restriction that requires the reservation of a class be mod-
ified in steps of T', where T' is an integer. For instance,
if the step size is chosen to be 1% or 5%, the reserva-
tion of a class can only be increased or decreased by a
multiple of the step size. Imposing this simple restric-
tion results in a finite allocation space, since the reserva-
tion of a class can only take one of m possible values,
where m = 100/7T. With n classes, the number of pos-
sible combinations of allocations is ™" ~!C,,,, resulting
in a finite allocation space. Choosing an appropriate step
size allows allocations to be modified at a sufficiently fine
grain, while keeping the allocation space finite. In the
rest of this paper, we use the terms action and allocation
interchangeably.

3.4 Cost and State Action Values

For the above definition of state space, we observe that
the response time needs of a class are met so long it is in
the o™ or lo states. In the event an application class is in
hi or hi™ states, the system needs to increase the reserva-
tions of the class, assuming spare bandwidth is available,
to induce a transition back to [0~ or [o. This is achieved
by computing a new set of reservations (Ry, Ra, ..., Ry)
s0 as to maximize the reward —sigma,,. Note that the
maximum value of the reward is zero, which occurs when
the response time needs of all classes are met (see Equa-
tion 1).



A simple method for determining the new allocation is
to pick one based on the observed rewards of previous ac-
tions from this state. An action (allocation) that resulted
in largest reward (—sigma) is likely to do so again and
is chosen over other lower reward actions. Making this
decision requires that the system first try out all possi-
ble actions, possibly multiple times, and then choose one
that yields the largest reward. Over a period of time, each
action may be chosen multiple times and we store an ex-
ponential average of the observed reward from this action
(to guide future decisions):

?ggsg,....,sn)(a) =% Q(()fq%,sz,....,sn)(a)+

(=) * —sigmari(a) @

where () denotes the exponentially averaged value of the
reward for action a taken from state (.51, S, ..., Sy) and
«y is the exponential smoothing parameter (also known as
the forgetting factor). We choose an exponential aver-
ages over a sample average because the latter is appro-
priate only for stationary environments. In our case, the
environment is non-stationary due to the changing work-
loads and the same action from a state may yield dif-
ferent rewards depending on the current workload. For
such scenarios, recency-weighted exponential averages
are more appropriate. With 4" states and ™"~ 1C,,, pos-
sible actions in each state, the system will need to store
mAn=1 % 4™ such averages, one for each action.

3.5 A Simple Learning-based Approach

A simple learning approach is one that systematically
tries out all possible allocations from each system state,
computes the reward for each action and stores these val-
ues to guide future allocations. Once the reward values
are determined for the various actions, upon a subsequent
transition to this state, the system can use these values to
pick a allocation with the maximum reward. As an ex-
ample, consider two application classes that are allocated
50% each of the disk bandwidth and are in (lo,lo ™).
Assume that a workload change causes a transition to
(Io—, hi™). Then the system needs to choose one of sev-
eral possible allocations: (0,100), (5,95), (10,90),...,
(100,0). Choosing one of these allocations allows the
system to learn the reward —sigma,, that accrues as a
result of that action. After trying all possible allocations
and their rewards, the system can use these learned values
to directly determine an allocation that maximizes reward
(by minimizing the aggregate QoS violations).

Although such a reinforcement learning is simple to
design and implement, it has numerous drawbacks.

e Actions are oblivious of system state: A key draw-
back of this simple learning approach is that the
actions are oblivious of the system state—the ap-
proach tries all possible actions, even ones that are
clearly unsuitable for a particular state. In the above
example, for instance, any allocation that decreases
the share of the overloaded hi* class and increases
that of the underloaded [o™ class is incorrect. Such
an action can worsen the overall system perfor-
mance. Nevertheless, such actions are explored to
determine their reward. The drawback arises pri-
marily because the semantics of the problem are not
incorporated into the learning technique.

e No performance isolation: Since the system state is
not taken into account while making allocation de-
cisions, the approach can not provide performance
isolation to classes. In the above example, a arbi-
trary allocation of (0,100) can severely affect the
lo~ class while favoring the overloaded class.

e Large search space requirements: Since there are
mtn—1C possible allocations in each of the 4"
states, a systematic search of all possible allocations
is impractical. This overhead is manageable when
n = 2 classes and m = 20 (which corresponds to a
step size of 5%; m = 100/5), since there are only
210y = 21 allocations for each of the 42 = 16
states. However, for n = 5 classes, the number of
possible actions increases to 10626 for each of the
47 states.

o Large memory requirements: Since the number of
possible actions increases exponentially with in-
crease in the number of classes, so does the mem-
ory requirement (since the reward for each alloca-
tion needs stored in memory to guide future allo-
cations). For n = 5 classes and m = 20, 83MB
of memory is needed per disk to store these reward
values. This overhead is impractical for storage sys-
tems with large number of disks.

3.6 An Optimized Learning-based Approach

In this section, we design an enhanced learning approach
that uses the semantics of the problem to overcome the
drawback of the naive learning approach outlined in the



previous section. The key insight used in the enhanced
approach is to use the state of a class to determine
whether to increase or decrease its allocation (instead of
naively exploring all possible allocations). In the exam-
ple listed in the previous section, for instance, only those
allocations that increase the reservation of the overloaded
class and decrease the allocation of the underloaded class
are considered. The technique also includes provisions
to provide performance isolation and reduce memory and
search space overheads.

Initially, we assume that the allocations of all classes
are set to a default value (a simple default allocation is to
assign equal shares to the classes; any other default may
be specified). We assume that the allocations of classes
are recomputed every P time units. To do so, the tech-
nique first determines the system state and then computes
the new allocation for this state as follows:

e Case I: All classes are underloaded (are in lo~ or
lo). Since all classes are in [o or lo—, by defini-
tion, their response time needs are satisfied and no
action is necessary. Hence, the allocation is left un-
changed.

e Case II: All classes are overloaded (are in hi or
hi™). Since all classes are in hi or hiT, the target
response times of all classes are exceeded, indicat-
ing an overload situation. While every class can use
extra bandwidth, none exists in the system. Since
no spare bandwidth is available, we leave the allo-
cations unchanged.

An additional optimization is possible in this state.
If some class is heavily overloaded (i.e., is in hi")
and is currently allocated less than its initial default
allocation, then the allocation of all classes is set to
their default values (the allocation is left unchanged
otherwise). The insight behind this action is that no
class should be in hit due to starvation resulting
from an allocation less than its default. Resetting the
allocations to their default values during such heavy
overloads ensures that the system performance is no
worse than that in the absence of dynamic realloca-
tion.

o Case III: Some classes are overloaded, others are
underloaded (some in hit or hi and some in lo
or lo™) This is the scenario where learning is em-
ployed. Since some classes are underloaded while
other are overloaded, the system should reallocate

spare bandwidth from underloaded classes to over-
loaded classes. Initially, there is no history in the
system and the system must learn how much band-
width to reassign from underloaded to overloaded
classes. Once some history is available, the reward
values from past actions can be used to guide the
reallocation.

The learning occurs as follows. The application
classes are partitioned into two sets: lenders and
borrowers. A class is assigned to the lenders set if it
isinloorlo: classes in hi and hit are deemed bor-
rowers. The basic idea is to reduce the allocation of
a lender by T" and reassign this bandwidth to a bor-
rower. Note that the bandwidth of only one lender
and one borrower is modified at any given time and
only by the step size T'; doing so systematically re-
assigns spare bandwidth from lenders to borrowers,
while learning the rewards from these actions.

Different strategies can be used to pick a lender
and a borrower. One approach is to pick the
most needy borrower and the most overprovisioned
lender (these classes can be identified by how far
the class is from its target response time; the greater
this difference, the greater the need or the avail-
able spare bandwidth). Another approach is to cycle
through the list of lenders and borrowers and reallo-
cate bandwidth to classes in a round-robin fashion.
The latter strategy ensures that the needs of all bor-
rowers are met in a cyclic fashion, while the former
strategy focuses on the most needy borrower before
addressing the needs of the remaining borrowers.

Regardless of the strategy, the system state is recom-
puted P time units after each reallocation. If some
classes continue to be overloaded, while others are
underloaded, we repeat the above process. If the
system transitions to a state defined by Case I or II,
we handle them as discussed above.

The reward obtained after each allocation is stored
as an exponential average (as discussed in Section
3.4). However, instead of storing the rewards of all
possible actions, we only store the rewards of the
actions that yield the & highest rewards. The in-
sight here is that the remaining actions do not yield
a good reward and, since the system will not con-
sider them subsequently, we do not need to store
the corresponding reward values. By storing a fixed
number of actions and rewards for any given state,
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Figure 3: Pictorial depiction of the learning technique and the algorithm flowchart.

the memory requirements can be reduced substan-
tially. Further, while the allocation of a borrower
and a lender is changed only by 7' in each step dur-
ing the initial learning process, these can be changed
by a larger amount subsequently once some history
is available (this is done by directly picking the al-
location that yields the maximum reward).

Figure 3 summarizes our technique. As a final opti-
mization, we use a small non-zero probability € to bias
the system to occasionally choose a neighboring alloca-
tion instead of the allocation with the highest reward (a
neighboring allocation is one that differs from the best al-
location by the step size 71" for the borrowing and lending
classes, e.g., (30, 70) instead of (35,65) when T" = 5%.)
An occassional choice of a neighboring allocation en-
sures that the system does not detect “local minima” (i.e.,
falsely detect an action as the best action for a state) and
does in fact explore the state space sufficiently well to
discover the correct action for each state.

Observe that our enhanced learning approach reclaims
bandwidth only from those classes that have bandwidth
to spare (lo and [0~ classes) and reassigns this bandwidth
to classes that need it. This strategy ensures that any new
allocation chosen by the approach can only improve (and
not worsen) the system performance; doing so also pro-
vides a degree of performance isolation to classes. The
technique also takes the current system state into account
while making allocation decisions and thereby avoids al-
locations that are clearly inappropriate for a particular
state. Further, since only the k highest reward actions

are stored, the worst case search overhead is reduced to
O(k). This results in a substantial reduction from the
search overheads of the simple learning approach. Fi-
nally, the memory needs of the technique reduce from
mAn=lCr k4™ to 4"  k, where k is the number of high
reward actions for which history is maintained. This de-
sign decision also results in a substantial reduction in the
memory requirements of the approach. In the case of 5
application classes, T = 5% (recall m = 100/T") and
k =5, for example, the technique yields more than 99%
reduction in memory needs over the simple learning ap-
proach.

4 Implementation in Linux

We have implemented our techniques in the Linux ker-
nel. We choose the 2.4.9 version of the Linux kernel
for our implementation. Our prototype consists of three
components: (i) a QoS-aware disk scheduler that sup-
ports per-class reservations, (ii) a module that monitors
the response time requirements of each class, and (iii) a
learning-based bandwidth allocator that periodically re-
computes the reservations of the classes on each disk.
Our prototype was implemented on a Dell PowerEdge
server (model 2650) with two 1 GHz Pentium III pro-
cessors and 1 GB memory that runs RedHat Linux 7.2.
The server was connected to a Dell PowerVault storage
pack (model 210) with eight SCSI disks. Each disk is a
18GB 10,000 RPM Fujitsu MAJ3182MC disk.! We use

!'The Fujitsu MAJ3182MC disk has an average seek overhead of
4.7 ms, an average latency of 2.99 ms and a data transfer rate of 39.16




the software RAID driver in Linux to configure the sys-
tem as a single RAID-0 array and use the Linux volume
manager to partition the storage into volumes, one for
each application class.

We implement the Cello QoS-aware disk scheduler in
the Linux kernel [17]. The disk scheduler supports a con-
figurable number of application classes and allows a frac-
tion of the disk bandwidth to be reserved for each class
(these can be set using the scheduler system call inter-
face). These reservations are then enforced on a fine time
scale, while taking disk seek overheads into account. We
extend the open system call to allow applications to as-
sociate file I/O with an application class; all subsequent
read and write operations on the file are then associated
with the specified class. The use of our enhanced open
system call interface requires application source code to
be modified. To enable legacy application to benefit from
our techniques, we also provide a command line utility
that allows a process (or a thread) to be associated with
an application class—all subsequent I/O from the process
is then associated with that class. Any child processes
that are forked by this process inherit these attributes and
their I/O requests are treated accordingly.

We also add functionality into the Linux kernel to
monitor the response times of requests in each class (at
each disk); the response time is defined to the sum of the
queuing delay and the disk service times. We compute
the mean response time in each class over a moving win-
dow of duration P.

The bandwidth allocator runs as a privileged daemon
in user space. It periodically queries the monitoring mod-
ule for the response time of each class; this can done us-
ing a special-purpose system call or via the /proc inter-
face in Linux. The response time values are then used
to compute the system state. The new allocation is then
determined and conveyed to the disk scheduler using the
scheduler interface.

5 Experimental Evaluation

In this section, we demonstrate the efficacy of our tech-
niques using a combination of prototype experimentation
and simulations. In what follows, we first present our
simulation methodology and simulation results, followed
by results from our prototype implementation.

MB/s.

5.1 Simulation Methodology and Workload

We use an event-based storage system simulator to eval-
uate our bandwidth allocation technique. The simulator
simulates a disk array that is accessed by multiple ap-
plication classes. Each disk in the array is modeled as
a 18GB 10,000 RPM Fujitsu MAJ3182MC disk. The
disk array is assumed to be configured as a RAID-0 ar-
ray with multiple volumes; unless specified otherwise we
assume an array of 8 disks (we have also experimented
with RAID-5 arrays; the results of those experiments
are not significantly different from those reported here).
Each disk in the system is assumed to employ a QoS-
aware disk schedule that supports class-specific reserva-
tions; we use the Cello disk scheduler [17] for this pur-
pose. Observe that the hardware configuration assumed
in our simulations is identical to that in our prototype im-
plementation. We assume that the system monitors the
response times of each class over a period P and recom-
putes the allocations after each such period. We choose
P = 55 in our experiments. Unless specified otherwise,
we choose a target response time of d; = 100ms for each
class and the threshold 7; for discretizing the class states
into the lo™, lo, hi and hi™ categories is set to 20ms.

We use a two types of workloads in our simulations:
trace-driven and synthetic. We use NFS traces to deter-
mine the effectiveness of our methods for real-world sce-
narios. However, since a trace workload only represents
a small subset of the operating region, we use a synthetic
workload to systematic explore the state space.

We use portions of an NFS trace gathered from the
Auspex file server at Berkeley to generate the trace-
driven workload. The characteristics of these workloads
are shown in Table 1. To account for caching effects, we
assume a large LRU buffer cache at the server and fil-
ter out requests resulting in cache hits from the original
trace; the remaining requests are assumed to result in disk
accesses. The resulting NFES trace is very bursty and has
a peak to average bit rate of 12.5.

Our synthetic workload consist of Poisson arriving
clients that read a randomly selected file. File sizes are
assumed to be heavy-tailed; we assume fixed-size re-
quests that sequentially read the selected file. By care-
fully controlling the arrival rates of such clients, we can
construct transient overload scenarios (where a burst of
clients arrive in quick succession).

Next, we present our experimental results.



Table 1: Characteristics of the Auspex NFS trace

Number of read/write operations 218724
Average bit rate (original) 218.64 KB/s
Average bit rate (with 64MB cache) 83.91 KB/s
Average inter-arrival (original) 9.14 ms
Average inter-arrival (with 64MB cache) 22.53 ms
Average request size 2048.22 bytes
Peak to average bit rate (1s intervals) 12.51

5.2 Effectiveness of Dynamic Bandwidth Allo-
cation

We begin with a simple simulation experiment to demon-
strate the behavior of our dynamic bandwidth alloca-
tion approach in the presence of varying workloads. We
configure the system with two application classes. We
choose an exponential smoothing parameter y = 0.5, the
learning step size T' = 5% and the number of stored val-
ues per state k = 5. The target response time is set to
75ms for each class and the recomputation period was
5s. Each class is initially assigned 50% of the disk band-
width.

Figure 4(a) depicts the workload used in this experi-
ment. Initially both classes are assumed to have 5 concur-
rent clients each; each client reads a randomly selected
file by issuing 4 KB requests. At time ¢ = 100s, the
workload in class 1 is gradually increased to 8 concur-
rent clients. At ¢ = 600s, the workload in class 2 is grad-
ually increased to 8 clients. The system experiences a
heavy overload from ¢ = 700 to ¢ = 900s. Att = 900s,
several clients depart and the load reverts to the initial
load. We measure the response times of the two classes
and then repeat the experiment with a static allocation of
(50%, 50%) for each class.

Figures 4 (b) and (c) depict the class response times.
As shown the dynamic allocation technique adapts to the
changing workload and yields response time that are as
close to the target as possible. Further, due to the adaptive
nature of the technique, the observed response times are,
for the most part, better than that in the static allocation.
Observe that, immediately after a workload change, the
learning technique requires a short period of time to learn
and adjust the allocations, and this temporarily yields a
response time that is higher than that in the static case
(e.g., at t = 600s in Fig 4(c)). Also, observe that be-
tween ¢ = 700 and ¢ = 900 the system experiences a

heavy overload and, as discussed in Case II of our ap-
proach, the dynamic technique resets of the allocation of
both hi* classes to their default values, yielding a perfor-
mance that is identical to the static case.

5.3 Comparison with Alternative Approaches

In this section, we compare our learning-based approach
with three alternate approaches: (i) static, where the allo-
cation of classes chosen statically, (ii) dynamic allocation
with no learning, where the allocation technique is iden-
tical to our technique but no learning is employed (i.e.,
allocations are left unchanged when all classes are over-
loaded or underloaded, and bandwidth is reassigned from
the least underloaded class to the most overloaded class
in steps of 7', but no learning is employed in this step),
and (iii) the simple learning approach outlined in Section
3.5.

We use the NFS traces to compare our enhanced learn-
ing approach with the static and the dynamic allocation
techniques with no learning. We configure the system
with three classes and set the target responses time of
each class to 100ms. The recomputation period is cho-
sen to be 5s. We use different portions of our NFS trace
to generate the workload for the three classes. The stripe
unit size for the RAID-0 array is chosen to be 8 KB. We
use about 2.8 hours of the trace for this experiment.

We run the experiment for our learning-based alloca-
tion technique and repeat it for static allocation and dy-
namic allocation without learning. Figure 5(a) plots the
cumulative Y sigma,}, (i.e., the cumulative QoS viola-
tions observed over the duration of the experiment) for
the three approaches. Not surprisingly, the static alloca-
tion techniques yields the worst performance and incurs
the largest number of QoS violations. The dynamic al-
location technique without learning yields a substantial
improvement over the static approach, while dynamic al-
location with learning yields a further improvement. Ob-
serve that the gap between static and dynamic allocation
without learning depicts the benefits of dynamic alloca-
tion over static, with the gap between the technique with-
out learning and our technique depicts the additional ben-
efits of employing learning. Overall, we see a factor of
3.8 reduction in QoS violations when compared to a pure
static scheme and a factor of 2.1 when compared to a dy-
namic technique with no learning.

Our second experiment compares our enhanced learn-
ing approach with the simple learning described in Sec-
tion 3.5. Most parameters are identical to the previous
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scenario, except that we only assume two application
classes instead of three for this experiment. Figure 5(b)
plots the cumulative QoS violations observed for the two
approaches (we also plot the performance of static alloca-
tion for comparison). As can be seen, the naive learning
approach incurs a larger search/learning overhead since
it systematically searches through all possible actions. In
doing so, incorrect actions that exacerbate the system per-
formance are explored and actually worsen performance.
Consequently, we see a substantially larger number of
QoS violations in the initial period; the slope of the vi-
olation curve reduces sharply once some history is avail-
able to make more informed decisions. Consequently,
during this initial learning process, a naive learning pro-
cess under-performs even the static scheme; the enhanced
learning technique does not suffer from these drawbacks,
and like before, yields the best performance.
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5.4 Effect of Tunable Parameters

We conduct several experiments to study how the choice
of three tunable parameters affects the system behavior:
the exponential smoothing parameter -y, the step size T’
and the history size £ that defines the number of high
reward actions stored by the system.

First, we study the impact of the smoothing parame-
ter v. Recall from Equation 1 that vy = 0 implies that
only the most recent reward value is considered, while
v = 1 completely ignores the most recent reward value.
We choose T' = 5% and k = 5. We vary +y systemati-
cally from 0.0 to 0.9, in steps of 0.1 and study its impact
on the observed QoS violations. We normalize the cumu-
lative QoS violations observed for each value of y with
the minimum number of violations observed for the ex-
periment. Figure 6(a) plots our results. As shown in the



figure, the observed QoS violations are comparable for
v values in the range (0,0.6). The number of QoS vio-
lations increases for larger values of gamma—larger val-
ues of y provide less importance to more recent reward
values and consequently, result in larger QoS violations.
This demonstrates that, in the presence of dynamically
varying workloads, recent reward values should be given
sufficient importance. We suggest choosing a 7y between
0.3 and 0.6 to strike a balance between the recent reward
values and those learned from past history.

Next, we study the impact of the step size 7. We
choose v = 0.5, k = 4 and vary 1" from 1% to 10% and
observe its impact on system performance. Note that a
small value of T" allows fine-grain reassignment of band-
width but can increase the time to search for the correct
allocation (since the allocation is varied only in steps of
T). In contrast, a larger value of 1" permits a faster search
but only permits coarse-grain reallocation. Figure 6(b)
plots the normalized QoS violations for different values
of T'. As shown, very small values of 7' result in a sub-
stantially higher search overhead and increase the time
to converge to the correct allocation, resulting in higher
QoS violations. Moderate step sizes ranging from 3%
to as large as 10% seem to provide comparable perfor-
mance. To strike a balance between fine-grain alloca-
tion and low learning (search) overheads, we suggest step
sizes ranging from 3-7%. Essentially, the step size should
be sufficiently large to result in a noticeable improvement
in the response times of borrowers but not large enough
to adversely affect a lender class (by reclaiming too much
bandwidth).

Finally, we study the impact of varying the history size
k on the performance. We choose v = 0.5, T = 5% and
vary k from 1 to 10. Figure 6(c) plots the cumulative QoS
violations normalized by the history size with the least
violations. Initially, increasing the history size results in
a small decrease in the number of QoS violations, indi-
cating that additional history allows the system to make
better decisions. However, increasing the history size be-
yond 5 does not yield any additional improvement. This
indicates that storing a small number of high reward ac-
tions is sufficient, and that is is not necessary to store the
reward for every possible action, as in the naive learning
technique, to make informed decisions. Using a small
value of k also yields a substantial reduction in the mem-
ory requirements of the learning approach.
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5.5 Implementation Experiments

We now demonstrate the effectiveness of our approach
by conducting experiments on our Linux prototype. As
discussed in Section 4, our prototype consists of a 8 disk
system, configured as RAID-0 using the software RAID
driver in Linux. We construct three volumes on this ar-
ray, each corresponding to an application class. We use a
a mix of three different applications in our study, each
of which belongs to a different class: (1) PostgreSQL
database server: We use the publicly available Post-
greSQL database server version 7.2.3 and the pgbench
1.2 benchmark. This benchmark emulates the TPC-B
transactional benchmark and provides control over the
number of concurrent clients as well as the number of
transactions performed by each client. The benchmark
generates a write-intensive workload with small writes.
(2) MPEG Streaming Media Server: We use a home-
grown MPEG-1 streaming media server to stream a 90
minute videos to multiple client over UDP. Each video
has a constant bit rate of 2.34 Mb/s and represent a se-
quential workload with large reads. (3) Apache Web
Server: We use the Apache web server and the pub-
licly available SURGE web workload generator to gener-
ate web workloads. We configure SURGE to generate a
workload that emulates 300 time-sharing users accessing
a 2.3 GB data-set with 100,000 files. We use the default
settings in SURGE for the file size distribution, request
size distributions, file popularity, temporal locality and
idle periods of users. The resulting workload is largely
read-only and consists of small to medium size reads.
Each of the above application is assumed to belong to
separate application class. To ensure that our results are
not skewed by a largely empty disk array, we populated
the array with a variety of other large and small files so
that 50% of the 144GB storage space was utilized. We
choose v = 0.5, T = 5%, k = 5 and a recomputation
period P = 5s. The target response times of the three
classes are set to 40ms, 50ms and 30ms, respectively.
We conduct a 10 minute experiments where the work-
load in the streaming server is fixed to 2 concurrent
clients (total I/O rate of 4.6 Mb/s). The database server
is lightly loaded in the first half of the experiment and
we gradually increase the load on the Apache web server
(by starting a new instance of the SURGE client every
minute; each new client represents 300 additional con-
current users). At ¢ = 5 minutes, the load on the web
server reverts to the initial load (a single SURGE client).
For the second half of the experiment, we introduce a



o

o

Normailized Cumulative QoS Violations

Normailized Cumulative QoS Violations

o

Normailized Cumulative QoS Violations

,\/\.\,_,_‘/'7,
0.5 05 05
0 P S S S 0 S 0 ‘ ‘ L ‘ L
0 01 02 03 04 05 06 07 08 09 1 i1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Forgetting Factor Step Size No. of Values Stored Per State
(a) Effect of Smoothing Parameter y (b) Effect of Step Size t (c) Effect of k

Figure 6: Impact of Tunable Parameters

heavy database workload by configuring pgbench to em-
ulate 20 concurrent users each performing 500 transac-
tions (thereby introducing a write-intensive workload).

Figure 7(a) plots the cumulative QoS violations ob-
served over the duration of the experiment for our learn-
ing technique and the static allocation technique. As
shown, for the first half of the experiments, there are no
QoS violations, since there is sufficient bandwidth capac-
ity to meet the needs of all classes. The arrival of a heavy
database workload triggers a reallocation in the learning
approach and allows the system to adapt to this change.
The static scheme is unable to adapt can incurs a sig-
nificantly larger number of violations. Figure 7(b) and
(c) plots the a time-series of the response times for the
database and the web servers. As shown, the adaptive na-
ture of the learning approach enables it to provide better
response times to the database server. While the learning
technique provides comparable or better response time
than static allocation for the web server, we see that both
approaches are able to meet the target response time re-
quirements (due to the light web workload in the second
half, the observed response times are also very small).
While omitted here due to space constraints, we observe
a similar behavior for the streaming server.

Overall, the behavior of our prototype implementation
is consistent with our simulation results.

5.6 Implementation Overheads

Our final experiment measures the implementation over-
heads of our learning-based bandwidth allocator. To do
so, we vary the number of disks in the system from 50 to
500, in steps of 50, and measure the memory and CPU
requirements of our bandwidth allocator. Observe that
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since we are constrained by a 8 disk system, we emulate
a large storage system by simply replicating the response
times observed at a single disk and reporting these val-
ues for all emulated disks. From the perspective of the
bandwidth allocator, the setup is no different from one
where these disks actually exist in the system. Further,
since the allocations on each disk is computed indepen-
dently, such a strategy accurately measures the memory
and CPU overheads of our technique. We assume that
new allocations are computed once every 5Ss.

We find that the CPU requirement for our approach to
be less that 0.1% even for systems with 500 disks, indi-
cating that the CPU overheads of the learning approach is
negligible. The memory used by the allocation daemon
is shown in figure 8; the figure shows the percentage of
memory used on a server with 1 GB RAM. The memory
usage ranges from 1 MB (0.1 %) for a 50 disk system to
7 MB (0.7 %) for a 500 disk system. We note that this
memory usage is for an untuned version of our alloca-
tor where we maintain numerous additional statistics for
conducting our experiments; the actual memory require-
ments will be smaller than those reported here, indicating
that the technique can be used in practical systems.

Finally, note that the system call overheads of query-
ing response times and conveying the new allocations to
the disk scheduler can be substantial in a 500 disk sys-
tem (this involves 1000 system calls every 5 seconds,
two for each disk). However, observe that, the band-
width allocator was implemented in user-space for ease
of debugging; the functionality can be easily migrated
into kernel-space, thereby eliminating this system call
overhead. Overall, our results demonstrate the feasibility
of using a reinforcement learning approach for dynamic
storage bandwidth allocation in large storage systems.
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6 Related Work

Recently, the design of self-managing systems has re-
ceived significant research attention. For instance, the
design of workload monitoring and adaptive resource
management for data-intensive network services has been
studied in [9]. The design of highly-dependable (“self-
healing”) Internet services has been studied [14].

From the perspective of storage systems, techniques
for designing self-managing storage have been studied
in [2, 4]. The design of such systems involves several
sub-tasks and issues such self-configuration [2, 4] , ca-
pacity planning [8], automatic RAID-level selection [5],
initial storage system configuration [3], SAN fabric de-
sign [21] and on-line data migration [12] have been stud-
ied. These efforts are complementary to our work which
focuses on automatic storage bandwidth allocation to ap-
plications with varying workloads.

Dynamic bandwidth allocation for multimedia servers
has been studied in [19]. Whereas the approach relies on
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a heuristic, we employ a technique based on reinforce-
ment learning. Several other approaches ranging from
control theory to online measurements and optimizations
can also be employed to address this problem. While no
such study exists for storage systems, both control theory
[1] and online measurements and optimizations [6, 15]
have been employed for dynamically allocating resources
in web servers. Utility-based optimization models for
dynamic resource allocation in server clusters have been
employed in [11]. Feedback-based dynamic proportional
share allocation to meet real-rate disk I/O requirements
have been studied in [16]. While many feedback-based
methods involve approximations such as the assumption
of a linear relationship between resource share and re-
sponse time, no such limitation exists for reinforcement
learning—due to their search-based approach, such tech-
niques can easily handle non-linearity in system behav-
ior.

Finally, reinforcement learning has also been used to
address other systems issues such as dynamic channel al-
location in cellular telephone systems [18] and adaptive
link allocation in ATM networks [13].

7 Concluding Remarks and Future Work

In this paper, we addressed the problem of dynamic al-
location of storage bandwidth to application classes so
as to meet their response time requirements. We pre-
sented an approach based on reinforcement learning to
address this problem. We argued that a simple learning-
based approach is not practical since it incurs significant
memory and search space overheads. To address this is-
sue, we used application-specific knowledge to design an
efficient, practical learning-based technique for dynamic



storage bandwidth allocation. Our approach can react
to dynamically changing workloads, provide isolation to
application classes and is stable under overload. Further,
our technique learns online and does not require any a
priori training. Unlike other feedback-based models, an
additional advantage of our technique is that it can easily
handle complex non-linearity in the system behavior. We
implemented our techniques into the Linux kernel and
evaluated it using prototype experimentation and trace-
driven simulations. Our results showed that (i) the use
of learning enables the storage system to to reduce the
number of QoS violations by a factor of 2.1 and (ii) the
implementation overheads of employing such techniques
in operating system kernels is small. Overall, our work
demonstrated the feasibility of using reinforcement learn-
ing techniques for dynamic resource allocation in stor-
age systems. As part of future work, we plan to explore
the use of such techniques for other storage management
tasks such as configuration, data placement, and load bal-
ancing.
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