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Abstract

In this paper we present a cooperative negotiation protocol that solves a
distributed resource allocation problem while conforming to soft real-time
constraints in a dynamic environment. Two central principles are used in this
protocol that allow it to operate in constantly changing conditions. First, we
frame the allocation problem as an optimization problem, similar to a Partial
Constraint Satisfaction Problem (PCSP), and use relaxation techniques to
derive conflict (constraint violation) free solutions. Second, by using over-
lapping mediated negotiations to conduct the search, we are able to prune
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large parts of the search space by using a form of arc-consistency. This al-
lows the protocol to both quickly identify situations where the problem is
over-constrained and to identify the appropriate fix to the over-constrained
problem. From the global perspective, the protocol has a hill climbing be-
havior and because it was designed to work in dynamic environments, is an
approximate one. We describe the domain which inspired the creation of
this protocol, as well as discuss experimental results.

1 Introduction

Resource allocation is a classical problem that has been studied for years by multi-
agent systems researchers [1, 9]. It is particularly applicable because it the prob-
lem exhibits characteristics that are common to a wide range of multi-agent do-
mains. In particular, resource allocation can be too complex and time consuming
to perform in a centralized manner when the environmental charateristcs are both
distributed and dynamic, because the costs associated with continuously central-
izing the necessary information are impractical. Negotiation, a form of distributed
search [8], has been viewed as a viable alternative to handling complex searches
that include multi-linked interacting subproblems [1]. Researchers in this domain
have focused primarily on resource allocation scenarios that are formulated as dis-
tributed constraint satisfaction problems [7, 11]. In this work, we extend this clas-
sic formulation in two ways. First, we introduce soft real-time constraints on the
protocol’s behavior. These require the negotiation to adapt to the remaining avail-
able time, which is estimated dynamically as a result of emerging environmental
conditions. Second, we reformulate the resource allocation task as an optimiza-
tion problem, and like distributed Partial Constraint Satisfaction Problem (PCSP)
[2, 3, 4], use constraint relaxation techniques to find a conflict-free solution while
maximizing the social utility of the agents. Of course, when a particular resource
is desired by more than one agent these two goals may contradict each other.

In this paper, we present a distributed, mediation-based negotiation protocol
that takes advantage of the cooperative nature of the agents in the environment
to maximize social utility. By mediation based, we are referring to the ability
of each of the agents to act in a mediator capacity when resource conflicts are
recognized. As a mediator, an agent gains a localized, partial view of the global
allocation problem and makes suggestions to the allocations for each of the agents
involved in the mediation. This allows the mediator to identify over-constrained
subproblems and make suggestions to eliminate such conditions. In addition, the



mediator can perform a localized arc-consistency check, which potentially allows
large parts of the search space to be eliminated. Together with the fact that regions
of mediation overlap, the agents rapidly converge on solutions that are in most
cases good enough and fast enough. Overall, the protocol has many characteristics
in common with distributed breakout [15], particularly its distributed hill-climbing
nature and the ability to exploit parallelism by having multiple negotiations occur
simultaneously.

In the remaining sections of this paper, we introduce the distributed monitoring
and tracking application which motivated the development of our protocol. Next,
we describe the Scalable Protocol for Anytime Multi-level negotiation (SPAM),
a distributed, mediation-based negotiation protocol that was developed and has
been tested on actual sensor hardware. In section 4, we will introduce Farm,
a distributed simulation environment used to test SPAM, and in section 5, we
present and discuss the results of testing SPAM within that simulator. The last
section of the paper will present conclusions and future directions for this work.

2 Domain

The particular resource allocation problem that motivates this work requires an
efficient allocation of distributed sensing resources to the task of tracking targets
in an environment. In this problem, multiple sensor platforms are distributed with
varying orientations in a real time environment [5]. Each platform has three dis-
tinct radar-based sensors, each with a 120 degree viewable arc, which are capa-
ble of taking amplitude (measuring distance from the platform) and/or frequency
(measuring the relative velocity of the target) measurements. In order to track a
target, and therefore obtain utility, at least three of the sensor platforms must take
coordinated measurements of the target, which are then fused to triangulate the
target’s position. Increasing the number, frequency and/or relative synchroniza-
tion of the measurements yields better overall quality in estimating the target’s lo-
cation and provides a higher quality solution. The sensor platforms are restricted
to only taking measurements from one sensor head at a time with each measure-
ment taking about 500 milliseconds. These key restrictions form the basis of the
resource allocation problem.

Each of the sensor platforms is controlled by a single agent which may take on
multiple organizational roles, in addition to managing its local sensor resources.
Each of the agents in the system maintain a high degree of local autonomy, being
able to make trade-off decisions about competing tasks using the Soft Real Time



Architecture [10].

One notable role that an agent may take on is that of track manager. As a track
manager, the agent becomes responsible for determining which sensor platforms
and which sensor heads are needed both now and in the future for tracking a single
target. Track managers also act to fuse the measurements taken from the individ-
ual sensor platforms into a single location. Because of this, track managers act as
the focal point of the negotiation activities that take place as part of resolving the
resource contention that arises while tracking targets moving in relative proximity.

Dynamics are introduced into the problem as a result of target movement. Dur-
ing the course of a run, targets will continously enter and leave the viewable area
of different sensors, which will then require track managers to continously evalu-
ate and revise their resource requirements. This, in turn, changes the underlying
structure of the actual allocation problem. In addition, these dynamics drive the
need for real-time negotiation, because a particular problem structure is valid for
only a limited amount of time.

Resource contention is introduced when more than one target enters the view-
able range of the same sensor platform. Because of the time it takes to perform
a measurement, and the fact that each sensor can take only one measurement at
a time, track managers must come to an agreement over how to share sensor re-
sources, without causing any targets to be lost. This local agreement can have
profound global implications. For example, what if as part of its local agreement,
a track manager relinquishes control of a sensor platform and takes another in-
stead? This may introduce contention with another track manager already using
that sensor, who may then have to request alternate sensor resources to make up
for the new deficiency.

2.1 The Resource Allocation Problem

Generally speaking, we say that a resource allocation problem is the problem of
assigning a (usually limited) number of resources to a set of tasks. Each of the
tasks may have different resource requirements, and may have the potential for
varying utility depending on which resources they use. The goal is to maximize
the global utility of the assignment, choosing the right options for the tasks and
assigning the correct resources to them. More formally, a resource allocation
problem is comprised of:

e asetoftasks, T = {t1,---,t,}
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Figure 1: Utility of taking a single, coordinated measurement from a set of sensors.

e a set of resources R = {ry1,--,7;,} where j is the number of resources
and k is the planning horizon for the resource.

e aset of utility functions each associated with one of the tasks U = {U1, - - -, U,|U; :
2F — R}
The goal of the problem is to come up with an allocation A = {ay, -+, a,|a; €

28} such that 37, U;(a;) is maximized and N?_ya; = 0. The notation 2% is
used to indicate the powerset of the resources. Because the resource requirements
may change over time, or a particular pattern of resource usage may be needed
to obtain utility for a task, resources are broken down on both the resource and
time dimensions, hence the need for a planning horizon. Increasing the number
of resources or the planning horizon can have a significant effect on the overall
complexity of the allocation problem, which is known to be NP-complete.

It should be noted that the utility of assigning a set resources to a task is strictly
dependent on the utility function defined for the task. What also should be clear is
that due to the sharing of resources, increasing the utility of a particular task may
not increase the global utility. We make no assumptions in this paper about task
independence.

The distributed version of the resource allocation problem, which is the focus
of this paper, has each task assigned to a single agent. However, in general an
agent may take on more than one task.

2.2 Tracking as Resource Allocation

Modeling the target tracking domain as a resource allocation problem is fairly
straightforward. Each of the targets in the environment can be considered a task,
which is assigned to a track manager. The sensors are the resources and the job
of the track managers is to obtain enough sensing time from the correct sensors to
track their targets.



At any given time, each of the targets is within the viewable range of some
subset of the sensors. That means that as the targets move from the viewable range
of some sensors to others, the utility functions associated with each of the tasks
change. In addition, tracking involves coordinating measurements from three or
more sensors which are then fused together to form an estimated position of the
target. Increasing the number of sensors improves the quality of the estimate by
the function given in figure 1. Increasing the measurements taken in a given period
of time yields a linear increase in the overall quality of the track.

Because targets are often in the viewable range of a sensor for an extended
period of time, planning within our system is periodic. This simply means that the
sensors continuously repeat their assigned schedules until a change is made. We
often refer to the planning horizon as a period and an individual element with the
schedule as a slot.

If we say that M is the set of good sensors measurements (can see the target)
leading to the positional estimate in a single slot s for a task 7, then the utility
function for that task during a specific period is:

k
Uiag) = Y. UiL(])
s=1
The special nature of the utility functions in the tracking domain actually allow
us to consider a much smaller subset of the possible allocations for a given task.
In fact, track managers within our system use a simplified set of objective levels
defined by their utility functions to assign resources to their targets. Each objective
level is expressed as a cross product D,, x D, denoting the number for resources
from their acceptable set, desired for a number of slots in planning horizon. For
example, a track manager may wish to have three sensors for two slots, which
is denoted 3 x 2. Although the number of slots in a period is variable, for this
domain, we typically set it to match the number of sensor heads on each platform,
which is three.
Note that if a target is ignored (i.e. not being triangulated at all during a full
period), we penalize ourselves by subtracting one from the social utility.

3 Protocol

The Scalable Protocol for Anytime Multi-level (SPAM) negotiation is built around
the principle of good enough, fast enough. As such, the protocol is actually di-
vided into two major stages. As the protocol transitions from the first stage to the
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second, the agent acting as the track manager gains more context information and
is, therefore, able to improve the quality of its overall decision. In addition, to
allow stage 2 time to complete, without loosing all quality in the mean time, stage
1 of the protocol always ensures that at least some solution has been obtained. So,
at any time after the completion of stage 1, the track manager can choose to stop
the protocol and is ensured to have a solution, albeit not necessarily a good one
(not optimal and not necessarily conflict free).

In the current implementation, the SPAM protocol is activated whenever a
local change in the resources is needed (a new target, adding/removing resources,
etc) or if the manager detects a conflict within one of the resources it’s using.
Resource needs in this domain are monitored and updated as the target moves
through the environment. Conflicts are detected by the track managers through
notification from the sensors. It is certainly conceivable and, in fact likely, for
two conflicting managers to detect a conflict at the same time. We prevent two
neighboring managers from mediating a negotation by using a distributed locking
technique.

3.1 Stagel

Stage 1 of SPAM serves two primary functions. The first attempts to find a so-
lution within the context of the information that the protocol has when it starts
up. Like the Asynchronous Weak Commitment (AWC) protocol [14], each of
the agents tries to find an assignment that is consistent with their potentially in-
complete or inconsistent agent view. However, because the protocol attempts to
maximize the social utility, each of the agents tries to maximize their local utility
without causing new constraint violations. If this can be done, then no further
negotiation is necessary, and the protocol terminates at the end of stage 1.

We should mention that a trade-off that exists between communication over-
head and utility, due to the initial selections of the objective level in stage 1. If
each of the managers chooses to use every available resource (sensors able to see
their target), the possibility for contention over resources greatly increases in the
environment, thereby causing the execution of stage 2 to occur more frequently.
However, if the agents decide to start with at a lower objective level (and corre-
spondingly less utility), the social utility may suffer unnecessarily.

Currently, stage 1 has what we refer to as a concession rate. This rate defines
how much of the local solution quality a track manager is willing to concede
to find a violation-free solution, in an attempt to avoid the potentially expensive
stage 2 negotiations. The rate is defined as a percentage of the manager’s current

7



utility, so as the manager’s utility drops, the amount they are willing to concede
drops as well. That means that in critically constrained tracking environments, the
managers attempt to negotiate more frequently.

The second function of stage 1 is to ensure some utility is obtained while wait-
ing for stage 2 to complete. If a violation-free solution cannot be obtained during
stage 1 of the protocol, one of two things will happen. If the reason the protocol
was started was a resource requirement change, a temporary solution is applied to
the problem. This solution, although not conflict free, has the ability to obtain at
least some utility while the manager tries to get a better solution. Conflicts that
are unresolved are actually left to the individual sensor agents to handle. Sensor
agents can use one of a number of techniques, including slot boundary shifting,
less expensive measurement types, or task rotation, in order to solve such conflicts.
To the track manager, whether or not they get a measurement from a conflicted
sensors is probabilistically random.

Temporarily applied solutions do not use the concession rate. In fact, because
of environmental changes and the probabilistic nature of getting measurements
from conflicted sensors, managers always use their maximum possible objective
level (within the bounds of the number of sensors that can see the target). The
first reason is rather subtle, but important. Let’s say that a new resource were
added to the possible resources that could be used by manager T1. Let’s also say
that another manager, T2, who has more than enough available resources to itself,
were using that entire resource. If T1 starts a negotiation at that lower level, it can
never obtain its highest level through the negotiation, even though a solution exists
where T2 just gives up the entire conflicted resource. From a PCSP perspective
this just means that if the structure of the CSP changes, the PCSP attempts to
satisfy all of the constraints before relaxing any of them.

If stage 1 was activated because of a newly discovered conflict, and a conflict-
free solution cannot be found, then the manager just enters stage 2. It does not
concede, does not bind a temporary solution, and it does not reset its objective
level. This case most often occurs when there is a multi-linked problem within
the environment. Let’s say you have three managers, T1, T2, and T3. T1 has a
conflict with T2, and T2 is sharing resources with T3, but is not in conflict. As
a result of a negotiation between T1 and T2 their conflict is solved, but it creates
a conflict between T2 and T3. When T2 recognizes this problem, if it reset its
objective level, the problem becomes harder to solve because it may reintroduce
conflict with T1 as well as increasing the conflict with T3.
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Figure 2: Stage 2 of the SPAM negotiation protocol resolves all local conflict at the
schedule abstraction level through negotiation with conflicting track managers.

3.2 Stage 2

Stage 2 of SPAM is the heart of the negotiation protocol (See figure 2). Stage
2 attempts to resolve all local conflicts that a track manager has by elevating the
negotiation to the track managers that are in direct conflict over the desired re-
sources. To do this, the originating track manager takes the role of the negotiation
mediator for the local conflict (note that multiple negotiations can occur in parallel
in the environment). As the mediator, it becomes responsible for gathering all of
the information needed to generate alternative solutions, generating possible solu-
tions which may involve changes to the objective levels of the managers involved,
and finally choosing a solution to apply to the problem. Because the solutions are
generated without full global information, however, the final solution may lead to
newly introduced non-local conflict. If this occurs, each of the track managers can
choose to propagate the negotiation with itself as the mediator in order to resolve
this conflict if they have the time. So, what started out as a new target or resource
requirement change, may lead to the negotiation propagating across the problem
landscape.

Looking at this from a more formal perspective. If the set of resources that are
usable for a single task ¢; is defined as

R(t;) = {rup|rup € RAJa(Uj(aUry,) > Ui(a)))}
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Figure 3: Example of a common contention for resources. Track manager T2 has
Jjust been assigned a target and contention is created for sensors S3, §4, S5 and
S6.

then the set of acceptable resource assignments for a single task ¢; is
D(t;) = {a|a € 28®) A Uy(a) > 0}
and the neighbor tasks to a mediator m are
Ny = {ti|t; € T A R(tn,) N R(t;) # 0}
then the problem that a mediating manager m is working on is
e aset of tasks, T, = {t,, U N }
rup € (Uvgen,, B(t:)) N R(tm)}

e aset of utility functions U = {U;|t; € T}

e a set of resources R,, = {Tu,v

The goal of this subproblem is the same as the goal of the global problem. The
notation U is used to indicate an approximation function to the actual U; for each
of the managers. Also note that R,, C Uys,cn,, R(t;). What this means is that
the view of the mediating manager is limited to only the constraints that arise
from the sharing of a resource with the mediator. These conditions, when com-
bined together, indicate that the estimated utility of a solution to the subproblem
is always either equal to or an over-approximation to the actual utility obtained
socially. This is simply a by-product of performing a localized search. The medi-
ator never knows if the assignments it proposes at a given utility value will cause
conflict outside of its view, which is why we allow the maganers to propogate.
The best way to explain how stage 2 operates is through an example. Consider
figure 3. This figure depicts a commonly encountered form of contention. Here,
track manager T2 has just been assigned a target. The target is located between
two existing targets that are being tracked by track managers T1 and T3. This
creates contention for sensors S3, S4, S5, and S6.

Following the protocol for the example in figure 3, track manager T2, as the
originator of the conflict, takes on the role of negotiation mediator. It begins the
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solution generation phase by requesting meta-level information from all of the
track managers that are involved in the resource conflict. The information that is
returned includes the current objective level that the track manager is using, the
number of sensors which could possibly track the target, the names of the sensors
that are in direct conflict with the mediator, and any additional conflicts that the
manager has. To continue our example, T2 sends a request for information to
T1 and T3. T1 and T3 both return that they have 4 sensors that can track their
targets, the list of sensors that are in direct conflict (i.e T'1(S3,S4), T'3(S5, Ss))
their objective level (4 x 3 for both of them) and that they have no additional
conflicts outside of the immediate one being considered.

Using this information, T2 is able to generate D(t;) for each of the tasks in
the set 7}, for the objective levels that are passed in as part of the meta-level
information(see section 3.3). With the full set of D(¢;)’s, it’s fairly easy to gen-
erate all possible satisfying assignments A with each element being a particular
Ap = {as|t; € Ty N a; € D(t;)} s.t. the condition Ny, e 4, @ = 0 is met.

As you can see in figure 2, T2 enters a loop that involves attempting to generate
these sets followed by lowering one of the track manager’s objective level, if A =
() given the current objective levels of each of the track managers. One of the
principle questions that we are currently investigating is how to choose the track
manager that gets its objective level lowered when A is empty. Right now, this is
done by choosing the track manager with the highest current objective level, which
cannot support its demands with resources outside of the set R,, and lowering
them. This has the overall effect of balancing the objective levels of the track
managers involved in the negotiation. Whenever two or more managers have the
same highest objective level, we choose to lower the objective level of the manager
with the least amount of external conflict. By doing this, it is our belief, that
track managers with more external conflict will maintain higher objective levels,
which leaves them more leverage to use in subsequent negotiations as a result of
propagation.

You should note that although this has similarities to the techniques used in
PCSPs, this differs in that the actual CSP problem changes as the objective levels
are changed. PCSP techniques, such as [2, 3, 4] choose a subset of the constraints
which are satisfiable, we change the structure of the constraints until it is satisfi-
able. We also differ from the Distributed Constraint Optimization (DCOP) [12]
work in that although they have a utility function over the possible assignments to
a problem, they do not change the underlying CSP to ensure it is satisfiable.

The solution generation loop is terminated under one of two conditions. First,
if given the current objective levels for each of the track mangers, the set A # (),
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the negotiation enters the solution evaluation phase. Second, we cannot find a
track manager to lower without D(¢;) = () and A = (). Under this condition,
the negotiation session is terminated and the mediator takes a partial solution at
the lowest objective level that minimizes the resulting conflict, conceding that it
cannot find a full solution.

Continuing our example, T2 first lowers the objective level of T1 (choosing
T1 at random because they all have equal external conflict). No full solutions are
possible under the new of set objective levels, so the loop continues. It continues,
in fact, until each of the track managers has an objective level of 3 x 2 at which
time T2 is able generate a set of 216 (the number of elements in A) solutions to
the problem.

During the solution evaluation phase, the mediator sends each of the track
managers a set:

d; = {ala € D(t;) N JAn € A(a € Ap)}

What should be clear is that each of the set d; is arc-consistent for every con-
straint between elements in the set R,,. What that means is that for the mediator’s
resources, all constraints are satisfied.

Each track manager, using the its set d; and a revised objective level, can then
determine which, if any, of the solutions are satisfiable given the local agent view
and which is best given the actual U;. In our example, T2 sends 24 alternatives to
T1, 24 alternatives to itself, and 24 alternatives to T3. In our current implemen-
tation, each of the track managers orders alternatives from best to worst based
on the number of new conflicts that will be introduced and the desirability of the
particular resources present in the alternative. This has a min-conflict heuristic
[6] like flavor and is an integral part of the hill-climbing nature of the algorithm.
Currently, we are looking at a number of alternative techniques for providing local
preference information to the mediator including simply returning utility values
for each solution and assigning solutions to a finite set of equivalence classes.

Once the mediator has the orderings from the track managers, it chooses a
particular A,, to apply to the problem. This is done using a dynamic priority
method based on the number of constraints each of the managers has external to
the mediation, a form of meta-level information. The basic notion is similar to
the priority order changes in AWC [14]; try to find the task which is most heavily
constrained and elevate it in the orders. Our impression is that this helps stem the
propagation of the negotiation because it leaves the most constrained tasks with
the best choices. This allows those managers to maintain violation free solutions if
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Slot 1 Slot 2 Slot 3 Slot 1 Slot 2 Slot 3

S1 T1 Tl T1 S1 Tl T1

S2 T1 T1 T1 S2 T1 T1

S3 | TU/T2 T1/T2 T1/T2 S3 T2 T1

S4 | TU/T2 T1/T2 T1/T2 — S4 T2 T1 T2

S5 | T3/T2 T3/T2 T3/T2 S5 T2 T2

S6 | T3/T2 | T3/T2 | T3/T2 S6 T3 T3 T2

S7 T3 T3 T3 S7 T3 T3

S8 T3 T3 T3 S8 T3 T3

Figure 4: A solution derived by SPAM to the problem in figure 3. The table on the
left is before track manager T2 negotiates with T1 and T3. The table on the left is
the result of stage 2 negotiation.

they exist in the alternatives presented to them. Let’s say that the priority ordering
for the tasks is (¢5,t5 1, --,%0), etc. The mediator iteratively prunes the set A
by creating a set A;, = {A,|An € A AVA; € A(priorityp(a, € Am) >
priority,(a, € A;))}. This newly created list is pruned in the same way for each
of the managers until |A| = 1.

In our example, T2 collects the ordering from T1, T2, and T3. T3 is given
first choice. By its ordering it ranked alternative O the highest. This restricts the
choice for T2 to alternatives 0, 1, 2, and 3. T2 ranked O highest from this set of
alternatives, leaving T1 to choose between its Oth, 1st, and 2nd alternatives. It
turns out that T1 likes its Oth solution the best so the final solution is composed of
T3’s alternative 0, T2’s alternative O, and T1’s alternative O.

The last phase of the protocol is the solution implementation phase. Here,
the mediator simply informs each of the track managers of its final choice. Each
of the track managers then implements the final solution. At this point, each of
the track managers is free to propagate and mediate a negotiation if it chooses to.
Figure 4 shows the original configuration of the sensors before T2 was introduced
and after stage 2 completes.

Because the SPAM protocol operates in a local manner, a condition known
as oscillation can occur. Say that, from our previous example, track manager T1
originated a negotiation with track manager T2. In addition assume that T2 had
previously resolved a conflict with manager T3, that terminated with neither T2
or T3 having unresolved conflict. Now when T1 negotiates with T2, T1 in the
end gets a locally unconflicted solution, but in order for that to occur, T2 conflicts
with T3. It is possible that when T2 propagates the negotiation, that the original
conflict between T1 and T2 is reintroduced, leading to an oscillation.
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There are actually a number of ways to prevent this from happening when the
problem being worked on is static. For example, in both [13, 14], the authors use
global prioritization, static in one, dynamic in the other, to prevent loops in the
constraint network, and also maintain nogood lists to ensure a complete search.

We explored a method in which each track manager maintains a history of the
sensor schedules that were being negotiated over whenever a negotiation termi-
nated. By doing this, managers were able determine if they have previously been
in a state which caused them to propagate a negotiation in the past. To stop the
oscillation, the propagating manager lowered its objective level to force itself to
explore different areas of the solution space. It should be noted that in certain
cases oscillation was incorrectly detected using this technique, which can result
in having the track manager unnecessarily lower its objective level.

This technique is similar to that applied in [7], where a nogood is annotated
with the state of the agent storing it. Unfortunately, none of these techniques work
well when complex interrelationships exist and are dynamically changing. Be-
cause the problem changes continuously, previously explored parts of the search
space need to be constantly revisited to ensure that an invalid solution has not re-
cently become valid. Currently, we allow the agents to enter potential oscillation,
maintaining no prior state other than objective levels, from negotiation to negoti-
ation and rely on the environment to break oscillations. We consider the problem
of oscillation prevention and detection in dynamic environments to be an open
research question.

3.3 Generating Solutions

Generating the set A for the domain described earlier involves taking the infor-
mation that was provided through communications with the conflicting track man-
agers and assuming that the sensors that are in the set Uyy,cn,, D(t;) — R(t,,) are
freely available. In addition, because the track manager that is generating full so-
lutions only knows about the sensors which are in direct conflict, it only creates
and poses solutions for those sensors. That means that Va € d;(a € R,,). The
formula below illustrates the basic mechanism that task manager’s use to generate
task alternatives. Here, k is the number of slots that are available in the planning
horizon, D; is the number of slots that are desired based on the objective level
for the track manager, |R(¢;)| is the number of sensors available to track the tar-
get (those that can see it), D,, is the number of sensors desired in the objective
function, and finally C; = |R(¢;) N R(t,,)| is the number of sensors under direct
consideration because they are conflicting.
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min(C;i,Dm) D
k Ci
|D(tz~)|:(D )( > (u>>
s u=maz(0,Dy, —|R(t;)|+C;)

As can be seen by this formula, every combination of slots that meets the
objective level is created, and for each of the slots, every combination of the con-
flicted sensors is generated such that the track manager has the capability of meet-
ing its objective level using the sensors that are available. For instance, let’s say
that a track manager has four sensors S1, S2, S3, and S4 available to it. The track
manager has a current objective level of 3 x 2 and sensors S2 and S3 are under
conflict. The generation process would create the 3 combinations of slot possibil-
ities and then for each possible slot, it would generate the combination of sensors
such that three sensors could be obtained. The only possible sensor combinations
in this scenario would be that the track manager gets either S2 or S3 (assuming
that the manager will take the other two available sensors) or it gets S2 and S3
(assuming it only takes one of the other two). Therefore, a total of 27 possible
solutions would be generated.

It is interesting to note that we use this same formula for alternative solutions
in stage 1 of the protocol. This special case generation is actually done by simplly
setting C; = |R(t;)|. In this case, the formula above reduces to:

pwi=( 5 ) ( )DS

We can also generate partial solutions when there are a number of pre-existing
constraints on the use of certain slot/sensor combinations. Simply by calculating
the number of available sensors for each of the slots, and using this as a basis for
determining which slots can still be used, we can reduce the number of possible
solutions considerably.

Using the ability to impose constraints on the alternatives generated for a given
track manager allows us to generate full solutions for the track managers in stage
2. By recursively going through the track managers using the results from earlier
track managers as constraints for lower precedence ones, we can do a full search
of the localized subproblem

You can view this as a tree-based search where the top level of the tree is the set
of alternatives for one track manager. Each of the nodes at this level may or may
not have a number of children which are the alternatives available to the second
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track manager and so on. Only branches of the tree that have a depth equal to one
less than the number of track managers are added to the set A. If there are no
branches that meet this criteria, then the problem is considered over constrained.

4 Simulation

To test the SPAM protocol, we implemented a model of the domain described
in section 2 in a simulation environment called Farm. Farm is a component-
based, distributed simulation environment written in Java where individual com-
ponents have responsibility for particular encapsulated aspects of the simulation.
For example, they may consist of agent clusters, visualization or analysis tools,
environmental or scenario drivers, or provide some other utility or autonomous
functionality. These components or agent clusters may be distributed across mul-
tiple servers to exploit parallelism, avoid memory bottlenecks, or utilize local
resources.

Agents in Farm are grouped in clusters of one or more entities, and each clus-
ter exists under the control of a meta-agent component which provides access to
the rest of the simulation environment. The agents themselves run in pseudo real-
time, where individual agents are each allocated a specific amount of real CPU
time in which to run. This aspect allows the systems to exhibit a fair amount of
temporal realism, where the efficiency of an agent’s activities can have quantifi-
able effects on its performance. Communication actions are similarly modeled
and monitored.

The actual model used to test the SPAM protocol has both sensor and track
manager agents. Each of the sensor agents represents a single sensor which was
randomly placed in the world. These sensors agents are very simple, and only
maintain a local schedule, which is not actually performed in any tangible way.
A fixed number of targets is introduced into the world, and one track manager
per target is created to manage the resources needed to track that target. The tar-
gets move through the environment with random trajectories that have a random,
bounded speed. As the simulation progresses, the simulator continuously updates
the position of the targets, and for each target calculates the set of sensors that are
able to track it. The track managers can obtain their candidate sensor lists from
the simulation environment and follow the SPAM protocol to allocate resources.

For comparison purposes, we have also implemented a Greedy and an Opti-
mal track manager agent. Each greedy agent attempts apply request all of their
available resources to tracking their target, potentially overriding each other in the
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Figure 5: Average utility of SPAM versus Greedy and Optimal allocation using 20
sensors on 20 separate problems with a variable number of targets.

sensors’ schedules. The optimal agent computes the maximal set of objective lev-
els that is satisfiable in the environment. This is done by having the optimal agent
perform a complete search of the space of allowable objective levels, where each
one is checked for satisfiability using a modified version of the complete search
algorithm presented in section 3.3. To make this search go faster, we prevent
the search from checking satisfiability on solutions that have utilities less than
the best already obtained, and do a simple arc-consistency (using the pigeon hole
principle) check to prune obviously over-constrained problems.

5 Results

A total of 180 simulation runs were performed, using 20 sensors and 2 to 9 con-
current targets. The targets we placed in the environment and maintained a static
location, so that we could test the convergence rate of SPAM and give enough
time for the optimal agent to compute its solution. These tests then compare the
approaches in their achievable utility, future tests will evaluate how SPAM’s util-
ity compares in a dynamic environment. Figures 5, 6, and 7 summarize the results
of the test. As you can see from the graph, SPAM does quite well when compared
to both greedy and optimal. For the greedy method, the problem begins to become
over-constrained at around 4 targets. SPAM provide reasonably good results (over
80% optimal for utility) for all of the configurations tested. Two things in partic-
ular are interesting about these results. First, for tracking targets, SPAM performs
nearly 100% optimal. For the sake of these tests, a target is considered tracked
if at least one triangulating measurment occurs with a given planning horizon. In
some cases, SPAM actually tracked more targets than optimal. This is caused by
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Figure 6: Average number of targets tracked by SPAM versus Greedy and Optimal
using 20 sensors on 20 separate problems with a variable number of targets.

the fact that SPAM is trying to optimize the balance of resources so that as many
targets can be tracked as possible, optimal is just computing the best set of objec-
tive levels to maximize the social utility. It turns out that in many of the critically
conflicted problems, optimal chose to ignore certain targets in order to track other
better.

Figure 7 shows another interesting result, where as the problem gets harder
SPAM only sees a linear increase in the time it takes to converge. This is very
promising, considering the allocation problem is known to be NP-complete. Un-
fortunately, we have not yet implemented other solustions, which could be used
to compare this running time. We can, however, say that our practical experience
using the protocol in a real-world sensor network makes us believe that the tech-
niques presented in this paper are applicable to real problems. It should also be
noted that on many of the problems used for the test runs, the optimal solution
took between a few seconds (for two targets) to an entire day (for eight targets) to
compute.

Something we were not able to show in the graphs is that there are cases when
the greedy agent obtained higher utility than SPAM, but was ignoring a large
number of the targets in order to achieve it. We think that this may be caused by
not penalizing enough for ignoring targets. It is not clear what that penalty should
be, and initially seems to to be strongly domain dependent.

Lastly, there was at least one case were SPAM entered an oscillation. The
utility obtained during the oscillation varied only slightly and the number of un-
resolved global conflicts fluctuated back and forth from 2 to 3. As mentioned
earlier, this is a result of the localization of the search and in a dynamic problem
instance would not have occured.
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Figure 7: Average time till SPAM reaches quiescence using 20 sensors on 20
separate problems with a variable number of targets.

6 Conclusion

In this paper, we have described a distributed, mediation-based negotiation pro-
tocol which was built to solve resource allocation problems in a soft real-time
environment. The protocol exploits the fact that agents within the environment
are both cooperative and autonomous, and employs a number of techniques to
operate in highly dynamic environments. Included in these techniques are map-
ping the resource allocation problem into an optimization problem and applying
arc-consistency techniques to quickly prune the search space.

The results of this work are encouraging, and although we consider the prob-
lems associated with DCSPs and distributed resource allocation in dynamic envi-
ronments to be an open research question, we feel that SPAM is a step in the right
direction.

Future work on the protocol includes generalizing it to work in other environ-
ments. This includes adapting the search techniques to work when stricter, tem-
poral constraints are placed on the utilization of resources and making the local
search anytime. We are also looking at how to apply the techniques SPAM uti-
lizes to work in static environments. Our hope is that mediation-based negotiation
can be adapted to perform complete, distributed searches and that the convergence
rate will remain quite fast compared to more conventional techniques.
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