J. Neville, D. Jensen, L. Friedland and M. Hay (2002). Learning Relational Probability Trees.
University of Massachusetts, Technical Report 02-55. Revised 02/2003.

Learning Relational Probability Trees

Jennifer Neville David Jensen

Lisa Friedland Michael Hay

Computer Science Department
University of Massachusetts
Amherst, MA 01003 USA

[inevile | jensen | Ifried! | mhay]@cs.umass.edu

ABSTRACT

Classification trees are widely used in the machine learning
and data mining communities for modeling propositional
data. Recent work has extended this basic paradigm to prob-
ability estimation trees (PETs). Traditional tree learning algo-
rithms assume that instances in the training data arc homoge-
nous and independently distributed. Relational probability
trees (RPTs) extend standard probability estimation trees to a
relational setting in which data instances are heterogeneous
and interdependent. Our algorithm for learning the structure
and parameters of an RPT searches over a space of relational
features that use aggregation functions (e.g. AVERAGE, MODE,
COUNT) to dynamically flatten relational data and create di-
chotomous divisions within the RPT. Previous work has iden-
tified a number of statistical biases due to common character-
istics of rclational data such as autocorrclation and degree
disparity. The algorithm uses a novel form of randomization
test to adjust for these biases. On a variety of relational learn-
ing tasks, we show that RPTs built using randomization tests
are significantly smaller than other models and achieve
cquivalent, or better, performance.

1. INTRODUCTION

Classification trees are used widely in the machine learning
and data mining community for propositional data. Due to the
selective nature of classification models and their intuitive
representation of knowledge, the learned trees are often casily
interpretable. This makes classification trees an attractive
modeling approach for the knowledge discovery community.
However, conventional tree learning algorithms were designed
for data sets where the instances are homogeneous and statisti-
cally independent. The past two decades have seen a dramatic
increase in the amount of stored information and much of the
data being captured are relational in nature. This has created a
need for a new generation of analysis techniques for relational
data that arc heterogeneous and interdependent. In this paper
we present an algorithm for learning classification trees over
relational data.

Because of the popularity of classification tree models, there is
a large body of research detailing the results of various algo-
rithm design choices. For example, it has been shown that
cross-validation can be used to avoid attribute selection bi-
ases [9] and that misclassification costs are generally insensi-
tive to choice of split criteria [19]. Recent work has extended
the basic classification tree paradigm to probability estima-
tion trees (PETs) and has focused on improving probability
estimates in leaves [19]. We can leverage this body of research
to construct a new algorithm for relational data where many
sources of potential variance have been addressed. Choosing a

well-studied algorithm to modify for use with relational data
reduces the range of effects we can expect due to other unex-
plored biases inherent in the model choice and allows us to
focus of the characteristics of relational data.

Our recent work on relational learning has concentrated on the
unique challenges of learning probabilistic models in rela-
tional data, where the traditional assumption of instance inde-
pendence is violated [10], [11]. Specifically, we have examined
how particular characteristics of relational data affect the sta-
tistical inferences necessary for accurate learning. We have
identified three characteristics of relational
data—concentrated linkage, degree disparity, and relational
autocorrelation—and have shown how these can greatly com-
plicate efforts to construct good statistical models. In particu-
lar, they can lead to feature selection bias and discovery of
spurious correlations, leading to overly complex models with
excess structure.

Excess structure in models is harmful for several reasons. First,
such models are factually incorrect. They indicate that some
variables are related when they are not. Some applications use
induced models to support additional reasoning (e.g. [2]), so
correctness can be a central issue. Second, such models require
more space and more computational resources than models
that do not contain unnecessary components. Third, using a
model with excess structure can require the collection of un-
necessary features for each instance, increasing the cost and
complexity of making predictions. For example, medical diag-
nosis with unnecessarily large models would require unneces-
sary medical tests. Fourth, large models are more difficult to
understand. The unnecessary components complicate attempts
to integrate induces models with existing knowledge derived
from other sources. Overfitting avoidance has sometimes been
justified solely on the grounds of producing comprehensible
models [21].

Many techniques common to machine learning, data mining,
and statistical modeling use the underlying assumption that
data instances are independent. Techniques for learning statis-
tical models of relational data need to address the problems
associated with violating these assumptions. We have devel-
oped a promising class of techniques, based on randomization
tests and resampling-based methods, and have shown that
these computationally-intensive statistical procedures allow
us to adjust for the unique characteristics of a given relational
data set, and make accurate parameter estimates and hypothesis
tests [12]. We have incorporated these approaches into our
algorithm for constructing relational probability trees (RPTs).
To our knowledge, RPTs are the only statistical models for
relational data that adjust for potential biases due to the
unique characteristics of relational data.

We begin by describing a specific data set, an example analy-
sis task—predicting whether a web page belongs to a student
page—and present a simplified version of an RPT model
learned for this task. Next, we describe some of the basic fea-
tures of relational data and approaches to modeling data that
do not meet the assumptions of conventional techniques. The
next section discusses the set of statistical issues unique to
relational data, the biases that may result from ignoring those
issues and a solution to adjust for those biases. Then, we cover
the details of the RPT algorithm and finish with an experimen-
tal section that evaluates RPTs against C4.5 [20] and RBCs
[18] on a number of classification tasks.

2. EXAMPLE TASK

Recent research has examined methods for constructing statis-
tical models of complex relational data [7]. Examples of such
data include social networks, genomic data, and data on inter-
related people, places, things, and events extracted from text
documents. Consider the data set collected by the WebKB
Project [4]. It consists of a set of web pages from four computer
science departments. The web pages have been manually clas-
sified into the categories: course, faculty, staff, student, re-
search project, or other. The category "other" denotes a page
that is not a home page (e.g. a curriculum vitae linked from a
faculty page or homework description linked from a course
page). The collection contains approximately 4,000 web
pages and 8,000 hyperlinks among those pages. The task is to
determine whether a page belongs to a student (P(+)=0.51).

/"‘- Lmkedn\‘\ URL domain

_ from page URL path
oom page URL protocol
e
Num outlinks
rd)
/_.AA*_A__VV(" Link tag Num inlinks
™
eb page |
isStudent . J/ o
URL domain 'm_hl-'ﬁk tag
URL path .
URL protocol 7 Linked to ™ YAL domain
(“page J URLpath
\'\., page URL protocol
Num outlinks
Num inlinks

Figure 1: Web KB sch ema.

The data are shown schematically in Figure 1. The data consist
of web pages and associated pages one hyperlink away. The
pages are connected in the ways that you would expect (e.g.
out-links and in-links). In addition to the hyperlink relations,
the database contains attributes associated with each page and
hyperlink, including the path and domain of urls, and the di-
rectionality of the link in the department hierarchy (e.g. lateral,
up, down).

Our learning algorithm for relational probability trees con-
structs trees such as the one shown in Figure 2. The tree repre-
sents a series of questions to ask about a web page and the
pages in its relational neighborhood. The leaf nodes contain
probability distributions over the values of the isStudent at-
tribute. They show, of the training set instances that reach the
leaf, the number of pages of each class, as well as their respec-
tive probabilities. In this tree, the root node asks whether the
page is linked to from a page with more than 111 out-links
(e.g. directory page). If so, the page travels down the left-hand
branch and result in a 99% probability of being a student page.
If not, the page travels down the right-hand branch. The next

node asks whether the page is linked to from a page without
any path appended to the url (e.g. department home page). If
so, the page is unlikely to belong to a student. If not, the next
node asks whether the page is linked to from pages with a high
average number of out links (e.g. directory pages, research
group pages). If so, the page is likely to belong to a student.

Linked_From_Page
Exists(outlinks > 111)
Y X\
226:2 Linked_From_Page
99% : 1% Exists(~path)
N

5:206
2% : 98%

Linked_From_Page
Average(outlinks) > 21
Y V
21:128
14% : 86%

81% :19%

Figure 2: Example probability estimation tree.

This tree is a simplified version of an RPT learned on pages
from three departments. The actual tree had 7 nodes but we
collapsed the lower levels for readability and space considera-
tions. When tested on the fourth held-out department, this tree
had both perfect accuracy and perfect area under the ROC
curve. The tree construction algorithm is described in section
5, and the details of this experiment are reported in section 6.

3. MODELING RELATIONAL DATA

To generate the RPT discussed above, we had to account for the
unique characteristics of relational data relative to proposi-
tional data. Relational data violate two assumptions of con-
ventional classification techniques. First, algorithms designed
for propositional data assume the data are independent and
identically distributed (i.i.d.). Relational data, however, have
dependencies both as a result of direct relations (e.g. hyper-
linked pages) and through chaining multiple relations to-
gether (e.g. pages linked to by the same directory page).

Figure 3 presents two simple relational data sets represented as
subgraphs. Each set contains a unique object x with class label
{+,-}. A propositional data set would consist only of objects x.
In propositional models, each object x is independent and the
model is conditioned on the attribute values of x. Figure 3
illustrates rclational data sets where the examples are repre-
sented as subgraphs. Each subgraph contains a unique object x
connected to one or more other objects y. In this case, objects y
contain attributes that may be used to condition the model.
The first set of data represents i.i.d. relational data, where ob-
jects x and y have a one-to-one relationship and where the class
labels on instances are independent. The second set shows
instances where objects x and y have a many-to-one relation-
ship and where the class labels are dependent. This paper will
focus on relational data similar in structure to figure 3b where
each subgraph consists of multiple relations and each relation
may produce dependencies among the instances. We use a
graph representation throughout the paper, but complex rela-

tional data may also be represented in logical statements or
relational database tables.

(a)

(b)

Figure 3: Example relational data sets with independent
instances (a) and dependent instances (b).

Relational data have more information available with which to
build better models, but the data often have complex struc-
tures which are more difficult to model. For example, the sub-
graph in figure 4a shows the data available to predict movie
success (receipts>$2mil) in a relational dataset from the cine-
matic domain. In addition to information about the movie
itself, there is information regarding the actors, directors, pro-
ducers, and studios that participated in making the movie. For
example, actors have gender, age and award information. Each
movie subgraph may have a different number of related ob-
jects, resulting in diverse structures. For example, some mov-
ies may have 10 actors and others may have 1000. A relational
classification technique needs to contend with heterogeneous
data instances for both learning and inference.

There are a number of approaches to using conventional ma-
chine learning techniques on relational data. Aggregation is
widely used as a means to homogenize relational data for mod-
cling whether it is applied as a pre-processing step (e.g. [16])
or applied dynamically during the learning process (e.g. [8]).
Heterogeneous data is transformed into homogenous records
by aggregating multiple values into a single value (e.g. aver-
age actor age). Figure 4b contains a portion of an aggregated
relational data set where multiple values have been averaged
(for discrete attribute we take the modal value). RPTs use rela-
tional features constructed from dynamic application of ag-
gregation functions. We define relational features below but
defer the details of the RPT algorithm until section 5.

3.1 Relational features

We define feature as a mapping between raw data and a low-
level inference. For example, a feature for a movie might be
genre=comedy. In this case, a feature combines an attribute
(genre), an operator, and a value. Typically, many features are
combined into a higher-level model such as a tree or rule set.

Receipts | Mode Actor | Avg A Mode Act Mode
>§2mif ande a stud

Figure 4: Some objects and attributes in IMDDb .

Specifically, we focus here on relational features. Relational
features are used by RPTs to predict the value of an attribute
on particular types of objects (c.g., the box office receipts of
movies) based on the attributes of related objects (e.g., charac-
teristics of the movie’s director, producer, and actors, and the
studio that released the movie). Relational features are similar
to the features described above in that they identify both an
attribute and a way of testing the values of the attribute. How-
ever relational features may also identify a particular relation
(e.g. ActedIn(x,y)) that links a single object x (e.g. movie) to a
set of other objects Y (e.g. actors). If this is the case, the attrib-
ute referenced by the feature may belong to the related objects
Y (e.g. actor age), and the test is conducted on the set of attrib-
ute values on the objects in Y. For example, the relational fea-
ture:

Movie(x),Y = {y| ActedIn(x,y)} : Max(Age(Y)) > 65

determines whether the oldest of the actors in movie x is over
65.

When the relation between x and Y is one-to-many, a relational
feature must consider a set of attribute values on the objects Y.
In this situation, standard database aggregation functions can
be used to map sets of values into single values. The RPT algo-
rithm uses the following aggregation functions to create bi-
nary splits in trees: AVERAGE, MODE, COUNT, and PROPORTION.
MINIMUM, MAXIMUM, and EXISTS are special cases of these aggre-
gation functions.

The graph structure of relational data may also be used in fea-
tures. For example, a feature could count the number of actors
associated with a movie, instead of counting a particular at-
tribute value. We will refer to such features as DEGREE features
throughout the rest of this paper. DEGREE features can be used
to count the degree of links (e.g. number of phone calls be-
tween two people), the degree of objects (e.g. number of chil-
dren for a given parent), or even the degree of attribute values
(c.g. number of aliases for a given person). As we will show
later in section 4.2, DEGREE features capture an important struc-
tural aspect of relational data — the heterogeneity of the rela-
tions. In certain restricted types of relational data, such as spa-
tial or temporal data, the structure is homogeneous. There, it is
not as important to be able to represent degree because all ob-
jects have similar structure. However, we have analyzed a num-

ber of relational data sets where degree features are highly cor-
related with the class label (see section 6).

4. STATISTICAL BIASES

Our recent work has shown that feature selection will be biased
when relational learning algorithms ignore concentrated link-
age and relational autocorrelation, two common characteristics
of relational data. Specifically, these two characteristics can
cause learning algorithms to be strongly biased toward certain
features, irrespective of their predictive power.

4.1 Linkage and autocorrelation

Informally, concentrated linkage occurs when many objects are
linked to a common neighbor, and relational autocorrelation
occurs when the values of a given attribute are highly uniform
among objects that share a common neighbor. See [10] for
more details. Figure 5 illustrates the concept of concentrated
linkage. Objects in set (a) are each linked to single, unique
neighbor (low linkage); objects in set (b) are linked to a few
common neighbors (high linkage).

Figure 5: Low linkage vs. high linkage.

Concentrated linkage is common in relational data sets. For
example, while studying relationships among publicly traded
companies in the banking and chemical industries, we found
that nearly every company in both industries uses one of only
seven different accounting firms. In work on fraud in mobile
phone networks, we found that 800 numbers, 900 numbers,
and some public numbers (¢.g., 911) produced concentrated
linkage among phones. Many articles in the scientific litera-
ture are published in a single journal and many basic research
articles are cited in single review articles. On the Web, many
content pages are linked to single directory pages on sites
such as Yahoo. In the IMDb, many movies arc link to a small
set of studios.

Relational autocorrelation is depicted in figure 6. The class
labels of objects in set (a) show no uniformity (low autocorre-
lation). On the other hand, the class labels of objects in set (b)
are highly correlated among objects that share a common
neighbor (high autocorrelation). We have defined relational
autocorrelation in a similar way to existing definitions of
temporal and spatial autocorrelation (see, for example, [5]).
Autocorrelation in these specialized types of relational data
has long been recognized as a source of increased variance.
However, the more general types of relational data commonly
analyzed by relational learning algorithms pose even more
severe challenges because the amount of linkage can be far
higher than in temporal or spatial data and because that link-
age can vary dramatically among objects.

In our analysis of relational data, we have encountered many
examples of high relational autocorrelation. For example, in
our study of publicly traded companies, we found that when
persons served as officers or directors of multiple companies,
the companies were often in the same industry. Similarly, in

biological data on protein interactions we analyzed for the
2001 ACM SIGKDD Cup Competition, the proteins located in
the same place in a cell (e.g., mitochondria or cell wall) had
highly autocorrelated functions (e.g., transcription or cell
growth). Such autocorrclation has been identified in other
domains as well. For example, fraud in mobile phone networks
has been found to be highly autocorrelated [3]. The topics of
authoritative web pages are highly autocorrelated when linked
through directory pages that serve as "hubs" [13]. Similarly,
the topics of articles in the scientific literature are highly
autocorrelated when linked through a common journal.

Figure 6: No autocorrelation vs. high autocorrelation.

Linkage and autocorrelation cause feature selection bias in a
two-step chain of causality. First, linkage and autocorrelation
combine to reduce the effective sample size of a data set, thus
increasing the variance of scores estimated using that set. Re-
lational data sets with high linkage and autocorrelation con-
tain less information than an equivalently sized set of inde-
pendent data. This reduction in effective sample size increases
the variance of parameter estimates made with the data. Just as
small data samples can lead to inaccurate estimates of the
scores used to select features, concentrated linkage and auto-
correlation can cause the scores of some features to have high
variance. Second, increased variance of score distributions
increases the probability that features formed from objects
with high linkage and autocorrelation will be selected as the
best feature, even when these features are random. To our
knowledge, with the exception of RPTs, no current relational
learning algorithm adjusts for this bias.

4.2 Degree disparity

Degree disparity is another common characteristic of relational
data. When aggregation is used on data with degree disparity
and autocorrelation, it can lead data mining algorithms to in-
clude completely spurious elements in their models (Type I
errors) and to completely miss very useful elements (Type II
errors) [11]. These errors occur with degree disparity because
many aggregation functions (e.g., MAX) will produce apparent
correlation between the aggregated values (e.g., maximum
movie receipts) and a class label (e.g., studio location) when-
ever degree disparity occurs, regardless of whether movie re-
ceipts have any correlation with studio location.

We define degree disparity as "systematic variation in the dis-
tribution of the degree for one entity type with respect to the
class label on another entity type." For example, actor degree
disparity exists with respect to the box office receipts of mov-
ies if successful movies tend to have more (or fewer) actors
than unsuccessful movies. Figure 7 illustrates degree disparity
schematically. Objects in set (a) link to the same number of
objects irrespective of degree (no disparity); objects in set (b)
with a class label of {-} link to a greater number of objects than
those with a class label of {+} (high disparity).

We have found examples of degree disparity in a number of
relational data sets. For example, in movie data, US-based stu-
dios are systematically linked to a larger number of movies
than foreign studios (p<0.0001). In corporate data, the number
of owners differs systematically among publicly traded com-
panies in different industries. In web data, the number of
hyperlinks differs systematically among different classes of
web pages at university web sites.

Figure 7: No degree disparity vs. degree dis parity.

Degree disparity can reflect a wide variety of different influ-
ences. For example, the degree disparity observed in IMDb
may reflect either prevailing practices in the movie industry
(e.g., movie producers could make relatively good estimates of
future box office receipts and thus be willing to invest in
larger cast sizes) or it could reflect data collection practices
(IMDb data are contributed by movie enthusiasts who may
show disproportionate interest to popular movies and thus list
a larger percentage of all actors). Similarly, the degree dispar-
ity observed in scientific literature databases may indicate that
researchers in particular areas cite a smaller number of papers,
or that the database contains more conference papers in those
areas (as opposed to journal articles which cite a larger number
of papers). One can imagine degree disparity that is far more
extreme than these cases. For example, the "publication de-
gree" of researchers with respect to their seniority will exhibit
degree disparity merely because of the cumulative nature of a
researcher's publication list. Similarly, the "incoming-link
degree" of web pages with respect to their popularity will ex-
hibit degree disparity due to the pages' popularity itself.

Given degree disparity, nearly any aggregated attribute can
show apparent correlation with the class label. This is true
regardless of which of a large class of aggregation functions
are used—count, exists, sum, max, min, avg, mode—although
the amount of correlation depends on the aggregation function
employed, the extent of degree disparity, and the distribution
of the attribute being aggregated. Some of these effects are
obvious. For example, the sum of a continuous attribute such
as actor age will be much higher for movies with many actors
than for those with few. Similarly, the count of a particular
value of a discrete attribute (gender=female) will be systemati-
cally higher for movies with more actors. Other effects are rela-
tively clear when you consider the effects of degree disparity.
For example, the min or max values of a particular continuous
attribute of actors will tend to be larger given the opportunity
to select from a larger number of actors. Similarly, the prob-

ability that a particular value exists will be higher given a
larger number of actors.

° Actors
> MODE
235
2
G
ag A
. AVERAGE
<7 oy MRX T EXISTS SuM 7T
. MIN , . ,
R e el o p N
<l Producers
8 4
zf 4
25
2
T
Qg
<7 Directors
2%
@
2
Do
Qg4

. 100 150
Chi-square

Figure 8: Simulation results for different types of aggregation
functions on random attributes.

The use of aggregation functions on data with degree disparity
can lead to apparent correlation between the aggregated feature
and the class label even if the individual attribute values are
independent of the class label. Such correlation reflects degree
disparity alone, and it can have strong negative effects on
model learning. First, this type of correlation produces models
that are ecasily misunderstood as representing correlation be-
tween the attribute values themselves and the class label. At
the very least, correlation due to degree disparity introduces
an added level of indirection into a user's understanding of an
induced model. Second, correlation due to degree disparity can
vastly increase the number of apparently useful features, mak-
ing induced models much more complex. This added complex-
ity makes models correspondingly much less understandable
and much less computationally efficient to use. For many
techniques, particularly graphical models such as probabilis-
tic relational models [8], the identification of conditional in-
dependence among attributes is a central goal, because it im-
proves both interpretability and efficiency. Both these goals
are impaired by added complexity. In addition, the large num-
ber of surrogate features for degree will cause some types of
models to spread the credit for the predictive ability of degree
across a large number of other features, making it appear that
many features are weakly predictive rather than the truth—that
a single structural feature (degree) is strongly predictive.

4.3 Randomization tests

Randomization tests [12] provide a method for hypothesis
testing in relational data with linkage, autocorrelation and
degree disparity. A randomization test is a type of computa-
tionally intensive statistical test [6]. Other types include re-

sampling and Monte Carlo procedures. Each of these tests in-
volves generating many replicates of an actual data
set—typically called pseudosamples—and using the psue-
dosamples to estimate a sampling distribution. In the case of a
randomization test, pseudosamples are generated by randomly
reordering (or permuting) the values of one or more variables
in an actual data set. Each unique permutation of the values
corresponds to a unique pseudosample. A score is then calcu-
lated for each pseudosample, and the distribution of these
randomized scores is used to estimate a sampling distribution
for the score calculated from the actual data. Randomization
tests are also called permutation tests.

To construct pseuodsamples in relational data, we randomize
the attribute values prior to aggregation. Using this approach,
pseudosamples retain the linkage present in the original sam-
ple and the autocorrelation among the class labels. Retaining
the linkage also preserves any degree disparity present in the
data. Randomizing attribute vectors destroys the correlation
between the attributes and the class in pseudosamples, thus
making them appropriately conform to the null hypothe-
sis—that there is no correlation between the attribute values
and the class label. In addition to adjusting for the effects of
autocorrelation and degree disparity, randomization tests ad-
just for the effects of attribute selection errors [9].

Randomization tests provide a method of hypothesis testing
that can adjust for the effects of degree disparity, linkage and
autocorrelation on parameter estimates. Another alternative is
to estimate the parameters (feature scores) more accurately. We
have explored adjustments to chi-square calculations which
"factor out" the bias introduced by degree disparity [11]. How-
ever, adjustments are difficult to calculate for some combina-
tions of aggregation function and attribute distributions.
Also, we do not yet know how to adjust for the high variance
associated with objects having high linkage and autocorrela-
tion. For now, we use hypothesis testing to make accurate as-
sements of significance when choosing among features with
differing levels of bias and variance. This approach facilitates
unbiased feature selection and prevents excessive tree struc-
ture.

5. RELATIONAL PROBABILITY TREES

RPT models estimate probability distributions over possible
attribute values. The task of estimating probability distribu-
tions over the values of a given attribute would appear to dif-
fer little from traditional propositional learning. However,
algorithms for relational learning typically look beyond the
item for which the attribute is defined, to consider the effect of
related objects on the probability distribution. For example, in
order to predict the box-office success of a movie, a relational
model would consider not only the attributes of the movie, but
attributes of the actors in the movie and the director, producer,
and studio that made the movie. A model might go even fur-
ther and consider attributes of much more "distant" objects (in
the sense of a graph neighborhood).

Classification tree algorithms are easily modified for rela-
tional data—the examples simply consist of subgraphs in-
stead of independent objects. Feature specifications need to be
enhanced to consider (object, attribute) pairs but the basic
algorithm structure remains relatively unchanged. Indeed,
several other decision tree algorithms for relational data have
already been developed including TILDE [1], Multi Relational
Decision Trees [14] and Structural Regression Trees (SRTs)
[15]. These systems focus on extending decision tree algo-

rithms to work in the first-order logic framework used by in-
ductive logic programming systems (ILP). Although these
systems can be used to build classification trees with rela-
tional data, the space of feature classes they consider is re-
stricted to a subset of first-order logic. We chose to implement
a classification tree algorithm with the capacity to explore a
wider range of feature families. In return for this flexibility we
gave up some of the expressiveness of the systems mentioned
above. In particular RPTs are not able to string together a se-
ries of conjunctions about a particular object.

5.1 Algorithm Overview

The RPT algorithm takes a collection of subgraphs as input
(e.g., those in figure 4a). Each subgraph contains a single tar-
get object to be classified; the other objects and links in the
subgraph form its relational neighborhood. For example, an
RPT can be used to predict the box office success of a movies
based on the attributes of the movie and related objects, in-
cluding the movie’s actors, directors and producers.

The RPT algorithm constructs a probability estimation tree to
predict the target class label given (1) the attributes of the
target objects, (2) the attributes of other objects and links in
the relational neighborhood of the target objects, and (3)
graph attributes specifying the structure of relations.

The RPT algorithm is a recursive partitioning algorithm that
searches over a space of binary relational features to split the
data. The algorithm considers the attributes of different ob-
ject/link types in the subgraphs and multiple methods of ag-
gregating the values of those attributes, creating binary splits
on the aggregated values. In particular the RPT algorithm con-
siders the following aggregation functions for discrete attrib-
utes: MODE, COUNT, PROPORTION, DEGREE. The following aggre-
gation functions are considered for continuous attributes:
AVERAGE, COUNT, PROPORTION, DEGREE. COUNT, PROPORTION and
DEGREE features consider a number of different thresholds (e.g.
PROPORTION>10%). Features of continuous attributes search for
the best binary discretization of the attribute (e.g.
COUNT(age>15)). Figure 9 lists a number of example features
formed from movie data and web page data.

Object type Attribute Threshold
(xory) on object

Aggregation
function over
attribute values

Decision
test

movie genre EXISTS(Drama) yes
'studio mostPrevalentGenre ‘MODE(Horror) yes
IMDB 5 ctor gender PROPORTION(IMale) > 0.75
director hasAward PROPORTION(No) < 0.5
actor ag COUNT(<54.0) > 48
pagelinkedFrom numOutlinks COUNT(=<10.0) >2
WebKB pagelinkedFrom lurlPath MODE(grads) jes:
pagelinkedTo InumInlinks IAVERAGE <3

Figure 9: Example features formed by RPT.

Each feature produces a binary split of the training data. For
example, MODE(actor-gender)=female tests whether a movie’s
actors are predominantly female. For a given feature, the algo-
rithm searches for the value and threshold that best partition
the class label. Feature scores are calculated from the class
counts after splitting the data, using chi-square to measure
correlation.

Table 1 gives the pseudocode for the RPT algorithm. The algo-
rithm takes a set of subgraphs examples as input, a target class
label to predict on the core object of the subgraphs and a list
of attributes available to the algorithm for constructing fea-
tures. A p-value cutoff is supplied as a stopping criterion.

The algorithm recursively partitions the subgraphs choosing
features and binary splits greedily until further partitions no
longer change the class distributions significantly. To choose
a feature test the algorithm looks at each possible feature in
turn.

The algorithm uses randomization tests to adjust for biases
towards particular features due to the characteristics of the
relational data (e.g. degree disparity). The attribute values are
repeatedly randomized. For each randomization trial, the chi-
square score for the best settings is recorded. These trials pro-
duce a sampling distribution of the maximum chi-square
scores expected under the null hypothesis—that there is no
association between the class label and the attribute values.
This sampling distribution is then used to calculate an empiri-
cal p-value for the observed chi-square feature scores.

The current implementation of the RPT algorithm does not do
any post-pruning of the tree, instead it used pre-pruning in the
form of a p-value cutoff. If the p-value associated with the
maximum chi-square score exceeds the cutoff the method re-
turns without splitting the node and growing stops. Because
the features considered are not necessarily independent we use
a Bonferroni adjustment on the p-value cutoff to account for
any dependence. All experiments reported in this paper used
an adjusted alpha of 0.05/|attributes|. This threshold may be
too conservative. Future work will explore using cross-
validation to determine correct p-value threshold.

Once the tree-growing phase is halted the algorithm calculates
the class distribution of the examples and stores it in the node.
Laplace correction is applied to the distribution to improve
the probability estimates [19].

RPT(examples, classLabel, attributes, pValueCutoff)
create root node of tree
growTree(root, examples, attributes)

growTree(node, examples, attributes)
create featureTests for examples with attributes

for each featureTest in featureTests
determine possibleSettings for featureTest
for each setting in possibleSettings

calculate score of featureTest on examples
maxSetting <- setting with max score
calc pValue for featureTest w/maxSetting
if pvalue > pValueCutoff
drop featureTest from consideration

if all featureTests have been dropped
nodeClassDist <- dist of classLabel in examples
return //stop growing

else
nodeFeatureTest <- featureTest with min p-value
create nodes leftChild and rightChild
IchildExamples <- examples that pass nodeFeatureTest
rChildExamples <- examples that fail nodeFeatureTest
//recurse on partitioned data
growTree(leftChild, leftChildExamples, attributes)
growTree(rightChild, rightChildExamples, attributes)

Table 1: RPT algorithm.

Once an RPT model is learned over a set of training examples,
the model can be applied to unseen subgraphs for prediction.
The chosen feature tests are applied to the subgraphs and the
examples travel down the tree appropriately. Each example
ends up at a leaf node. The model then returns the probability

distributions estimated for that leaf node and uses it to make a
prediction about the class label of the example.

6. EVALUATION
6.1 Data sets

The first data set is drawn from the Internet Movie Database
(www.imdb.com). We collected a sample of 1,364 movies re-
leased in the United States between 1996 and 2001. In addi-
tion to movies, the data set contains objects representing ac-
tors, directors, producers, and studios. In total, this sample
contains approximately 46,000 objects and 68,000 links. We
discretized movie opening-weekend box office receipts so that
a positive class label indicates a movie earned more than $2
million in opening-weekend receipts (P(+)=0.45).

Figure 11 (top) shows degree disparity of three types of enti-
ties. We tested those differences using the Kolmogorov-
Smirnoff (K-S) distance. The degree disparities for two types of
entities—actors and producers—are statistically significant
(p<0.0001); the degree disparity for directors is not signifi-
cant. As discussed in section 4.2, even a degree disparity this
small can have large effects. Figure 10 shows the linkage and
autocorrelation of each object type. While directors have the
highest value of relational autocorrelation, their linkage is
quite low. As discussed in section 4.1, when linkage and auto-
correlation are both high—as they are with studio ob-
jects—they bias learning algorithms toward features formed
from objects of that type.

The second data set is drawn from Cora, a database of computer
science research papers extracted automatically from the web
using machine learning techniques [17]. We selected a set of
1,511 machine-learning papers along with associated authors,
cited papers, and journals. The resulting collection contains
6,798 objects and 13,225 links. Figure [x] shows degree dis-
parity for three types of entities in a collection of machine
learning papers. The class label indicates whether a particular
paper was assigned the topic of "neural networks" (P(+)=0.32).
The degree disparities for all three types of enti-
ties—references, authors, and journals—are statistically sig-
nificant (p<0.0001). Figure 11 (bottom) shows the linkage of
papers with respect to other types of objects and the relational
autocorrelation of paper topic (e.g., neural networks) with re-
spect to those other object types.

IMDb Cora
Studio
0.8
| Publisher
o 06
e |
o
£ |
=
- 047 Cited Paper
| Director *
0.2 : S 0
| Producer Authormhma;" .
Actor . Institution
o+ - R
0 0.2 0.4 06 08 0 0.2 0.4 06 08

Autocorrelation

Figure 10: Linkage and autocorrelation for IMDb and Cora.

0.020
020

Actors Producers © Directors

0015

— Class=Y
Class=N

Density
0010
1

000 0.00¢
000 0.0
L
R
0 1

References Authors Journals

020
L
——
o.
0

Density

010

T T T T T T
00 05 10 15 20 25

Figure 11: Degree disparity in IMDb (movies and their re-
ceipts) and Cora (papers and their topics).

000 005
L

g4
0 01
00 o

T
s 10
Degree

The third data set is a rclational data set containing informa-
tion about the yeast genome at the gene and the protein level
(www.cs.wisc.edu/~dpage/kddcup2001/). The data set contains
information about 1,243 genes and 1,734 interactions among
their associated proteins. The class label indicates whether or
not a gene's functions include transcription (P(+)=0.31).

The fourth data set is the WebKB described in section 2. The
data consists of a set of 3,877 web pages from computer sci-
ence departments. The class label indicated whether a page is a
student page (P(+)=0.51).

6.2 Classification tasks

Our first task uses the IMDDb data set described above where the
class label indicates the movie earned more than $2 million in
opening-weekend receipts. We created a classification task
where the only feature correlated with the class label was the
degree of the objects in the relational data structure. Recall
that movies with a positive class label tend to have higher
degree with respect to actors and producers (there is no sig-
nificant difference in director degree nor studio degree). On
each actor, director, producer, and studio object we added 6
random attributes (3 discrete and 3 continuous). Discrete at-
tributes were drawn from a uniform distribution of ten values;
continuous attribute values were drawn from a uniform distri-
bution in the range [0,10]. The model considered 4 degree fea-
tures, one for each type of object linked to the movie.

The second task also used the IMDb dataset, but used both the
structure and the attributes in the original data. The models
were to predict movie success based on 8 attributes, such as
the genre of the movie and the year of a producer's first film.
The model also considered 4 degree features, one for each type
of object linked to the movie.

The third task used the Cora data set where the class label indi-
cates whether a paper's topic is "neural networks." In addition
to papers, the data contained objects representing authors,

cited papers and journals. The models had 15 attributes avail-
able for classification, including attributes such as a cited
paper's high-level topic (e.g. Artificial Intelligence) and an
author's number of publications. Three degree attributes
counted the number of cited papers, authors, and journals.

The fourth task used the gene data set where the models were to
predict whether a gene's functions include transcription. The
models used 7 attributes for prediction, including gene pheno-
type, complex, and interaction type; and two degree attributes
for links to interactions and other genes.

The fifth classification task used the WebKB data set and the
models were to predict whether a page is a student page. The
models used a total of 10 attributes for prediction. These in-
cluded attributes like the URL path and host, as well as struc-
tural attributes such as the number of in links and out links
(directional degree) of each page.

For each of the five tasks, we tested four models: (1) an RPT
model that used conventional significance tests (CTs) to
evaluate feature splits and (2) an RPT model that used ran-
domization tests (RTs) to measure significance. As a baseline
of comparison, we flattened the relational data and applied (3)
the C4.5 algorithm [20]. Finally, we applied (4) a relational
Bayes classifier (RBC) [18].

The Relational Bayesian Classifier (RBC) is a modification of
the Simple Bayesian Classifier (SBC) for relational data. The
algorithm uses an independent value estimator (INDEPVAL)
which assumes cach value of a multiset is independently
drawn from the same distribution. For estimation, each value
of each set (e.g. actor ages) is considered to be an independent
instance. The class label is duplicated and paired with each
attribute value. Each pair is considered to be independent evi-
dence. During inference the probability of each value is com-
puted and multiplied into the overall probability independ-
ently. See [18] for more details.

To evaluate the models, we measured accuracy, area under the
ROC curve (AUC), and the number of attributes used in the
model. Note that the RBC model includes all attributes
whereas the classification trees are selective. Also, because the
C4.5 models return classifications only (not probability esti-
mates) we could not calculate AUC for the C4.5 models. For the
tree models, we measured the size of the tree and the propor-
tion of structural features, such as degree features. The propor-
tion is weighted to reflect the proportion of training instances
which travel through that node (e.g. leaf nodes have less
weight than root node). The experiments used ten-fold cross-
validation. In the IMDDb data set—because studio objects have
such high linkage—the test sets were created by stratified
sampling on studios. We randomly sampled studios from three
sets (studios with high, medium, and low degree) thus creating
test sets of roughly equal proportion.

6.3 Results

Figure 12 shows accuracy and AUC results for each of the four
models on the five classification tasks. We used two-tailed,
paired t-tests to assess the significance of the results obtained
from the ten-fold cross-validation trials. The null hypothesis
is that there is no difference between two approaches; the al-
ternative is that there is a difference between two approaches.
We compared RTs to each of the other three aproaches (CTs,
C4.5, RBCs). An asterisk above the model indicates a signifi-
cantly different performance from the RTs.

1.00

Accuracy
0.50

'

0.00

RT CcT C45 RBC RT CcT C45 RBC

1.00

cT C45 RBC

*
R *
P |

cT C45 RBC RT CcT C45 RBC RT cT C45 RBC

E=
1 T T I I T T T
CcT C4.5 RBC RT CcT C45 RBC RT CcT C45 RBC
Cora WebKB Gene

Figure 12: Accuracy, AUC and tree size for four models across the various classification tasks.

Q
D3
< 3
g | I —
RT CcT C45 RBC RT CcT C45 RBC
= *
8- *
@
D o
9 0
=
© T T T T T
RT CcT C45 RBC RT CcT C45 RBC
Random IMDb
E 3 | *
o = _:l
s | *
(]
o
M= F
=
s | | *
© o
s E
R R
e 1]
m 3
o 3]
SRR
= .]
o
o 3 - -
-
QO o *
g 5B
E
[I I I I I 1
0 20 40 60 80 100 120
Tree Size

Figure 13: Number and composition of nodes in trees.
Shading represents wei ghted proportion of degree features.

The results from the IMDb data set with random attributes
(Random in Figure 12 and 13) support three claims. First, RTs
can adjust for linkage and autocorrelation and build more ac-
curate models. RPTs using randomization tests (RTs) perform

significantly better than the other three models. RT models
had higher accuracy than both CT models and C4.5 models.
Although the accuracies of RT models were not significantly
different than the RBC models, the RTs did have significantly
higher AUC. These results indicate the potential for biased
models to select attributes that hinder performance. The lower
performance is due to selection of random attributes on studio
objects. Features involving these attributes have high variance
because of the low effective sample size of studios. If objects
with high linkage and autocorrelation, such as studios, arc
present in the data, attributes of those objects will be selected
even if they have no correlation with the class. Second, aggre-
gation functions can cause misleading correlations in the
presence of degree disparity. In the IMDDb data set with random
attributes, the only predictive structure is the degree disparity
of "actor" and "producer" objects. By our measure of weighted
proportion, approximately 4/5 of the features in trees built
with conventional tests (CT) consisted of features derived
from random attributes that served as surrogates for degree.
Third, the results from the Random data set show that models
that do not adjust for these biases can add unnecessary com-
plexity. Trees built with conventional tests were, on average,
an order of magnitude larger than the size of the trees built
with randomization tests.

The results from experiments on real data show that RTs
achieve comparable performance to CTs and C4.5 models, both
in accuracy and AUC. However, the trees had radically different
structure. Figure 13 summarizes the features used in RPT trees
built with conventional tests and randomization tests, as well
as trees built with C4.5. Each bar expresses both the size of the
tree and the weighted proportion of degree attributes, averaged
over the cross validation trials. Note that in data sets where
degree disparity is predictive (IMDb, and Cora), RTs give
higher weight to degree features.

7. CONCLUSIONS

We have shown that it is possible to extend conventional
probability estimation tree algorithms to work with relational
data. The RPT models built using randomization tests per-
forms equivalently to RPT models using conventional hy-
pothesis tests but the trees are significantly smaller. This sup-
ports our claim that common characteristics of relational can
bias feature selection and result in excessively complex mod-
els. Randomization tests adjust for both the increased bias due
to degree disparity and the increased variance due to linkage
and autocorrelation.

Models that are not selective (e.g. RBC) do not suffer from
these biases. This can result in significantly better models, but
we then lose the interpretability of the selective models. RBCs
exhibited significantly lower performance on datasets where
degree was the only feature correlated with the class (Random,
WebKB). More work needs to be done to explore the situations
in which RBC performance is distinct from RPT. We may be
able to combine the strengths of RPT feature construction and
selection methods with the low variance parameter estimates of
RBC models.

Future work will investigate further enrichments to the RPT
model. Extending the algorithm to consider multiway feature
splits and alternative methods of modeling continuous attrib-
utes should improve performance. We will conduct a series of
more focused ablation studies to determine which characteris-
tics of the algorithm are most beneficial and to further under-
stand the complexities of relational data and their effect on
modeling choices.

8. ACKNOWLEDGMENTS

Helpful comments and assistance were provided by Amy
McGovern. This research is supported by DARPA and NSF
under contract numbers F30602-01-2-0566 and EIA9983215,
respectively. The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes notwith-
standing any copyright notation hereon. The views and con-
clusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official poli-
cies or endorsements either expressed or implied, of DARPA,
NSF, or the U.S. Government.

9. REFERENCES

[1] A Blockeel, H., and De Raedt, L. Top-down induction
of first-order logical decision trees. Artificial Intelli-
gence, 101: 285-297, 1998.

[2] C. Brodley and E. Rissland. Measuring concept
change. Training Issues in Incremental Learning: Pa-
pers from the 1993 Spring Symposium (pp. 99-108).
Menlo Park, CA: AAAI Press, 1993.

[3] C. Cortes, D. Pregibon, and C. Volinsky. Communi-
ties of Interest. Proceedings of the Fourth Interna-
tional Symposium on Intelligent Data Analysis, 2001.

[4] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam and S. Slattery. Learning to
Extract Symbolic Knowledge from the World Wide
Web. Proceedings of the 15th National Conference on
Artificial Intelligence, 1998.

[S] N. Cressie. Statistics for Spatial Data. Wiley, 1993.

[6] E. Edgington. Randomization Tests. New York: Mar-
cel Dekker, 1980.

[7]1 S. Dzeroski and N. Lavrac, editors. Relational Data
Mining. Springer-Verlag, 2001.

[8] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. ZJCAI’99.
1300-1309, 1999.

[9] D. Jensen and P. Cohen. Multiple comparisons in
induction algorithms. Machine Learning 38(3):309-
338, 2000.

[10]D. Jensen and J. Neville. Linkage and autocorrelation
cause feature selection bias in relational learning. In
Proc. of the 19" Int. Conf. on Machine Learning.
Morgan Kaufmann. 259-266, 2002.

[11]D. Jensen, J. Neville and M. Hay. Avoiding bias when
aggregating relational data with degree disparity. Sub-
mitted to the 20" Int. Joint Conf. on Machine Learn-
ing, 2003.

[12]D. Jensen, J. Neville and M. Rattigan. Randomization
tests for relational learning. Submitted to the 18" Int.
Joint Conf- on Artificial Intelligence, 2003.

[13]J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM 46:604-632, 1999.

[14]J. Knobbe, A. Siebes and D. Van der Wallen. Multi-
relational decision tree induction. In Proceedings of
the 3rd European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases, 1999.

[15]S. Kramer. Structural regression trees. In Proceedings
of the 13th National Conference on Artificial Intelli-
gence, 1996.

[16]S. Kramer, B. Pfahringer, and C. Helma. Stochastic
propositionalization of non-determinate background
knowledge. In Proc. of the 8th International Work-
shop on Inductive Logic Programming, pp. 80--94.
Springer Verlag, 1998.

[17TA. McCallum, K. Nigam, J. Rennie, & K. Seymore.
A machine learning approach to building domain-
specific search engines. In Proc. of the 16" Int. Joint
Conf. on Artificial Intelligence, 1999.

[18]J. Neville, D. Jensen, B. Gallagher and R. Fairgrieve.
Simple estimators for relational Bayesian classifiers.
Submitted to the 18" Int. Joint Conf. on Artificial In-
telligence, 2003.

[19]F. Provost and P. Domingos. Well-trained PETs: Im-
proving probability estimation trees. CDER Working
Paper #00-04-IS, Stern School of Business, NYU,
2000.

[20]J.R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[211J.R. Quinlan. Simplifying decision trees. International
Journal of Man-Machine Studies, 27: 221-234, 1987.

