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Abstract
We present a leader election algorithm that can accommodate arbitrary (possibly concurrent) topological

changes and is therefore well-suited for use in mobile ad hoc networks. The algorithm is based on finding an
extrema and uses diffusing computations for this purpose. We show that the algorithm is “weakly” self-stabilizing
and terminating, and present a proof of correctness using linear-time temporal logic.
Keywords: leader election, mobile ad hoc networks, diffusing computations, self-stabilization, distributed

algorithms, formal verification,linear temporal logic.

1 Introduction

Leader election algorithms find many applications in both wired and wireless distributed systems. In group com-
munication protocols, for example, a new coordinator must be elected when a group coordinator crashes or departs
the system. The problem of leader election in distributed systems has been well-studied and there is a large body of
literature for this problem; good surveys can be found in [1, 2]. Most of these works describe election algorithms
for wired distributed systems and elect a unique node from among a set of candidate-nodes.
A mobile ad hoc network is a collection of wireless, mobile devices that make communication possible by routing

packets to one another. Each node has a limited transmission radius and can communicate directly with the “neigh-
boring” nodes that fall within this radius. Communication with other nodes is made possible by routing packets
through its neighboring nodes. Since nodes are mobile, the network topology can change as nodes move in and out
of transmission range of one another.
Recently, there has been considerable interest in using leader-election algorithms in wireless environments for key

distribution [4], routing coordination [11], sensor coordination [16], and general control [7, 6]. Here, node mobility
may result in frequent leader election, making the process a critical component of system operation. Designing
distributed algorithms for such dynamically changing networks is a very challenging task.
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The classical definition of the leader election problem [2] is to eventually elect a unique leader from among the
nodes in a network. We will want to specialize this definition in two important ways. Our first modification arises
from the fact that in many situations, it may be desirable to elect a leader with some system-related characteristic
rather than simply electing a “random” leader. For example, in a mobile ad hoc network it might be desirable to
elect the node with maximum remaining battery life, or the node with a maximum number of neighbors, as leader.
Leader election based on such an ordering among nodes fits well with the class of leader election algorithms that
are known as “extrema-finding” leader-election algorithms. The second modification is motivated by the need to
accommodate frequent topology changes - changes that can occur during the leader election process itself. Network
partitions can form due to node movement; multiple partitions can also merge into a single connected component.
Given these considerations, the requirements for our leader election algorithm are: after topological changes stop
sufficiently long, every connected component will eventually have a unique leader with maximum identifier from
among the nodes in that component. It is important to realize that it is impossible to guarantee a unique leader
at all times. When a network becomes partitioned, a component will be without a leader until the leader-election
process terminates. Similarly, when components merge together there will temporarily be two leaders in the merged
component. Thus, the modified problem definition requires that eventually every connected component has a unique
leader. Furthermore, we require that the algorithm be able to operate in the face of node and link failures and
additions, as well with network partitioning and merging.
Our proposed algorithm uses the concept of diffusing computations [8] to perform leader election. Informally, the

algorithm operates as follows. Nodes periodically poll their leader. When a node is disconnected from its leader, the
node detecting this event start a fresh diffusing computation to determine the new leader. We will see that several
diffusing computations can be in progress concurrently, but that a node will participate only in a single diffusing
computation at any one time. Eventually, when a diffusing computation terminates, the node that initiated that
computation informs other nodes of the maximum node identifier which participated in that computation.
We formally specify our election algorithm and prove its correctness by showing that it is “weakly” self-stabilizing,

i.e., that the algorithm can recover from an arbitrary (but finite number of) topological changes and converge to a
state where every node has a unique, maximum-identity-node as its leader. This result is established using linear
time temporal logic as a proof technique.
The remainder of the paper is organized as follows. In Section 2 we discuss related work. Section 3 describes our

model assumptions, algorithms, and messaging in detail. Section 4 gives a brief introduction to temporal logic and
the algorithm’s proven properties. Conclusions and future work are discussed in Section 6. Finally, the appendix
contains the detailed proof of correctness of our leader election algorithm.

2 Related Work

The problem of leader election has been widely studied in the context of wired distributed systems and recently
there has been some work in the context of wireless networks. There have been several clustering and hierarchy
construction schemes that can be adapted to do leader election [15, 14, 16, 10]. But all of these algorithms assume
static networks and are not applicable when topology changes can occur frequently (in particular) during the election
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process, as might happen in ad hoc mobile networks. Leader election algorithms for mobile ad hoc networks have
been proposed in [6, 11]. As noted earlier, we are interested in an extrema-finding algorithm because for many
applications it is desirable to elect a leader with some system-related characteristics. The algorithms in [6, 11] are
not extrema-finding and neither of these algorithms has been extended to do extrema-finding. Extrema-finding leader
election algorithms for mobile ad hoc networks have been proposed in [7]. However their protocols are not well-
suited to the applications discussed in the previous section, as they require nodes to meet and exchange information
in order to elect a leader.
There has been considerable work on leader election and spanning tree construction in the domain of self-

stabilizing systems [19] that is important to our work. Informally, self-stabilizing systems are those systems that
can recover from any arbitrary global state and reach a desired global state within finite time. Furthermore, this
desired global state is stable, i.e., once it is reached, execution of a program action in the stable state will leave the
system in the same stable state. A good survey on self-stabilization can be found in [22, 23]. We believe that much of
the work from the self-stabilization literature can be leveraged to solve problems in ad hoc networks. Self-stabilizing
leader election algorithms have been proposed in [20, 24, 25]. However, these algorithms assume a shared-memory
model and are hence not applicable to the message-passing systems that we are interested in. In [21], however, the
authors prove that for message-passing systems, problems like leader election and spanning tree construction do not
admit solutions that are both terminating and self-stabilizing. An algorithm is said to be terminating if it reaches a
fixpoint state i.e., a state in which all program actions are disabled. As we will see, our leader election algorithm
achieves a slightly “weaker” form of stabilisation. As failures are not always arbitrary, it is sometimes useful to
consider recovery from a restricted set of states, instead of any arbitrary state as required by stricter definition of
self-stabilisation. This restricted set of states is a set of states that arise from link failures, node crashes, network
partitioning and merging. We show that our leader election algorithm recovers from these states to a stable state.
We also show that it is terminating and that, upon termination, our algorithm ensures that all nodes have reached an
agreement on who their leader is.
Several leader election algorithms have been proposed for static networks that assume frequent process crashes

and link failures that are closely related to our work. The authors in [28] propose several extrema-finding leader
election algorithms for broadcast networks and which can tolerate arbitrary process failures. Every message in these
algorithms is assumed to be reliably broadcast to all other nodes in the network. In their algorithms, every node that
participates in election broadcasts its own identifier to all other nodes. A node upon receiving an identifier smaller
than itself, in turn broadcasts its own identifier to all other nodes. If a node does not receive any other identifier for
a time interval, it assumes itself to be the leader. Their algorithm is indeed applicable in a wireless ad hoc network.
However, as every message has to be reliably broadcast to every other node, their algorithms can be expected to place
an enormous strain on bandwidth in a wireless environment. In [26], a self-stabilizing leader election algorithms for
a completely connected message-passing system has been proposed. In their model, process crashes are assumed
to be permanent and no additions take place to the set of processes participating in the election after the election is
initiated.
The main contribution of this paper is thus to provide a provably correct, distributed asynchronous extrema finding

algorithm for a highly dynamic network. Our algorithm can tolerate arbitrary, concurrent node and link crashes,
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network partitioning and merging. As a result, our algorithm is very well-suited for ad hoc networks. Furthermore,
our algorithm does not make any assumptions about the underlying topology and works for an arbitrary, multi-
hop network. Our algorithm is “weakly “ self-stabilising and terminating - both extremely important and desirable
properties.

3 Objectives, Constraints and Assumptions

In developing a leader election algorithm, we first define our system model, assumptions, and goal. Our ad hoc net-
work is a multihop, wireless network of mobile nodes and is modeled as an undirected graph dynamically changing
over time as nodes move. The vertices in the graph correspond to mobile nodes and an edge between a pair of nodes
represents the fact that the two nodes are within each other’s transmission radii and, hence, can directly communicate
with one another. The graph can become disconnected if the network is partitioned due to node movement. We make
the following assumptions about nodes and system architecture:

1. Unique and Ordered Node IDs: All nodes have unique identifiers. They are used to identify participants
during the election process. A node ID could represent a performance attribute (e.g., remaining battery life,
number of directly connected neighbors) or it could be a more traditional identifier (e.g., an address). Unique
performance based identifiers can be obtained by concatenating a performance attribute with a unique tradi-
tional identifier.

2. Links: Links are bidirectional and FIFO, i.e., links do not reorder packets.

3. Node Behavior: Nodes can crash arbitrarly at any time and can come back up again at any time. Node crashes
are implicitly modeled in our election algorithm as a node becoming disconnected from the network. The
addition of a new node or the reboot of a previously down node is implicitly modeled by new link formations
with its neighbors. When a node starts up after a crash, the election process in that node is bootstrapped again.

4. Node-to-Node Communications: Communication between nodes takes place using a reliable transport
protocol. When a node sends a packet to another node, the sender knows whether the packet has been received
by that node or not.

5. Partition Detection: There is a mechanism that tells whether a node is disconnected from another node.
Examples of such a mechanism include polling and heartbeats.

6. Local Connectivity Information: Each node knows its current list of neighbors. Later in Section 4.2.2, we
will describe a neighbor discovery mechanism used by each node to discover and subsequently maintain the
list of its neighbors.

7. Buffer Size: Each node has a large enough receive buffer so to avoid buffer overflow at any point in node’s
lifetime.

The objective of our leader election algorithm is to ensure that:
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“after a finite number of topological changes, it holds that eventually each node i has a leader which is
the maximum identity node from amongst all nodes in the connected component to which i belongs.”

4 Leader Election Algorithm

Our leader election algorithm is based on the classical termination-detection algorithm for diffusing computations
by Dijkstra and Scholten [8]. In this section, we first provide an informal discussion of our election algorithm. Then
we present a formal specification of the algorithm and discuss its operation in detail.

4.1 Overview

We first describe our election algorithm in the context of a static network, under the assumption that nodes and links
never fail. We assume that nodes have unique identifiers and that all links are bidirectional. The algorithm operates
by first “growing” and then “shrinking” a spanning tree that is rooted at the node that initiates the algorithm. A node
initiates the algorithm in response to a trigger indicating that it has become disconnected from its leader. We refer to
this computation-initiating node as the source node. As we will see, when the spanning tree shrinks completely, the
source node will have adequate information to determine the maximum identity node and will then broadcast this
identity to the rest of the nodes in the network.
The algorithm uses three messages.

Election. Election messages are used to “grow” the spanning tree. Upon detecting leader departure, the source
node, s, will start a diffusing computation by sending an Election message to all its immediate neighbors,
denoted by the set . Each node, i, other than the source, will designate the neighbor from which it first
receives an Election message as its parent in the spanning tree. The parent of node i is denoted by the variable
. Upon setting its parent pointer, node i will propagate the received Election message to all its neighboring

nodes (children) except its parent, i.e., the set of nodes and may receive Election messages from
multiple neighbors, but will have only one parent.

Ack. When node receives an Election message from a neighbor that is not its parent, it immediately
responds with an Ack message. Node will not return immediately an Ack message to its parent. Instead,
node will maintain a “pending Ack” for its parent, which it will send only after it has received an Ack from
all of its children. As we will see shortly, the Ack message sent by to its parent will contain leader-election
information based on the Ack messages has received from its children.
Once the spanning tree is completely grown via propagated Electionmessages, the spanning tree starts “shrink-
ing” back towards the source. Specifically, once all of ’s outgoing Election messages have been acknowl-
edged, i will send its pending Ack message to its parent, . Tree “shrinkage” begins at the leaves of the
spanning tree, which are parents to no other node. Eventually, each leaf will receive Ack messages for all
Election messages it has sent. These leaves will thus eventually send their pending Ack messages to their
respective parents, who in turn will send their pending Ack messages to their own parents and so on, until
the source node receives all of its pending Ack messages. In a pending Ack message, a node announces to
its parent the maximum identity among all its downstream nodes, including itself. Hence the source node
will eventually have sufficient information to determine the maximum identity from among all nodes in the
network, since the spanning tree spans all network nodes.

Leader. Once the source node for a computation has received Acks from all of its children, it then broadcasts
a Leader message to all nodes announcing the identity of the leader.
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Let us illustrate a sample execution of the algorithm. We describe the algorithm in a somewhat synchronous
manner even though all the activities are in fact asynchronous. Consider the network shown in Figure 1. In this
example, node A is the source node and starts a diffusing computation by sending out Election messages to its
immediate neighbors, viz. nodes F and B, shown in Figure 1(a). As indicated in Figure 1(b), nodes F and B set
their parent pointers to point to node A and in turn propagate an Election message to all their neighbors except their
parent nodes. Hence B and F send Election messages to one another. These Election messages are immediately
acknowledged since nodes B and F have already received Election messages from their respective parents. Note
that the immediate acknowledgments are not shown in the figure. In Figure 1(c), a complete spanning tree is built.
In Figure 1(d), the spanning tree starts “shrinking” as nodes C and D send their pending Ack messages to their
respective parent nodes in the spanning tree. Each of these Ack messages contains the maximum identity among
the nodes downstream to nodes C and D, in this case the nodes themselves, since they are the leaves of the tree.
Eventually, the source A hears pending acknowledgments from both B and F in Figure 1(e) and then broadcasts the
identity of the leader i.e., F shown in Figure 1(f).
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Figure 1: An execution of leader election algorithm based on Dijkstra-Scholten termination detection algorithm.
Arrows on the edges indicate transmitted messages, while arrows parallel to the edges indicate parent pointers.

4.2 Detailed Discussion of Algorithm

Here we describe our leader election algorithm in detail. In the previous section, we provided an overview of the
algorithm operation in a static network. But with the introduction of node mobility, node crashes, link failures,
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network partitions and merging of partitions, the simple algorithm presented in the previous section is inadequate.
Furthermore, we assumed in the previous section that an external input such as leader departure occurs only at a
single node. In reality, many nodes can receive such inputs concurrently, with each of them starting a diffusing
computation independently, due to lack of knowledge of other computations that have been started by other nodes.
Before we formally specify our algorithm and describe it in detail, we briefly introduce notation used in our algorithm
specification and the execution model.

4.2.1 Programming Notation and Execution Model:

The LeaderElection module in each node is of the form
module module name
var variable declarations ;
initialization assignment statements ;
begin

action action action
end
Each module is defined by a set of variables, an initialization section and a set of actions. Each variable in the

variable declarations list is local only to the election module on a particular node and can be updated only by that
module. Variables are initialized to appropriate values in the initialization part of the module. Each action in the
action set is of the form

guard command

Each guard is a boolean expression over variables in the module and some boolean predicates. “Command” repre-
sents a list of assignment statements and perhaps one or more primitives such as send message, remove a message
from receive buffer etc.
We now introduce some additional terms and definitions which we shall use throughout the rest of the paper. A

system is defined to be a collection of processes and interconnections between processes. The state of the system is
an assignment of values to every variable and every predicate of every process in the system. An action whose guard
evaluates to true in some system state is said to be enabled at that state. Multiple actions can be simultaneously
enabled in the same system state. In such a case, any one of the enabled actions is non-deterministically chosen for
execution and the command corresponding to the guard is executed. Also, if multiple actions are simultaneously
enabled, then execution of one action in the current state can potentially disable other previously enabled actions
in the next system state. A computation of the system is a maximal, fair sequence of steps : in each state, an
enabled action in that state is executed, which takes the system into its next state. The maximality of computation
requires that no computation be a proper prefix of another computation while the fairness constraint states that every
continuously enabled action is eventually executed [31]. Also, all action executions are atomic operations.

4.2.2 Algorithm Operation

1. Algorithm Overview:
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module (i : )

var : boolean;
: integer;

: ;
= : integer, ;

:

initialization

begin

1.

if present;

2.
all commands as in previous action;

3.

if ( )
then

4.

5.
if ( and )
then ;

6.

(E and A msgs w src );

7.

(E and A msgs w src );

8. ;

9.

10.

end

Figure 2: Leader Election Algorithm Specification
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The overall idea of our leader election algorithm specified in Figure 2 is to elect a leader by “growing”
and “shrinking” a spanning tree as explained in Section 4.1. But because of node movement, nodes in the
spanning tree can become disconnected from other nodes in the tree. Also two partitions each running a
different diffusing computation can merge. Such pathological events can affect the correctness and termination
properties of leader election algorithm. Our election algorithm adapts to such pathological events by having
the ndes detecting these events take appropriate corrective measures. The corrective measure involves either
starting a new computation or exchanging current state between neighboring nodes. Since we assume that
there are a finite number of topological changes in the network, our algorithm ensures that eventually all
nodes within a network component agree on a unique leader that belongs to that component, and that this
leader is the maxi! mum identity node in that component.

2. Variables and Message types:

The algorithm involves four message types: Election, Ack, Newlink and Leader, abbreviated as E,A,NL and
L respectively. The E, A and L messages have the same functionality as explained in Section 4.1. When a
new link is formed between two neighboring nodes, they exchange their current state via NL messages. The
various fields in each of these messages is shown in Appendix A.

Each node participating in the election has a unique identifier drawn from the range . The boolean
variable is 0 if node i is not currently participating in any diffusing computation, and 1 if it is. Once is
set to 1, it is reset to 0 only after it receives an Lmessage from the source of its current diffusing computation
or after sending an L message in case i itself is the source of the computation. The variable contains the
computation-index of the diffusing computation in which node i is currently participating. This computation-
index uniquely identifies a computation; it is needed since there can be multiple, concurrent computations.
While in a diffusing computation, node i’s parent in the spanning tree is stored in the variable . The variable

is set to 0 if node i has sent its pending A message to its parent and 1 if it has not, i.e. it is stil! l in
the spanning tree. It is easy to see that , but the implication does not hold in the opposite
direction. Also . The variable is used to hold the identity of the maximum downstream
node from i in the spanning tree and is included in i’s A message to its parent . The variable is set to
one more than the num field of the maximum computation index it has seen so far. is a boolean variable
that is set to 1 if node i has a leader and 0 if it does not. At the end of the computation node i stores its leader
in the variable .

Node i maintains its current list of neighbors in the variable using a neighbor discovery mechanism that is
explained later in this section. If i is currently in a diffusing computation, then represents the list of nodes
to which i sent an E message. The list represents the set of nodes from whom i is waiting to hear an A
message from. When i receives an A message from a node j, it removes j from the list . When becomes
empty, i sends an A message to its parent . It should be noted that in the algorithm specification, predicate

holds true as long as there is a message originated by node j in i’s receive buffer.

3. Algorithm Performed By The Nodes:

9



In this section, we describe the exact algorithm performed by an arbitrary node i. This exact specification is
shown in Figure 2. The LeaderElection module on every node loops forever and on each iteration checks if
any of the actions in the algorithm specification are enabled, executing at least one enabled action on every
loop iteration. The bootstrapping of election module involves assigning values to variables as specified in the
initialization1 part of the LeaderElection module.

Each node i periodically polls its leader, , to check if it is still alive. The election process is triggered in
node i when it notices departure of its leader, as denoted by in the algorithm specification. It is ob-
vious that more than one node can concurrently detect leader departure and each of them can initiate diffusing
computations independently leading to concurrent diffusing computations. Since each of these computations
have the same goal i.e. to elect a new maximum identity leader, we need to minimise this duplication of effort.
Furthermore, the outcome of election is not affected by the identity of the node that initiated the computation
and a node has to unnecessarily maintain a large amount of state if it participates in multiple diffusing compu-
tations at the same time. We, therefore, handle multiple, concurrent diffusing computations by requiring that
each node participate in only a single diffusing computation at any given time. In order to achieve this, each
diffusing computation is assigned, what we call, a computation-index. This computation-index is a pair, viz.

. represents the identifier of the node which initiated that computation and is like a logical
clock and is set to one more than the maximum of all s the source has seen upto the point it initiated
the computation. As mentioned in Section 4.1, this is maintained in a variable, , which is initial-
ized to 0. It should be noted that there is a total ordering on computation indices, since a source cannot start
two different computations with same value and source-id field is used to break ties amongst diffusing
computations with different sources but same value.

Definition:

A diffusing computation A is said to have higher priortiy than another diffusing computation B iff :

computation-index computation-index

When a node participating in a diffusing computation “hears” another computation with a higher priority, then
the node stops participating any further in its current computation in favor of the higher priority computation.
This is shown in Figure 3 in which all nodes are assumed to be currently involved in a diffusing computation.
In Figure 3(a), node D sends an Electionmessage with a higher priority computation-index, 3,D , to node C
whose current computation-index is 2,B . Upon receiving this Electionmessage, node C stops participating
in its current computation and sets its computation-index to 3,D , as shown in Figure 3(b), and propagates
the received Election message to nodes A and B.

A new diffusing computation is initiated by a node only by execution of action 1 or action 2. The guards
in actions 1 and 2 capture the various pathological conditions that cause node i to trigger a new diffusing
computation. The various pathological conditions are:

1Note that in the initialization part, we assign . We mean this to imply that is disconnected from i and hence .
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Figure 3: Computation indices and priorities between them

(a) a node i’s leader has departed in which case the condition will hold.

(b) a node i is currently in the spanning tree but its parent in the spanning tree has become disconnected, i.e.
.

(c) a node i is in the spanning tree, but a node from whom it is waiting to hear an A message has become
disconnected, i.e. .

(d) a node i is not in any spanning tree, but it is still waiting to hear a L message from its source and its
source has become disconnected, i.e. .

(e) a node i is not in any spanning tree and it has just heard a L message from its source, but the leader in
the L message has become disconnected after the source broadcasted the L message, i.e.

.

(f) a node i has received an NL message from one of its new neighbors which has a different computation-
index than itself and which does not belong to , the list of nodes to whom i sent an E message with
its current source, and atleast one of i or its neighbor is participating in a diffusing computation. This
condition is given by the guard in action 2.

While conditions (a)-(e) are self-explanatory, we shall motivate condition (f) with a simple example. Consider
the example network shown in Figure 4. In Figure 4(a), all nodes are participating in the diffusing computation
that is initiated by node E and node A has node E as its parent node. Assume that node D is waiting to hear an
Ack message for an Election message that it sent to node B.

In Figure 4(b), node E becomes disconnected from node A and hence A starts a new diffusing computation
by sending out an Election message to node B, as shown in Figure 4(c). At the same time nodes C and D
start moving left as indicated by the dotted arrows, and before node A’s Election message could reach node B,
nodes C and D lose their links with node B and node C becomes A’s neighbor instead, as shown in Figure 4(d).
Thus, node D will wait forever for an Ack message from node B. However, following (f), nodes A and C will
exchange their current state via Newlink messages and node A will then start a new diffusing computation
thereby preventing node D from having to wait forever.

As stated in Section 3, for conditions (a)-(e), we use polling to determine whether node i is disconnected from
another node. In executing action 1 or action 2, node i sets its to 1 indicating that it is currently participating
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Figure 4: One of the conditions triggering a new diffusing computation

in a diffusing computation. i sets its parent pointer to point to itself and sets its variable to 1. Both and
are set to , i’s current list neighbors. The field in is set to the value contained in the variable

and the field is set to its own identifier. Node i then starts the process of “growing” a spanning tree
by sending out E messages to all its neighboring nodes, given by the list .

A node i upon hearing an E message with source , starts participating in computation only if it is
not in any computation i.e. or if the newly arrived E message belongs to a higher priority computation
than the one it is currently in, in other words holds true. This is captured by action
3 of algorithm specification. Node i enters into this new computation by setting its parent pointer to the
sender of E message and itself propagates this E message to all its neighbors except the one it just heard the
E message from, thus searching for new nodes to be admitted into the spanning tree. The different variables
are appropriately set as in the commands of actions 1 and 2. However, i does not immediately send an A
message to its parent. Any other E messages that node i receives such that are immediately
acknowledged by i ! as specified in action 4 of the algorithm.

Upon receiving an A message from a node j such that , i removes j from the list, , of nodes
from which it is waiting to hear an A message. This is captured in action 5. If the received A message has

set to 1, then it means that the sender is i’s child in the spanning tree and the field has the identity
of the maximum downstream node from the sender. Node i updates its variable if is greater than its
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current . Action 6 dictates that if a node i has no more Amessages to be heard and if it is not the source of
the diffusing computation, then it sends an Amessage to its parent, thus causing the spanning tree to “shrink”.
In this message, i sets to indicate that field is valid and sets to , the maximum
identity from amongst all nodes downstream to it in the spanning tree. The leaves of the spanning tree have
no do! wnstream nodes and hence they set field to their own identity. If, on the other hand, node i were
the source of the diffusing computation and it has heard all its pending A messages, then i executes action
7 and announces the maximum identity node in the L message, which is flooded throughout the network. In
executing actions 6 and 7, node i removes all E and Amessages with source less than its current source in .
This is a “clean-up” step which purges all E and A messages belonging to computations with lower priority
than . Otherwise, the Emessages remain in the receive buffer even after has gone to 0, thereby enabling
action 3 and unnecessarily starting a new diffusing computation.

Action 8 implies that if a node i which is currently in a computation ( ) receives an L message whose
source is same as and if the leader in the L message has a finite distance to node i, then node i stops
participating in that computation by adopting that leader and propagates the L message to all its neighbors
except the one it received from. In executing action 8, node i checks to see if it is still connected to the
leader given the L message since it is possible that the leader has become disconnected after the source of
computation sends out L message. Similarly, if i currently has a leader but it receives a higher identity leader
in L message, then it adopts the higher identity node as its new leader and propagates the L message to all its
neighbors. This could happen, for instance, when two partitions merge and each has a unique leader. Then the
partition with smaller leader! accepts the leader of the other partition as its own leader by flooding Lmessages
within its partition.

Action 9 is enabled when a node i has a newly arrived neighbor j, as indicated by predicate
which is set to true by our neighbor discovery mechanism. Action 9 when executed will induce node i to send
NLmessage to node j. In this message, i sends its current values for variables . The variable

is a binary variable that indicates whether the field in the message is valid (i.e. ).
Action 9 enables new neighbor pair to know what the other neighbor’s current state is, and subsequently to
check if action 2 or action 10 is enabled. Upon receiving a NL message with a “valid” leader and whose
identity is greater than i’s current leader, i executes action 10 by adopting the higher identity node as leader
and propagating new leader further to its neighbors in a L message. This condition captures the case when!
two partitions, each with a unique leader, merge. This action enables the two leader identities to be exchanged
over the newly formed link(s) and eventually the maximum of the two identities gets accepted as the leader
for the entire merged network.

4. Neighbor Discovery Mechanism :

While specifying the algorithm, we assumed that the node executing the election algorithm knows its list of
neighbors. In practice, each node i maintains a list of neighbors using a discovery mechanism. After every
timer interval, each node i broadcasts a Beacon message containing its identity to all nodes that are within
its transmission range. Associated with each neighboring node j, i maintains the time when it last heard the
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beacon message from node j, . Upon receiving a Beacon message from a node j, node i checks to see if
node j is already in , i’s current list of neighbors. If node j is not already in , i adds j to and sets the
predicate to true. is set to i’s current local time. If node j is already in i’s list of
neighbors, only is updated to node i’s current local time. Absence of a ! Beacon message from a neighbor
j for three successive Beacon Intervals causes node i to remove node j from .

4.3 Formal Verification of Algorithm

One of the main contributions of this paper is to provide a formal proof of correctness of our leader election algo-
rithm. We use linear time temporal logic as a formal tool for this purpose. An extensive introduction to temporal
logic and its use to verify communication protocols can be found in [30]. Temporal logic has also been discussed
in [29].
A temporal formula consists of predicates, boolean operators ( ), quantification operators ( )

and temporal operators like (’at every moment in the future’), (’eventually’), (’at some moment in the past’),
(’at every moment in the past’), (’at next time instant’), (’until’), (’unless’), (’since’), (’just’). If

and are arbitrary formulas, then means is true at every moment in the future. means will be true at
some moment in the future. means that will eventually be true and will be contiunously true until that
moment. is a “weak until” operator, i.e. means that either holds indefinitely or holds.
means that at every moment in the past holds true. means that at some moment in the past holds.
means that has been true at some moment in the past and has been continuously true since that moment.
means that at the next time instant will hold true while means that has just become true. In our proofs, we
introduce another temporal operator . Thus means that was true at some moment in the past after time .
We show in Appendix B that starting at any state that satisfies predicate and assuming a finite number of

topological changes, the LeaderElection algorithm is guaranteed to reach, within a finite number of steps, a state
satisfying the state predicate , where

and represents the boolean guard of action from the algorithm specification.
The predicate captures the arbitrary failures that can occur in the system and which can affect the correctness

and termination of the election algorithm. Since is a stable predicate, the LeaderElection algorithm is said to be
stabilizing to or .
The proof of this result is divided into two parts and is shown in Appendix B:

Safety Property: If diffusing computations stop in the network, then eventually all nodes will have a unique
leader which is the maximum identity node in the network. More formally we prove that,

Progress Property: We also show that eventually there are no more diffusing computations in the network.
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Termination Property: Eventually the algorithm terminates i.e. none of the program actions are enabled.

The Safety and Progress properties together ensure that the system satisfies the property . The Termination
property is achieved as a by-product of the Safety and Progress properties.

5 Conclusions and Future Work

In this paper, we have proposed an asynchronous, distributed extrema finding algorithm for mobile, ad hoc networks.
This algorithm guarantees that after a finite number of topological changes, every network component has a unique
leader and this leader is the maximum identity node in that component. We also observe that our algorithm is weakly
self-stabilising and terminating. We formally establish the correctness of our leader election algorithm using linear
time temporal logic.
We are currently working on demonstrating the effectiveness of our election algorithm using simulations. We have

simulated the algorithm in GloMoSim [9], a mobile ad hoc network simulator. The metrics that we are particularly
interested in are : fraction of the time each node is with a leader and message complexity of the algorithm. In the
leader election algorithm that we proposed, we assume a reliable transport mechanism. But this can be a constraint in
wireless networks in which communication links are bandwidth limited. We would like to study election algorithms
that can tolerate message losses and can tradeoff algorithm correctness for performance gains. The theory of self-
stabilizing systems looks very promising for designing correct, distributed algorithms for ad hoc networks. We
believe that a lot of work from self-stabilizaing systems can be applied to designing distributed algorithms for ad
hoc networks. Our future work will concentrate on applying this theoretical framework to other ad hoc networking
problems.
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A Messages and Message Structure

The various message types used in the algorithm are:
Election
Ack
Newlink
Leader

Node i’s Election message has the following fields:
: set to computation-index of source

: set to destination node identifier
Node i’s Ack message has the following fields:

: set to computation-index of source

: set to destination node identifier
: set to 1 if , otherwise 0

: set to identifier of maximal downstream node (valid if flag = 1)
Node i’s Newlink message has the following fields:

: set to
: set to destination node identifier

: set to
: set to

: set to , valid only if
Node i’s Leader message has the following fields:

: set to computation-index of source

: set to identifier of leader

B Proof of correctness for Election module

B.1 Notation used and their semantics
: a predicate that is true as long as node i has msg sent by node j in its receive buffer.

: a predicate that is true as long as node i has msg in its receive buffer.

: a predicate that is true when node i has sent a message msg to node j.

: a message msg whose computation-index is x.

: a message msg containing data d.

: field f of message msg.

: number of acknowledgements that node i is waiting to hear.

: set of descendants (including itself) of node i in the spanning tree corresponding to the diffusing
computation with computation-index m.
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B.2 Proof of correctness:

Let denote the guard in action 1 and denote the guard in action 9 of LeaderElection module.

Let , and

Lemma 1: If a diffusing computation is guaranteed to “shrink” the spanning tree completely, then the initiator of
that computation outputs the extremum of all nodes that participate in that computation.

Proof: Let m and k be arbitrary computation-index and node identifier respectively such that eventually :

First of all, we claim that all nodes that receive participate in computation m until it gets over. Stated formally,
Claim 1:

Proof: We shall first prove that:

The proof is by contradiction. Let us assume that:

(1)

Since computation m is exactly a single Dijkstra-Scholten algorithm initiated by node k, we shall make use
of some proven properties of Dijkstra-Scholten Algorithm. Specifically, we use a property (Lemma 19.1 (6), pg
624 [2]) which implies that if holds true, then none of the channels and node buffers have message.
From the algorithm specification, it should be noted that the variable in our algorithm is always strictly
increasing between two successive computations initiated by node i. Hence, i cannot initiate two computations with
same computation-indices. Hence, if holds true in the current state, then by Lemma 19.1(6) [2] and the fact
that is strictly increasing, at no moment in the future can there be a node i for which
holds true.

Thus, it trivially follows that:

(2)

The same property(Lemma 19.1 (6), pg 624 [2]) also implies that if holds true in the current state, then for
each node i that was in the spanning tree associated with computation-index m, must have been
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true at some moment in the past. Also, from the algorithm actions it is obvious that for to hold
true, action 6 or 7 of the algorithm needs to be executed for which is a precondition.
From the above discussion and (2), we have

(3)

It is easy to see that,

Hence from (3) we infer that,

Substituting the statement above in (1), we get

Let us assume without loss of generality that was true at some moment in the past, but that node i is yet
to receive . The reasoning that follows will be very similar even if we assume will eventually be true.

But node i cannot send node j an message until it receives an message from node j.

Hence at some moment in the past the property stated in (3) is violated. Hence our assumption in (1) is wrong.

But from the algorithm actions, it is evident that for a node that receives , is a precondition
for to happen, i.e. by execution of action 6 or action 7.

Hence Claim 1 is proved.
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For the rest of the proof of Lemma 1, let us assume that holds true. We know from our algorithm
specification that if a node i is already in a spanning tree associated with an arbitrary computation-index x, i.e.

and if it subsequently hears a message from a node j, then action 4 is continuously enabled
as long as . Using Claim 1 we can infer that,

(4)

If the right side of statement (4) were not to hold, then deficit of node j, which has sent to node i would never
be zero thus violating Claim 1.
We use a property of Dijkstra-Scholten termination detection algorithm (Lemma 19.1(5) [2])that the parent point-

ers of all nodes participating in computation m do not form cycles in ancestor-descendant relationships. Since there
are a finite number of nodes in the network, there exist nodes participating in computation m which are not “parent”
of any other node. Let S be the set of all such nodes.

From Claim 1 and definition of it follows that,

Using (4) in the right side of the above implication, we get

( )

But the statement above means that was true at some moment in the past and since j has not
yet heard from node i, cannot hold true in the current state and in fact can never be true
at least until it receives from node i.

(5)

Since we have assumed holds true, from (3) it follows that:

Substituting the statement above in (5),
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(6)

(7)

Statement(7) and Claim 1 imply that action 6 will be continuously enabled and by fairness constraint must
eventually be executed. Otherwise, will never hold thus violating Claim 1. Thus the “shrinking”
process of spanning tree will eventually begin.

(8)

Define , and

Thus represents the set of all nodes at level l of the spanning tree, where the leaves are at level 0 and the root
at level h.
We shall now prove by induction that :

,

Proof : The proof is by induction on level l of a node in the spanning tree.
Base Case : .
Using Definition of in (8), we get

(9)

From the algorithm specification, the leaves of the spanning tree send their own identities in their Amessages to their
parent nodes since they have no downstream nodes in the tree. Thus, by definition of , the following trivially
holds true:

Inductive Hypothesis: Let us assume that holds true for all l such that . We shall now prove that
holds true for .
By definition of it follows that:

By inductive hypothesis,

(10)

Restating (9),
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Since we have assumed that holds true,

(11)

From Claim 1, it follows that

(12)

On receiving from a node j, either node i starts participating in computation m by adopting j as its parent and
removing from its receive buffer, or it is the case that node i has received from some other node who it
chooses as its parent.

(13)
Substituting from (10), (11) and (12) in (13), we get

Reasoning as we did to prove (6), we get

By Claim 1, action 6 will remain continuously enabled and will eventually be executed.

Therefore, holds true , which completes the induction.
Since the node k is the only node at level h, it is the parent of all nodes at level h - 1. Therefore we get:

( )

Therefore,

The above implication holds because the antecedent in the above implication can hold true only by execution of
action 8 of algorithm.

Since nodes in are k and precisely the nodes that received at some moment in the past, we get
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Since k and m are chosen arbitrarily, Lemma 1 is proved.

Lemma 2:

Proof: Let and suppose that U holds true.
Since we have assumed that there are finite number of topological changes,

let no more topological changes occur

Hence,

Claim 2:

Proof: The proof is by contradiction.
Let us assume that

holds true.
Let s and t be two neighboring nodes such that :

(14)
Let m and n be the last computations which node s and t participated in respectively. Since holds true,

(15)

(16)

Let be the time when is set to false for the last time, i.e. nodes s and t could have been neighbors of
each other on more than one occassion in the past and then moved out of range of each other and finally become
neighbors again. It should be noted that nodes s and t will remain neighbors of each other forever since , since
predicate holds true.
Depending on when is set to false there are two possibilities,viz:

1. If was set to false before , then must be true and eventually
must be true.

2. If was set to false after , then must be true, as the only way
becomes false is by execution of action 9.
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Depending on these possibilities, we deduce that

Since s and t remain neighbors forever, any message sent by node s to node t will eventually be received by node t.
Hence,

(17)

We shall first prove Claim 2 for the case when and subsequently for .

1. : If is true, then by Claim 1 . Since n is
the last computation that t participates in, will be true and again by Claim 1

will hold true thus violating the assumptiont that m was the last computation node
s participated in. On the other hand, if is true, then eventually will be true
and will violate the assumption that .

If is true, then action 2 will remain continuously enabled for node t and will
start a new computation with a computation-index m. The case when holds
true leads to the same consequence. Node s will be forced to participate in this newly started computation thus
violating the assumption that m is the last computation that node s participated in.

Eliminating the conflicting cases from (17),

(18)

Also, if is true and if then action 2 will remain continuously enabled
for node t until . If node t executes action 2, then it will start a computation with an identifier
and thereby forcing node s to participate in it. But this will violate our assumption that m is node s’s last
computation. Hence,

(19)

After topological changes stop, then for all neighboring node pairs i,j, for which predicate is true,
action 9 is continuously enabled and by fairness constraint will eventually be executed, setting to
false.

(20)

Applying Universal elimination in (20),

(21)
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It is easy to see that a similar implication as in (19) will hold for , assuming that is the time when
is set to false for the final time. Assuming to hold true and substituting result (19) in (21), we get

(22)

But if is true, it means that action 9 was executed. Since, s and t remain neighbors forever
after time , is also true. But we know from (22) that . Let . As a result of
execution of action 9, is true. It should be noted that will never again become
true, since we know that after time , nodes s and t remain neighbors forever and so will remain
false forever. Let us assume that holds true. Similarly, at some moment
after , will be true, after which will never again become true. Let us assume
that holds true. (22) will then be,

(23)

Let us assume without loss of generality that . From the algorithm specification, it is clear that node
t will adopt either or some other higher identity node as its leader, say . Naturally, t has received

or from a node different from node s. But then if t adopts as its leader, then it can do so
only by executing actions 8 or 10. But then each action ensures that is true thus violating (23).
Thus, (23) implies that eventually both s and t will have as their leader forever.

But this contradicts assumption (14) which implies that . Thus our assumption (23) is wrong.
Hence, either s or t changed its leader at least once and we know every leader change occurs through execution
of action 8 or action 10.

But this again contradicts our assumption (14). Thus, our assumption (14) is wrong and hence Claim 2 is
proved for the case when .

2. : From assumptions (15) and (16), it follows that m is the last computation that both s and t participate
in. As in case (i), is possible only because of execution of action 8 or action 10 by either node s or
node t.

But,

But this contradicts assumption (14). Thus Claim 2 is proved for the case when .

From the algorithm actions, it is evident that
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Substituting in Claim 2, we get

(24)

Upon receipt of a or message, a node changes its leader only when it finds that its current leader has a
smaller identity than the one in the received message and also the leader in the received message has a finite path
cost to the node. Since there are finite number of topological changes, finite number of diffusing computations are
ever initiated. Hence only a finite number of computations actually return a leader. Hence, each node receives a
finite number of and messages. Thus, each node can change its leader only a finite number of times.Thus
applying (24) to all pairs of neighboring nodes,

(25)

Restating Lemma 1,

Each diffusing computation that got over elected the maximum of all nodes that participated in that computation.
From the algorithm actions, it is clear that a node changes its leader, only when it finds a higher identity leader in its
component. Hence Lemma 1 and (25) together, imply that

This proves Lemma 2.

Lemma 3: Given finite number of topological changes, the algorithm guarantees that eventually all nodes stop
participating in diffusing computations for ever and have a leader. Lemma 3 states the Progress property of our
algorithm.

Proof: Observe from algorithm actions that the only way a new diffusing computation is initiated is by execution
of either action 1 or 2, i.e when holds true. Upon execution of either of these actions by a node, they are not
enabled again for that node until another different topological change occurs. Since there are only a finite number of
topological changes and only a finite number of nodes in the network, only a finite number of failures, which result
in a state satisfying , occur. As a result, only a finite number of computations are ever initiated since the election
process is first triggered. Hence the following must be true :

1. Eventually no new computation is initiated hereafter, i.e. .
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2. Eventually there are no more topological changes hereafter. (assumption).

Therefore, eventually both (1) and (2) must hold true forever. Let this condition be denoted by predicate . Thus,
.

We now claim the following :
Claim 3:
Proof: Let us assume for the rest of the proof that holds true. The proof is by contradiction i.e let us assume

that :

(26)

(27)
Now from algorithm specification it is clear that,

(28)
We use property (Lemma 19.1(6) [2]) of Dijkstra-Scholten Algorithm for a specific computation m such that

holds, then none of the channels have or messages.
Now restating Claim 1,

Thus if holds, then each node i which received at some moment in
the past will eventually have no or messages in its buffer, because it is guaranteed to reach a state where

, in accordance with Claim 1. When that state is reached, node i has sent out for each
of the message it received, which means that all of the messages will be deleted from the receive buffer by
execution of either action 3 or action 4. Also, since node i sends out all its s, it means that it has received all the

s it was supposed to hear and . Hence, all of messages would have been removed from i’s buffer by
execution of actions 5 or 6.
The above discussion leads to the following inference :

Thus a node cannot participate in a completed computation more than once. At any given time, there are only a
finite number of computations in progress and finite number of nodes in the system. Hence, if every node i always
participates in a computation m that is guaranteed to terminate i.e. a computation m for which

is guaranteed to hold , then eventually all nodes will reach a state satisfying , thus violating
(27). Also, a node can “abort” a computation only when it finds a higher priority computation. Since there are finite
number of them in progress, it can abort only a finite number of times. Eventually, it will never find a higher priority
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computation than the one that it is currently participating in. Hence for (27) to hold, the followinf statement must
hold true:

(29)

We now claim the the following:
Claim 4:

Proof: Let i and j be arbitrary nodes and let m be an arbitrary computation such that :
holds true.

Let us assume that is set to false. If is true, then action 9 will remain continuously enabled
and eventually executed setting to false.
Depending on when is set to false, there are two possibilities :

If is set to false before , then must be true and hence eventually
will be true.

If is set to false after , then it means that action 9 was executed after node i started
participating in computation m and hence must hold true and hence eventually
will be true.

(30)

Now,

It should be noted that the right hand side of the above implication is simply a tautology. Let us consider the case
when holds true.

But,

From (28), we get

From Claim 1 we can infer that must be true. But since is true,
must be true. In either case, the message will be eventually received because there

are no more changes and we use reliable communications. This implies that action 8 or action 10 of our algorithm
will remain continuously enabled and so either is true or will hold
true, both of which violate (29).
Let us consider the case when holds true.
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But, when or is received by node i, action 2 or 3 in node i will remain enabled continuously and
eventually executed, violating (29).
Thus eliminating conflicting cases from (30),

If holds true, then action 2 for node j will remain continuously enabled ( ) and
hence will get eventually executed, unless becomes equal to m. If action 2 gets executed, then j will start a
computation with and hence eventually thus violating (26). The only way becomes equal
to m is if eventually holds true.

Now . If , then the following will hold

But this will violate (26). In fact for the same reason, .

Since i,j and m were chosen arbitrary Claim 4 is proved.
Applying Claim 4 inductively, we get

(31)

The parent pointers, as we know from property (Lemma 19.1(5) [2]), form a directed, acyclic graph rooted at source
m. Statement (31) describes a quiescence condition after which no Election messages are sent or received. Hence,
the tree formed by parent pointers stops growing, stabilizing to a fixed tree T and the quiescence condition also
implies that the tree does not shrink any further. But, since topological changes have stopped, every Ack message
sent by execution of action 3 of the algorithm will eventually be received by the intended destination. Hence, the
leaf nodes of the tree will eventually hear all pending Ack messages allowing their to become zero. This means
that each leaf node will eventually send out its pending Ack message to its parent causing the tree to shrink further,
a contradiction to (31). In fact, the tree will continue to shrink until the root node hears all pending Ack messages,
which causes its variable, , to be set to 0.

But this violates (31). Hence, our assumption in (26) is wrong. This proves Claim 3. From the algorithm specifica-
tion, it is obvious that
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Now it is very easy to see that Claim 3 implies Lemma 3.

Lemma 4 : Eventually the program terminates, i.e. all program actions are disabled.
Proof: It is esay to see that Lemma 2 and Lemma 3 ensure that all program actions will be eventually disabled.

Lemma 2 ensures that actions 2-7 will never be enabled. Lemma 2 and Lemma 3 together ensure that actions 8 and
10 will never be enabled. The assumption of finite topological changes ensures that eventually action 9 will never
be enabled.
Theorem 1: , i.e. stabilises to .
Proof: It is easy to see that Lemma 2 and Lemma 3 imply Theorem 1.
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