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hniquesDimitri Lisin, Edward Riseman, and Allen HansonDepartment of Computer S
ien
e, UMASS - Amherst, Amherst, MA, USAAbstra
t. This paper presents an eÆ
ient method for �nding salientdi�erential features in images. We argue that the problem of �ndingsalient features among all the possible ones is equivalent to �nding out-liers in a high-dimensional data set. We apply outlier dete
tion te
h-niques used in data mining to devise a linear time algorithm to extra
tthe salient features. This yields a de�nition of salien
y whi
h rests on amore prin
ipled basis and also produ
es more reliable feature 
orrespon-den
es between images than the more 
onventional ones.1 Introdu
tionExtra
ting salient features is often a 
ru
ial prepro
essing step for image anal-ysis. Many vision tasks, su
h as obje
t re
ognition, obje
t dete
tion, and stereomat
hing require establishing 
orresponden
es between point features from dif-ferent images. Most often it is infeasible to 
onsider potential features at everypixel in the image, so only a key subset, 
alled salient features, are used.In the worst 
ase the salient features are identi�ed by hand [2℄, but more oftena general de�nition of salien
y is used. Often 
orners, are 
onsidered salient [13℄,and also edges and blobs 
an be added to the set of salient features [8℄.In this paper we de�ne an image feature the same way as in [8℄, as a ve
torof Gaussian derivative responses at a pixel over a range of s
ales, In parti
ular,we use the �rst and the se
ond derivatives over three 
onse
utive s
ales. Thus, afeature is de�ned at every pixel of every s
ale of the image, ex
ept for the top-most and the bottom-most s
ales. We use the normalized inner produ
t betweentwo feature ve
tors as a measure of similarity between the 
orresponding features.The normalization provides a degree of invarian
e to linear 
hanges in intensity.We argue that the spa
e of all features in an image 
an be viewed as a largemulti-dimensional data set, and the salient points 
orrespond to the outliers of theset. We show that density-based outlier dete
tion te
hniques [5℄, [1℄ used in datamining are appli
able to the problem of �nding salient features. We use thesete
hniques together with the smoothness property of the feature spa
e des
ribedin se
tion 4 to devise a linear time algorithm to dete
t the salient features. Ourde�nition of salien
y rests on a more prin
ipled basis, and intuitively it seemsto be more natural than those 
ommonly used be
ause it is derived from thestru
ture of the feature spa
e itself.We present experiments in whi
h we establish 
orresponden
es between fea-tures in pairs of images using only the feature similarity and the self-
onsisten
y




onstraint des
ribed in se
tion 7. No other 
onstraints are assumed. The exper-iments show, that features that are salient a

ording to our de�nition produ
emore reliable 
orresponden
es than ones de�ned by more traditional means. Of
ourse, many systems that require 
orresponden
es do use other 
onstraints tosu

essfully disambiguate the mat
hes [13℄, [8℄. However, extra
ting features thatare salient a

ording to our de�nition 
an be a useful prepro
essing step, whi
hmay improve the overall a

ura
y of su
h systems and it may redu
e the timerequired for disambiguating the mat
hes.2 Salient Features as OutliersThe problem of �nding outliers in high-dimensional data sets arises in datamining. It is assumed that points in a data set form 
lusters, and outliers arepoints that do not belong to any of the 
lusters. In the 
ontext of data miningoutliers represent unusual 
ases, su
h as fraud and other 
riminal a
tivity ine-
ommer
e.Hawkins [4℄ de�nes an outlier as "an observation that deviates so mu
h fromother observations as to arouse suspi
ion that it was generated by a di�erentme
hanism." On the other hand, the word salient is de�ned by the Webster'sDi
tionary as prominent. It is the opinion of the authors that the two de�nitionsreally point to the same 
on
ept. In parti
ular, a multi-dimensional spa
e ofimage features is really nothing more than a large data set. Intuitively we 
an seethat features similar to many others would form 
lusters, while distin
t features,whi
h we might 
all salient, would be the outliers.In 
ontrast, one 
ould also examine the 
lusters that exist in the featurespa
e, as opposed to the outliers. Patterns formed by these 
lusters also 
arryinformation about the appearan
e of the s
ene in an image, and may be useful forre
ognition. Su
h an approa
h would be similar to the histogram-based te
hniquedes
ribed in [9℄, whi
h uses the global distribution of di�erential features forre
ognition. However, this paper deals with point features, whi
h may be used inappli
ations other than obje
t re
ognition, su
h as stereo mat
hing and obje
tdete
tion. Point feature 
orresponden
es also o�er ways to re
over the threedimensional stru
ture of s
enes and obje
ts, whi
h is not possible with purelyappearan
e-based approa
hes. Therefore, it is not the 
lustering, but the outlierdete
tion algorithms that interest us.In this paper we examine two su
h algorithms: the distan
e-based DB(p;D)s
heme [5℄, and the Lo
al Outlier Fa
tor approa
h [1℄. We will show that withminor modi�
ations both are appli
able to our problem, and that the latteryields superior results.3 Related WorkThis work has been inspired by [8℄, whi
h presents a system for learning dif-ferential features to re
ognize obje
ts. In this paper, however, we only fo
us onthe problem of establishing 
orresponden
es between point features. We propose



methods for �nding features that are likely to be mat
hed 
orre
tly, and we deferthe question of how to use them to the future work. We will present an overviewof the existing de�nitions of salient point features, but we 
onsider salient edges,
urves, et
. to be outside the s
ope of this paper.3.1 Salien
yMost often salient point features are de�ned as the lo
al extrema of some fun
-tion of the image. One example is using 
orners, or points of high 
urvature assalient [13℄. Also, lo
al maxima of \blobs" (the tra
e of the Hessian) and thegradient magnitude 
an be used [8℄. Sin
e su
h fun
tions are 
ombinations ofimage derivatives they 
an be 
omputed very fast. Another interesting exampleis presented in [11℄, where a multis
ale de
omposition of an image is 
omputedusing a 1D wavelet at various orientations, and the lo
al maxima of the sum ofthe wavelet responses are used as salient features.A de�nition of salien
y most similar to the one presented by this paper isgiven is [12℄. In this work the feature 
omponents are the di�erential invariantsat a pixel over a range of s
ales, and the Mahalanobis metri
 is used as featuredistan
e. The salien
y is de�ned in terms of the density of the feature spa
e.Lower density regions 
orrespond to higher salien
y. This makes sense, be
ausefeatures at the low density regions of the spa
e are unlike most others, andtherefore are less likely to be mismat
hed.In [12℄ a multivariate Gaussian mixture model of the feature spa
e is used as adensity fun
tion, whose lo
al minima are 
onsidered salient. The main drawba
kof this approa
h is its time 
omplexity, whi
h is quadrati
 in the total numberof features in the spa
e. The problem 
an be alleviated by modeling a randomlysampled subset of the features instead of the entire spa
e. This redu
es thenumber of features that need to pro
essed, but the time 
omplexity is still O(n2).The approa
h des
ribed in this paper is similar to that of [12℄ in that it usesthe density of the feature spa
e to de�ne salien
y. However, we use lo
al outlierdete
tion te
hniques whi
h give us a more pre
ise and well-founded de�nition ofsalien
y. We also use the smoothness property of the feature spa
e to redu
e thetime 
omplexity to linear.3.2 Multis
ale Di�erential FeaturesThe Gaussian and its derivatives are a family of kernels used to generate a lin-ear isotropi
 s
ale-spa
e of an image, whi
h has been studied extensively unders
ale-spa
e theory [7℄. Image derivatives de�ne the lo
al behavior of the intensitysurfa
e, whi
h makes them useful for des
ribing the image features. Using Gaus-sian derivative �lters at a range of �'s allows us to analyze the surfa
e pat
hesof varying sizes.Our de�nition of a feature at a pixel and a parti
ular s
ale �i is a ve
tor ofGaussian derivative responses at three s
ales: �i�1; �i; �i+1. We use the �rst andthe se
ond derivatives [8℄. Sin
e we have 2 
omponents of a �rst derivative, and



3 
omponents of the se
ond over 3 s
ales, our feature spa
e has 15 dimensions.Using multiple s
ales in
reases the spe
i�
ity of a feature.This feature representation is not invariant to in-plane rotation. For the pur-pose of this paper we set up our experiments so that su
h invarian
e is notrequired. If, however, it is required the steerability property of the Gaussianderivative �lters 
an be used as in [8℄, or, alternatively, the rotationally invari-ant 
ombinations of derivatives 
an be used as in [12℄. Our de�nition of salien
yshould still be appli
able in these 
ases, but more experiments are needed to be
ertain.4 Fast Density Estimation Using SmoothnessThe outlier dete
tion te
hniques that we 
onsider in this paper use a notion ofdensity of the data points in the spa
e to �nd the outliers. We therefore need away to 
ompute the density of our feature spa
e at every feature. One exampleof su
h a method is presented in [12℄, and it has been dis
ussed in se
tion 3.1.Re
all that it takes O(n2) time, where n is the number of features.A simpler way to estimate lo
al density at a parti
ular feature f is to 
omputethe distan
e to the farthest of its k nearest neighbors, for some natural numberk. We will denote the farthest neighbor as fd, and the distan
e from f to fd asr(f), whi
h is the radius of the smallest hyper-sphere 
ontaining the k nearestneighbors of f . Sin
e we use a similarity measure rather than distan
e betweenfeatures, in our 
ase r(f) is the similarity to the least similar of the neighbors.The problem with this approa
h is that �rst we need to determine what the knearest neighbors of a feature are. This would require 
omparing ea
h feature toevery other feature, and would also take O(n2) time.In this se
tion we will show that our feature spa
e is smooth, su
h thatfeatures that are neighbors in the image, also tend to be neighbors in the featurespa
e. This will allow us to treat the nearest neighbors of a feature in the imageas its nearest neighbors in the feature spa
e, and redu
e the time 
omplexity ofthe density estimation to O(n).A Gaussian derivative response at some pixel (x; y), and some s
ale � isobviously a fun
tion of x; y, and �. Therefore, the features form a 3D manifoldin a 15D spa
e. Be
ause we use Gaussian derivatives, the image at ea
h s
ale� is blurred whi
h 
auses its derivatives to be smooth. As a result, the wholemanifold has to be smooth, espe
ially for the 
oarser s
ales. Figure 1 illustratesthis idea. The top row shows the image of a mobile robot at 3 s
ales, and thebottom row shows a plot of the �rst x derivative (Ix) vs. the �rst y-derivative (Iy)of ea
h 
orresponding s
ale plane. Ea
h plot is a 2D proje
tion of a plane's sub-manifold. We 
an see that the sub-manifolds, as expe
ted, be
ome progressivelysmoother as we move to 
oarser s
ales.The smoothness property dire
tly implies that features that are neighbors inthe image (image-neighbors) also tend to be neighbors in the feature manifold(a
tual-neighbors). We make a stronger assumption:



Conje
ture 1. 8 immediate neighbors of a feature in the image are also its 8nearest neighbors in the feature manifold.Conje
ture 1 gives us 8-nearest a
tual-neighbors of a feature, \for free" with-out us having to sear
h the entire feature spa
e. This is what allows us to redu
ethe time 
omplexity to linear. This assumption would not hold true for imageswith high 
ontrast repetitive patterns. Be
ause of this our approa
hes may notwork well for the natural outdoor s
enes, but it should be quite suitable for theindoor ones.Table 1 shows the results of an experiment supporting our assumption. Inthis experiment, we took an image of size 106 x 85 and 
ompared the 8 nearestimage-neighbors of ea
h feature in ea
h s
ale plane to its a
tual-neighbors fromthe same s
ale plane. The �rst 
olumn shows the s
ale plane, and the se
ond
olumn shows the number of image-neighbors that also happen to be among the8 nearest a
tual-neighbors of a feature, averaged over all 9010 features in thes
ale plane. We see that on average, over half of the 8 image-neighbors are alsoamong the 8 nearest a
tual-neighbors.The third 
olumn shows the a
tual rank of the 8th image-neighbor of afeature averaged over all features in a s
ale plane. Starting with s
ale 3 the 8thimage-neighbor on average falls among the 50 nearest a
tual-neighbors. This isnot bad, 
onsidering that ea
h s
ale plane 
ontains 9010 features.The fourth 
olumn shows the relative error of our density estimate. It isa
tually the relative error of the similarity of a feature f to its 8th nearestimage-neighbor with respe
t to the similarity of f to its 8th a
tual-neighbor.The relative error is averaged over all features in the s
ale plane. The last three
olumns provide a referen
e to see how signi�
ant the relative errors are. Column�ve shows the average relative error we would get if we always used the 100tha
tual-neighbor. Similarly the last two 
olumns show the average relative errorsfor the 200th and 500th a
tual-neighbors. We 
an see that our relative errors aresigni�
antly less than those for the 100th, 200th and 500th a
tual-neighbors.5 A Naive Approa
h to Outlier Dete
tionA simple approa
h to �nd outliers is to 
ompute the density, r(f), for ea
hfeature f at every pixel in the image at every s
ale to 
reate a density map. Thelo
al minima of the density 
orrespond to salient features. We 
all this approa
hnaive, be
ause we present a more sophisti
ated s
heme in se
tion 6.This algorithm runs in linear time in the number of features. It takes 8Nfeature 
omparisons to 
ompute r(f) for every feature f and 26N 
omparisonsof 
oating point numbers to �nd the lo
al minima a
ross s
ales, where N is thetotal number of features. The dimensionality of the feature spa
e only a�e
tsthe time it takes to 
ompare two features, and this dependen
y is also linear.This algorithm is related to the distan
e-based DB(p;D) outlier dete
tions
heme presented in [5℄. In the s
heme a data point o in a data set T is 
onsideredan outlier if at least fra
tion p of the points in T lie greater than distan
e D



from o. Essentially, a DB outlier minimizes the number of neighbors it haswithin a �xed hyper-sphere, and a naive salient feature maximizes the hyper-sphere 
ontaining its 8 nearest neighbors. In e�e
t, they both minimize the ratioof the number of neighbors to the volume of the hyper-sphere 
ontaining them,i. e. the lo
al density of the spa
e.[5℄ formally shows that the DB s
heme is a generalization of statisti
al outliertests for the normal and the Poisson distributions. This justi�
ation also appliesto our naive approa
h, sin
e we have shown its essential equivalen
e to DB.6 Lo
al Outlier Fa
torBreunig [1℄ des
ribes a more sophisti
ated algorithm for �nding density-basedlo
al outliers using k-nearest neighbors, whi
h, when applied to �nding salientfeatures, yields results superior to that of the naive approa
h from se
tion 5. Thealgorithm 
omputes a Lo
al Outlier Fa
tor (LOF) for ea
h data point, whi
h isa degree to whi
h it is an outlier. LOF (p), where p is a data point, is de�nedas the average of the ratios of densities at p's neighbors to the density at p.This s
heme 
onsiders a point an outlier when its density is low relative to thedensities at its neighbors, as opposed to the DB approa
h, whi
h simply looksfor low absolute density. It is more reasonable, be
ause low density alone maynot ne
essarily be 
hara
teristi
 of an outlier, e.g. in a 
ase when the whole dataset is very sparse. In se
tion 7 we show empiri
al justi�
ation for preferring LOFover the naive approa
h.The algorithm is built upon several key 
on
epts. The �rst one is k-distan
eof a data point. Let D be the data set, let p; o be data points, p; o 2 D, and letk be a positive integer. k-distan
e(o) is de�ned as the distan
e to the furthest ofthe k nearest neighbors, whi
h makes it equal to r(f) from se
tion 5.The rea
hability distan
e from p to o is de�ned asrea
h-distk(p; o) = max(k-distan
e(o); dist(p; o)) (1)In essen
e, this de�nition says that if point p is inside the k-distan
e neigh-borhood of o then rea
h-dist(p; o) is the k-distan
e of o. Otherwise, it is justthe distan
e between p and o a

ording to whatever distan
e metri
 is generallyused for this data set. This is done to smooth out the statisti
al 
u
tuations ofdist(p; o) when p and o are 
lose. It should also be noted that rea
h-dist is notre
exive, i. e. rea
h-dist(p; o) 6= rea
h-dist(o; p).The rea
hability distan
e is used to de�ne lo
al rea
hability density (lrd):lrdk(p) = 1= Po2N(p) rea
h-distk(p; o)jN(p)j ! ; (2)where N(p) is the set of k nearest neighbors of p. In essen
e, lrdk(p) is theinverse of the average rea
hability distan
e of the neighbors of p. If we used plaindistan
es instead of rea
h-dist then lrd(p) would just be the average distan
e



from p to its neighbors. But be
ause of the smoothing e�e
t of rea
h-dist, lrd(p)is restri
ted to never be less than the average of the k-distan
es of its neighbors.Using the lo
al rea
hability density the lo
al outlier fa
tor (LOF) is de�ned:LOFk(p) = 0� Xo2N(p) lrdk(o)lrdk(p)1A =(jN(p)j) (3)LOF is the average ratio of the rea
hability densities of p's k-distan
e neigh-bors to that of p. The lower the density of p, relative to its neighbors, the higherthe LOF(p), the degree of p being an outlier.To be able to apply LOF to �nding salient features all we need to do is setk = 8, and 
onvert our feature similarity measure into distan
e by inverting it.Sin
e LOF only assigns a salien
y value to a feature, we need to impose somethreshold to be able to say whi
h features are salient enough and whi
h onesare not. This is a question that deserves further exploration, but at this pointwe simply put the threshold 3 standard deviations above the mean of the LOFvalues at ea
h s
ale plane.The time 
omplexity of LOF is still linear: 8N feature 
omparisons to 
om-pute the k-distan
e of ea
h feature, plus 8N 
oating point 
omparisons to de-termine the rea
h-distan
e of ea
h feature, plus 8N 
oating point operationsto 
ompute lrd of ea
h feature, plus 8N 
oating point operations to 
omputeLOF's. In pra
ti
e it may be slightly slower than the naive approa
h.7 ResultsDuring testing we we try to establish 
orresponden
es between pairs of imagesusing the self-
onsisten
y 
onstraint, similar to the one in [6℄ and [10℄. Let F1and F2 be the sets of salient features from two images. We 
all f 2 F1 andf 0 2 F2 a self-
onsistent mat
h if features f and f 0 are mutually maximallysimilar. This ensures that the mat
hes are bidire
tional between the two images,and in
reases their reliability.We tested our approa
h using syntheti
 images, where 
orre
tness of themat
hes 
ould be veri�ed automati
ally, and real images, where where the groundtruth had to be supplied by a person. We wrote a simple GUI, whi
h shows thereferen
e image with a parti
ular feature f , and the target image with mat
h-ing feature f 0, and lets a user indi
ate whether or not the mat
h is 
orre
t bypressing a key. We 
ompute the per
entage of 
orre
t mat
hes, and use it as ameasure of quality of ea
h approa
h. No spe
ial prepro
essing, su
h as histogramthresholding, is done on the test images before the salient features are extra
ted.To evaluate our approa
hes we 
ompare the per
entages they yield to thoseprodu
ed by using 
orners and edges, whi
h are 
ommon ways to extra
t salientfeatures. We de�ne 
orners the same way as [8℄ as lo
al maxima ofs
orner(�) = �4jI2yyIxx � 2IxIyIxy + I2xxIyyj; (4)



where image derivatives are 
omputed by 
onvolving the image I with aGaussian derivative �lter of the appropriate �. Edges are de�ned as lo
al maximaof the gradient magnitude. Unlike [8℄ we 
ompute the lo
al maxima in ea
h s
aleplane, as opposed to over the entire s
ale volume. This redu
es the amount of
omputation required and seems to yield greater mat
hing a

ura
y.The LOF approa
h takes into a

ount relative feature spa
e density at a par-ti
ular feature, so we see no need to use lo
al maxima. Instead we use a threshold.3 times the standard deviation above the mean. This threshold was determinedempiri
ally, and further investigation is required to �nd a more prin
ipled wayof setting it.For ea
h salien
y de�nition, we extra
ted the sets of salient points from thereferen
e and the target images, and sorted them by their salien
y. Then, pro
ed-ing down the referen
e set in order, we found the �rst 100 self-
onsistent mat
hes,and sorted those by the similarity between the mat
hed pairs of features. Wetook the top 25 of those to be tested for 
orre
tness.7.1 Syntheti
 dataTo generate syntheti
 data we used an image of a lab, 
ontaining a mobile robot(the target from �gure 3), wh
ih is 320x240 pixels. We 
ropped out 10 randomly
hosen sub-images of size 100x100 pixels from it, and generated a range of s
aledimages from them by subsampling and interpolation. The s
aled images rangein size from 50% to 200% of the original sub-image, with the in
rement of 10%.The mat
hing a

ura
y is averaged for ea
h s
ale over the 10 randomly 
hosensub-images.The results of this experiment are summarized in a graph in �gure 2. The x-axis represents the s
ale fa
tor of the sub-image, and the y-axis shows the averagemat
hing a

ura
y as a per
entage. The 
orners performed the worst. Our naiveapproa
h was better then the edges when the sub-image was un
hanged (s
alefa
tor 1), but degraded mu
h less gra
efully when the s
ale 
hanged. The LOFapproa
h performed the best. In fa
t its a

ura
y was 50% or higer for the s
alefa
tors ranging from .8 to 1.4.It took 124 se
onds to test the 
orners, on average .8 se
onds per image. Edgestook approximately the same time, and LOF took 417 s., or 2.6 s. per image.The 
omputation was done on a 2GHz Pentum 4 running Linux. The system
an be further optimized, and the 
omputation is naturally parallelizable, sin
eea
h s
ale plane 
an be pro
essed independently.7.2 Real Data: Task 1In this series of experiments we mat
hed features from multiple referen
e imagesof a mobile robot into a single target, a 
luttered s
ene 
ontaining the robot(Figure 3). The referen
e images 0 - 4 vary in s
ale with respe
t to the target.Referen
es 5 and 6, while having roughly the same s
ale, exibit out-of-planerotation and a ba
kground 
hange.



The experimental results for this task are summarized in table 1. It showsthat the naive approa
h performed signi�
antly better then the 
orner but notas well as the edges. The LOF, however, did as well as the edges in 
ases 0, 1,and 2, somewhat worse in 
ase 3, and signi�
antly better in 
ases 4, 5, and 6.Referen
e 4 has the largest di�eren
e in s
ale from the target, as well as partialo

lusion, and referen
es 5 and 6 have out-of-plane rotation, as we mentionedabove. Thus the LOF approa
h appears to be the most robust.7.3 Real Data: Task 2In this task we took three pairs of images produ
ed by 
ameras mounted on astereo head and tried to mat
h features from one image to another in ea
h pair.The 
amera's opti
al axes are not parallel, so the images in ea
h pair are quitedi�erent. No 
alibration information or any other 
onstraints asso
iated withstereo were used.The results for the three pairs of images, whi
h we 
alled "
oke", "drill", and"blo
ks" (Figure 4), are summarized in table 2. Here again the LOF approa
hperformed the best.8 Con
lusions and Future WorkIn this paper we have presented a novel idea that salient di�erential features
an be viewed as outliers in a high-dimensional spa
e, and therefore outlierdete
tion te
hniques used in data mining are appli
able for their extra
tion. Wehave presented two algorithms based on two di�erent outlier dete
tion s
hemes:the distan
e-based approa
h and the LOF. The latter one is a more sophisti
atedapproa
h, whi
h better �ts an intuitive notion of an outlier, and produ
es morereliable features.Further investigation is needed to determine if our 
on
ept of salien
y 
an beapplied to image features de�ned by using other means, su
h as the di�erentialinvariants, and using other distan
e metri
s, su
h as the Mahalanobis distan
e.This work is a part of an ongoing e�ort to build a learning system for obje
tre
ognition and dete
tion 
apable of handling an un
onstrained environment.The LOF-based salient feature extra
tion may be
ome an important 
omponentof su
h a system.Referen
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Table 2. Mat
hing a

ura
y for task 1Ref. Corners Edges Naive LOF0 76% 100% 100% 100%1 52% 96% 92% 96%2 40% 92% 64% 92%3 48% 84% 48% 76%4 0% 28% 8% 44%5 12% 36% 44% 80%6 4% 28% 40% 52%
Table 3. Mat
hing a

ura
y for task 2Corners Edges Naive LOF
oke 28% 24% 68% 72%drill 12% 60% 48% 60%blo
ks 12% 24% 20% 48%

Fig. 1. S
ale planes 1, 5, and 9, with � = p2; 4p2; 16p2 respe
tively, and their 
orre-sponding feature sub-manifolds



Fig. 2. A

ura
y for syntheti
 data
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Fig. 3. The referen
e and target images for task 1.



Fig. 4. The image pairs ("
oke", "drill", and "blo
ks") with 25 self-
onsistent salientfeatures extra
ted using LOF. The 
ir
les' sizes 
orrespond to features' s
ales.


