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Abstract. This paper presents an efficient method for finding salient
differential features in images. We argue that the problem of finding
salient features among all the possible ones is equivalent to finding out-
liers in a high-dimensional data set. We apply outlier detection tech-
niques used in data mining to devise a linear time algorithm to extract
the salient features. This yields a definition of saliency which rests on a
more principled basis and also produces more reliable feature correspon-
dences between images than the more conventional ones.

1 Introduction

Extracting salient features is often a crucial preprocessing step for image anal-
ysis. Many vision tasks, such as object recognition, object detection, and stereo
matching require establishing correspondences between point features from dif-
ferent images. Most often it is infeasible to consider potential features at every
pixel in the image, so only a key subset, called salient features, are used.

In the worst case the salient features are identified by hand [2], but more often
a general definition of saliency is used. Often corners, are considered salient [13],
and also edges and blobs can be added to the set of salient features [8].

In this paper we define an image feature the same way as in [8], as a vector
of Gaussian derivative responses at a pixel over a range of scales, In particular,
we use the first and the second derivatives over three consecutive scales. Thus, a
feature is defined at every pixel of every scale of the image, except for the top-
most and the bottom-most scales. We use the normalized inner product between
two feature vectors as a measure of similarity between the corresponding features.
The normalization provides a degree of invariance to linear changes in intensity.

We argue that the space of all features in an image can be viewed as a large
multi-dimensional data set, and the salient points correspond to the outliers of the
set. We show that density-based outlier detection techniques [5], [1] used in data
mining are applicable to the problem of finding salient features. We use these
techniques together with the smoothness property of the feature space described
in section 4 to devise a linear time algorithm to detect the salient features. Our
definition of saliency rests on a more principled basis, and intuitively it seems
to be more natural than those commonly used because it is derived from the
structure of the feature space itself.

We present experiments in which we establish correspondences between fea-
tures in pairs of images using only the feature similarity and the self-consistency



constraint described in section 7. No other constraints are assumed. The exper-
iments show, that features that are salient according to our definition produce
more reliable correspondences than ones defined by more traditional means. Of
course, many systems that require correspondences do use other constraints to
successfully disambiguate the matches [13], [8]. However, extracting features that
are salient according to our definition can be a useful preprocessing step, which
may improve the overall accuracy of such systems and it may reduce the time
required for disambiguating the matches.

2 Salient Features as Outliers

The problem of finding outliers in high-dimensional data sets arises in data
mining. It is assumed that points in a data set form clusters, and outliers are
points that do not belong to any of the clusters. In the context of data mining
outliers represent unusual cases, such as fraud and other criminal activity in
e-commerce.

Hawkins [4] defines an outlier as ”an observation that deviates so much from
other observations as to arouse suspicion that it was generated by a different
mechanism.” On the other hand, the word salient is defined by the Webster’s
Dictionary as prominent. It is the opinion of the authors that the two definitions
really point to the same concept. In particular, a multi-dimensional space of
image features is really nothing more than a large data set. Intuitively we can see
that features similar to many others would form clusters, while distinct features,
which we might call salient, would be the outliers.

In contrast, one could also examine the clusters that exist in the feature
space, as opposed to the outliers. Patterns formed by these clusters also carry
information about the appearance of the scene in an image, and may be useful for
recognition. Such an approach would be similar to the histogram-based technique
described in [9], which uses the global distribution of differential features for
recognition. However, this paper deals with point features, which may be used in
applications other than object recognition, such as stereo matching and object
detection. Point feature correspondences also offer ways to recover the three
dimensional structure of scenes and objects, which is not possible with purely
appearance-based approaches. Therefore, it is not the clustering, but the outlier
detection algorithms that interest us.

In this paper we examine two such algorithms: the distance-based D B(p, D)
scheme [5], and the Local Outlier Factor approach [1]. We will show that with
minor modifications both are applicable to our problem, and that the latter
yields superior results.

3 Related Work

This work has been inspired by [8], which presents a system for learning dif-
ferential features to recognize objects. In this paper, however, we only focus on
the problem of establishing correspondences between point features. We propose



methods for finding features that are likely to be matched correctly, and we defer
the question of how to use them to the future work. We will present an overview
of the existing definitions of salient point features, but we consider salient edges,
curves, etc. to be outside the scope of this paper.

3.1 Saliency

Most often salient point features are defined as the local extrema, of some func-
tion of the image. One example is using corners, or points of high curvature as
salient [13]. Also, local maxima of “blobs” (the trace of the Hessian) and the
gradient magnitude can be used [8]. Since such functions are combinations of
image derivatives they can be computed very fast. Another interesting example
is presented in [11], where a multiscale decomposition of an image is computed
using a 1D wavelet at various orientations, and the local maxima of the sum of
the wavelet responses are used as salient features.

A definition of saliency most similar to the one presented by this paper is
given is [12]. In this work the feature components are the differential invariants
at a pixel over a range of scales, and the Mahalanobis metric is used as feature
distance. The saliency is defined in terms of the density of the feature space.
Lower density regions correspond to higher saliency. This makes sense, because
features at the low density regions of the space are unlike most others, and
therefore are less likely to be mismatched.

In [12] a multivariate Gaussian mixture model of the feature space is used as a
density function, whose local minima are considered salient. The main drawback
of this approach is its time complexity, which is quadratic in the total number
of features in the space. The problem can be alleviated by modeling a randomly
sampled subset of the features instead of the entire space. This reduces the
number of features that need to processed, but the time complexity is still O(n?).

The approach described in this paper is similar to that of [12] in that it uses
the density of the feature space to define saliency. However, we use local outlier
detection techniques which give us a more precise and well-founded definition of
saliency. We also use the smoothness property of the feature space to reduce the
time complexity to linear.

3.2 Multiscale Differential Features

The Gaussian and its derivatives are a family of kernels used to generate a lin-
ear isotropic scale-space of an image, which has been studied extensively under
scale-space theory [7]. Image derivatives define the local behavior of the intensity
surface, which makes them useful for describing the image features. Using Gaus-
sian derivative filters at a range of ¢’s allows us to analyze the surface patches
of varying sizes.

Our definition of a feature at a pixel and a particular scale o; is a vector of
Gaussian derivative responses at three scales: o;_1,0;,0,11. We use the first and
the second derivatives [8]. Since we have 2 components of a first derivative, and



3 components of the second over 3 scales, our feature space has 15 dimensions.
Using multiple scales increases the specificity of a feature.

This feature representation is not invariant to in-plane rotation. For the pur-
pose of this paper we set up our experiments so that such invariance is not
required. If, however, it is required the steerability property of the Gaussian
derivative filters can be used as in [8], or, alternatively, the rotationally invari-
ant combinations of derivatives can be used as in [12]. Our definition of saliency
should still be applicable in these cases, but more experiments are needed to be
certain.

4 Fast Density Estimation Using Smoothness

The outlier detection techniques that we consider in this paper use a notion of
density of the data points in the space to find the outliers. We therefore need a
way to compute the density of our feature space at every feature. One example
of such a method is presented in [12], and it has been discussed in section 3.1.
Recall that it takes O(n?) time, where n is the number of features.

A simpler way to estimate local density at a particular feature f is to compute
the distance to the farthest of its &£ nearest neighbors, for some natural number
k. We will denote the farthest neighbor as f;, and the distance from f to f; as
r(f), which is the radius of the smallest hyper-sphere containing the k nearest
neighbors of f. Since we use a similarity measure rather than distance between
features, in our case r(f) is the similarity to the least similar of the neighbors.
The problem with this approach is that first we need to determine what the k
nearest neighbors of a feature are. This would require comparing each feature to
every other feature, and would also take O(n?) time.

In this section we will show that our feature space is smooth, such that
features that are neighbors in the image, also tend to be neighbors in the feature
space. This will allow us to treat the nearest neighbors of a feature in the image
as its nearest neighbors in the feature space, and reduce the time complexity of
the density estimation to O(n).

A Gaussian derivative response at some pixel (z,y), and some scale o is
obviously a function of z,y, and o. Therefore, the features form a 3D manifold
in a 15D space. Because we use Gaussian derivatives, the image at each scale
o is blurred which causes its derivatives to be smooth. As a result, the whole
manifold has to be smooth, especially for the coarser scales. Figure 1 illustrates
this idea. The top row shows the image of a mobile robot at 3 scales, and the
bottom row shows a plot of the first  derivative (1) vs. the first y-derivative (1)
of each corresponding scale plane. Each plot is a 2D projection of a plane’s sub-
manifold. We can see that the sub-manifolds, as expected, become progressively
smoother as we move to coarser scales.

The smoothness property directly implies that features that are neighbors in
the image (image-neighbors) also tend to be neighbors in the feature manifold
(actual-neighbors). We make a stronger assumption:



Congecture 1. 8 immediate neighbors of a feature in the image are also its 8
nearest neighbors in the feature manifold.

Conjecture 1 gives us 8-nearest actual-neighbors of a feature, “for free” with-
out us having to search the entire feature space. This is what allows us to reduce
the time complexity to linear. This assumption would not hold true for images
with high contrast repetitive patterns. Because of this our approaches may not
work well for the natural outdoor scenes, but it should be quite suitable for the
indoor ones.

Table 1 shows the results of an experiment supporting our assumption. In
this experiment, we took an image of size 106 x 85 and compared the 8 nearest
image-neighbors of each feature in each scale plane to its actual-neighbors from
the same scale plane. The first column shows the scale plane, and the second
column shows the number of image-neighbors that also happen to be among the
8 nearest actual-neighbors of a feature, averaged over all 9010 features in the
scale plane. We see that on average, over half of the 8 image-neighbors are also
among the 8 nearest actual-neighbors.

The third column shows the actual rank of the 8th image-neighbor of a
feature averaged over all features in a scale plane. Starting with scale 3 the 8th
image-neighbor on average falls among the 50 nearest actual-neighbors. This is
not bad, considering that each scale plane contains 9010 features.

The fourth column shows the relative error of our density estimate. It is
actually the relative error of the similarity of a feature f to its 8th nearest
image-neighbor with respect to the similarity of f to its 8th actual-neighbor.
The relative error is averaged over all features in the scale plane. The last three
columns provide a reference to see how significant the relative errors are. Column
five shows the average relative error we would get if we always used the 100th
actual-neighbor. Similarly the last two columns show the average relative errors
for the 200th and 500th actual-neighbors. We can see that our relative errors are
significantly less than those for the 100th, 200th and 500th actual-neighbors.

5 A Naive Approach to Outlier Detection

A simple approach to find outliers is to compute the density, r(f), for each
feature f at every pixel in the image at every scale to create a density map. The
local minima of the density correspond to salient features. We call this approach
naive, because we present a more sophisticated scheme in section 6.

This algorithm runs in linear time in the number of features. It takes 8V
feature comparisons to compute r(f) for every feature f and 26 N comparisons
of floating point numbers to find the local minima across scales, where N is the
total number of features. The dimensionality of the feature space only affects
the time it takes to compare two features, and this dependency is also linear.

This algorithm is related to the distance-based DB(p, D) outlier detection
scheme presented in [5]. In the scheme a data point o in a data set T is considered
an outlier if at least fraction p of the points in T lie greater than distance D



from o. Essentially, a DB outlier minimizes the number of neighbors it has
within a fixed hyper-sphere, and a naive salient feature maximizes the hyper-
sphere containing its 8 nearest neighbors. In effect, they both minimize the ratio
of the number of neighbors to the volume of the hyper-sphere containing them,
i. e. the local density of the space.

[5] formally shows that the DB scheme is a generalization of statistical outlier
tests for the normal and the Poisson distributions. This justification also applies
to our naive approach, since we have shown its essential equivalence to D B.

6 Local Outlier Factor

Breunig [1] describes a more sophisticated algorithm for finding density-based
local outliers using k-nearest neighbors, which, when applied to finding salient
features, yields results superior to that of the naive approach from section 5. The
algorithm computes a Local Outlier Factor (LOF) for each data point, which is
a degree to which it is an outlier. LOF(p), where p is a data point, is defined
as the average of the ratios of densities at p’s neighbors to the density at p.
This scheme considers a point an outlier when its density is low relative to the
densities at its neighbors, as opposed to the DB approach, which simply looks
for low absolute density. It is more reasonable, because low density alone may
not necessarily be characteristic of an outlier, e.g. in a case when the whole data
set is very sparse. In section 7 we show empirical justification for preferring LOF
over the naive approach.

The algorithm is built upon several key concepts. The first one is k-distance
of a data point. Let D be the data set, let p,o be data points, p,o € D, and let
k be a positive integer. k-distance(o) is defined as the distance to the furthest of
the k nearest neighbors, which makes it equal to r(f) from section 5.

The reachability distance from p to o is defined as

reach-disty(p, 0) = max(k-distance(o), dist(p, o)) (1)

In essence, this definition says that if point p is inside the k-distance neigh-
borhood of o then reach-dist(p,0) is the k-distance of o. Otherwise, it is just
the distance between p and o according to whatever distance metric is generally
used for this data set. This is done to smooth out the statistical fluctuations of
dist(p,0) when p and o are close. It should also be noted that reach-dist is not
reflexive, i. e. reach-dist(p, 0) # reach-dist(o,p).

The reachability distance is used to define local reachability density (Ird):

(2)

reach-disty(p, o
Irdy(p) =1/ (zoe}v(p) P )> )
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where N(p) is the set of k nearest neighbors of p. In essence, Irdy(p) is the
inverse of the average reachability distance of the neighbors of p. If we used plain
distances instead of reach-dist then Ird(p) would just be the average distance



from p to its neighbors. But because of the smoothing effect of reach-dist, lrd(p)
is restricted to never be less than the average of the k-distances of its neighbors.
Using the local reachability density the local outlier factor (LOF) is defined:

orm = ¥ %O v (3)

oo (s) lrdy (p)

LOF is the average ratio of the reachability densities of p’s k-distance neigh-
bors to that of p. The lower the density of p, relative to its neighbors, the higher
the LOF(p), the degree of p being an outlier.

To be able to apply LOF to finding salient features all we need to do is set
k = 8, and convert our feature similarity measure into distance by inverting it.
Since LOF only assigns a saliency value to a feature, we need to impose some
threshold to be able to say which features are salient enough and which ones
are not. This is a question that deserves further exploration, but at this point
we simply put the threshold 3 standard deviations above the mean of the LOF
values at each scale plane.

The time complexity of LOF is still linear: 8V feature comparisons to com-
pute the k-distance of each feature, plus 8 N floating point comparisons to de-
termine the reach-distance of each feature, plus 8V floating point operations
to compute lrd of each feature, plus 8V floating point operations to compute
LOF’s. In practice it may be slightly slower than the naive approach.

7 Results

During testing we we try to establish correspondences between pairs of images
using the self-consistency constraint, similar to the one in [6] and [10]. Let F}
and Fy be the sets of salient features from two images. We call f € F; and
f' € Fy a self-consistent match if features f and f' are mutually maximally
similar. This ensures that the matches are bidirectional between the two images,
and increases their reliability.

We tested our approach using synthetic images, where correctness of the
matches could be verified automatically, and real images, where where the ground
truth had to be supplied by a person. We wrote a simple GUI, which shows the
reference image with a particular feature f, and the target image with match-
ing feature f’, and lets a user indicate whether or not the match is correct by
pressing a key. We compute the percentage of correct matches, and use it as a
measure of quality of each approach. No special preprocessing, such as histogram
thresholding, is done on the test images before the salient features are extracted.

To evaluate our approaches we compare the percentages they yield to those
produced by using corners and edges, which are common ways to extract salient
features. We define corners the same way as [8] as local maxima of

Scorner () = 0|17 Ly — 20,0y Loy + 17, 1|, (4)



where image derivatives are computed by convolving the image I with a
Gaussian derivative filter of the appropriate o. Edges are defined as local maxima
of the gradient magnitude. Unlike [8] we compute the local maxima in each scale
plane, as opposed to over the entire scale volume. This reduces the amount of
computation required and seems to yield greater matching accuracy.

The LOF approach takes into account relative feature space density at a par-
ticular feature, so we see no need to use local maxima. Instead we use a threshold
.3 times the standard deviation above the mean. This threshold was determined
empirically, and further investigation is required to find a more principled way
of setting it.

For each saliency definition, we extracted the sets of salient points from the
reference and the target images, and sorted them by their saliency. Then, proced-
ing down the reference set in order, we found the first 100 self-consistent matches,
and sorted those by the similarity between the matched pairs of features. We
took the top 25 of those to be tested for correctness.

7.1 Synthetic data

To generate synthetic data we used an image of a lab, containing a mobile robot
(the target from figure 3), whcih is 320x240 pixels. We cropped out 10 randomly
chosen sub-images of size 100x100 pixels from it, and generated a range of scaled
images from them by subsampling and interpolation. The scaled images range
in size from 50% to 200% of the original sub-image, with the increment of 10%.
The matching accuracy is averaged for each scale over the 10 randomly chosen
sub-images.

The results of this experiment are summarized in a graph in figure 2. The x-
axis represents the scale factor of the sub-image, and the y-axis shows the average
matching accuracy as a percentage. The corners performed the worst. Our naive
approach was better then the edges when the sub-image was unchanged (scale
factor 1), but degraded much less gracefully when the scale changed. The LOF
approach performed the best. In fact its accuracy was 50% or higer for the scale
factors ranging from .8 to 1.4.

It took 124 seconds to test the corners, on average .8 seconds per image. Edges
took approximately the same time, and LOF took 417 s., or 2.6 s. per image.
The computation was done on a 2GHz Pentum 4 running Linux. The system
can be further optimized, and the computation is naturally parallelizable, since
each scale plane can be processed independently.

7.2 Real Data: Task 1

In this series of experiments we matched features from multiple reference images
of a mobile robot into a single target, a cluttered scene containing the robot
(Figure 3). The reference images 0 - 4 vary in scale with respect to the target.
References 5 and 6, while having roughly the same scale, exibit out-of-plane
rotation and a background change.



The experimental results for this task are summarized in table 1. It shows
that the naive approach performed significantly better then the corner but not
as well as the edges. The LOF, however, did as well as the edges in cases 0, 1,
and 2, somewhat worse in case 3, and significantly better in cases 4, 5, and 6.
Reference 4 has the largest difference in scale from the target, as well as partial
occlusion, and references 5 and 6 have out-of-plane rotation, as we mentioned
above. Thus the LOF approach appears to be the most robust.

7.3 Real Data: Task 2

In this task we took three pairs of images produced by cameras mounted on a
stereo head and tried to match features from one image to another in each pair.
The camera’s optical axes are not parallel, so the images in each pair are quite
different. No calibration information or any other constraints associated with
stereo were used.

The results for the three pairs of images, which we called ”coke”, "drill”, and
"blocks” (Figure 4), are summarized in table 2. Here again the LOF approach
performed the best.

8 Conclusions and Future Work

In this paper we have presented a novel idea that salient differential features
can be viewed as outliers in a high-dimensional space, and therefore outlier
detection techniques used in data mining are applicable for their extraction. We
have presented two algorithms based on two different outlier detection schemes:
the distance-based approach and the LOF. The latter one is a more sophisticated
approach, which better fits an intuitive notion of an outlier, and produces more
reliable features.

Further investigation is needed to determine if our concept of saliency can be
applied to image features defined by using other means, such as the differential
invariants, and using other distance metrics, such as the Mahalanobis distance.

This work is a part of an ongoing effort to build a learning system for object
recognition and detection capable of handling an unconstrained environment.
The LOF-based salient feature extraction may become an important, component
of such a system.
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Table 1. Empirical Evidence for Conjecture 1

scale||8-nearest|max rank|% relative error||% error 100(% error 200|% error 500
1 3.8 167.9 4.39 4.46 6.75 11.25
2 4.5 72.87 1.86 2.99 4.58 7.92
3 4.6 46.70 1.09 2.12 3.30 5.79
4 4.5 39.28 0.77 1.64 2.58 4.64
5 4.5 33.86 0.58 1.48 2.27 4.08
6 4.4 31.21 0.48 1.38 2.09 3.76
7 4.3 32.76 0.40 1.32 2.04 3.68
8 4.3 27.66 0.27 1.21 2.02 3.79
9 4.5 23.46 0.15 0.99 1.77 3.69
10 4.7 21.71 0.09 0.67 1.23 2.72




Table 2. Matching accuracy for task 1

Ref.||Corners||Edges||Naive|| LOF
76% |[100% ||100%|[100%
52% || 96% || 92% || 96%
40% | 92% || 64% || 92%
48% || 84% || 48% || 6%
0% 28% || 8% || 44%
12% || 36% || 44% || 80%
4% 28% || 40% || 52%

DU W N =[O

Table 3. Matching accuracy for task 2

Corners||Edges||Naive|| LOF
coke || 28% || 24% || 68% || 72%
drill 12% || 60% || 48% | 60%
blocks|| 12% || 24% || 20% || 48%

Fig. 1. Scale planes 1, 5, and 9, with ¢ = /2, 4v/2, 161/2 respectively, and their corre-
sponding feature sub-manifolds




Fig. 2. Accuracy for synthetic data
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Fig. 3. The reference and target images for task 1.
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Fig. 4. The image pairs ("coke”, 7drill”, and ”blocks”) with 25 self-consistent salient




