
Extrating Salient Image Features Using OutlierDetetion TehniquesDimitri Lisin, Edward Riseman, and Allen HansonDepartment of Computer Siene, UMASS - Amherst, Amherst, MA, USAAbstrat. This paper presents an eÆient method for �nding salientdi�erential features in images. We argue that the problem of �ndingsalient features among all the possible ones is equivalent to �nding out-liers in a high-dimensional data set. We apply outlier detetion teh-niques used in data mining to devise a linear time algorithm to extratthe salient features. This yields a de�nition of salieny whih rests on amore prinipled basis and also produes more reliable feature orrespon-denes between images than the more onventional ones.1 IntrodutionExtrating salient features is often a ruial preproessing step for image anal-ysis. Many vision tasks, suh as objet reognition, objet detetion, and stereomathing require establishing orrespondenes between point features from dif-ferent images. Most often it is infeasible to onsider potential features at everypixel in the image, so only a key subset, alled salient features, are used.In the worst ase the salient features are identi�ed by hand [2℄, but more oftena general de�nition of salieny is used. Often orners, are onsidered salient [13℄,and also edges and blobs an be added to the set of salient features [8℄.In this paper we de�ne an image feature the same way as in [8℄, as a vetorof Gaussian derivative responses at a pixel over a range of sales, In partiular,we use the �rst and the seond derivatives over three onseutive sales. Thus, afeature is de�ned at every pixel of every sale of the image, exept for the top-most and the bottom-most sales. We use the normalized inner produt betweentwo feature vetors as a measure of similarity between the orresponding features.The normalization provides a degree of invariane to linear hanges in intensity.We argue that the spae of all features in an image an be viewed as a largemulti-dimensional data set, and the salient points orrespond to the outliers of theset. We show that density-based outlier detetion tehniques [5℄, [1℄ used in datamining are appliable to the problem of �nding salient features. We use thesetehniques together with the smoothness property of the feature spae desribedin setion 4 to devise a linear time algorithm to detet the salient features. Ourde�nition of salieny rests on a more prinipled basis, and intuitively it seemsto be more natural than those ommonly used beause it is derived from thestruture of the feature spae itself.We present experiments in whih we establish orrespondenes between fea-tures in pairs of images using only the feature similarity and the self-onsisteny



onstraint desribed in setion 7. No other onstraints are assumed. The exper-iments show, that features that are salient aording to our de�nition produemore reliable orrespondenes than ones de�ned by more traditional means. Ofourse, many systems that require orrespondenes do use other onstraints tosuessfully disambiguate the mathes [13℄, [8℄. However, extrating features thatare salient aording to our de�nition an be a useful preproessing step, whihmay improve the overall auray of suh systems and it may redue the timerequired for disambiguating the mathes.2 Salient Features as OutliersThe problem of �nding outliers in high-dimensional data sets arises in datamining. It is assumed that points in a data set form lusters, and outliers arepoints that do not belong to any of the lusters. In the ontext of data miningoutliers represent unusual ases, suh as fraud and other riminal ativity ine-ommere.Hawkins [4℄ de�nes an outlier as "an observation that deviates so muh fromother observations as to arouse suspiion that it was generated by a di�erentmehanism." On the other hand, the word salient is de�ned by the Webster'sDitionary as prominent. It is the opinion of the authors that the two de�nitionsreally point to the same onept. In partiular, a multi-dimensional spae ofimage features is really nothing more than a large data set. Intuitively we an seethat features similar to many others would form lusters, while distint features,whih we might all salient, would be the outliers.In ontrast, one ould also examine the lusters that exist in the featurespae, as opposed to the outliers. Patterns formed by these lusters also arryinformation about the appearane of the sene in an image, and may be useful forreognition. Suh an approah would be similar to the histogram-based tehniquedesribed in [9℄, whih uses the global distribution of di�erential features forreognition. However, this paper deals with point features, whih may be used inappliations other than objet reognition, suh as stereo mathing and objetdetetion. Point feature orrespondenes also o�er ways to reover the threedimensional struture of senes and objets, whih is not possible with purelyappearane-based approahes. Therefore, it is not the lustering, but the outlierdetetion algorithms that interest us.In this paper we examine two suh algorithms: the distane-based DB(p;D)sheme [5℄, and the Loal Outlier Fator approah [1℄. We will show that withminor modi�ations both are appliable to our problem, and that the latteryields superior results.3 Related WorkThis work has been inspired by [8℄, whih presents a system for learning dif-ferential features to reognize objets. In this paper, however, we only fous onthe problem of establishing orrespondenes between point features. We propose



methods for �nding features that are likely to be mathed orretly, and we deferthe question of how to use them to the future work. We will present an overviewof the existing de�nitions of salient point features, but we onsider salient edges,urves, et. to be outside the sope of this paper.3.1 SalienyMost often salient point features are de�ned as the loal extrema of some fun-tion of the image. One example is using orners, or points of high urvature assalient [13℄. Also, loal maxima of \blobs" (the trae of the Hessian) and thegradient magnitude an be used [8℄. Sine suh funtions are ombinations ofimage derivatives they an be omputed very fast. Another interesting exampleis presented in [11℄, where a multisale deomposition of an image is omputedusing a 1D wavelet at various orientations, and the loal maxima of the sum ofthe wavelet responses are used as salient features.A de�nition of salieny most similar to the one presented by this paper isgiven is [12℄. In this work the feature omponents are the di�erential invariantsat a pixel over a range of sales, and the Mahalanobis metri is used as featuredistane. The salieny is de�ned in terms of the density of the feature spae.Lower density regions orrespond to higher salieny. This makes sense, beausefeatures at the low density regions of the spae are unlike most others, andtherefore are less likely to be mismathed.In [12℄ a multivariate Gaussian mixture model of the feature spae is used as adensity funtion, whose loal minima are onsidered salient. The main drawbakof this approah is its time omplexity, whih is quadrati in the total numberof features in the spae. The problem an be alleviated by modeling a randomlysampled subset of the features instead of the entire spae. This redues thenumber of features that need to proessed, but the time omplexity is still O(n2).The approah desribed in this paper is similar to that of [12℄ in that it usesthe density of the feature spae to de�ne salieny. However, we use loal outlierdetetion tehniques whih give us a more preise and well-founded de�nition ofsalieny. We also use the smoothness property of the feature spae to redue thetime omplexity to linear.3.2 Multisale Di�erential FeaturesThe Gaussian and its derivatives are a family of kernels used to generate a lin-ear isotropi sale-spae of an image, whih has been studied extensively undersale-spae theory [7℄. Image derivatives de�ne the loal behavior of the intensitysurfae, whih makes them useful for desribing the image features. Using Gaus-sian derivative �lters at a range of �'s allows us to analyze the surfae pathesof varying sizes.Our de�nition of a feature at a pixel and a partiular sale �i is a vetor ofGaussian derivative responses at three sales: �i�1; �i; �i+1. We use the �rst andthe seond derivatives [8℄. Sine we have 2 omponents of a �rst derivative, and



3 omponents of the seond over 3 sales, our feature spae has 15 dimensions.Using multiple sales inreases the spei�ity of a feature.This feature representation is not invariant to in-plane rotation. For the pur-pose of this paper we set up our experiments so that suh invariane is notrequired. If, however, it is required the steerability property of the Gaussianderivative �lters an be used as in [8℄, or, alternatively, the rotationally invari-ant ombinations of derivatives an be used as in [12℄. Our de�nition of salienyshould still be appliable in these ases, but more experiments are needed to beertain.4 Fast Density Estimation Using SmoothnessThe outlier detetion tehniques that we onsider in this paper use a notion ofdensity of the data points in the spae to �nd the outliers. We therefore need away to ompute the density of our feature spae at every feature. One exampleof suh a method is presented in [12℄, and it has been disussed in setion 3.1.Reall that it takes O(n2) time, where n is the number of features.A simpler way to estimate loal density at a partiular feature f is to omputethe distane to the farthest of its k nearest neighbors, for some natural numberk. We will denote the farthest neighbor as fd, and the distane from f to fd asr(f), whih is the radius of the smallest hyper-sphere ontaining the k nearestneighbors of f . Sine we use a similarity measure rather than distane betweenfeatures, in our ase r(f) is the similarity to the least similar of the neighbors.The problem with this approah is that �rst we need to determine what the knearest neighbors of a feature are. This would require omparing eah feature toevery other feature, and would also take O(n2) time.In this setion we will show that our feature spae is smooth, suh thatfeatures that are neighbors in the image, also tend to be neighbors in the featurespae. This will allow us to treat the nearest neighbors of a feature in the imageas its nearest neighbors in the feature spae, and redue the time omplexity ofthe density estimation to O(n).A Gaussian derivative response at some pixel (x; y), and some sale � isobviously a funtion of x; y, and �. Therefore, the features form a 3D manifoldin a 15D spae. Beause we use Gaussian derivatives, the image at eah sale� is blurred whih auses its derivatives to be smooth. As a result, the wholemanifold has to be smooth, espeially for the oarser sales. Figure 1 illustratesthis idea. The top row shows the image of a mobile robot at 3 sales, and thebottom row shows a plot of the �rst x derivative (Ix) vs. the �rst y-derivative (Iy)of eah orresponding sale plane. Eah plot is a 2D projetion of a plane's sub-manifold. We an see that the sub-manifolds, as expeted, beome progressivelysmoother as we move to oarser sales.The smoothness property diretly implies that features that are neighbors inthe image (image-neighbors) also tend to be neighbors in the feature manifold(atual-neighbors). We make a stronger assumption:



Conjeture 1. 8 immediate neighbors of a feature in the image are also its 8nearest neighbors in the feature manifold.Conjeture 1 gives us 8-nearest atual-neighbors of a feature, \for free" with-out us having to searh the entire feature spae. This is what allows us to reduethe time omplexity to linear. This assumption would not hold true for imageswith high ontrast repetitive patterns. Beause of this our approahes may notwork well for the natural outdoor senes, but it should be quite suitable for theindoor ones.Table 1 shows the results of an experiment supporting our assumption. Inthis experiment, we took an image of size 106 x 85 and ompared the 8 nearestimage-neighbors of eah feature in eah sale plane to its atual-neighbors fromthe same sale plane. The �rst olumn shows the sale plane, and the seondolumn shows the number of image-neighbors that also happen to be among the8 nearest atual-neighbors of a feature, averaged over all 9010 features in thesale plane. We see that on average, over half of the 8 image-neighbors are alsoamong the 8 nearest atual-neighbors.The third olumn shows the atual rank of the 8th image-neighbor of afeature averaged over all features in a sale plane. Starting with sale 3 the 8thimage-neighbor on average falls among the 50 nearest atual-neighbors. This isnot bad, onsidering that eah sale plane ontains 9010 features.The fourth olumn shows the relative error of our density estimate. It isatually the relative error of the similarity of a feature f to its 8th nearestimage-neighbor with respet to the similarity of f to its 8th atual-neighbor.The relative error is averaged over all features in the sale plane. The last threeolumns provide a referene to see how signi�ant the relative errors are. Column�ve shows the average relative error we would get if we always used the 100thatual-neighbor. Similarly the last two olumns show the average relative errorsfor the 200th and 500th atual-neighbors. We an see that our relative errors aresigni�antly less than those for the 100th, 200th and 500th atual-neighbors.5 A Naive Approah to Outlier DetetionA simple approah to �nd outliers is to ompute the density, r(f), for eahfeature f at every pixel in the image at every sale to reate a density map. Theloal minima of the density orrespond to salient features. We all this approahnaive, beause we present a more sophistiated sheme in setion 6.This algorithm runs in linear time in the number of features. It takes 8Nfeature omparisons to ompute r(f) for every feature f and 26N omparisonsof oating point numbers to �nd the loal minima aross sales, where N is thetotal number of features. The dimensionality of the feature spae only a�etsthe time it takes to ompare two features, and this dependeny is also linear.This algorithm is related to the distane-based DB(p;D) outlier detetionsheme presented in [5℄. In the sheme a data point o in a data set T is onsideredan outlier if at least fration p of the points in T lie greater than distane D



from o. Essentially, a DB outlier minimizes the number of neighbors it haswithin a �xed hyper-sphere, and a naive salient feature maximizes the hyper-sphere ontaining its 8 nearest neighbors. In e�et, they both minimize the ratioof the number of neighbors to the volume of the hyper-sphere ontaining them,i. e. the loal density of the spae.[5℄ formally shows that the DB sheme is a generalization of statistial outliertests for the normal and the Poisson distributions. This justi�ation also appliesto our naive approah, sine we have shown its essential equivalene to DB.6 Loal Outlier FatorBreunig [1℄ desribes a more sophistiated algorithm for �nding density-basedloal outliers using k-nearest neighbors, whih, when applied to �nding salientfeatures, yields results superior to that of the naive approah from setion 5. Thealgorithm omputes a Loal Outlier Fator (LOF) for eah data point, whih isa degree to whih it is an outlier. LOF (p), where p is a data point, is de�nedas the average of the ratios of densities at p's neighbors to the density at p.This sheme onsiders a point an outlier when its density is low relative to thedensities at its neighbors, as opposed to the DB approah, whih simply looksfor low absolute density. It is more reasonable, beause low density alone maynot neessarily be harateristi of an outlier, e.g. in a ase when the whole dataset is very sparse. In setion 7 we show empirial justi�ation for preferring LOFover the naive approah.The algorithm is built upon several key onepts. The �rst one is k-distaneof a data point. Let D be the data set, let p; o be data points, p; o 2 D, and letk be a positive integer. k-distane(o) is de�ned as the distane to the furthest ofthe k nearest neighbors, whih makes it equal to r(f) from setion 5.The reahability distane from p to o is de�ned asreah-distk(p; o) = max(k-distane(o); dist(p; o)) (1)In essene, this de�nition says that if point p is inside the k-distane neigh-borhood of o then reah-dist(p; o) is the k-distane of o. Otherwise, it is justthe distane between p and o aording to whatever distane metri is generallyused for this data set. This is done to smooth out the statistial utuations ofdist(p; o) when p and o are lose. It should also be noted that reah-dist is notreexive, i. e. reah-dist(p; o) 6= reah-dist(o; p).The reahability distane is used to de�ne loal reahability density (lrd):lrdk(p) = 1= Po2N(p) reah-distk(p; o)jN(p)j ! ; (2)where N(p) is the set of k nearest neighbors of p. In essene, lrdk(p) is theinverse of the average reahability distane of the neighbors of p. If we used plaindistanes instead of reah-dist then lrd(p) would just be the average distane



from p to its neighbors. But beause of the smoothing e�et of reah-dist, lrd(p)is restrited to never be less than the average of the k-distanes of its neighbors.Using the loal reahability density the loal outlier fator (LOF) is de�ned:LOFk(p) = 0� Xo2N(p) lrdk(o)lrdk(p)1A =(jN(p)j) (3)LOF is the average ratio of the reahability densities of p's k-distane neigh-bors to that of p. The lower the density of p, relative to its neighbors, the higherthe LOF(p), the degree of p being an outlier.To be able to apply LOF to �nding salient features all we need to do is setk = 8, and onvert our feature similarity measure into distane by inverting it.Sine LOF only assigns a salieny value to a feature, we need to impose somethreshold to be able to say whih features are salient enough and whih onesare not. This is a question that deserves further exploration, but at this pointwe simply put the threshold 3 standard deviations above the mean of the LOFvalues at eah sale plane.The time omplexity of LOF is still linear: 8N feature omparisons to om-pute the k-distane of eah feature, plus 8N oating point omparisons to de-termine the reah-distane of eah feature, plus 8N oating point operationsto ompute lrd of eah feature, plus 8N oating point operations to omputeLOF's. In pratie it may be slightly slower than the naive approah.7 ResultsDuring testing we we try to establish orrespondenes between pairs of imagesusing the self-onsisteny onstraint, similar to the one in [6℄ and [10℄. Let F1and F2 be the sets of salient features from two images. We all f 2 F1 andf 0 2 F2 a self-onsistent math if features f and f 0 are mutually maximallysimilar. This ensures that the mathes are bidiretional between the two images,and inreases their reliability.We tested our approah using syntheti images, where orretness of themathes ould be veri�ed automatially, and real images, where where the groundtruth had to be supplied by a person. We wrote a simple GUI, whih shows thereferene image with a partiular feature f , and the target image with math-ing feature f 0, and lets a user indiate whether or not the math is orret bypressing a key. We ompute the perentage of orret mathes, and use it as ameasure of quality of eah approah. No speial preproessing, suh as histogramthresholding, is done on the test images before the salient features are extrated.To evaluate our approahes we ompare the perentages they yield to thoseprodued by using orners and edges, whih are ommon ways to extrat salientfeatures. We de�ne orners the same way as [8℄ as loal maxima ofsorner(�) = �4jI2yyIxx � 2IxIyIxy + I2xxIyyj; (4)



where image derivatives are omputed by onvolving the image I with aGaussian derivative �lter of the appropriate �. Edges are de�ned as loal maximaof the gradient magnitude. Unlike [8℄ we ompute the loal maxima in eah saleplane, as opposed to over the entire sale volume. This redues the amount ofomputation required and seems to yield greater mathing auray.The LOF approah takes into aount relative feature spae density at a par-tiular feature, so we see no need to use loal maxima. Instead we use a threshold.3 times the standard deviation above the mean. This threshold was determinedempirially, and further investigation is required to �nd a more prinipled wayof setting it.For eah salieny de�nition, we extrated the sets of salient points from thereferene and the target images, and sorted them by their salieny. Then, proed-ing down the referene set in order, we found the �rst 100 self-onsistent mathes,and sorted those by the similarity between the mathed pairs of features. Wetook the top 25 of those to be tested for orretness.7.1 Syntheti dataTo generate syntheti data we used an image of a lab, ontaining a mobile robot(the target from �gure 3), whih is 320x240 pixels. We ropped out 10 randomlyhosen sub-images of size 100x100 pixels from it, and generated a range of saledimages from them by subsampling and interpolation. The saled images rangein size from 50% to 200% of the original sub-image, with the inrement of 10%.The mathing auray is averaged for eah sale over the 10 randomly hosensub-images.The results of this experiment are summarized in a graph in �gure 2. The x-axis represents the sale fator of the sub-image, and the y-axis shows the averagemathing auray as a perentage. The orners performed the worst. Our naiveapproah was better then the edges when the sub-image was unhanged (salefator 1), but degraded muh less graefully when the sale hanged. The LOFapproah performed the best. In fat its auray was 50% or higer for the salefators ranging from .8 to 1.4.It took 124 seonds to test the orners, on average .8 seonds per image. Edgestook approximately the same time, and LOF took 417 s., or 2.6 s. per image.The omputation was done on a 2GHz Pentum 4 running Linux. The systeman be further optimized, and the omputation is naturally parallelizable, sineeah sale plane an be proessed independently.7.2 Real Data: Task 1In this series of experiments we mathed features from multiple referene imagesof a mobile robot into a single target, a luttered sene ontaining the robot(Figure 3). The referene images 0 - 4 vary in sale with respet to the target.Referenes 5 and 6, while having roughly the same sale, exibit out-of-planerotation and a bakground hange.



The experimental results for this task are summarized in table 1. It showsthat the naive approah performed signi�antly better then the orner but notas well as the edges. The LOF, however, did as well as the edges in ases 0, 1,and 2, somewhat worse in ase 3, and signi�antly better in ases 4, 5, and 6.Referene 4 has the largest di�erene in sale from the target, as well as partialolusion, and referenes 5 and 6 have out-of-plane rotation, as we mentionedabove. Thus the LOF approah appears to be the most robust.7.3 Real Data: Task 2In this task we took three pairs of images produed by ameras mounted on astereo head and tried to math features from one image to another in eah pair.The amera's optial axes are not parallel, so the images in eah pair are quitedi�erent. No alibration information or any other onstraints assoiated withstereo were used.The results for the three pairs of images, whih we alled "oke", "drill", and"bloks" (Figure 4), are summarized in table 2. Here again the LOF approahperformed the best.8 Conlusions and Future WorkIn this paper we have presented a novel idea that salient di�erential featuresan be viewed as outliers in a high-dimensional spae, and therefore outlierdetetion tehniques used in data mining are appliable for their extration. Wehave presented two algorithms based on two di�erent outlier detetion shemes:the distane-based approah and the LOF. The latter one is a more sophistiatedapproah, whih better �ts an intuitive notion of an outlier, and produes morereliable features.Further investigation is needed to determine if our onept of salieny an beapplied to image features de�ned by using other means, suh as the di�erentialinvariants, and using other distane metris, suh as the Mahalanobis distane.This work is a part of an ongoing e�ort to build a learning system for objetreognition and detetion apable of handling an unonstrained environment.The LOF-based salient feature extration may beome an important omponentof suh a system.Referenes1. Breunig M. M., Kriegel, H.-P., Ng, R., Sander, J. "LOF: Identifying Density-BasedLoal Outliers," Pro. ACM SIGMOD Int. Conf. on Management of Data, (2000).2. Delaert, F., Seitz, S. M, Thorpe, C. E., Thrun, S., \Struture fromMotion WithoutCorrespondenes," Pro. Computer Vision and Pattern Reognition Conf., (2000).3. Freeman, W. T., and Adelson, E. H. \The design and use of steerable �lters,"IEEE Transations on Pattern Analysis and Mahine Intelligene 13, 9 (1991).4. Hawkins, D., Identi�ation of Outliers, Chapman and Hall, London, (1980).
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Table 2. Mathing auray for task 1Ref. Corners Edges Naive LOF0 76% 100% 100% 100%1 52% 96% 92% 96%2 40% 92% 64% 92%3 48% 84% 48% 76%4 0% 28% 8% 44%5 12% 36% 44% 80%6 4% 28% 40% 52%
Table 3. Mathing auray for task 2Corners Edges Naive LOFoke 28% 24% 68% 72%drill 12% 60% 48% 60%bloks 12% 24% 20% 48%

Fig. 1. Sale planes 1, 5, and 9, with � = p2; 4p2; 16p2 respetively, and their orre-sponding feature sub-manifolds



Fig. 2. Auray for syntheti data
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Fig. 3. The referene and target images for task 1.



Fig. 4. The image pairs ("oke", "drill", and "bloks") with 25 self-onsistent salientfeatures extrated using LOF. The irles' sizes orrespond to features' sales.


