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Abstract

On-demand data centers efficiently host multiple applications on shared hardware by dynamically provisioning
resources in response to workload variations. In this paper, we use real-world e-commerce workloads to demon-
strate that the efficiency of such dynamic provisioning is critically dependent on the granularity of reallocation.
Specifically, we show that the ability to allocate fractional server resources at time-scales of seconds can improve
the multiplexing benefits by a factor of three. Using these results, we argue that existing techniques for dedicated
hosting are highly sub-optimal. We argue for a new hosting platform architecture, based on virtual machine mon-
itors, that can perform fine-grain resource multiplexing along the space and time dimensions while retaining the
isolation and security benefits of dedicated hosting platforms.

1 Introduction

Internet data centers host multiple applications on a shared hardware platform, such as a server farm, and provide

client applications with computing and storage resources. In such environments, applications pay for data center

resources and in turn are provided guarantees on resource availability and performance. Since typical data center

applications service Internet users, the workload seen by such applications can often vary in an unpredictable fashion

(as exemplified by flash crowd scenarios [1]). A data center should handle these workload variations by dynamically

provisioning resources for applications so as to meet their contracted performance needs.

Recently several techniques have been proposed to dynamically provision resources to applications in on-demand

data centers [2, 3, 11, 14, 15, 17]. A common characteristic of these techniques is that they use past workload mea-

surements to predict changes in an application’s resource needs and reallocate resources based on these predictions.

However, these techniques differ drastically in how frequently resources are reallocated and by how much. For in-

stance, dedicated hosting platforms [2, 7, 11, 14] advocate reallocating entire servers to applications to accommodate

workload variations. In such systems, security and privacy considerations may require OS re-installation and disk

scrubbing on a server prior to its allocation, resulting in allocation time-scales of a few minutes or tens of minutes.

The time-scale of reallocations can be reduced by maintaining a ready pool of servers in energy-saving mode [11].
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In contrast, shared hosting platforms [13, 15] advocate allocating fractional servers to applications (by running multi-

ple applications on a server). Performance isolation between applications is ensured by partitioning server resources

among competing applications. Whereas some efforts have advocated partitioning based on worst-case needs of an

application and over coarse time-scales of hours or days [15], others have proposed repartitioning resources over fine

time-scales of tens of seconds [13], albeit at the expense of weaker performance isolation.

While these efforts represent various point solutions with different tradeoffs, the question of what is the right

granularity at which resources should be dynamically provisioned in computing-on-demand data centers remains

unanswered. That is, (1) should data center resources be allocated to applications at a granularity of entire machines

or is the ability to allocate fractional servers desirable, and (2) should resource be provisioned over time scales of

seconds, minutes, or hours so as to extract the best multiplexing gains?

In this paper, we conduct an experimental study to understand the impact of the granularity of resource provisioning—

both in the space and time dimensions—on the effective capacity of such data centers. Using traces of real workloads,

we demonstrate that the ability to allocate fractional server resources and at fine time-scales of seconds can improve

the multiplexing benefits by a factor of 3. Using these results, we argue that existing techniques are highly sub-optimal

in the amount of multiplexing benefits they can extract when dynamically provisioning resources. We argue for a new

hosting platform architecture, based on virtual machine monitors, that can perform fine-grain resource multiplexing

along the space and time dimensions while retaining the isolation and security benefits of dedicated hosting platforms.

We conclude by describing some of the research challenges that arise in the design of such an architecture.

The rest of this paper is structured as follows. Section 2 quantifies the benefits of space-time resource multiplex-

ing in on-demand data centers using real-world trace workloads. We examine the effectiveness of existing hosting

solutions for on-demand data centers in Section 3. Finally, Section 4 lays out our case for a new hosting platform

architecture that achieves fine-grain resource multiplexing.

2 What is the Impact of Allocation Granularity on Resource Utilization?

To understand the impact of allocation granularity on resource utilization, consider Figure 1 which depicts a hypo-

thetical resource allocation scenario in a data center. The lower curve in the figure shows the resource demand of an

application. An optimal provisioning scheme will allocate resources exactly as demanded using infinitesimally small

resource units and time quanta. Thus, the lower curve also represents the optimal resource allocation. In contrast,

any practical provisioning scheme will allocate resources over a finite time period using finite resource units (e.g,

one server); the resources allocated in any period should be sufficient to handle the peak requirements in that period.

Figure 1 shows two such allocations, one coarse-grained and the other fine-grained. Observe that, depending on the

granularity, there is some amount of over-allocation, since the allocation can be changed only once every ∆t and the
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Figure 1: A metric for comparing optimal resource provisioning to practical approaches. An optimal approach can
reallocate resources infinitely often and in infinitesimally small amounts; a practical approach uses a finite time and
space granularity,∆t and∆s, respectively.

Workload Duration Number Avg Request Peak
Requests size bit-rate

Ecommerce1 24 hrs 1,193,536 3.95 KB 458.1 KB/s
Ecommerce2 24 hrs 1,261,393 3.82 KB 1631.0 KB/s
Ecommerce3 24 hrs 247,705 7.23 KB 1346.9 KB/s

Table 1: Workload characteristics

allocation must always be a multiple of the allocation granularity∆s. Let Ri
opt(t) and Ri

pract(t) denote the amount of

resources allocated to application i at time t using the optimal and a practical allocation scheme respectively. Then the

maximum value of
∑

customers Ri
pract(t) over all time t, denoted by Rpract, is the peak resource requirement of the

practical scheme (this is essentially the total capacity required to host this set of applications). Similarly, the maximum

value of
∑

customers Ri
opt(t) over all time t, denoted by Ropt, is the peak capacity requirement of the optimal scheme.

The overprovisioning ratio ρ is defined to be the percentage increase in resource requirement of the practical scheme

when compared to the optimal:

ρ =
(

Rpract

Ropt
− 1

)
· 100

Intuitively, ρ measures the percentage additional capacity required in a practical scheme to host the same set of

applications when compared to the optimal.

To quantify the overprovisioning ratio for different spatial and temporal allocation granularities, we used web

traces from three e-commerce sites hosted in a large commercial data center. The characteristics of these traces are

summarized in Table 1. While these traces contain the arrival time and size of each request, the CPU processing time
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Figure 2: Effect of allocation granularity on resource utilization for a 3 customer system.
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(a) Temporal overprovisioning ratio (b) Spatial overprovisioning ratio

Figure 3: Effect of varying time and spatial allocation granularities on overprovisioning ratio for a 3 customer system.
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Figure 4: Effect of allocation granularity on resource utilization for a 30 customer system.
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Figure 5: Statistical multiplexing of resources in data centers with large number of customers.

of a request was not available. Since for static requests, CPU usage is highly correlated with the request size, we use

request size as a proxy metric for CPU usage. We systematically vary the spatial and temporal allocation granularity for

this workload mix and compute ρ for each combination. To eliminate the impact of inaccuracies introduced by traffic

predictors, we assume a clairvoyant resource allocation scheme that allocates resources based on exact knowledge of

future workload requirements. Thus, our analysis produces theoretical best-case results for the workloads under study.

Figure 2 shows the values of overprovisioning ratio ρ for different temporal (∆t) and spatial (∆s) levels of real-

location granularity. We use a granularity of 1 second and 1 byte/sec to approximate the optimal allocation scheme.

We express the spatial granularity as a fraction of the peak requirement of the optimal scheme Ropt. Thus, if peak

capacity requirement is 10 servers, then a spatial granularity of 0.1 indicates resources are allocated 1 server at a time.

Figure 2 shows that the coarser the spatial and temporal allocation granularity, the greater the overprovisioning ratio ρ

(indicating larger overallocations at coarser allocation granularities). Next, we examine the effect of varying ∆t and

∆s in isolation on the overprovisioning ratio (see Figures 3(a) and 3(b)). Figure 3(a) shows that there is a monotonic

increase in the value of ρ with ∆t. ρ is relatively small for fine time allocations and increases with increasing ∆t.

Specifically, for ∆s = 0.01, reallocating resources once every 1 sec, 1 min, 10 min and 1 hour yields ρ values of

1%, 27%, 50% and 66%, respectively. This result argues in favor of having as small a temporal allocation granularity

as possible. In contrast, when the spatial allocation granularity is varied (see Figure 3(b)), we find that ρ is nearly

constant until a certain point after which it increases steadily with increasing ∆s. Specifically, for ∆t = 1 minute,

ρ is nearly constant at 25.4% until ∆s = 0.005, and increases to 28%, 35%, 40% and 60% for ∆s values of 0.05,

0.1, 0.2 and 0.5, respectively. Further, large spatial granularities yield very large overprovisioning ratios ρ regardless

of the temporal granularity. This result suggests that while the spatial granularity need not be very fine-grained, the

granularity should still be sufficiently small in order to extract high multiplexing gains.

The above results are for a data center with three customers. In practice, a data center will typically host applications

from tens or hundreds of customers. To understand the impact of hosting a large number of applications on the
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overprovisioning ratio, we synthesize a larger number of traces from the three original traces by replication and

time-shifting. For instance, to generate 30 traces, we replicate each of the original traces ten times and then time-

shift each of the replicated traces by a random duration between ten minutes and three hours1. Figures 4(a) and (b)

plot the overprovisioning ratio ρ obtained for different spatial and temporal allocation granularities in a 30 customer

system. Like before, ρ increases with increasing spatial and temporal granularities. However, the magnitude of the

overallocation is substantially larger when multiplexing a larger number of domains, indicating the need for finer

allocation granularities to extract the potential multiplexing gains. This result is also depicted in Figure 5 which plots

the overprovisioning ratio as the number of customers in the system is varied. Using a fixed spatial granularity of

0.02, the figure plots ρ for temporal granularities of seconds, minutes and hours for varying number of customers. The

figure demonstrates that (i) for a given allocation granularity, the amount of overprovisioning grows with the number

of customers, and (ii) the difference in ρ values of fine-grain and coarse-grain allocations (say 10 second and 1 hour)

also grows with the number of customers. Thus, the benefits of fine-grain allocations are greater in larger data centers

hosting a large number of customers.

To summarize, our results indicate that to efficiently multiplex data center resources, it is desirable to have a fine

time granularity as well as a sufficiently small spatial granularity.

3 How Do Existing Architectures Perform?

We now consider several existing architectures for on-demand data centers, which are point solutions in the space-time

granularity space, and examine their effectiveness.

Dedicated Hosting Architectures: As explained earlier, dedicated hosting architectures [2, 14, 11] multiplex a pool of

servers among multiple customers. This is achieved by partitioning the server pool among applications and increasing

or decreasing the number of servers assigned to an application based on its predicted workload. Allocation of a server

may involve: (1) deallocation of the server from another customer, (2) disk scrubbing to prevent data leaks; (3) a fresh

OS and application installation; and (4) application startup.

Performing these operations can take a thousand seconds or more [11, 14]. Observe from Figure 4(a) that, in a

30 customer system, time multiplexing at a granularity of thousand seconds results in a 368-640% overhead when

compared to the optimal fine time-scale multiplexing. Thus, it is possible to extract significant additional gains by

reducing the time-scale of server allocations in such architectures.

From the perspective of space multiplexing, these architectures allocate resources at a granularity of entire ma-

chines. Since our space multiplexing results use a normalized space metric, the implication of allocating entire ma-

chines depends of the peak requirements of the applications. Figure 4(b) indicates that, for a 30 customer system, the
1We use a time-shift range of 10 minutes to 3 hours to incorporate time-zone effects that might arise in real web workloads.
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multiplexing benefits can be maximized when the allocation granularity is 0.01 (or 1%) of the peak requirement. This

is essentially the knee of the curve in Figure 4(b). Assuming that the 30 customers collectively have a peak capacity

requirement of 100 servers, allocating entire machines in such a data center is optimal since 1% of the peak require-

ment is 1 server (an entire machine). On the other hand, if the peak capacity requirement of the 30 applications is

smaller than 100 servers, then the optimal allocation granularity (1% of the peak) is less than a server, indicating that

fractional server allocation is necessary to maximize the multiplexing benefit. The smaller the peak capacity require-

ment, the greater the benefit of allocating fractional server resources (and vice versa). Note that, these benefits also

depend on the total number of customers in the system—a larger customer base enhances the the benefits of fractional

server allocation.

Fast Reinstallations and Reserve Pools: Recent efforts have recognized the need to reduce server allocation times

in dedicated hosting platforms and have proposed several techniques to reduce the allocation overheads. For instance,

the OS and application installation time can be reduced by using shared remote boot images or software reboots [5, 6].

If the servers use a storage area network and the storage systems support advanced storage functions, then the need

for disk scrubbing could be eliminated by using copy-on-write disks. Further, a reserve pool of idle servers can be

maintained in energy-saving mode for fast reallocations [11]. Note that if the reserve pool is empty due to a sudden

increase in demand, then the overheads of deallocating a server from an existing application and reallocating it to the

needy application must still be incurred. Observe also that none of these optimizations eliminate application startup

delay. Thus, it appears that these optimizations can reduce the server allocation overheads to a few minutes (about 5-10

minutes). Despite this substantial reduction, Figure 4(a) indicates a 295-600% overhead when compared to optimal

allocation and points to the additional gains that can accrue by reducing the multiplexing time-scale to seconds or tens

of seconds.

Shared Hosting Platforms: Traditionally shared hosting platforms have been used to run applications whose resource

requirements do not warrant an entire server2. Shared hosting platforms, by their very nature, allocate fractional server

resources to applications. Further, they employ resource management mechanisms such as proportional share sched-

ulers [12] or resource containers [4] to enforce these allocations at a fine time-scale. The allocation of an application

can be modified by reconfiguring scheduler parameters such as weights. Whereas some techniques advocate doing so

at a granularity of tens of seconds [13], others have focused on very coarse-grain allocations based on worst-case needs

[15]. At a first glance, shared hosting platforms appear to provide the necessary flexibility for fine-grain time and space

multiplexing of resources. A key limitation though is that they provide less isolation and security between applications

when compared to dedicated hosting platforms (where isolation is automatic due to the absence of sharing).
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Figure 6: A data center architecture employing virtual machines. The figure shows three applications A, B and C
requiring 1.5 servers, 0.5 servers and 1 server, respectively. The applications run in virtual machines on multiple
physical servers and the VMs are allocated appropriate resource shares. Each server has some active and some idle
VMs; resource shares of VMs are modified dynamically to handle workload variations.

4 A Case for a New Data Center Architecture

Shared hosting systems achieve high utilization of resource at the expense of isolation between applications. Current

architectures for dedicated hosting, on the other hand, have high isolation but do not multiplex resources at fine time

and space granularity. Thus, an on-demand data center architecture that employs fine-grain space-time multiplexing

of resources while retaining the isolation and security advantages of the dedicated hosting model is desirable. We

believe that a new hosting platform architecture based on a server partitioning technology such as virtual machine

monitors [8, 16] or virtual private servers [9] can provide these benefits. For simplicity of exposition, we focus on

virtual machine monitors in the rest of this section; however our arguments are applicable to virtual private servers as

well.

A virtual machine monitor (VMM) virtualizes the hardware on a machine and enables the existence of multiple

independent virtual machines (VM). By employing predictable and flexible resource management mechanisms, the

virtual machine monitor can allocate different resource shares to different virtual machines [10, 16, 18]. Although

virtual machine monitors support multiple applications each requiring less than one server, our architecture employs

virtual machine monitors to support applications that span multiple servers. In such a system, a set of virtual machines

serves a customer; multiple virtual machines, each belonging to a different customer, are hosted on the same server

(see Figure 6). Resources allocated to the virtual machines of a customer are adjusted dynamically to handle the

variations in the application’s workload. Doing so ensures fine-grain space-time resource multiplexing: (i) fractional

server allocation is possible by allocating non-zero shares to applications running on the same server, (ii) implicit fine-

grain time multiplexing is enabled by employing proportional-share schedulers in the virtual machine monitor (which

can reallocate unused machine resources at millisecond time-scales), and (iii) explicit fine-grain time multiplexing can

be achieved by modifying scheduler parameters to specify an application’s resource share. Further, virtual machines

can provide isolation and security benefits that are comparable to dedicated hosting architectures [18].
2This is not a technical limitation, rather it is how shared hosting platforms (e.g., shared web hosting) are being used commercially. It is

certainly possible to use shared hosting platforms to run more demanding applications that require multiple machines.
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Note that although multiple virtual machines may be mapped onto a physical server, not all VMs need to be active at

the same time. For instance, it is possible to emulate a dedicated hosting model by simply having one virtual machine

active on each machine and keeping the other VMs in an idle state (this is achieved by allocating very small resource

shares to the idle VMs and allocating most of the machine resources to the active VM—see Figure 6). An active VM

can be deallocated and an idle VM can be “brought online” by simply reducing the resource share of the former and

increasing that of the latter. Thus, the “server reallocation” overhead can be reduced to hundreds of milliseconds. No

additional application startup delay is incurred since the application is already idling in the VM. Furthermore, when

necessary, the benefits of the shared hosting architectures can be accrued by having multiple active VMs on a machine,

each using a certain fraction of the server resources (and keeping the remaining VMs in an idle state).

Several research challenges arise when designing such an architecture. The benefits of a virtual machines-based

architecture are expected to be high when a large number of virtual machines can be co-located on a machine. At

any given time, a small fraction of these virtual machines will be active and the rest will be idle. Hence, scalable

virtual machines whose resource shares can be quickly ramped up or down are desirable [18]. Second, to derive

high levels of statistical multiplexing gains, an effective placement algorithm that dynamically places virtual machines

with complementary needs on a shared server are desirable. That is, multiplexing benefits can be maximized by

co-locating applications whose peak requirements are non-overlapping in time. Finally, pro-active reallocation of

resources requires accurate workload prediction techniques. Doing so at a fine-time scale is especially challenging,

since fine time-scale reallocations may result in oscillations or cause the system to react to “noise”. Thus, the benefits

of fine time-scale provisioning can be extracted only if stable workload prediction techniques are available.

The higher multiplexing gains in our virtual machine architecture come with one disadvantage. In the conventional

dedicated hosting architectures, a hardware fault on one server affects a single customer. However, in our architecture,

a server failure can effect multiple customers.

The design of such an on-demand hosting platform architecture based on a server partitioning technology is the

subject of ongoing research.
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