D. Jensen, J. Neville, and M. Rattigan (2003). Randomization Tests for Relational Learning.
University of Massachusetts, Technical Report 03-05.

Randomization Tests for Relational Learning

David Jensen, Jennifer Neville and Matthew Rattigan

Knowledge Discovery Laboratory, Department of Computer Science, University of Massachusetts,
140 Governors Drive, Amherst, MA 01003 USA
{jensen | jneville | rattigan} @cs.umass.edu

Abstract

Algorithms for relational learning and proposi-
tional learning face different statistical chal-
lenges. In contrast to propositional learners, rela-
tional learners often make statistical inferences
about data that exhibit linkage and autocorrela-
tion. Recent work has shown that these charac-
teristics of relational data can bias inferences
made by relational learners. In this paper, we
develop a novel variant of a known statistical
procedure — a randomization test — that pro-
duces accurate hypothesis tests for relational
data. We show that our procedure produces un-
biased inferences in situations where more obvi-
ous adaptations of existing randomization tests
fail.

1 Introduction

Many algorithms for machine learning attempt to distin-
guish pattern from noise. For example, algorithms for
constructing classification trees prune away structure
inferred to be useless, algorithms for constructing graphi-
cal models remove edges between variables inferred to be
conditionally independent, and algorithms for stepwise
logistic regression remove variables inferred to produce
no significant increase in accuracy. Some learning algo-
rithms, such as simple Bayesian classifiers and neural
networks, use all available features, although selective
versions of these algorithms have also been developed. In
general, models produced by algorithms that select rele-
vant features are preferable for applications where data
collection has high costs, where users wish to understand
the learned models, or where model runtime must be
minimized.

2 Background

2.1 Hypothesis Tests

One widely used method for distinguishing pattern from
noise is a statistical hypothesis test. Hypothesis tests
compare the value of a statistic (e.g., the correlation of a
given feature with the class label) to a sampling distribu-

tion. A sampling distribution represents the values of the
statistic that would be expected under a given null hy-
pothesis. A typical null hypothesis is that a feature and a
class label are statistically independent, though other null
hypotheses are also common. If the value of the statistic
exceeds a large percentage of the values in the sampling
distribution, the null hypothesis is rejected, and some
alternative hypothesis (e.g., that the given feature is cor-
related with the class label) is accepted. Hypothesis tests
have been employed in learning algorithms to limit the
size of classification trees [Frank & Witten 1998], select
association rules [Megiddo & Srikant 1998], and con-
struct Bayesian networks [Spirtes, Glymour, and
Scheines 1993].

For example, consider an extremely simple scenario: a
learning algorithm is presented with a small data set con-
sisting of 100 instances. For each instance, we know the
value of a binary class label C and a single binary attrib-
ute A. The algorithm must determine whether A is inde-
pendent of C. Inferring non-independence might cause a
tree-building algorithm to form a three-node classifica-
tion tree or a graphical modeling algorithm to create a
two-node connected graph rather than a graph with two
disconnected nodes.
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Figure 1: The value of a statistic compared to sampling distri-
butions appropriate for propositional and relational data.

Widely known and computationally simple procedures
exist for hypothesis tests in cases such as this. One clas-
sical hypothesis test would score the bivariate association



between A and C using a chi-square statistic (producing a
value, e.g., 5.91). Exact calculations and approximations
of the sampling distribution for chi-square are widely
known, and they are parameterized by the number of val-
ues in each variable. Such a distribution is shown in Fig-
ure 1 (labeled Propositional). Based on this distribution,
the value of 5.91 appears to exceed the vast majority of
the values in the sampling distribution, allowing a learn-
ing algorithm to reject the null hypothesis with high con-
fidence. In this case, an algorithm would typically in-
clude the variable in an induced model.

2.2 Relational Data

However, the propositional distribution in Figure 1 is
derived under the assumption that the 100 data instances
are independent and identically distributed. If the in-
stances are drawn from a relational data set, the data in-
stances may not be independent. For example, consider
the two data sets shown schematically in Figure 2. The
data in Figure 2a consists of pairs of objects <U,W>,
where the pairs of objects in one instance are distinct
from the objects in every other instance. For example,
instances might be formed of users (U) and their worksta-
tions (W). Such a data set can be represented proposition-
ally and the structure of the data produces no obvious
dependence among instances. In contrast, the data in Fig-
ure 2b require a relational representation because they
consist of pairs of objects where some objects are shared
(e.g., users (U) and workgroup servers (W)). Relational
data sets with this latter structure are said to have high
linkage. In addition, many relational data sets exhibit
high consistency among the class labels of pairs of ob-
jects U connected through objects W. For example, the
users of a single workgroup server may all have the same
research area. Such consistency in the value of a variable
is referred to as autocorrelation.
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Figure 2: Propositional and relational data fragments.

Learning from relational data is becoming an increas-
ingly common task for machine learning and data mining
algorithms [Dzeroski & Lavrac 2001]. Methods now exist
for learning relational versions of Bayesian networks,
Bayesian classifiers, logical rules, and logistic regression

equations. All of these methods face the basic task of
distinguishing pattern from noise in relational data.

Returning to our example, if we generate many rela-
tional data sets with high linkage and autocorrelation and
score the relationship between A={a;a,,...a,} and
C={cj,cy,...c,} using a chi-square statistic, we obtain a
sampling distribution such as the one shown in Figure 1
(labeled Relational). Clearly the propositional distribu-
tion is a poor approximation to the sampling distribution
appropriate for the relational data. Our prior inference —
that we could reject the null hypothesis of independence
— is now reversed. Given the new sampling distribution,
we cannot reject the null hypothesis. As we will show
later, if we are to accurately test hypotheses in relational
data with linkage and autocorrelation we cannot use hy-
pothesis tests developed for propositional data.

In this paper, we describe and evaluate an alternative
procedure — a novel form of randomization test — that
provides accurate hypothesis tests for relational data.
This procedure modifies existing techniques for randomi-
zation tests that have been widely applied to proposi-
tional data over the past two decades. However, a novel
version of this procedure is needed for relational data.
We show that our procedure produces unbiased infer-
ences in situations where a more obvious adaptation of
procedures for propositional data will fail.

2.3 Linkage and Autocorrelation

New tests are needed because of the statistical dependen-
cies among data instances that arise in relational data.
These dependencies violate the assumptions of conven-
tional hypothesis tests. The dependencies can be charac-
terized by the linkage and autocorrelation present in a
given relational data set. This paper extends work re-
ported last year by Jensen and Neville [2002] that identi-
fied these two characteristics of relational data and dem-
onstrated that they can introduce substantial bias into the
feature selection of relational learners.

The quantitative measure of linkage L indicates the de-
gree to which many objects in U are connected through a
small number of objects W. Given particular types of re-
lational structure in a data set, L can be calculated ana-
lytically from the sufficient statistics |Ul and |WI. Per-
haps the simplest type of linkage is that shown in Figure
2b, where a many-to-one relation holds between U and
W. In this case, L = (IUI-IW)AUI, so for Figure 2b,
L(U,P,W) = 0.6.

The quantitative measure of autocorrelation C’ indi-
cates the degree to which a variable on U is correlated
with the values of the same variable on other objects U
connected through paths P. For example, for the data in
Figure 2b, paths in P could run from objects in U through
objects in W to other objects in U. Four such paths exist
(ujuy, uqu;, uyusz, and ugus), and all objects U connected
by such paths have the same value of the class label, thus
the data in Figure 2b has perfect autocorrelation. Addi-
tional details on measuring linkage and autocorrelation
can be found in Jensen and Neville [2002].



Empirically, we have observed high levels of linkage
and autocorrelation in many relational data sets. Figure 3
shows the levels of linkage and autocorrelation in two
common data sets used for relational learning. Figure 3a
shows results for data drawn from the Internet Movie
Database, a public resource on movies (Www.imdb.cont).
Each point represents the linkage of movies with respect
to the specified object type (e.g., studios) and the auto-
correlation of a binary class label on movies (whether the
movie's box office receipts totaled more than $2 million
for its opening weekend) with respect to the specified
object type. For example, the point at the top of the fig-
ure indicates that linkage of movies through studios is
high, and autocorrelation of movie receipts through stu-
dios is moderately high. Figure 3b shows results for data
drawn from Cora, a database of technical papers con-
structed and processed automatically using machine
learning techniques [McCallum, Nigam, Rennie & Sey-
more 1999]. Points represent linkage of papers with re-
spect to other object types and the autocorrelation of pa-
per topic (e.g., neural networks) with respect to those
other object types.
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Figure 3: Linkage and autocorrelation for IMDb (movies and
their receipts) and Cora (papers and their topics).

High levels of linkage and autocorrelation introduce de-
pendencies in relational data sets that can act to reduce
the "effective" sample size of those sets. Consider the
data shown in Figure 2b. Do these instances provide five
independent instances <u,v> that indicate the correlation
between A and C? Alternatively, given the apparently
perfect autocorrelation and high linkage, is this set
equivalent to only two instances (one for each user)? The
experiments in Jensen & Neville [2002] indicate the lat-
ter. As a result, different relational features can have dif-
ferent effective sample sizes. Accurate statistical tests for
these features can require widely differing sampling dis-
tributions. This implies that two features can have identi-
cal scores, but one feature can be highly significant while
the other fails its hypothesis test.

2.4 Randomization Tests

Due to the biases that linkage and autocorrelation intro-
duce into conventional tests, we explored alternative

forms of hypothesis tests. A randomization test is a type
of computationally intensive statistical test [Edgington
1980, Noreen 1989, Good 1994]. Other types include
resampling and Monte Carlo procedures.' Each of these
tests involves generating many replicates of an actual
data set — typically called pseudosamples — and using
the psuedosamples to estimate a distribution. In the case
of a randomization test, pseudosamples are generated by
randomly reordering (or permuting) the values of one or
more variables in an actual data set. Each unique permu-
tation of the values corresponds to a unique pseudosam-
ple. A score is then calculated for each pseudosample,
and the distribution of these randomized scores is used to
estimate a sampling distribution for the score calculated
from the actual data. Randomization tests are also called
permutation tests.

For example, consider the problem of forming a sam-
pling distribution for the problem given in the introduc-
tion. A sampling distribution for the chi-square score for
A and C can be obtained via a randomization test. First,
we generate all possible pseudosamples, where each
pseudosample contains a unique permutation of the val-
ues of C. Second, we calculate a score for each pseu-
dosample, using the same estimator used on the actual
data (here, chi-square). The set of all scores constitutes a
sampling distribution for X. Finally, we determine the
percentage of scores in the sampling distribution that
equal or exceed the actual score x,... This value,
p(Xrandamzxacrual) aPPrOXimateS p(XizxactuallHO)a the prOb_
ability that any particular value drawn from the sampling
distribution will be at least as large as Xqe/qs-

In contrast to conventional hypothesis tests, randomi-
zation tests make a relatively small number of assump-
tions about the data. For example, randomization tests
make no assumptions about the form of the distributions
from which variable values are drawn. In addition, they
can be used to form sampling distributions for estimators
whose precise statistical properties are not known.

The primary disadvantage of randomization tests is
their computational cost. In their pure form, all possible
pseudosamples are used to create the sampling distribu-
tion. Even moderately large sample sizes cause the num-
ber of pseudosamples to become extremely large. For a
sample of N instances and a class label with a uniform
binary class, the number of possible permutations is
N!/(2(N/2)!). For a mere twenty instances, 184,756
unique pseuodsamples exist. Fortunately, only a fraction
of all possible pseudosamples is necessary to obtain a
good estimate of the sampling distribution for many pur-
poses. For example, 1000 pseudosamples is adequate to
obtain a reasonable estimate of the 5% or 10% critical
values of a sampling distribution. Another optimization is
to sequentially generate pseudosamples and employ an
"early stopping" criteria. If, for example, a test will use
1000 psuedosamples to establish whether a given score is

" The method used to produce Figure 1 was a form of Monte
Carlo procedure.



significant at the 5% level, and the first 50 of the pseu-
dosamples all produce scores above the given score, then
it clearly cannot be significant. We employ both of these
optimizations in the work reported below.

3 Randomization Tests for Relational
Data

We evaluated three alternatives for creating a randomiza-
tion test for relational data. First, we considered proposi-
tionalizing the relational data and then running a conven-
tional randomization test on the resulting propositional
data. The first part of this approach is often called "flat-
tening" a relational data set. For example, a set of rela-
tional data on papers, journals, and authors could be pro-
positionalized by creating one instance per paper. This
would duplicate the journals (because a one-to-many re-
lation exists between journals and papers) and aggregate
authors (because a one-to-many relation exists between
papes and authors). Propositionalizing converts a rela-
tional task to a propositional one, with some loss of in-
formation about the relational structure of the data.

In this case, however, the lost information is essential
to an accurate hypothesis test. Consider the two data sets
in Figure 2. They would be identical after propositional-
izing, as would their inferred sampling distributions.
Propositionalizing destroys the information about both
linkage and autocorrelation, making it impossible for an
hypothesis test to adjust for the effects of these two char-
acteristics of relational data.

Second, we considered retaining the relational struc-
ture of the data and randomizing class labels. For exam-
ple, in a data set of papers, journals, and authors, we
would randomize the class label on papers (e.g., paper
topic) and retain all other elements of the original data.
This is the most obvious adaptation of randomization
tests to relational data. Randomizing class labels retains
the linkage of the original sample in each pseudosample,
but it destroys the autocorrelation among class labels. As
a result, the pseudosamples have an effective sample size
that is equivalent to a propositionalized data set, and the
resulting sampling distribution will be equivalent to that
estimated from propositionalized pseudosamples.

Finally, we considered retaining the relational structure
of the data and randomizing attribute vectors associated
with each object type. For example, in the case of papers,
journals, and authors, this approach would randomize the
attribute vectors of papers (e.g., length and type), jour-
nals (e.g., cost and circulation), and of authors (e.g., age
and gender). This is equivalent to randomizing the link-
age between the object containing the class label and
other object types (although this interpretation leaves
unexplained how to handle non-class attributes that are
intrinsic to the object with the class label (e.g., paper
type)).

Using this approach, pseudosamples retain the linkage
present in the original sample and the autocorrelation
among the class labels. Randomizing attribute vectors

destroys the correlation between the attributes and the
class in pseudosamples, thus making them appropriately
conform to the null hypothesis. In addition, this approach
destroys any autocorrelation among the attribute values,
but we have yet to identify biases caused by this side
effect.

To evaluate the performance of randomizing attribute
vectors, we compared it to classical hypothesis tests
rather than propositionalizing or randomizing class la-
bels. As we discuss above, these latter approaches are
equivalent, but less exact than, classical hypothesis tests.
Thus, a classical hypothesis test provides an upper bound
on the performance of propositionalizing or randomizing
class labels.

We ran experiments and simulations to examine the
degree of divergence between the two alternative ap-
proaches to hypothesis testing in relational data.
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Figure 4: Relative rankings and hypothesis test results on rela-
tional features for IMDb and Cora.

3.1 Does Relational Randomization
Change Learning on Real Data?

Our first experiment amounts to a "sanity check": Does
randomizing attribute vectors result in substantially dif-
ferent inferences than a classical test? We applied both
approaches to the relational learning tasks on the data
described earlier (IMDb and Cora). On IMDb, we exam-
ined how features formed from different intrinsic and
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Figure 5: The probability of selecting a predictive attribute varies with the correlation of that attribute with the class label, the
number of random attributes, the linkage and autocorrelation of the data, and the type of hypothesis test used.

relational attributes on movies, studios, producers, direc-
tors, and actors predicted movies success, as measured by
the receipts class label described earlier. On Cora, we
examined how features formed from attributes on papers,
journals, and authors predicted paper topic. Rather than
learn full models, we evaluated individual features using
both approaches. This experimental protocol allowed us
to examine the decisions made on all_ features, rather
than only the top-ranked feature.

Figure 4 shows results for each data set. The length of
each horizontal bar indicates the chi-square score of a
feature. Features are ranked by score. The shading of
each bar indicates whether a hypothesis test using ran-
domized attribute vectors accepted or rejected the null
hypothesis of independence at the 10% level. Dark shad-
ing indicates a significant association between the given
feature and the class label. In the absence of the ran-
domization test, features in each figure would be deemed
significant if they had a score exceeding 9.1, a Bon-
ferroni-corrected critical value for a=0.10.

While all the top-ranked attributes in these data sets
would be deemed significant under either approach, some
highly ranked features are dropped by the randomization
test. The specific features that are dropped is instructive.
For example, the top-ranked features that are not signifi-
cant in the IMDb data are all formed from attributes on
studios, the object type with the highest combination of
linkage and autocorrelation in the movie data. Similarly,
all features in the Cora data using attributes on publishers

and journals are dropped, despite their high raw chi-
square scores.

3.2 When Do Linkage and Autocorrela-
tion Affect Results?

Our second experiment examines the accuracy of feature
ranking under varying conditions of linkage and autocor-
relation. Specifically, we examine data sets that contain a
single attribute (A,) correlated with the class label (C)
and k noise attributes that are generated independently of
the class label. Ideally, hypothesis tests should eliminate
features formed from noise attributes, allowing A, to be
ranked first.

We ran a Monte Carlo simulation that created data sets
with specified distributions of linkage and autocorrela-
tion. For each distribution, we generated data sets with
500 objects U containing a binary class label C and a
binary attribute A,. In addition, each data set contained
five other sets of objects W; ,W,,W3,W,, and W5. On
each object set, we created between 1 and 20 random
binary attributes. Thus, between 6 and 101 attributes
were available to form features to predict C. Only one of
these features, however (the feature formed from Aj),
ever has any genuine predictive power.

For each data set, we scored the correlation between C
and features formed from each attribute A; using chi-
square. We used two approaches to determine the top-
ranked feature. The first approach ranked exclusively by
chi-square. The second approach ran randomization tests



by randomizing attribute vectors and then selected the
top-ranked significant feature (in the unlikely event that
no features were significant, the top-ranked insignificant
feature was selected). Experimental outcomes were
measured by the proportion of 500 trials in which A, was
selected.

Figure 5 shows the results of nine sets of experiments.
Each set of experiments uses a different level of correla-
tion between C and A, and a different distribution of
linkage and autocorrelation. The levels of correlation are
shown across the top of the chart (p(Ap=11C=+) =
p(Ap=11C=+) = p(A(lC) € {0.6, 0.7, 0.8} ). The distribu-
tions of linkage and autocorrelation are shown by graphs
along the leftmost column of the figure. Within each set
of experiments, we varied the number of noise attributes
k.

The results show that randomization tests increase the
probability of selecting the correct attribute A, when that
attribute is moderately predictive (p(4yC) = 0.7) and
when at least some of the objects in the data set have
high linkage and autocorrelation with respect to the class
label and its corresponding object type (labeled b and c¢).
The methods are nearly indistinguishable when the A, is
either a very poor or very good predictor (0.6 < p(A,lC) <
0.8}). Similarly, the methods are indistinguishable and
when linkage and autocorrelation are relatively low (e.g.,
a).

4 Conclusions and Future Work

A particular type of randomization test — randomizing
attribute vectors — can adjust for the strong biases intro-
duced by linkage and autocorrelation. These biases are
present in typical relational data sets such as IMDb and
Cora, and they can affect the ability of learning algo-
rithms to correctly rank different features. Conventional
hypothesis tests or more obvious adaptations of conven-
tional randomization tests to relational data cannot adjust
for the biases.

Intriguingly, these sorts of hypothesis tests may be
necessary for learning in data sets that are usually pre-
sented in propositional form. If a propositional data set is
drawn from a domain that is inherently relational, and
that domains exhibits strong linkage and autocorrelation,
then pervasive bias may occur if these original properties
of the domain are not reflected in the propositional data.
This raises the spectre that hidden biases may lurk in
many analyzes of supposedly propositional data, and the
topic deserves additional study.

In addition, we have studied only one simple method
for generating randomized relational data — randomizing
attribute vectors. If a generative model for linkage and
autocorrelation could be devised, it would provide a more
universal method for creating randomized data sets. Such
a model should generate both graph structure and attrib-
utes on many types of objects and links. This prospect is
challenging, but appears within reach.
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