
Optimizing Shell Scripting Languages

Emery D. Berger

Department of Computer Science
University of Massachusetts

Amherst, MA 01003
emery@cs.umass.edu

Abstract
We present an optimizing compiler that dramatically im-

proves the performance of shell script languages. Our pro-
totype system, called Shark, performs a number of domain-
specific optimizations. We show that, subject to some con-
straints, we can treat file I/O in shell languages like vari-
ables in regular programming languages. This insight al-
lows us to leverage traditional compiler analyses to elimi-
nate temporary files, transform file-based I/O to pipes, and
extract coarse-grained parallelism. We show how we can
further improve performance by eliminating process cre-
ation overhead, which can dominate the runtime of shell
scripts. By modifying just a few lines of code, we can con-
vert external commands like grep into dynamic libraries.
Shark loads these libraries just once so that subsequent
invocations execute with the speed of function calls, and
then unloads them when they are no longer needed. We
present results with our prototype demonstrating substan-
tial speedups over the bash shell.

1 Introduction

Shell script languages like sh, csh, and bash [2, 13] are
popular glue languages. Because most UNIX commands
allow their input and output to be redirected to files or
pipes, programmers can use shell scripts to quickly build
programs that use other UNIX commands as components
[10, 19]. Shell scripts are in wide use for a variety of tasks,
including system administration and source code configu-
ration [5], because of their relative simplicity, familiarity
and ubiquity. Unfortunately, shell languages are notori-
ously slow.
There are many sources for the poor performance of shell

languages. First, shell languages typically interpret shell
scripts and pay the associated overhead, including repeated
conversions to and from strings. Second, shell interpreters
do not optimize their input scripts beyond translating them
into an intermediate form. Finally, shell languages create
a new process to run most external commands. The over-
head of repeated process invocation dominates the runtime

of most shell scripts [4].
In this paper, we demonstrate a prototype optimizing

compiler called Shark that dramatically improves the per-
formance of shell scripts. This paper makes the following
contributions:

Domain-Specific Optimization of Shell Languages: We
demonstrate that, with certain restrictions, we can
treat file I/O operations in shell scripts like variable
assignment in traditional programming languages.
We then perform a modified dependence analysis that
yields a number of domain-specific optimizations,
including the elimination of temporary files and the
conversion of file I/O to pipes. These optimizations
reduce the use of the filesystem and improve ap-
plication locality. We exploit the same dependence
analysis to extract coarse-grained parallelism, allow-
ing Shark to spawn processes in parallel in order to
take advantage of multiple processors or processors
with simultaneous multithreading capabilities [8].

Effective Use of Dynamic Libraries: While the above
optimizations are effective for many programs, re-
peated process invocation is the performance bottle-
neck for some shell scripts. The second contribu-
tion of this paper is to show how to eliminate this
bottleneck by converting off-the-shelf programs like
grep into dynamic libraries1. This optimization
alone can dramatically reduce the runtime of some
scripts. The conversion to dynamic libraries is sur-
prisingly straightforward, requiring the modification
and addition of just a few lines of code. We use the
Reap memory manager to eliminate the potential for
memory leaks caused by these external commands [1].
Shark also minimizes the memory footprint caused
by incorporating these libraries by loading them only
when needed and unloading them when done.

1These libraries are also referred to as DLLs or shared objects.

1.1 Outline
The remainder of this paper is organized as follows. We
discuss related work on shell languages and optimization in
Section 2. We describe the Shark language in detail in Sec-
tion 3. We present the domain-specific optimizations that
Shark implements in Section 4. Section 5 presents the key
challenges to optimization posed by shell languages. We
describe our optimization algorithms in detail in Section 6.
We describe the process of converting ordinary applications
to dynamic libraries in Section 7. We describe our exper-
imental methodology and present experimental results in
Section 8. We describe future directions and extensions to
Shark in Section 9 and conclude in Section 10.

2 Related Work

2.1 Shells
While the original UNIX shell language was written by
Ken Thompson, it was eventually supplanted by the Bourne
shell, by Steve Bourne at Bell Labs [2, 18]. Subsequent
shell languages include the Korn shell, Bill Joy’s C shell,
the “Bourne-again” shell (bash), and the Rc shell from
Plan 9 by Duff [6, 13]. POSIX standard 1003.2-1992 de-
fines a standard set of requirements for shell languages,
and includes such features as file input-output redirection,
pipelines, expansion of wildcard characters, and command
substitution. Newer shell languages generally provide
more features rather than improved performance. These
features include richer iteration constructs, cleaner syntax,
and improved command-line editing.

2.2 Script Languages
Owing to the inefficiencies and relative linguistic paucity
of shell languages, a number of other scripting languages
have arisen in recent years. The most prominent of these
are Perl, Python and Tcl [15, 17, 21]. Perl and Python in
particular provide improved performance over shell script
languages. They achieve these improvements primarily by
building in common functionality like regular-expression
pattern matching and optimizing those patterns, rather than
by performing the domain-specific optimizations we de-
scribe.

2.3 Dynamic Libraries
Most modern operating systems provide support for dy-
namic libraries. which allow code to be loaded into a run-
ning program. Using dynamic libraries has a number of ad-
vantages, including beneficial effects on both system mem-
ory usage and software engineering. Smaragdakis includes
a number of examples as well as a novel use of dynamic
libraries to support layered software development [20].

A recent version of the Korn shell, ksh93, allows exter-
nal C functions to be dynamically loaded into the shell via
the builtin command [12]. The authors observe dra-
matic speedups for the execution of short-lived commands
(up to 50x), and also note the loss of process isolation
that comes with dynamically loading external commands.
Unlike Shark, ksh93 allows external commands to access
certain shell internals, adding flexibility but increasing the
risk that an external command will crash the shell. Ksh93
places the burden on the programmer to decide when it is
appropriate to load them, and does not provide a facility
to unload them. By contrast, Shark automatically loads li-
braries at their first use and unloads them after their last use.
We discuss other limitations of ksh93’s use of libraries in
Section 7.

2.4 Shell Optimization
We are aware of only one previous approach to automat-
ically improving the performance of shell scripts, a com-
mercial “shell compiler” called ccsh from Comeau and
Associates [3]. Ccsh compiles Bourne shell scripts into C
programs that it subsequently compiles by invoking the C
compiler. The company claims performance improvements
of from 2x to 10x, but these are primarily due to the incor-
poration of many common utilities (like grep and cat)
as built-in functions2. Shark exploits dynamically-loaded
versions of these utilities to provide similar performance
gains, but differs from ccsh by implementing a number of
domain-specific optimizations. Shark also does not require
a separate compilation phase.

2.5 Programming Language Optimizations
By recognizing that filesystem I/O is analogous to vari-
able assignment in traditional programming languages, we
are able to take advantage of traditional compiler optimiza-
tions. In particular, Shark performs an adapted dependence
analysis. The literature on the topic of optimizations is vast;
Muchnick’s textbook includes extensive discussion and ci-
tations [16].

3 The Shark Language

Shark implements a subset of the Bourne shell language
that includes a number of its key features, including input-
output redirection, pipes, conditionals, and command sub-
stitution [2]. Any Shark script can be executed by the
Bourne shell or any upwardly-compatible shell. Unlike
most shell languages, the grammar for the Shark language
is context-free, allowing us to use yacc and lex for its
parser and lexer [14].

2The ccsh compiler was unavailable to us for evaluation at the time
of writing.

In order to keep the language context-free and to sim-
plify compilation, we omit a number of features (like
alias), and restricted certain features, including iteration
constructs and the expansion of variables. We also lim-
ited the use of other constructs. For instance, Shark re-
quires that the source command, which imports other
shell scripts, always be unconditionally executed. We de-
liberately do not include any constructs related to job con-
trol, as Shark is designed to extract all available paral-
lelism. We leave the addition of other shell features to
Shark as future work. While Shark implements only a sub-
set of standard shell programming languages, we believe
that this subset constitutes a useful core.
Shark internally implements only those commands

that affect our optimizations, including file concatenation
(cat), file deletion (rm) and symbolic link creation (ln).
We recognize these primarily in order to track their effects
on the file system. We show in Section 4 how these af-
fect our optimizations. All other commands are executed as
dynamically-loaded functions if these are available. Other-
wise, Shark invokes a process to execute each command.
We discuss the transformation of existing UNIX utilities
into dynamic libraries in Section 7.
Execution of a Shark script is performed just as with

other shell languages by invoking shark followed by the
script name. Shark loads the entire program, performs a
whole program analysis to effect its domain-specific op-
timizations, and executes the script. Shark maintains the
transformed program in memory and does not create object
code files.

4 Domain-Specific Optimizations

When Shark loads a script, it executes a whole-program
analysis to drive a number of optimizations. We divide
these optimizations into four categories: filesystem opti-
mization, pipelining, parallelization, and command invoca-
tion optimization. Table 1 summarizes these optimizations
and their goals. Below we discuss each in detail.

4.1 Filesystem Optimization
We implement one key optimization over access to the
filesystem, which is the elimination of unnecessary file cre-
ation. We also remove all commands that have no side
effect except the creation of unnecessary files. Figure 1
depicts an example of the effect of this optimization, elim-
inating a number of useless commands.

4.2 Pipeline Optimization
Whenever possible, we convert file I/O to pipes. We replace
files that are used exactly once as input and output to two
commands by a pipe connecting the two commands. If the
file is not deleted before the termination of the script, we

cat foo | grep abc > tmpfoo;

cat foo | grep xyz > foo2;

rm tmpfoo;

Figure 1: Elimination of unnecessary file creation. All of
the commands show in grey can be removed, because their
only side effect is a file that the script deletes before termi-
nation (tmpfoo).

cat foo > tmpFile;

grep abc < tmpFile > outFile1;

cat foo > persistent;

grep xyz < persistent > outFile2;

rm tmpFile;

(a) The original program.

cat foo | grep abc > outFile1;

cat foo | tee persistent

 | grep xyz > outFile2;

(b) The transformed program.

Figure 2: Pipeline optimization. We can remove the file
tmpFile altogether, but must use tee to output the file
persistent.

add a call to the tee command, which writes its input to
both a file and to standard output.
Using pipes instead of or in addition to file I/O can im-

prove performance in several ways. First, eliminating file
I/O is almost always desirable because of the high cost
of disk accesses. Second, using pipes improves locality.
Because pipes are smaller than the L1 cache on most pro-
cessors, access to the pipe buffer will incur few L1 cache
misses and no L2 misses. By contrast, sequentially writing
and then reading a file will result in numerous cache misses
in both the L1 and L2 caches. Finally, using pipes can im-
prove the throughput of a script executing on a multipro-
cessor system because pipes allow producer and consumer
processes to operate concurrently.
The example in Figure 2 illustrates both forms of the

pipeline optimization. We do not need to create the file
tmpFile because it is deleted before the script terminates.
However, we must send output to the file persistent, so
we tee output to it.

4.3 Parallelization
The pipeline optimization described above increases the
concurrency of Shark scripts. Shark also parallelizes pro-
cesses that have no command or data dependencies. Such
processes are safe to spawn in parallel. In Figure 3, we
show an example of processes that are independent and

Shark optimizations
Optimization Definition Goal
Filesystem Eliminate creation of unnecessary files Reduce I/O, unnecessary computations
Pipelining Convert file I/O to pipes Reduce I/O, improve locality & concurrency
Parallelization Schedule independent commands in parallel Increase concurrency
Command invocation Transform program using domain-specific knowledge Optimize command usage

Table 1: The optimizations that Shark implements, along with their goals for improving performance.

grep abc < foo > outFile1;

grep xyz < foo > outFile2;

grep qwe < outFile2 > outFile3;

(a) The original program.

(grep abc < foo > outFile1 ||

 grep xyz < foo > outFile2);

grep qwe < outFile2 > outFile3;

(b) The transformed program.

Figure 3: Parallelization. We identify independent com-
mand chains and execute them in parallel, separating invo-
cations with “||” rather than “;”. Here Shark identifies that
the first two commands can proceed in parallel. Note that
we disable pipeline optimization for this example.

cat foo | cat | grep abc > bar;

(a) The original program.

(grep abc < foo) > bar;

(b) The transformed program.

Figure 4: Command invocation optimization. Here we per-
form cat-elimination to change calls to cat into input
redirection or to eliminate them altogether.

thus can be parallelized. To indicate that two processes
execute in parallel, we separate them with “||” rather than
“;”. This construct is not actually exposed to a Shark pro-
grammer but used here for notational convenience. Be-
cause outFile1 and outFile2 are independent, the
two commands creating them can be executed in parallel.
However, because the creation of outFile3 depends on
outFile2, that command must follow the other two.

4.4 Command Invocation
Shark also can exploit the semantics of certain commands
to transform them into more efficient forms. We have im-
plemented one straightforward optimization called cat-
elimination. The cat command copies its input to stan-

dard output and concatenates all files in its argument list.
When cat is called with one argument, we replace it by
input redirection. When it is called without any arguments,
we can eliminate it completely. The example in Figure 4
shows both cases.

5 Challenges to Optimization

There are many complications to implementing the opti-
mizations we describe above. Unknown commands may
have arbitrary effects on the filesystem, making the reorder-
ing or elimination of file I/O unsafe. The creation and re-
moval of symbolic or hard links adds the familiar problem
of aliasing. UNIX systems also contain special filesystems
like /dev and /proc whose contents do not behave like
ordinary files [11]. We handle these problems with a vari-
ety of approaches.
First, we provide Shark with a list of well-behaved com-

mands. Well-behaved commands have no impact on the
filesystem except for reading from or writing to files men-
tioned in their argument lists. Examples of trusted com-
mands include grep, cat, and diff.
In general, we cannot consider interpreters like awk or

perl to be well-behaved. These programs, by executing
their argument scripts, may arbitrarily and unpredictably
modify the filesystem. Such behavior represents a patho-
logical case. Because we expect most programs used in
shell scripts to be well-behaved, we place both awk and
perl on a usually well-behaved list.
As mentioned, certain special files also complicate op-

timization. Our interim approach is to conservatively treat
any absolute pathname as a special file and not optimize
accesses to it. In a future version of Shark, we plan to al-
low programmers to annotate both invocations of usually
well-behaved commands that are unsafe and special files.
We describe these and other proposed extensions in Sec-
tion 10.
Finally, we restrict the creation and deletion of both files

and links to only refer to constants. With this restriction,
we can statically examine calls to rm and ln to maintain
the complete alias information required to safely perform
optimizations. We can also (but currently do not) gather
information before execution about the status of symbolic
and hard links to files mentioned in the script.

6 Optimization Algorithm

In this section, we present in detail how Shark performs
its optimizations. We rely on a dependence analysis to
perform three of the optimizations: filesystem optimiza-
tion, pipelining, and parallelization. This analysis is a
whole-program optimization that is analogous to many tra-
ditional compiler optimizations. In essence, we consider
commands and I/O in the same way that ordinary compil-
ers treat functions, variables, and assignment, but with the
restrictions described in Section 5.
We build an abstract syntax tree during the parse phase

and use this tree as the only intermediate data representa-
tion. Rather than performing “tree surgery”, which can be
faster but is also error-prone, each step of the algorithm
creates a new copy of the tree. Despite this apparent in-
efficiency and the many passes we use in the algorithm,
we have found that analysis time is fast and accounts for a
small percentage of Shark’s runtime of a shell script.

6.1 Cat-elimination
We perform our one command invocation optimization,
cat-elimination, by walking through the abstract syntax
tree looking for calls to cat. We replace pipelines (e.g.,
cat foo | baz) with input operations (e.g., baz <
foo), and remove calls to cat with no arguments.

6.2 Temporary File Identification
We then walk through the abstract syntax tree to gather a
list of temporary files that we can eliminate in later phases.
We create a list of these temporary files by iterating back-
wards through the script, adding every file argument to rm,
and removing files that are created by output redirection.
Recall that in a subsequent pipelining optimization phase,
we eliminate these temporary files.

6.3 Graph Transformation
Next, we canonicalize the program into a sequence of “IO-
Scripts”, which group related commands and their I/O in
preparation for converting the program into a graph. We do
this first by transforming all pipelines in the original script
into commands that write to or read from new temporary
files, which we also add to the temporary file list. As an
example, this changes foo | bar into foo > tmp1;
bar < tmp1. We then replace all input or output opera-
tions by combined I/O commands, or IOScripts.
We now transform this canonicalized abstract syntax tree

into a dependency graph [16]. This directed acyclic graph
contains only data-dependent edges: in this initial formu-
lation of our optimization algorithm, we do not optimize
over control dependencies. Each vertex represents a file-
name and each directed edge corresponds to dependencies,
labeled with a sequence of commands. Each filename also

has an associated “version number” that corresponds to the
number of writes applied to the file. We allow multiple in-
stances of vertices (files) with the same version number to
appear in the graph.
To represent the data dependencies between files and

commands, we visit each IOScript node in the tree and add
two vertices connected by a directed edge to the graph con-
necting input files to commands, and commands to output
files. We also add directed edges between successive ver-
sions of files, that is, from version n to version n+1. These
edges preserve the serial dependencies between file writes
and ensure correct output ordering.

6.4 Unnecessary file elimination

Next, we perform the elimination of unnecessary file cre-
ation. This optimization pass is essentially the same as
the dead-code elimination phase employed by most mod-
ern compilers [9]. This pass implements the filesystem op-
timization described in Section 4.1. Notice, however, that
this does not eliminate temporary files that communicate
data from one command to another (as in foo > tmp;
bar < tmp). We convert these into pipes when possible
in the next pass.

6.5 Pipeline optimization

The transformation of file I/O to pipes is only safe for tem-
porary files that are both created and deleted during script
execution. We identify as intermediate files those that have
an in-degree and out-degree of one. By removing all in-
termediate file vertices that also appear on the temporary
file list, we replace all unnecessary file I/O by pipes. We
add a call to tee, as described in Section 4.2, to preserve
intermediate files that are not temporaries.

6.6 Parallelization

Finally, we transform the optimized graph back into an ab-
stract syntax tree corresponding to an executable schedule.
We gather all of the roots of the graph (vertices with no
incoming edges) and process the graph from each root in
breadth-first order. We assign a breadth-first level num-
ber to each vertex corresponding to its maximum distance
from a root. All vertices with the same level can be safely
executed in parallel. We then build a tree consisting of se-
quences of parallel spawns where all vertices of a given
level execute before all those of the next level.
The resulting tree implements the parallelization opti-

mization, completing Shark’s optimization algorithm. In
the next section, we describe our other approach to reduc-
ing script execution time, the replacement of process cre-
ation by dynamic library calls.

7 Using Dynamic Libraries

Because the overhead of process invocation can be quite
high, Shark strives to eliminate this overhead by taking
advantage of dynamic libraries. Using dynamic libraries
instead of invoking a new process for each command can
substantially reduce the runtime of shell scripts. One draw-
back of dynamic libraries is that they require position-
independent code, which used to impose a slight runtime
penalty. However, latest versions of gcc (3.2 and above) al-
ways generate position-independent code for x86 architec-
tures, so using dynamic libraries is never disadvantageous
on this important class of systems.

7.1 Ksh93’s Approach
The only other shell language we are aware of that allows
dynamic loading of commands is the most recent version
of the Korn shell, ksh93 [12]. However, as we note in Sec-
tion 2, their approach suffers from numerous limitations.

Manual loading: First, ksh93 requires the programmer to
invoke a command (builtin) to replace an external
command with a dynamic library, and does not pro-
vide any means to unload the dynamic library. The
decision to load a library is therefore irrevocable. The
programmer must weigh the potential performance
gains against the increased footprint of the shell in-
terpreter.

Special libraries: Second, the developer of a
dynamically-loadable command for ksh93 must
use header files and libraries from the Korn Shell
SDK. This means that any library used by the
external command must also be recompiled to use the
SDK. This process could become quite burdensome.

No dynamic memory allocation: Finally, the authors of
ksh93 recommend that developers avoid the use of
malloc to prevent memory leaks. These leaks can
arise when a command does not free all of its allocated
memory or is interrupted (i.e., via SIGINT) before it
can do so. We believe that this limitation makes it im-
practical for most developers to incorporate their code
as dynamic libraries.

7.2 Shark’s Approach
Shark simplifies the incorporation of external commands
by eliminating most of these limitations. These commands
need just a handful of changes, which we outline below.
Shark does not require the use of special header files or
libraries. Most importantly, we allow external commands
to use malloc.
We avoid potential memory leaks by employing our

Reap memory manager [1]. Reap allows the creation and

destruction of separate memory areas (“reaps”) which sup-
port both the allocation and deallocation of individual ob-
jects. Shark assigns a separate reap to each external com-
mand. When Shark unloads the associated dynamic library,
it also destroys its associated reap, thus reclaiming any
memory allocated by the command. We redefine malloc
and free and the associated memory management func-
tions in terms of the analogous calls provided by the Reap
API (reapalloc, etc.).
There are two other important changes required in or-

der to adapt existing programs. First, we cannot allow
calls to exit() in a dynamic library to actually exit the
script: they must instead propagate their return value. We
first change any calls to exit() in the main routine to
return. We then take advantage of the ANSI C non-
local goto API (setjmp() and longjmp()) to cause
calls to exit() to jump to the end of the main rou-
tine. We wrap the entire main routine except for variable
assignment in a conditional that calls setjmp() using a
global jump buffer. We then redefine exit() to perform a
longjmp() to that buffer. For C++ programs, we would
have to redefine exit to throw an exception because C
non-local gotos do not respect C++ semantics.
The other important change is that we need to reinitial-

ize static variables. These variables are initialized when the
dynamic library is first loaded and retain their values across
invocations. We often need to reinitialize these statics back
to their original values. The key statics used by GNU pro-
grams are from the getopt package which handles argu-
ment parsing. We reinitialize optind and optarg to 0
and NULL, respectively.

7.3 Limitations of Dynamic Libraries
While dynamic libraries can substantially reduce the cost
of process invocation, as we show in Section 8, there are
some inherent limitations caused by using them instead of
invoking processes.
First, it will not always be straightforward to convert off-

the-shelf programs into dynamic libraries. There may be
global state that needs to be reinitialized but that is not di-
rectly accessible (e.g., file-scoped variables in external li-
braries). While we have not yet run into this problem, it
remains a possibility.
There is also a fundamental tension between increasing

concurrency and using dynamic libraries. Most programs
are not re-entrant and so it is not safe to execute simultane-
ous calls to these libraries in different threads. We currently
handle this case dynamically: we only allow one instance
of a dynamic library to execute at a time. This approach
allows multiple dynamic libraries to run in parallel threads,
but only if they are all different commands. Otherwise, we
pay the price of process invocation in order to exploit par-
allelism.
Finally, one unavoidable limitation of using dynamic li-

braries is that we forfeit the protection provided by sepa-

Shark Runtime Performance

0

0.5

1

1.5

2

2.5

3

temp-opt pipe-opt command-opt
Benchmark

No
rm
al
iz
ed

Ru
nt
im
e

Shark bash
26.6 10.4

Figure 5: Runtime, normalized to Shark, for microbench-
marks demonstrating the effects of three optimizations
(smaller is better). Bash takes from 2 to 26 times longer
to execute these scripts.

rate processes. A bug in a dynamic library can corrupt the
entire shell. On the other hand, most of the utilities that
programmers use, like grep and diff, are mature pieces
of code that have been extensively tested. We feel that the
performance tradeoff outweighs the risks for this domain.

8 Experimental Results

In this section, we compare the execution times of Shark
and the Bourne shell on a number of shell programs. To
our knowledge, there does not exist a set of shell language
benchmarks. We present preliminary results on a handful
of microbenchmarks that we wrote ourselves.
All runtimes are the best of three runs at real-time prior-

ity after one warm-up run. We compiled all programs with
the GNU C compiler version 3.2, and ran our experimens
on a 2.8 GHz Pentium III system with 1GB of RAM un-
der Windows XP. Because process creation in Windows is
relatively expensive compared to UNIX systems, we plan
to run experiments on Linux and Solaris systems (both uni-
and multiprocessor) for the final version of this paper.

8.1 Runtime Performance

Because Shark is a subset of the Bourne shell, we directly
compare the execution times of Shark to execution of the
same scripts by bash. We use the latest available version
of bash, version 2.05b.0(7). We report here the impact of
code optimization and the use of dynamic libraries. Be-
cause these two are complementary approaches, we mea-
sure these separately in order to isolate the effect of the
optimizations.

Dynamic Library Optimization

0

0.5

1

1.5

grep-ps

No
rm
al
iz
ed
Ru
nt
im
e

Shark, no DL opt bash Shark, DL opt

Figure 6: Runtime, normalized to Shark, demonstrating the
effect of Shark’s dynamic library optimization (smaller is
better). Dynamic library optimization yields a three-fold
performance improvement.

8.1.1 Code Optimizations

Figure 5 demonstrates the effectiveness of three optimiza-
tions: temporary-file elimination, pipeline-conversion, and
command-invocation optimization (cat-elimination). Both
temporary-file elimination and cat-elimination achieve dra-
matic improvements in performance compared to bash
(running 10x to 26x faster). Pipeline-conversion achieves
gains which are more modest but still substantial, executing
2.5 times faster than bash.

8.1.2 Dynamic Libraries

In order to measure the effectiveness of Shark’s auto-
matic use of dynamic libraries, we created a simple text-
extraction benchmark that executes grep repeatedly on a
PostScript input file. Figure 6 shows the results normalized
to the runtime of bash. Without using the dynamic library
optimization, Shark runs around 30% faster than bash. By
using a dynamic library version of grep, Shark runs more
than 3 times faster than bash.

9 Future Work

The Shark system is currently a prototype. We plan to
incorporate more shell language features, focusing on the
most commonly-used ones that do not preclude our opti-
mizations.
We anticipate adding further optimizations to Shark. We

plan to incorporate hints to the filesystem via fcntl to in-
dicate that files used by shell scripts should be optimized
for sequential access. While we currently do not take ad-
vantage of the ability to resize pipes on systems that pro-
vide this facility (e.g., Windows), we plan to explore this
possibility. We expect increasing the size of pipes above 4K

to improve throughput. We also plan to implement some
measure of concurrency control to prevent the paralleliza-
tion optimization from generating too many processes for
the system to handle efficiently.
Finally, we need a way to convey information to the shell

language about the programs we plan to use. We can ex-
ploit information about the kinds of files generated by pro-
grams and how programs use their arguments in order to
achieve better performance. We are currently consider-
ing an annotation language that resembles Broadway [7].
Broadway provides a simple yet rich means of describing
the effects of functions on their inputs, outputs, and global
state. We believe that adapting this framework would make
it simple for developers to provide information to Shark
about their application’s behavior on their arguments and
the filesystem.

10 Conclusions

In this paper, we have described Shark, an optimizing com-
piler for shell languages. We believe we are the first to
show how to adapt traditional compiler analysis to this
domain, subject to certain restrictions. Using this analy-
sis, we can perform a variety of domain-specific optimiza-
tions that enhance performance. These optimizations in-
clude the elimination of unnecessary commands and file
creation, conversion of file I/O to pipelines, parallelization,
and the transformation of certain commands to more ef-
ficient forms. We also demonstrate a technique for con-
verting existing code to dynamic libraries, allowing further
performance gains.
The traditional focus of recent work on shell languages

has been the incorporation of new features. We adopt a dif-
ferent approach, developing a spare shell language that is
simultaneously useful and amenable to effective optimiza-
tion. Our preliminary results show that we can optimize
shell languages and achieve substantial improvements in
performance.

11 Acknowledgments

Thanks to both Sam Guyer and Scott Kaplan for useful dis-
cussions about compiler analysis applied to the unusual do-
main of shell languages.

References

[1] Emery D. Berger, Benjamin G. Zorn, and Kathryn S.
McKinley. Reconsidering custom memory alloca-
tion. In Proceedings of the Conference on Object-
Oriented Programming: Systems, Languages, and
Applications (OOPSLA) 2002, Seattle, Washington,
November 2002.

[2] S. R. Bourne. UNIX time-sharing system: The UNIX
shell. Bell System Technical Journal, 57(6):1971–
1990, 1978.

[3] Comeau Computing, Inc. CCsh, the Bourne
shell compiler. www.comeaucomputing.com/
faqs/ccshdoc.html.

[4] Jim Coplien, Alan Robertson, and Gregg Wonderly.
UNIX shell patterns. In Pattern Languages of Pro-
grams (PLoP) Conference 1996, 1996.

[5] David J. MacKenzie and Akim Demaille. Auto-
conf. www.gnu.org/software/autoconf/
autoconf.html.

[6] Tom Duff. Rc - a shell for Plan 9 and UNIX systems.

[7] Samuel Z. Guyer and Calvin Lin. An annotation lan-
guage for optimizing software libraries. In Domain-
Specific Languages, pages 39–52, 1999.

[8] Intel Corporation. Hyper-Threading Technol-
ogy. developer.intel.com/technology/
hyperthread/.

[9] Kenneth W. Kennedy. A survey of data flow analy-
sis techniques. Program Flow Analysis: Theory and
Applications, pages 5–54, 1981.

[10] Brian W. Kernighan and Rob Pike. The UNIX Pro-
gramming Environment. Prentice Hall, 1984.

[11] T. J. Killian. Processes as files. In Proceedings of the
Summer 1984 USENIX Conference, pages 203–207,
Salt Lake City, Utah, USA, 1984.

[12] David Korn, Charles Northrup, and Jeffrey Korn. The
new KornShell – ksh93. The Linux Journal, 27, 1996.

[13] David G. Korn. ksh: An extensible high level lan-
guage. In Proceedings of the USENIX Very High
Level Languages Symposium, pages 129–146, 1994.

[14] J. Levine, T. Mason, and D. Brown. lex & yacc.
O’Reilly & Associates, 2nd edition, 1992.

[15] M. Lutz. Programming Python. O’Reilly & Asso-
ciates, 1996.

[16] Steven S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, San Francisco,
1st edition, 1997.

[17] John K. Ousterhout. Tcl and the Tk Toolkit. Addison
Wesley, 1994.

[18] D. M. Ritchie. The evolution of the UNIX time-
sharing system. The Bell System Technical Journal,
63, 8:1577–1594, 1984.

[19] D. M. Ritchie and K. Thompson. The UNIX time-
sharing system. The Bell System Technical Journal,
57(6 (part 2)):1905+, 1978.

[20] Yannis Smaragdakis. Layered development with
UNIX dynamic libraries. In Proceedings of the
Seventh International Conference on Software Reuse
(ICSR), 2002.

[21] Larry Wall and Randall L. Schwartz. Programming
Perl. O’Reilly & Associates, 1992.

