
Farm: A Scalable Environment for Multi-Agent
Development and Evaluation

Bryan Horling, Roger Mailler, Victor Lesser
University of Massachusetts

Amherst, MA
bhorling,mailler,lesser @cs.umass.edu

ABSTRACT
In this paper we introduce Farm, a distributed simulation environ-
ment for simulating large-scale multi-agent systems. Farm uses
a component-based architecture, allowing the researcher to easily
modify and augment the simulation, as well as distribute the vari-
ous pieces to spread the computational load and improve running
time. Technical details of Farm’s architecture are described, along
with discussion of the rational behind this design. Performance
graphs are provided, along with a brief discussion of the environ-
ments currently being modeled with Farm.

1. INTRODUCTION
A tension exists in simulation frameworks which trades off the in-
herent richness of the provided environment, and the flexibility and
ease with which that same environment can be used to analyze a
particular aspect of a larger solution. On one hand, robust simula-
tion environments can offer many enabling technologies that both
increase the fidelity of the simulation, and provide a range of ser-
vices that the participants may take advantage of. These same fea-
tures, however, can be an obstacle if the goal is to evaluate a partic-
ular technology in the absence of complicating factors.

Our prior work in the area of multi-agent simulation environments
[8] resides in the former category; it provides a wide range of ser-
vices in an attempt to create a realistic environment in which agents
can perform and be evaluated. While using this approach is an
important step in agent development, our experience has shown

Effort sponsored in part by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory
Air Force Materiel Command, USAF, under agreements num-
ber F30602-99-2-0525 and DOD DABT63-99-1-0004. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. This material is also based upon work supported by the
National Science Foundation under Grant No. IIS-9812755. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency (DARPA), Air Force
Research Laboratory or the U.S. Government.

that it can also be helpful to extract key technologies from such
an environment, and rigorously test them under conditions which
have fewer distractions. Performing these more abstract tests has
the dual advantages of reducing possible artifacts from unrelated
events, and improving the time needed for analysis by reducing the
simulation overhead.

Our recent work addressing negotiation-based resource allocation
[5] is a good example of this tension. The full-scale solution was
developed by implementing fine-grained, sophisticated agents in
JAF [8] using a detailed domain-specific simulation tool called Rad-
sim [4]. Test scenarios were quite realistic, where agents were re-
quired to manage all aspects of a tracking multiple targets using
a distributed network of sensors. This necessitated solutions for a
range of interesting issues, such as organizational design, dealing
with noisy or uncertain data, managing agent loads, handling unre-
liable communication, disambiguating targets, etc [4]. While each
of these are important in their own right, and some have important
effects on negotiation, many are orthogonal to the original resource
allocation problem. We found that operating under such conditions
not only distracted from this original goal, but also failed to illumi-
nate potential flaws in the negotiation scheme. Negotiation errors
were sometimes mis-attributed to related subsystems and we were
unable to scale the collection of fine-grained agents using a reason-
able number of processors.

In this paper we will present Farm, a distributed simulation envi-
ronment designed to address the need for a more focused testbed.
The core of Farm provides essential functionality needed to drive a
multi-agent system, in such a way that elements such as the scala-
bility, real-time convergence rate and dynamics of a particular sys-
tem can readily be evaluated and compared. Farm has, in some
sense, taken a step back by moving to a lighter weight implemen-
tation, in order to provide an environment where multi-agent sub-
systems may be quickly developed and evaluated.

Farm is a component-based, distributed simulation environment
written in Java. Individual components have responsibility for par-
ticular encapsulated aspects of the simulation. For example, they
may consist of agent clusters, visualization or analysis tools, envi-
ronmental or scenario drivers, or provide some other utility or au-
tonomous functionality. These components or agent clusters may
be distributed across multiple servers to exploit parallelism, avoid
memory bottlenecks, or utilize local resources. In addition, the set
of components used in a particular scenario is not fixed - a limited
set might be instantiated initially to reduce the simulation overhead,
and components may also be dynamically added or removed at run-
time as needed.



Analyses
• State / trend analysis

GUIs
• State visualization

Driver
• Non-agent activity

Farm Core
• Plug-in management
• State maintenance

• Control flow

…
Agent Agent Agent

Meta-Agent
• Thread scheduling
• Communication

• State access / cache
… Agent Agent Agent

Meta-Agent
• Thread scheduling
• Communication

• State access / cache
… Agent Agent Agent

Meta-Agent
• Thread scheduling
• Communication

• State access / cache
…

Figure 1: Farm’s component architecture.

Agents are grouped in clusters of one or more entities, and each
cluster exists under the control of a meta-agent component which
provides access to the rest of the simulation environment. The
agents themselves run in pseudo real-time, where individual agents
are each allocated a specific amount of real CPU time in which to
run. This aspect allows the systems to exhibit a fair amount of tem-
poral realism, where the efficiency of an agent’s activities can have
quantifiable effects on its performance. Communication actions are
similarly modeled and monitored.

Farm has been used to model three different domains, including a
variety of agents implementing different types of solutions for these
domains. Scenarios consisting of 5000 autonomous agents have
been run using 10 desktop-class Linux boxes. These environments
will be discussed in more detail later in this paper.

In the following section, we will provide a brief overview of the
Farm simulator, followed by a discussion of how Farm relates to
other MAS simulation environments. An more detailed look at
Farm’s architecture is provided in section 4, along with a more in-
depth examination of some of those features. We will conclude
with examples of the environments that Farm has been used to cre-
ate, and how they are being used to drive other areas of research.

2. OVERVIEW
As mentioned earlier, Farm is a distributed, component-based sim-
ulation environment. By distributed, we mean that discrete parts
of the environment may reside on physically separate computing
systems. In general, no assumptions are made about the type of
system a part is run on, with respect to its operating system, mem-
ory or disk architecture. In particular, all that is required is a Java
interpreter, and a means for that part to communicate with other
parts of the environment (e.g. some sort of network connection).

Each part, or component, in this simulation environment is respon-
sible for some aspect of the simulation. Figure 1 shows how a
typical set of components in the simulation are related. The hub
of activity is the Farm core, which serves as a connection point
for components, and also drives the control flow in the system as
a whole. The connected components then fall into two categories:
those which directly manage the agents running in the system, and
those which exist to support of those agents or the scenario as a
whole. We refer to these agent managers as meta-agents, as each
acts as an interface to and for a cluster of one or more agents. The
agents themselves are threads, although this is for performance pur-
poses only - from an agent’s perspective they are completely seg-
regated, and are not aware of or share memory with other agents
which happen to also be resident at a the same meta-agent.

At runtime, agents are provided time in which to run, and other
components are given the opportunity to perform, analyze, or mod-
ify the simulation at well-determined times. The run cycle is parti-
tioned such that tasks such as state maintenance or analysis may be
performed without adversely affecting the simulation results, even
if they require indeterminate time. Such tasks are enabled by the
storage of pertinent state information in the Farm core, which then
serves as a central location where any given component may inter-
act with a snapshot of the system’s current state.

3. RELATED WORK
Attempts have been made [6, 3] to define the set of features and
characteristics that a multi-agent simulator should posses. The top-
ics described in these efforts are important, in that they can help
guide designers towards a comprehensive, robust solution. Farm,
however, is not intended to provide a complete simulation solution
- instead it tries to provide a relatively simple environment where
agents possess only the most germane functionality. Much of the
complexity of a real environment can be either abstracted away,
or approximated through the use of black-box style components
which provide agents with necessary information, when the actual
process of obtaining that information is unimportant. Thus, much
of the underlying modeling structures which make other simulators
unique is absent in Farm.

3.1 MASS
Our earlier simulation environment, the Multi-Agent System Sim-
ulator [8], is quite different than Farm. It provides a quantitative
view of the world, where agent activities and their interactions are
modeled using TÆMS consumable and non-consumable resources
have constraints which can affect behavior, and an agent’s beliefs
may differ from objective fact. As with the earlier example, agents
are built using JAF, which itself has a fair amount of complex-
ity. All of these features are desirable for evaluating sophisticated
agents in context, but at the same time they can be distracting when
only a subset of behaviors need analysis. In addition, the envi-
ronmental models and communication mechanisms are centralized,
and the agents, while distributed, run as separate processes, so the
environment as a whole does not scale well past 40 agents or so.
The DECAF [2] agent framework also has a similar character and
purpose to JAF/MASS, although it does not have a centralized sim-
ulation environment, and it offers built-in brokering and name ser-
vices which JAF lacks. In most other respects, DECAF compares
to Farm in much the same way as JAF.

3.2 MACE3J
MACE3J [1], like Farm, is primarily intended to simulate large
numbers of large-grained agents. It includes mechanisms for a dif-
ferent styles of event and messaging control, data collection, and a
lightweight agent definition model. It is also scalable, but does so
under a multiprocessor-based scheme, taking advantage of the ca-
pabilities inherent in lower level system software to manage many
of the inter-processes and inter-thread issues which arise in simu-
lation. While this method is undoubtedly more efficient than the
distributed approach we have selected, it also requires additional
overhead in the form of an actual multi-processor machine, or a
cluster of machines tied together with appropriate software. In this
sense, Farm is more closely related to the original MACE, which
also employed a distributed architecture.

Farm places more emphasis on the real-time aspects of agent be-
havior, as progress in a scenario is driven by the passage of time,



not events or messages, and the effectiveness of an agent is af-
fected by the duration of its computations. In other ways the two
environments are similar: Farm also supports repeatability, varied
communication models, transitionable agent models and data col-
lection and display tools. MACE3J’s support for randomized event
sequences is a feature we intend to add to Farm in the future.

3.3 Swarm
Like Farm, the Swarm [7] simulation environment is a modular
domain-independent framework. It offers the ability to probe agents’
state and beliefs, and graphically display them, similar to the log-
ging and graphing tools provided with Farm. Fundamentally, the
two differ in their representation of time passing. Swarm uses a
discrete event system, where a point in time in not reached or seen
until some event has been scheduled to take place then. Farm uses
a real time approach where time passes regardless of what events
are taking place. Both techniques are valid, but serve different pur-
poses. In addition, Swarm agents have a different character to them,
as they are generally modeled as a set of rules, or responses to stim-
uli. Conversely, Farm agents are built more like a conventional pro-
gram, where the designer develops classes and routines to exhibit
agent behavior. Again, both approaches have their merits depend-
ing on the problem to be addressed.

3.4 Radsim
Unlike the other environments mentioned here, Radsim is not a
general simulation framework. Instead it is a real-time, domain-
specific simulator designed to accurately model a collection of radar
platforms as they attempt to track targets moving through space[4].
We mention it here because it represents an extreme case in the
spectrum of simulators, where the actors in the system must rec-
ognize and handle virtually every aspect of a problem with a high
level of realism. This complexity is critical for testing comprehen-
sive solutions, particularly if the actual environment the solution
will run in is otherwise physically or practically unavailable. How-
ever, this same complexity can prevent the environment from scal-
ing, and hinder development of critical subsystems. We feel this
argues for a heterogeneous approach, where targeted, scalable sim-
ulation results, such as Farm can provide, coupled with the type of
detailed experiments that can be done in a complex environment
such as Radsim, will in the end produce a higher quality solution.

4. ARCHITECTURE
As mentioned earlier, a simulation environment built using Farm is
comprised of a number of components. Central to this arrangement
is the Farm core, which handles component, control and state man-
agement. The meta-agents, specialized components which manage
clusters of actual agents, implement much of the architectural-level
functionality supporting those agents. More generally, component
plug-ins provide the remainder of the system’s non-agent capa-
bilities, typically including both domain-independent and domain-
specific elements which create, manage and analyze the environ-
mental state.

An arbitrary set of meta-agents and plug-ins may be used for a
given simulation scenario. Additional meta-agents will better dis-
tribute the load incurred by the agent population. Intuitively, in an
environment with 100 agents, 5 meta-agents managing 20 agents
each will run faster than a single meta-agent with all 100 agents.
Experimental results looking at the effects of increasing the num-
ber of meta-agents can be seen in Figure 2, which shows its effect
on total simulation time. The experimental setup consisted of a

Metagents
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Ti
m

e 
(m

in
)

0

20

40

60

80

100

120

140

160
Farm
Optimal

Figure 2: The effect of increasing the number of meta-agents
on simulation duration.

scenario containing 100 agents over a period of 60 seconds, using
between one and five meta-agents. An optimal system’s duration
would be:

...or 100 minutes with a single meta-agent. This duration would de-
crease at a rate inversely proportional to the number of additional
metagents. Farm closely models the behavior of an optimal system,
with differences between the two largely attributable to Farm’s en-
vironmental modeling and component communication. The num-
ber of meta-agents can be increased arbitrarily, although it gener-
ally does not make sense to allocate more than one per processor.
The set of plug-ins that are used is also quite flexible. For example,
one might choose to reduce simulation overhead by running with-
out visualization, or with it to get a clearer picture of the system’s
state.

Closely related to the total number of meta-agents is the load placed
on each of them, and it generally makes sense to distribute the agent
population equally across meta-agents. If there are different classes
of agents, which may have different runtime characteristics, then
this distribution should also be reflected in the allocation. For ex-
ample, if we have 5 meta-agents, 80 agents of type and 20 of type
, the best allocation would place and on each meta-agent.
The environmental driver is generally responsible for this alloca-
tion, although it could also be done in a start-up script or by the
meta-agents themselves.

4.1 Control Flow
As the system starts up, the core acts as a registry for components,
which contact the core as they are invoked. Components start by
performing an initialization sequence, after which they wait for di-
rection from the core.

Control in the simulation is concerned with the passage of time.
Our ultimate goal in this is to ensure that each agent in the sys-
tem is provided the same amount of physical CPU time, to evaluate
how those agents would perform in a continuous-time environment.
In a perfect simulation, all agents would be able to operate asyn-
chronously in parallel. However, competition for the local proces-
sor by agents resident at the same meta-agent precludes this option
if we wish to ensure fairness among them, and having one pro-
cessor per agent is clearly infeasible for large numbers of agents.
Thus, we approximate this behavior by sequentially assigning in-
dividual agents a slice of time in which to run. In between such
opportunities an agent thread is paused, so the currently running
agent has exclusive access to the CPU, as much as this is possible



Agent

Data
Request

Data
Response

Agent

Data
Request

Data
Response

Agent

Data
Request

Data
Response

Meta-Agent
• Provides agents with access to state information

• Responds with data if already available locally
• Forwards request to server if not available locally

• Queues state changes until end of pulse

Farm Core
• Maintains environmental state

Figure 3: Meta-agent handling of data flow.

in a multitasking system. The simulation thus approximates how
the agent population as a whole would act under real-time condi-
tions, by breaking the timeline into a series of slices and providing
each agent the appropriate amount of time to run for each slice.

This process is separated into two different components of the sim-
ulator: the core and meta-agents. The core starts a pulse by noti-
fying all meta-agents in parallel that their agents may run for some
duration of time. Each meta-agent then sequentially wakes their
local agents for the specified amount of time, after which the core
is notified of completion. After all meta-agents have completed the
process, the core resumes execution. We refer to this process as
the agents receiving a pulse of time in which to run. Just before
and after this pulse, the components also allowed an indeterminate
amount of time in which to run. Thus, before the agents are pulsed,
a driver might update environmental data (e.g. a moving target’s
position). After a pulse, analysis tools might take time to update
statistics or visualizations.

Because of this style control flow, interactions do not take place
between agents within a single time pulse - the effects of one agent
will not be observable by another until that pulse has ended. This
can lead to a certain amount of data, communication or behavioral
incoherence in the system, the duration of which is bounded by the
length of the time slice. Mechanisms for addressing this issue are
covered in more detail in section 4.5.

The pseudo real-time nature of this control implies a certain amount
of non-determinism to otherwise identical scenarios, as external
events may effect the actual amount of processing time an agent
receives during a window of real time. If determinism is required,
Farm also supports a fixed notion of pulse time, which tracks the
agent’s execution progress, rather than just elapsed time. For exam-
ple, instead of allocating 100ms per pulse, agents could be allocated
a single pass through their main event loop. Thus, for each pulse,
each agent’s pulse method would be called once, and (assuming
the agents themselves are deterministic) the scenario as a whole
will be deterministic because the same sequence of activities will
be performed for each run. This allows repeatability, but prevents
one from drawing strong conclusions about how the agents behave
in real time.

4.2 Data Flow
The Farm core also serves as a repository of global data. This
is not inter-agent shared memory, instead it provides an indirect
means of interaction between components. For example, an en-
vironmental driver might be responsible for updating the Tar-
get1:Location property. Agents needing to know that target’s
location can then simply access this property. Similarly, an agent

could store some notion of it’s current state in Agent1:State.
An analysis component could then find all properties *:State to
capture a snapshot of all the agents in the system.

This type of mass data storage presents particular problems to our
environment. First, it is clearly a bottleneck, as all agents might be
reading or writing to this space during a given time period. Second,
it presents the potential for inconsistency, as other entities might
attempt to access a data element while another is writing to it.

The bottleneck problem cannot be wholly resolved, as there are
frequently instances where one component requires access to data
who’s size grows with the number of agents, however we can try
to mitigate the effects. First, meta-agents are used as a intermedi-
aries, which intercept property requests from agents and cache any
results, as see in Figure 3. Subsequent attempts to access the same
data will hit the cache first, and thus avoid accessing the core itself.
Writes back to the simulator are also intercepted, stored locally in
the meta-agent, and only written back to the simulator when the
pulse has ended. This has the effect of consolidating multiple writes
to the same variable. Secondly, the core offers an API where com-
ponents may exploit Java’s remote object passing capabilities to
perform functions locally in the core. For example, if the analysis
component above simply needs to compute an aggregate statistic, it
may instead elect to send the core an object capable of performing
the task. Then, instead of transferring a potentially large amount of
data from the core to be analyzed, the relatively small object is sent
to the core to do the job. The data is processed locally, and only
the final statistic is returned to the analysis component, avoiding
unnecessary data transfer1.

Data consistency problems can occur if an agent or component at-
tempts to access the same data while another is writing to it. These
types low level interactions are handled through synchronization,
however higher level problems can still arise. For example, if an
analysis tool computing an aggregate statistic intermingles its reads
with writes from an agent, the statistic will not necessarily be cor-
rect. Because agents are not supposed to be directly sharing data
they produce (they are assumed to do this via message passing),
inter-agent coherency issues are not as significant a problem. We
currently resolve these issues by sequentializing the activation of
plug-ins. Because no more than one may be active at a time, such
race conditions cannot occur. This also has the unfortunate side
effect of eliminating the benefits of parallelism among plug-ins,
although generally the potential speed improvement is negligible
compared to the gains obtained by running the meta-agents in par-
allel.

Centralization of the data also has the benefit of providing a central
location where this data may be easily stored. The core has built-in
functionality to continuously save this data over time. Such save
files can then be played back again, and even interacted with as
though it were live. For example, one might complete and save an
example run without any analysis components. Later, this run can
be replayed, this time with only analysis components, which will
behave exactly as they would have had they been present when it
was recorded. Similarly, one might play back that same run with

1This may beg the question, why distribute such components in the
first place, since the real computation is being done locally in the
core? Even though the raw statistic is computed at the core, this
data will still need to be stored and potentially visualized. Thus
resource requirements remain which can be satisfied by distributing
the component on a remote host.



Agent

Incoming
Messages

Outgoing
Messages

Agent

Incoming
Messages

Outgoing
Messages

Agent

Incoming
Messages

Outgoing
Messages

Meta-Agent
• Communication is performed outside of simulation core

• Agents send and receive messages through meta-agents
• Meta-agent then routes messages to destination

TCP From
Meta-Agents

TCP To
Meta-Agents

Figure 4: Farm communication flow.

only visualization present to achieve a movie-like effect. This is es-
pecially useful for demonstrations, when sufficient computational
power for a real simulation may be unavailable. From a testing
standpoint, one could also record the bare environment over a pe-
riod of time without any agents being present. Then that exact sce-
nario could be played back multiple times with agents present, to
help debug and evaluate changes made to the agents.

4.3 Communication
To improve scalability, communication takes place entirely outside
of the core. Instead, communication occurs between meta-agents,
and individual agents send and receive messages via their manag-
ing meta-agent, as shown in Figure 4. When a new meta-agent
registers with the core, all existing meta-agents are told about the
addition, and the new meta-agent is given a list of all other mem-
bers - thus a fully-connected graph of meta-agents is maintained.
When an agent sends a message, it is added to a per-agent out-
going queue. The meta-agent selects ready messages from these
queues and checks its address table to determine what meta-agent
the recipient belongs to. If the meta-agent is found, the message is
delivered. If it is not found, it uses the list of known meta-agents
to find the appropriate one, and that mapping is then recorded in
the address table. Thus each meta-agent will learn a mapping for
only necessary destination agents. As messages are received by a
meta-agent, they are added to a per-agent incoming message queue,
which is polled by the agent as necessary.

We wish to have a relatively realistic network model, so care is
taken when sending messages. A potential race condition also ex-
ists for message delivery, as one agent’s message may reach another
agent before it has technically been sent in the global time line. As
messages are added to an agent’s outgoing queue, they are marked
with a delivery time. The delivery time of a message will be that
of the prior message in the queue, plus a bounded random tran-
sit duration which can be weighted by the length of the message.
A message loss rate probability may also be set. At the end of a
pulse, each meta-agent searches the outgoing message queues of
its local agents, and sends messages if permitted by the assigned
delivery times. These messages are queued for delivery at the des-
tination meta-agent. At the beginning of the next pulse, those re-
ceived messages are delivered to the appropriate incoming queue
for each agent. The agent is then responsible monitoring its queue
and handling new messages. We are investigating other potential
communication paradigms, such as a defined routing network or a
distance-limited broadcast scheme, to provide additional commu-
nications scenarios for agents to explore.

While this decentralized communication mechanism scales very
well, it prevents other components from directly observing or ana-
lyzing message traffic. Gross statistics, such as total incoming and
outgoing messages, are currently computed and stored as global

Agents
100 300 500 700 900 1100

Ti
m

e 
(m

in
)

0

10

20

30

40

50

60

70

80

Figure 5: The effect of increasing the number of agents on sim-
ulation duration.

properties by individual meta-agents. Other statistics can be com-
puted in a similar manner to compensate for this design decision.

The exact messaging protocol is left intentionally unspecified and
abstract. Agents simply send Message objects, which can be ex-
tended as needed. The destination agent then receives Message
objects in its incoming queue. Parsing of the object is performed
automatically.

4.4 Scalability
Some discussion of the scalability of Farm has been mentioned ear-
lier. The component architecture of Farm, and specifically its abil-
ity to segregate the agent population into groups under the control
of distributed meta-agents, leads the environment to large scale sce-
narios. Because the agents effectively run in parallel because of this
distribution, the primary constraint is having available computing
power to run such simulations in a reasonable amount of time.

Figure 5 shows a sample of Farm’s scalability characteristics, from
the results of a series of repeated trials with a scenario length of
60 seconds. The number of meta-agents was fixed at five, and the
number of agents gradually increased from 100 to 1000, with a
1:4 ratio of targets to sensors. The distributed resource allocation
domain from section 5.1 was used, because the movement of targets
provides a need for continual re-evaluation and activity. The agents
in this domain do actual problem solving, and use communication
to negotiate over areas of contention. The initial results seen in this
graph are promising.

In comparing Figure 5 with 2, one might also note a significant dif-
ference in simulation duration. For example, the 100 agent case
here took only 6 minutes, as compared to 124 minutes previously.
Both experiments used the same machines, domain and agent pop-
ulation, but the trials from Figure 5 allowed the agents to signal
their meta-agent if they have no additional work to do. This allows
the agent’s pulse cycle to be ended prematurely, with potentially
large savings in actual running time without loss of precision in the
simulation results. In our scenario, if there are more agents in an
environment of constant size, there is a higher probability that ad-
ditional computation will be needed to resolve the correspondingly
larger number of conflicts. This is seen in non-linearity of the data
in Figure 5, where disporportionately more time is used in larger
populations. In this way, the system avoids expending effort sim-
ulating agents’ “idle” time, which gives Farm some of the benefit
that a strictly event-based simulation environment would posses.

Perhaps more interesting than “how large can it get?” is the ques-



tion “what prevents it from getting large?”. No design is perfect,
and parts of Farm’s architecture can inhibit scale in order to per-
mit other features. The most constraining is the centralization of
data storage, as outlined in section 4.2. This is necessary to facili-
tate state analysis, but excessive usage can accumulate a large time
penalty. In general, such scenarios will just take longer to process
than if the data storage were completely distributed. Data caching
and delayed write-backs ensure agents are not unduly penalized for
the time required to update data to the core, and we are currently
investigating methods to account and compensate for the time re-
quired to fetch information.

Another constraint, related to data flow, is environmental mainte-
nance. The task of creating and maintaining the simulation envi-
ronment (e.g. placing sensors, moving targets, etc.) is typically
the responsibility of a single component. Like any other, this com-
ponent may be distributed for load balancing purposes, but it is
still a single process limited to the resources present at its local
processor. Like the agents, it also accesses state data, but since it
has the responsibility of maintaining the entire state, the potential
burden is much more concentrated. Extremely large, complex or
dynamic environments might therefore benefit from separating the
environmental maintenance into separate components, much as the
agents themselves are separated. Thus, one might have a target
component, a sensor component, and the like, each with a specific,
tractable responsibility.

4.5 Coherency
Whenever an environment is distributed, the problem of coherency
arises because entities on one processor may have data inconsistent
with that on another. One must try to make sure that interactions
between processors are as faithfully represented as those occurring
on the same processor.

The data consistency problem in Farm manifests itself in the time
between when one agent changes a value to when that change can
be observed by another. In between those events, the system has
lost some measure of coherence. To avoid potential race conditions,
the meta-agents cache value modifications during a pulse, and write
those values back when the pulse ends, as discussed in section 4.2.
Thus, the end of a pulse acts as a synchronization point, and the du-
ration of each pulse represents the maximum length of the duration
of incoherence. This value can be specified to whatever is appro-
priate (a typical value is 100ms for real time applications). More
generally, because agent interactions do not occur within a pulse,
the pulse duration is the effective granularity of the simulation. A
smaller value will lead to finer granularity and greater coherence,
but will increase the overhead associated with running the system
because of the additional synchronization points.

Communication coherency is also important. Farm must ensure
that a message is delivered when appropriate, and from the recip-
ient’s perspective, not before it was actually sent. As outlined in
section 4.3, this is accomplished in a manner similar to the data
flow. Messages from the agents are queued for delivery during the
pulse, and only sent after the pulse has completed. The receiving
meta-agent queues incoming messages, which are delivered to their
final recipient when the specified delivery time has been reached.

A more insidious form of incoherency occurs when the meta-agents
are distributed across a heterogeneous set of machines. Because the
agent’s computational effort is measured in seconds, one group of
agents may effectively be allocated more time simply because the

processor they happen to reside on can perform more computations
in the same amount of time. A few strategies can be employed to
compensate for this problem. One could compute a processor-to-
real time ratio for all machines in the pool, and use that to scale the
actual time allocated by individual meta-agents. One could also
statistically remove the problem through repeated trials where the
agent population is shuffled between hosts. A third option (clearly
requiring much less effort) is to simply ensure your server pool is
homogeneous, or accept the performance differences as a byprod-
uct of working in a realistic environment. For the results presented
in this paper, the experiments were performed using a group of sim-
ilarly configured workstations.

5. ENVIRONMENTS
Several computational environments have been implemented using
Farm, each taking about two days to implement the environment
itself, and the agents taking from a day to a week depending on their
complexity and the availability of source code. Each environment
generally consists of a driver, which instantiates and maintains the
environment, and analysis components, which generates statistics
at runtime, and a set of one or more types of agents. In addition,
several generic components have been developed which may be
used across all environments. These include a graphing component,
property log, and time driver.

5.1 Distributed Resource Allocation
The distributed resource allocation environment is an abstraction
of the distributed sensor network problem [4]. A complete solution
would reason about a range of issues, from role assignment to low
level task scheduling to multi-target data association. The underly-
ing problem, however, is much more straightforward. The environ-
ment consists of a number of sensors and mobile targets, and the
high level objective is to use the sensors to track them. Each sensor
has limitations on its range and usage. This then reduces to a re-
source allocation problem, where the attention of the sensors must
be allocated so that all the targets are tracked.

Our comprehensive solution to this problem is implemented as a
homogeneous collection of sophisticated JAF agents, which run in
real time in both the Radsim simulator and hardware. In the simpler
Farm environment, there are two simpler types of agents: sensor
agents, each of which controls a single sensor, and tracking agents,
each of which is responsible for tracking a single target. The driver
provides the track managers with a list of candidate sensors, i.e.
those which are in range of its target, and the track manager must
determine which sensors it wants to use. The track managers must
then coordinate to resolve conflicts so all targets are tracked. The
SPAM negotiation protocol [5] was implemented to solve this prob-
lem.

This domain was the incentive behind Farm’s creation, and has
shown itself to be particularly useful in debugging and evaluating
SPAM. Because Farm scales to much greater numbers, and also
eliminates most of the complicating, but ultimately tangential fac-
tors (relative to resource allocation), development of the protocol
was much more tractable. We were also able to directly use al-
most all the code from the original JAF-based implementation, so
improvements made in the Farm environment were easily mapped
back the more realistic Radsim and hardware environments.

5.2 Graph Coloring
The well-known graph coloring domain was implemented as a means
of both testing the generality of SPAM in a new domain, and also



to compare its performance against reference protocols known to
work on graph coloring. As above, a driver was implemented which
creates the nodes and edges of the graph. We use the layout proce-
dure described in [9] to produce satisfiable graphs of arbitrary size
using a defined number of colors. Currently the resulting graph is
static, although we will add an additional dynamic component to
it in the near future. A separate analysis component evaluates the
possible and actual number of coloring constraints, which is then
visualized using the graphing component. Three agents have been
implemented in this domain, using protocols derived from descrip-
tions in [9].

5.3 SAT
The boolean satisfiability problem, or n-SAT, is another well-studied
domain. Our driver for this environment constructs random SAT
problems with a specified number of variables, clauses and clause
length. It can also read and instantiate CNF formula encoded in the
DIMACS format, allowing researchers to make use of the large col-
lections of SAT benchmark materials available online. Individual
agents correspond to the variables from the formula, which must
then interact and exchange information in some way to find a solu-
tion if one exists. As with other domains, an analysis component
also exists which can monitor the progress of the search over time.

6. SUMMARY
Farm is a multi-agent simulation environment designed to handle
large scale simulations and custom designed analysis, visualization
and content while tracking agent activity in simulated real time.
The main simulation entity acts as a hub, by accepting and man-
aging connections from distributed plugins, providing execution
prompts to those plug-ins, and maintaining a common, globally ac-
cessible data repository. Agents in the system are implemented as
threads, but are autonomous in character, require communication
to interact, and do not share memory. These agents are organized
in groups on distributed processors, where their real-time CPU us-
age is monitored and rationed in accordance with the simulated en-
vironment’s design. By distributing both the agents and analysis
tools in this fashion, Farm is able to exploit available computing
power to model very large environments, while retaining the abil-
ity to effectively model real world performance.

Issues relating to scale and coherency are closely tied to the dis-
tributed nature of the system. On one hand, data flow can hinder
scale because state information is stored centrally at the simulation
core. On the other, because agents are distributed across proces-
sors, care must be take to ensure temporal, data and communication
consistency. Different strategies for managing these issues were
covered.

The environment so far has been used to create scenarios contain-
ing more than 5000 individual agents. Several domains have also
been implemented, including a distributed sensor network, graph
coloring and SAT. Further information on Farm can be found at:
http://mas.cs.umass.edu/research/farm

7. REFERENCES
[1] L. Gasser and K. Kakugawa. Mace3j: fast flexible distributed

simulation of large, large-grain multi-agent systems. In
Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, pages 745–752.
ACM Press, 2002.

[2] J. R. Graham, K. S. Decker, and M. Mersic. Decaf - a flexible

multi agent system architecture. Autonomous Agents and
Multi-Agent Systems, 2003.

[3] S. Hanks, M. E. Pollack, and P. R. Cohen. Benchmarks, test
beds, controlled experimentation, and the design of agent
architectures. AI Magazine, 14(4):17–42, Winter 1993.

[4] V. Lesser, C. Ortiz, and M. Tambe. Distributed Sensor
Networks: A multiagent perspective. Kluwer Publishers, 2003.

[5] R. Mailler, R. Vincent, V. Lesser, J. Shen, and T. Middlekoop.
Soft real-time, cooperative negotiation for distributed resource
allocation. In Procceedings of the 2001 AAAI Fall Symposium
on Negotiation, 2001.

[6] M. G. Marietto, N. David, J. S. Sichman, and H. Coelho.
Requirements analysis of multi-agent-based simulation
platforms: State of the art and new prospects, 2002.

[7] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The
swarm simulation system: A toolkit for building multi-agent
simulations. Web paper:
http://www.santefe.edu/projects/swarm/, Sante Fe Institute,
1996.

[8] R. Vincent, B. Horling, and V. Lesser. An agent infrastructure
to build and evaluate multi-agent systems: The java agent
framework and multi-agent system simulator. In Lecture Notes
in Artificial Intelligence: Infrastructure for Agents,
Multi-Agent Systems, and Scalable Multi-Agent Systems.,
volume 1887. Wagner and Rana (eds.), Springer,, January
2001.

[9] M. Yokoo. Distributed Constraint Satisfaction. Springer
Series on Agent Technology. Springer, 1998.


