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Abstract

We give a probabilistic packet marking protocol for the multiple source version of the IP
Traceback problem. Our protocol is successful with high probability, regardless of the initial
distribution over packets used by the attacker, provided that the & nodes of the attacker are
chosen uniformly at random from the set of all possible nodes, and that the intermediate nodes
have a minimal amount of information concerning their location along the path of attack.

1 Introduction

In this paper, we provide further results on probabilistic packet marking for the IP Traceback prob-
lem. In particular, we provide a significant improvement for the case of distributed denial of service
attacks, where the packets are being sent to the victim from multiple locations simultaneously.
This is a very important consideration, since this is a common, and also quite destructive, form for
these attacks.

In [1], it was shown that for the case of k paths of attack, log(2k — 1) header bits were required,
and if the attacker is limited in an appropriate manner, then log(2k 4 1) header bits are sufficient.
In this paper, we address the question of how the attacker should be limited. In [1], it is assumed
that the attacker sets the marking bits to 0 for every packet. This is quite restrictive, and leads to
a protocol with no guarantees as to the power of the victim to determine where the attack comes
from if the attacker simply sets some of the initial header bits to 1. In this paper, we demonstrate a
protocol that provides the victim with the source of the attack even in the case where the attacker
sets the initial bits arbitrarily.

Instead, we make two alternative assumptions that are much more realistic in terms of the practical
applications of probabilistic packet marking. First, we assume that the & paths used by the attacker
are chosen randomly (instead of allowing the attacker to use an arbitrary set of paths). Note that
this is a reasonable assumption in the Internet, since an attacker cannot chose arbitrary nodes
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to corrupt; rather, it is only able to target nodes that are compromised. The lower bound of
log(2k — 1) header bits from [1] still applies to this case. Second, we assume that the intermediate
nodes have a small amount of information concerning their location along the path of attack (the
exact assumption is described below). This is also a reasonable assumption in the Internet, and
the lower bound still applies to this case as well.

The new protocol we introduce is a modified form of the protocol for the case of multiple paths
of attack from [1]. The main new contribution of this work is substantially improved analysis over
that provided in [1].

2 Model

We assume the following: there is a set of k parallel linear arrays (henceforth referred to as paths)
consisting of n nodes between the attacker and the victim. Each node of a path holds a single bit.
The victim must determine k strings, each consisting of n bits, corresponding to the bits held by
each path. The victim does not need to determine which string corresponds to which path. We
assume that each of the bits is chosen by an independent and fair coin toss.

For each packet, the attacker chooses which of the k£ paths that packet uses to travel to the victim.
When the packet passes the ith node of that path, that node has access to the incoming bits of the
packet, its single bit, as well as an unlimited supply of randomness (but the random bits cannot
be remembered). It also has access to a small amount of location information described below, but
no other information. In particular, the intermediate nodes have no state information. Based on
the information a node has, it chooses the bits for the packet it sends to its successor on the path.
The victim sees the bits sent by the last node along the path, but does not receive the information
of which path the bits travelled along. After receiving sufficiently many packets, the victim must
(w.h.p.) determine the strings that were on paths used for a fraction of at least ¥ of the packets,
for a parameter o < 1.

We also assume that the nodes along each path have a small amount of information as to their
location along that path. Note that this is a reasonable assumption in the Internet, since a router
has access to the destination of a given packet, and nodes are likely to have some knowledge of
whether that destination is close by or not. In particular, we assume that each node ¢ has a
predicate C such that if ¢ has distance of at most log? k hops from the victim of the attack, then
C(i) = TRUE, and if i is the node adjacent to the attacker, then C(i) = FALSE. For the
remainder of the nodes along the path, the value of C(i) can be either TRUFE or FALSE. For
example, if log> k < n/2, it is sufficient for a node to know if it is in the first or second half of
the routing path. For ease of presentation, we make two assumptions that are not difficult to
remove: (1) we assume here that C(7) is the same for all paths, and we assume that all ¢ for which
C(i) = TRUE are closer to the victim than any ¢ for which C(i) = FALSE. We denote by Cpax
the number of ¢ for which C(i) = TRUE.

3 The protocol

Let d = 2° — 1. We define two different processes for mapping a probability distribution over packets
to another probability distribution over packets. For each of these, let p; ; be the probability that



the packet ¢ gets mapped to packet j. Consider first the mapping zero:

e For 0 <:<d, p;j; = 27% and pip=1-— 21,
e Fori# j,and j #0, p;j = 0.
® poo = 1.

The second mapping is called one:

o For 1 <i<j<d, p;;=2%3(I) 4273,
e For1<j<i<dori=0<j<d, p;=2"%.
o For j=0<i<d pij=1-Y7_pij

The protocol from [1] consisted of a node with the bit 0 simply applying mapping zero. A node
with the bit 1 applies mapping one. In the new protocol, a node i with the bit 0 and C(i) =
TRUFE applies the mapping zero twice, followed by the mapping one once, followed by three more
applications of the mapping zero. A node i with the bit 1 and C(i) = TRUEFE applies the same
process, except that the last mapping zero is replaced with a one. A node i with the bit 0 and
C(i) = FALSE applies the mapping zero ck + 1 times, for a suitable constant ¢ to be described
below. A node i with the bit 1 and C(i) = FALSE applies the mapping zero ck times, followed
by the mapping one.

It will also be convenient for us to think of the victim applying the transformation one on each
packet it receives.

Theorem 1 After the victim has received sufficiently many packets, with probability at least 1 — A,
the victim has enough information to determine every string that is on a path used for at least a
fraction of T of the packets the attacker sends.

Proof: Denote the input of k& n-bit strings available to the attacker as P ... P;. Assume first that
the attacker sets the initial bits of every packet to 0 (as was assumed throughout in the protocol of
[1]). Later, we shall see how to relax this assumption. Let p;(P;) be the probability that a packet
sent on a path with string P; arrives at the victim with its bits set to the value i.

Let Bj be the rth bit (starting from the attacker) of the string P;. Let

C, n
1 221 _ 1 1 _ _
XP]- _ g + } : (5)6(1* 1)+4(B; + g) + } : (_)(ck+1)(r Cmax 1)+6Cmax+4B;.
r=1 r=Cmax+1

We shall refer to Xp, as the value of the string P;. Note that if the victim is informed of the value
of a string or even a sufficiently good estimate of this value, then this gives it sufficient information
to determine all the bits of that string. With the assumption that the initial bits are set to 0, Claim
9 from [1] demonstrates that for 0 < i < d:



Let A\; be the fraction of the received packets that are sent by the attacker with string P;. The
probability that a randomly chosen packet from the set of received packets has its bits set to ¢ is
Qi = Z] 1 Ajpi(Pj). The set of received packets provides the victim with an estimate on the values
of the g;. Although the stochastic variance inherent to the communication process means that it is
unlikely for the victim to know the g;s exactly, we first assume that the victim is given the exact
values of the ¢;s, and demonstrate that this uniquely determines the entire set of strings used by
the attacker. This allows us to build some intuition for why the victim is able to decode the set of
strings. We shall then remove both this assumption, as well as the assumption that the attacker
set the initial bits to 0.

We show that if we assume that the ¢;s do not determine the strings uniquely, this leads to a
contradiction. Let V' (P;) be the 2k-dimensional vector where component i of V(P;) is p;(P;). We
shall refer to V (P;) as the string vector for P;. Assume that there is some set of strings Py 1 ... Pay
and probabilities )\k+1 . Agg, such that ZFl NV(P;) = Z] ~r41 AV (Pj). For the set of strings to
not be uniquely determined, it must be the case that there is some string P; with A; > 0 such that
if j <k then P; & {Pyxy1,..., P}, and if j > k then P; & {Py,...,Py}. Assume here that such a
string is Pyy; the case where j < k is similar. In this case, we see that

2k—1

k
AorV (Pay) = Z - > NV(P, (2)

j=k+1

There may be strings that appear in both P, ..., P, and Py41,..., Pa;. However, by replacing any
such string with another unused string, we see that (2) implies that there is some set of 2k distinct

strings Pj ... Py, and real numbers A} ... X}, with A5, > 0, such that
2k—1
oxV (Pyy) = Z NV (3)

Now, consider the 2k x 2k matrix M where entry M;; = p;(P;). From (3), we see that M does

X\
not have full rank. However, from (1), we see that M;; = ( : ) The matrix M’, where entry

X\
M=t , is a Vandermonde matrix. Since the strings Pj ... Pj, are distinct, if i # j then

X P! # Xpr, and thus M’ has full rank. Since the victim applies the mapping one on each received
packet, Wej see that for all strings P, Xp # 0. This implies that the matrix M must have full rank
as well, which is a contradiction. Therefore, the exact values of the g; exactly determines all strings
P;, 1 < j <k, such that Ay > 0.

We next examine the effect of removing our two assumptions. In particular, 1) instead of the victim
knowing the values of the g; exactly, it only has the information provided it by the packets it has
received: a series of samples from the probability distribution. Also, 2) the attacker, instead of
being restricted to setting the initial bits to 0 on each packet, is allowed to employ any strategy it
wants for the initial bits.

We can think of the values ¢; as a point in 2k-dimensional space, where the coordinate for dimension
¢t is ¢;. The effect of removing both of the two assumptions above is that instead of knowing the



exact point defined by the ¢;s, we instead know a point that we shall show is (whp) sufficiently
close to determine any string that is used to send a large enough fraction of the packets. Let @ be
the point defined by the ¢;s. Let Dy = gacmax+(cki1)(n—cmax)- The estimate of the point @ that is

used is as follows: the victim collects N = g—kz In % packets. For 1 < ¢ < 2k, let Y; be the number
0
of times that packet ¢ is seen in the N packets. We set g; = Y;/N.

The victim only returns sets of strings that are likely to lead to seeing the ¢;s that it computes.
Furthermore, it restricts its attention to those sets of strings that are not too close together, since
it is unlikely that randomly chosen strings will be too close together. In particular, consider the
following definition:

Definition 1 We say that a set of k strings Py, ..., Py is well dispersed if Vj, 1 < j < k,IL; 2| Xp, —
XP,-| > 2—14k‘

The victim returns any string P; such that P; is contained in a convex combination of at most k
string vectors, with the coefficient associated with P; being at least 7, such that (a) the Euclidean
distance of the resulting convex combination from the corresponding point defined by the g;s is at
most Dy, and (b) the set of k strings is well dispersed.

We first point out that it is likely that the attacker has a set of strings that is well dispersed:

Claim 1 Say we choose a set R of k strings independently and uniformly at random. The proba-
bility that R is not well dispersed is at most e~ €(Min(k:.Cmax—2l0gk) - £ some constant e.

Proof: Note that the value for a randomly chosen string consists of the second bit being chosen
randomly, the subsequent 5 bits being fixed, and then every 6th bit being chosen randomly and the
other 5 bits being fixed, until Cl,ax bits have been chosen randomly, and then one in every ck + 1
bits being chosen randomly.

The probability that any fixed pair of strings ¢ and j have a string value that agrees on the first
6Cmax + 1 bits is at most 2~ Cmax, Thus, the probability that any pair of strings agrees on the first
6Cmax + 1 bits is at most 2~ Cmaxt2l08k  Thys we henceforth assume that any pair of string values
disagrees somewhere on the first 6Chax + 1 bits.

We next examine a single string P;, and bound the probability that the pairwise products with
respect to this string are too small. We see that the distribution on |Xp, — Xp,| stochastically
dominates the distribution on (3 — ;)" %", where h is the number of heads seen before the first

tail in a sequence of flips of a fair coin. Thus, II;+;|Xp, — Xp,| stochastically dominates (%)’”‘6’3’6,

where hy, is the number of heads seen before a total of k tails have been seen in a sequence of flips
of a fair coin. Standard Chernoff bound techniques suffice to show that Pr[hj > 2k] < e¥, for
some positive constant €.

Thus, by taking a union bound over all possible strings j, Pr[3j s.t. II;+;|Xp, — Xp,| > (3L)13k] <
|

ek-1ogk  The claim now follows from the fact that (3Ly13k > (1)1dk

We demonstrate that with probability at least 1 — A, the victim returns every string P such that a
fraction of at least 7 of the packets travel on P, and no strings that are not used by the attacker at
all. To do so, we prove two lemmas: We first demonstrate that (whp) the point determined by the



victim is not more than Dy distance from ). We then demonstrate that every convex combination
of string vectors that has a coeflicient associated with string P; of at least 7, where P; is not used

by the attacker, has a Euclidean distance from @ of more than 2Dy. Let D, = \/Z?L(Qi —q)?.

Lemma 1 Pr[D, > Dg] < A.

Proof: Note that for each i, |g;—E[g;]| is the distance caused by stochastic variation, and |¢;—E[g]|
is the distance caused by the attacker not setting the initial bits to 0. Standard Chernoff bound
techniques demonstrate that with N packets, Pr[\/Zgil(E[(ji] — ;)2 > Dy/2] < A. Thus, we only
need to demonstrate that the effect of the attacker setting the initial bits arbitrarily cannot cause
the distance from the point @ to be more than Dg/2.

To examine the effect of arbitrary settings of the initial bits, note that since the mappings performed
by the routers are linear, it is sufficient for us to consider each of the cases where the attacker always
sets the initial bits to the same value, for all possible values, and to show that for each of these
individually, the distance from @ is at most Dy/2. This is sufficient, since the strategy used by the
attacker must be some convex combination of these strategies.

The lemma follows from the following claim, which demonstrates that the distance from @ is at
most

3
26Cmax+(ck+1)(n—Cmax) *

Claim 2 For i a positive integer, let u(i) = max(0,¢ — 2). After a packet has had £ > 1 sets
of three mappings applied to it, where the first two mappings in each set are the mapping zero,

|4i—El@i]| < 55t

Proof: We prove this by induction on £. For the base case, consider £ = 1. When the last mapping
in the set of three is zero, the claim follows simply from the definition of the mapping zero. When
the last mapping is one, the portion of the mapping from ¢ to j (which is only relevant when j > i)
is (i)i—; With the combination of the 2 zero mappings that are applied before the one, we see
that the amount of i that goes to j is ({)2% For j = 1, only ¢ = 1 is relevant, and thus we see
that in the case that the incoming packet is a 1, after the first router has applied its mapping,
lg1—E[@1]| < %, as desired. For j > 1, we see that the amount of i that goes to j is at most 2%
Summing over all relevant ¢, we get at most 52%, which is at most 2]-%, as desired.

For the inductive step, if we assume that the inductive hypothesis holds, then the case where the
last mapping is a zero is easy. For the case where the last mapping is a one, we saw for the base
case that the total relevant probability of going from ¢ = 1 to j = 1 is at most %, and so the
inductive step works for |g;—E[q;]|. For the case of 7 > 1 we also saw in the base case that the
total relevant probability of being j after this step is at most 21% Even if this all comes from the
largest possible value at the previous router (i.e., i = 1), this is still sufficient for the inductive step.

Note that Lemma 1 implies that with high probability, the victim returns all strings that it is
required to return. To show that with high probability the victim does not return any strings that
it should not return, we show that D, < Dy also implies that there can be no string P not used by
the attacker such that P is returned by the victim.



Lemma 2 If the set of strings used by the attacker is well dispersed, then every conver combination
of k well dispersed string vectors that contains a string P;, not used by the attacker, with a coefficient
of at least 7, has a Euclidean distance from Q of at least 2Dy.

Proof: If such a string exists, then there must be some set of strings P; ... Py, where Py ... Py
are the well dispersed strings used by the attacker, Pjy;...Ps; are the well dispersed strings
contained in the incorrect convex combination, and Psy is the string returned incorrectly. Thus,
Py, & {Py,..., Py}, and there exist probabilities A; ... Agg, with Ay > Z, such that

2k 2k k 2
> ( > Api(Py) — Z/\jm(Pj)) < 2Dy
j=1

i=1 \j=k+1

This in turn implies that there are 2k distinct strings Py, ..., Py, and real numbers Aj ... A}, , with
bk > 7, such that

2k 2% -1 2
D | Mowpi(Pyy) = > Nipi(P)) | < 2Do (4)
7=1

i=1

Let D; be the Euclidean distance in R2* from the point A,V (Pj.) to the subspace spanned
by V(P{),...V(P3y,_y). For (4) to be true, it must be the case that D; < 2Dj. Thus, to
demonstrate that no such incorrectly returned string Ps; can exist, it is sufficient to show that
D; > 2Dy. Let Vs, be the 2k-dimensional volume of the parallelepiped defined by the vectors
V(P]),...,V(Py 1), AoV (Py;) in R2%*. Let Voi_1 be the (2k — 1)-dimensional volume of the par-

allelepiped defined by the vectors V(P}),...,V(Py.,_ ;) in R2¥. We see that D; = v\;szl, and thus

we consider each of Vo and Vo ; separately.

Lemma 3
2k
Var =X [ (XP; - XPJ’.) H Xpr
1<i<j<2k i=1
Proof: Due to the convenient form of the vectors V(P{),...,V(P;,), we can easily determine Voy.

In particular, a standard result from linear algebra is that Vs, is equal to the absolute value of the
determinant of the matrix 7', where column j of T, for 1 < j <2k —1, is V(P]f), and column 2k is
the vector AoV (Pyy).

To compute |det(T')|, consider the matrix 7", where column j of 7", for 1 < j < 2k, is XL;. By (1),
i
the matrix 7" is Vandermonde, and thus
"N _
det(T) = ] (XPZ_/ - XPJ/_) .
1<i<i<2k

The lemma then follows from the fact that to get T from T”, we merely multiply each column ¢ of
T' by Xp,, with the exception of column 2k, which is multiplied by Ao Xp,. [ |



Lemma 4

2k—1

V< L (¥r = Xe) THXR(+ X5
1<i<j<2k—-1 i=1 ¢

Proof: Let V2(P;) be the vector consisting of the components 1, Xp;, X}%j, . ,X%ffl. Let V3(P;) be

the vector consisting of the components 0, Xp,, X}%j, . ,X%ffl. Let V4(Pj) be the vector consisting
2 2k—2
of the components 0, I,XP].,XP]_, . ,XPj .

For e € {2,3,4}, let V§, | be the (2k — 1)-dimensional volume of the parallelepiped defined by the
vectors VE(P)),...,Vé(Py, ;) in R2*.

Since V/(P;) is simply V(P;) with every component multiplied by Xp,, Vor—1 = V3;_; - 25t x P

Similarly, ngfl e Vék,I . ?ﬁ;l X Pl Since V;lkfl is the 2k — 1 dimensional volume of a set of

2k — 1 vectors in 2k — 1 dimensions, V24k_1 is the absolute value of the determinant of the matrix

formed by the vectors V*(P)),...,V*4(Py, ;). Since this matrix is Vandermonde, its determinant
is
[T (Xm-Xe).
1<i<j<2k—1

Thus, the lemma follows from the following claim:

1+X2k71
. _ P!
Claim 3 V3, | < V3§ TI7%;" Xpr
Proof: Consider the process of changing from the vectors VZ(P)),...,V2(P;, ;) to the vectors

V3(P]),...,V3(Ps,_,), and consider the pairing of each vector of the type V2 with the correspond-
ing vector of the type V3. This process has two effects on the parellelapipid defined by these
vectors: it changes the length of the vectors, and it changes the angle between vectors. Note first
that for any two pairs of corresponding vectors, the angle between those two vectors for V3 is at
least as large as the angle between those two vectors for V2. Since all angles are between 0 and 90
degrees, the effect of the change in angles can only increase the volume of the parallelapipid. Thus,
we only need to consider the change in length for each vector.

The length of VZ(P;) is Ly = \/1+X}23,- +X§13]_ +...+X;13f72. The length of V3(P;) is Ly =

Xijfl
\/Xl%j + ngj +...+ X;ﬁf_z. It is easy to see from this that Vj, L; < X,I:]. L,. [ ] ]
J
Since Dy = V‘;}f:, we see that
2k—1 _
Ao Xpy T (X = Xy, ) gy %
12 2%—1 2%k—1 Z—I_I(XP!—XP'),
Hi:f (1 +XP/_ ) 16 ey i 2k

where the second inequality follows from the fact that for 1 < ¢ < 2k, % < Xpr < %. To complete
the proof, we need to demonstrate that for any set of 2k string vectors formed from two well
dispersed sets of k string vectors, this quantity will not be too large.



Claim 4 Let Sy = {Xp,,...,Xp,} and So = {Xp, ,,...,Xp, } be two sets of well dispersed string
vectors such that Xp, & Si.

1

H [ Xp = Xpy | 2 929k +6Cmax+(n—Crmax—1)(ck+1)+1"
XpieslUSQ—szk

Proof: Let Xp, be the element of S; that minimizes |X P, —Xp,,|. Note that since the last bit of the
strings must be different, | Xp,, — Xp,, | > e Cmax nerrnTT- Furthermore, since Xp,, is closer
to Xp,, than any other element in S;, it must be the case that Vi, | Xp, — Xp,, | > |Xp, — Xp,.|/2.
The claim then follows from the definition of a well dispersed set of string vectors. [

The Lemma (and hence the Theorem) now follows by observing that if we set ¢ = 36 + log é, then
for k > 2 it must be the case that D; > 2Dy. [ ]

4 Conclusion
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