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Abstract

Automatic segmentation of stroke lesions in magnetic rasoe imagery is a dif-
ficult problem because anatomical knowledge is requiredifermost accurate deci-
sions. Without such knowledge, classification rules seesorisistent. We propose
a hybrid boundary and region based segmentation modelunoib nonlinear scale-
space and geometric active contours that captures theugasegmentation rules nec-
essary to segment lesions. After a user selects a pointnvmthmaged tissue and
another point within healthy tissue, the image is examirtesbaeral levels of detalil.
At each such scale, the lesion is segmented several timearbyng a parameter that
models the range of criteria for boundaries between healtidydamaged tissue. These
segmentations are collected, and the relative frequentgsafe being labeled lesion
is regarded as a measure of confidence in the classificatitiredfssue as damaged.
Experiments compare volumes and segmentations of lesigan gy physicians to
those given by the automatic method. Performance upperdsoare established by
matching automatic segmentation parameters (scalehtbicesand/or confidence) for
each image with each physician’s hand segmentation. Tlees#s may be compared
with results that fix parameters for a particular physicgasegmentation or all physi-
cians’ segmentations. Sensitivity to parameter valuesiritidlizations are tested as
well. With little initialization, the model achieves zeror@r on average with a stan-
dard deviation near clinically useful bounds. A modest amiaf additional input
gives zero error on each image.
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1 Introduction

1.1 Background

Magnetic resonance imagery (MRI) is noisy by nature, andmesearch has been done on
the properties of the noise, as well as methods for overcgmif3, 14, 27]. Segmenting
MRIs in general is a challenge for this reason as well as sttieat may depend on the
physiology of what is being imaged. There is a wealth of éitere on MRI segmentation,
much of it geared toward specific applications [23, 39]. &ult stroke lesions in MR
imagery are difficult to segment for their own reasons, bpeeglly shape complexity and
ambiguity. Creating and evaluating automatic methods égn®enting lesions is difficult
because ground-truth is elusive and stroke lesions areywdeed.

The concept of a ground-truth segmentation is elusive. &emuch variability in
manual segmentation, and it occurs on three levels. Diftetectors may give substantially
different segmentations of the same lesion. The same dontdifferent occasions might
produce different segmentations. Additionally, when eatihg an MRI with several slices,
the same doctor may not exhibit a consistent strategy tiowigall slices. Ambiguity in
a lesion boundary is one cause of the variance, while sones t#bions are so convoluted
that accurate manual segmentation is prohibitively tesli@iven segmenting the most basic
lesions is a taxing manual process, so a large scale studfeesible and a large window
of results in a small study should be expected.

The second difficulty is that lesions vary quite widely. Muahthe finesse in diag-
nosing tissue as affected by stroke is due to anatomical kume, which can be difficult
to incorporate in automatic methods. Some imaging methbdw glistinct tissue types
differently, requiring an allowance for multiple interisi within a lesion. In other cases,
doctors know that stroke never stops at cortical boundasie®ven the faintest signal in
regions neighboring the primary affected area are likelpe@dabeled stroke, whereas in
other lesions a similar drop in intensity might signal a bdany with healthy tissue or a
normal imaging artifact. The result is that simple ruleyirgy on intensity patterns and
changes therein are inconsistent across lesions, evereantall dataset explored in this
work.

Given the hurdles before us, what is the best we can do? Theeshsolution is to find
the consistent strategy that gives the least error. Thiksvogasonably well on average,
but is unsatisfying on lesions where there is ambiguity datleuanatomical knowledge is
required. Alternatively, one might trade the overhead o&gm registration and attempt
to tie in more medical domain knowledge in hopes of elimmgtihe error. We argue,
however, that with minimal additional user interactioredk subtleties can be hypothesized
automatically and confirmed manually.

The intensity nuances found in stroke lesions are well-remtlby a computer vision
theory called scale-space, which facilitates the inspaatf an image at varying levels of
detail. For segmenting both complex and regular shapes gagily, we employ geometric
deformable models, which require a single click to initialiand inflate like balloons that
fill to lesion boundaries.

The paper is organized as follows: Section 2 discusses tiveenaf MR image slices
and a method for normalizing intensity across slices; $ac8 gives an overview and
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technical review of nonlinear diffusion scale-space, howelates to MR imagery, and
some implementation details; Section 4 covers the fundgaiteaf level sets and the fast
marching method for geometric contours as well as a fundbomntegrating region and
boundary information for robust segmentation; Section€cdbes the segmentation model
incorporating scale-space and active contours, how thresatagrated into a segmentation
confidence, introduces a new metric for segmentation vegigand gives results on several
experiments. The remainder of this section discusses tlueenaf stroke lesions in more
detail, the results of previous work, and our new approach.

1.2 Problem Description

Ischemic stroke can be a critical medical condition. Tresttfor stroke is often a time-
sensitive issue, and quick, consistent computer segniemsathould be useful [23]. Given
an MRI of a stroke victim, the primary task is to separate \®felume elements) deemed
clinically to be lesion from those voxels which are not. Thignary difficulty is that the
segmentation occurs over an indirect observation, ratreer tirectly from the generating
process (i.e. tissue). Of course, the noisiness of MRIsésssue that needs to be handled,
but others include tissue mixtures, low contrast boundaneulti-modal lesion intensity,
complex shape, and anatomical knowledge.

1.2.1 Normal and Abnormal Tissue

Because voxels are discrete observations, their intessite a spatial average of responses.
The volume a voxel covers might include more than one tisgpe, twhich gives rise to
terms like “mixels,” which views voxels as mixtures of tiesy rather than the observation
from a single class [6]. However, when manually segmen@siphs, physicians refer to
areas as being “normal” and “abnormal,” which hints at atgligdifferent segmentation
philosophy. They must compare regions around the infanetdtea of dead tissue) to other
regions of the same scan because tissue near folds andclestriay brighten, which is
normal.

This comparison can involve questions of inclusion or esidn. Figure 1(a) shows a
sagittal slice where the tissue is bright near the folds etatain, and slightly darker toward
the “center.” While the lesion in the lower right portion d¢fet brain has a relatively clear
left boundary, as the lesion extends to the right, the tisstige right edge of the brain must
be compared to tissues in other similar regions, not justeéatarkest of gray regions in the
center of the folds. After consideration, a physician whgrsented this image labeled the
upper-right corner as an abnormal region of tissue affeloyestroke.

Figure 1(b) illustrates a lesion that borders part of thetnele in a coronal sequence.
The tissue surrounding both the left and right ventricldsright in appearance. Since the
region immediately inside both ventricles is normally Imtigthe physician excludes that
tissue from the segmentation of lesion immediately lefhef tight ventricle. gray

Finally, different doctors may simply have entirely diféert ideas for what constitutes
normal and abnormal. We received two segmentations of oagenby different doctors
that differ in volume by over sixty percent.
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(@) (b)

Figure 1: Comparing normal and abnormal regions. (a) Preballusion,T; sequence;
(b) Probable exclusion,lFAIR sequence.
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() (b)

Figure 2: Stroke lesions: (a) Ambiguous boundafy,sequence; (b) Complex shape,
FLAIR sequence; (c) Multi-modal intensity; sequence.

1.2.2 Ambiguous Boundaries

While some lesions have boundaries that are very obviousnsmie MRI modalities, oth-
ers exhibit intensities that slowly drift toward that of fibg brain tissue. Physiologically,
this may be due to a gradual change in the healthiness ofdh@eti This ambiguity often
makes precise segmentations difficult, or even non-existérerefore, some variance is to
be expected from both manual human and automatic segnTgati

The left boundary of the lesion in Figure 2(a) is difficult topoint; there does not
appear to be a definite delineation between bright lesiongaag brain matter. While
physicians attempt to use consistent criteria when segntgttte slices of one MR, these
may change from one time to the next, giving rise to intraeobsr segmentation variabil-
ity. Furthermore, some physicians may be more conservéhiae others in classifying
abnormalities. For instance, when manually segmentingca similar to 2(a), one physi-
cian admitted the possibility of varying the segmentatignuip to a centimeter in one
dimension.

1.2.3 Complex Shape

Figure 2(b) shows a slice from a stroke lesion with a highiggular shape. This is because
the lesion envelops several folds of the brain containinglm®-spinal fluid (CSF). While
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these areas are not lesion in the most technical sensec@nsoften include them in man-
ual segmentations, both because stroke can induce swelimgh reduces the “empty”
volume in these areas, but also because the complex shaps thak exclusion difficult.
However, exclusion of CSF is a valid segmentation policy.[THe main advantage of an
automatic system pointed to by physicians would be conssgte

Interpreting CSF in a scan falls roughly into one of threeesasn the first, there is clear
and definite separation between CSF and brain tissue. Iretteand, there is only moder-
ate separation between the regions—black CSF areas a@gaden the imaging process
with the brighter edema of stroke, resulting in a kind of grinally, in a third case there
iS no separation, where stroke edema has completely sqlieez€SF from between the
folds, leaving perhaps only the barest trace of it in the iemahe segmentations required
in the first and last cases are quite clear: definite exclusnohinclusion, respectively. It is
the middle, in-between case that is the most ambiguous., ltexeconsistency of a com-
puter segmentation will be advantageous, because thegtratay vary from physician to
physician.

1.2.4 Variable Tissue Response

Lesions and their surrounding areas also tend to contailonegf varying brightness.
Determining which regions ought to be considered lesiorcisadlenge different from am-
biguous borders. The response of different tissue typesffereht under various MRI
modalities. For instance, the edema if,amage shows up much more brightly in subcor-
tical white matter than in the cortex. Thus, images may dargdhnormal regions that are
brighter than healthy tissue, yet darker than the brighéssbn areas. Figure 2(c) illustrates
such a case.

Very often, physiological and anatomical constraints diggicians in determining what
is abnormal. For instance, physicians know that stroke doegespect cortical boundaries.
Therefore, when even the faintest response is registeeceigion, they are likely to extend
a segmentation to cover it because they know that the infaogt likely extends to a
different boundary, such as the extreme right of the lesidRigure 1(a).

1.3 Relation to Previous Work

Our previous work used a parametric active contour modédl [IiYtwo dimensions, this
may be thought of either as a curve that actively seeks adoeay minimum, or as a curve
subject to “forces” that pull it into particular direction§he same thing happens when the
force of gravity pulls a ball down a ramp; the ball is just nmmzing its potential energy.
The energy of (or force upon) an active contour is defined lif bee internal properties of
the curve and external properties of the image. Ordinatily,primary external force upon
the contour is gradient magnitude, so that the contour iwlta edges.

The previous segmentation process began with the usermyavbugh contour around
the lesion in some user chosen base slice. The active cahteruminimized energy based
on the usual gradient forces, presumably to lesion boueslafi separate similar (in the ge-
ometric sense) contour was then automatically initialiaatside the original contour and
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allowed to deform. The resulting two regions within the awentour provided initializa-
tion for a course-to-fine statistical packing method reiggisamples from the lesion and
non-lesion voxel populations. The results of a segmemtatiee to statistical packing were
then used as an additional force upon the contour [23, 38,18%his sense, the work was
a hybrid of both gradient (boundary) and intensity (regibayed segmentation methods.
Yet the method was not without its limitations.

The active contour model was represented as a stack of 2Dwantather than a true
3D surface, which in practice is a parametric mesh. The eomntceach slice was deformed
under forces derived from the image, the statistical segatiem, and the contours in neigh-
boring slices (although no two contours were completelgpehdent of one another, since
the forces can propagate from slice to slice). This apprcagtered from several limita-
tions. First and foremost, the 2D stack of contours resttioe topology of a segmentation.
While a stroke lesion may be a contiguous volume in 3D, a sistite through it may ren-
der the lesion as multiple disconnected blobs in 2D. Adddity, a 2D slice may contain
a “hole” within a lesion, which may or may not be a hole in 3D aslwFor example,
an object and a slice through it may have different Euler attaristics. However, the ex-
plicit nature of parametric methods does not allow them tangfe topology without the
addition of complicated schemes. Moreover, extendingmatac contours to be fully
three-dimensional requires significant computationaliogad [8]. All these issues reflect
poorly on the appropriateness of both parametric contaunidlae constrained 2D contours
to imitate a full 3D model. In short, lesions change topolégyn slice to slice, which is
difficult for the parametric contour stack to handle. Togpl@an also differ from lesion to
lesion, preventing the use of a constant number of multipfeaurs for slice segmentation,
a practice common to heart ventricle segmentation.

In a standalone setting, the statistical packing methodabge effectively in 3D, which
is advantageous. However, it required a large amount of inpeit to define a region of
interest. Moreover, the statistical tests involved asstienenimodal distribution on lesion
intensity, which is not always the case (cf. §1.2.4).

One of the reasons the previous work was so successful ie\angivolumes compa-
rable to those of hand segmentations is that it capturedepmentation mechanics (and
limitations therein) of the manual process. Doctors sedhesions by examining them on a
slice by slice basis, often glancing at neighboring slicesties, which is precisely the way
the stack of active contours is built and deformed. Furtlieanbecause segmentation can
be difficult and tedious, doctors tend to draw regularizedes surrounding affected areas,
rather than producing detailed complex curves that migtitiohe strictly tissue, rather than
CSF (81.2.3). While our previous work dovetailed nicelyiwihe manual segmentations
provided by physicians, an approach that allows for full idsideration of MR imagery
and its possible intricate structures should prove adggmuas.

1.4 Overview of Our Approach

As suggested in 81.1 and detailed in §1.2, different lesextsbit different intensity pat-
terns and thus often require different rules for segmemtatiVe do not propose the use of
prior anatomical knowledge, but to approximate it with sdkat can vary what constitutes
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a significantly bright intensity and a significantly largeadige in intensity. This character-
ization allows us to consider varying strengths of bourefgarsuch as contrasting the oft
less-significant cortical boundaries with those that amengfer. Simultaneously, such rules
will also allow for considering that different lesions aretem characterized by different
brightnesses.

We therefore propose to segment the MRI at several scalewiéim@arying intensity
“thresholds” for a different type of active contour. In tiigo-dimensional parameter space,
the frequency of a voxel being labeled lesion by the algoritill be regarded as a measure
of confidence in the classification of that voxel. The morewfa voxel is included, the
more certain the algorithm, without prior anatomical knedgde, can be about the results.
To see why this is the case, we may reason about the two parenedependently. When
the scale is increased, more and more details of the lestlengdavay. As protrusions blend
into background, only the strongest, most stable partsefesion remain and are included
in segmentations. As small swaths of CSF merge with thernesioles within begin to be
included in segmentations. The result is that these regionscluded (excluded) only at
the lowest scales and the only most persistent areas ofgtomlbackground) are included
(excluded) ineverysegmentation. Orthogonal to scale, changing an intengitg$hold”
will also change segmentation results. When the threskadti just above the intensity of
the background, the classification criterion is quite ld&demd many voxels are included.
As the threshold rises, segmentations become more cotiservand only the brightest
voxels, those of which we can be most certain, are includedai® the result is that
the brightest voxels most likely to be lesion are includedéarly all segmentations, and
those less likely are included in fewer. Voxels includedl&gsquently may correspond to
neighboring structures, spurious image properties, asaod lesion that have not affected
tissue as strongly.

When each voxel has an inclusion frequency, the frequencypigours of the resulting
segmentations might be used in one of many ways. If a morevaiio segmentation is
desired, a certain frequency threshold could be specifegd58%, giving a contour corre-
sponding to voxels that were labeled lesion in at least halsegmentations. Alternatively,
trained technologists could manually choose the frequenayour they feel best specifies
the lesion boundaries.

Such frequency isocontours are a shortcut for the scaletsmigoroblem. Large changes
in image entropy have been proposed as boundaries betwad®a stales [36, 37]. While
we do not make use of this method, it might be an interestieguae for further research.
Instead, since the frequency of a voxel’s inclusion is propoal to the number of scales
at which it is included, the isocontours may be thought ofeggreentations at empirically
derived pseudo-scales.

The extensions discussed in this paper overcome the testgsanentioned in the pre-
vious section. They allow for a selection of a segmentatiomfvarious scales and thresh-
olds, which captures the variability of conservative artal segmentations often given
by physicians.

The rest of the paper is organized as follows: Section 2 deitthsthe nature of MR im-
agery, the nature of stroke lesions, and the problem of #sgmentation in such imagery.
Scale-space and diffusion are discussed in Section 3, 8bitdon 4 covers geometric de-
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formable models such as level set and fast marching metfogieriments and results are
presented in Section 5, and the conclusions appear in &d&:tio

2 MR Images

A 3D MRI is acquired as a sequence of 2D images, called slite¥ortunately, some
MR images have slices that exhibit intensity levels vastfeent from neighboring slices.
This is a result of the imaging process rather than what isgognaged. These intensity
variations cause problems for segmentation methods thaireea consistent 3D image.

Since MR images are captured in a slice-by-slice fashiongoal is to bring the in-
tensity values from the same population into closer aligmnaeross slices. While there
are several regions from which intensity populations aeswtl, we concentrate on the three
most plainly visible: black background, gray brain tissareq white skull. The overall pop-
ulation image intensities may be thought of as samples framx¢éure of these different
distributions.

While the noise present in MRIs is Rician [14], for simplciwe assume it is additive
Gaussian because the maximum-likelihood equations aigistforward and give reason-
able results. Maximume-likelihood methods do exist for thei&h distribution and may
be substituted in the future [34]. We use the expectatiorimization algorithm (EM)
[10] to recover the mean, standard deviation, and mixingupaters for these three popu-
lations. The white pixels of the skull are actually a smalige@tage of the pixels and can
be broadly distributed as well. As a result, EM occasionfatigs modes that do not corre-
spond exactly to the populations we are interested in bedaissnot a global maximization
method. Care must be taken to ensure that the distributicanpeters returned by EM are
the “right” ones. While we have not developed a method to leatids automatically, it
should not be difficult to introduce a constraint on the reasbeness of the result. Indeed,
once one knows what a reasonable result is, it may be usediagiahcondition for the
algorithm. This is the approach we have taken and in praéteeincorrect modes were
returned by EM.

The distributions’ means returned by EM are used as anchotfor stretching the
histogram of each slice. One representative slice is chogese anchor points will be
used as the basis for all other slices. With the minimum angimmam intensity values
(i.,e. 0 and 255) included as the extreme anchor points, ttedrams for all slices are
stretched so that the anchor points align with those of theesentative slice. We use a
linear adjustment withy = 1, although perhaps some bias toward gray matter from the
background may be advantageous. See Figure 3 for an exaampl@ote that the top two
images have much less contrast than the bottom three.

Modifying the images is not necessarily medically inappiate. As physicians manu-
ally segment slices of an MR image, they themselves adjedbiiightness and contrast of
each slice, playing with the values and watching how the emamanges before settling on
values and segmenting.
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100 150

(b)

Figure 3: Intensity normalization with row three as the esantative slice. (a) Original
slices; (b) Slice histogram with fitted mixture models ancamg (c) Stretched histograms
with aligned means; (d) Resulting images.
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3 Diffusion

Diffusion is a description of a physical process with its ridations well outside image
processing. Imagine a room in which some of the air is cold somde of the air is hot.
Our intuition should agree with the laws of physics, whicly faat by mixing together,
the cold air wants to warm up and the hot air wants to cool offie Bifferences in air
temperature cause heat to flow in manner such that the rooperature will eventually
be absolutely uniform. But what if a person on one side of tar wanted it to remain
warm, and someone on the other side wanted it to remain col&¥ Would likely erect
an impediment to air flow that allows their respective sidexdnverge on an average
temperature of their individual liking, preventing hot fnomixing with cold and keeping
both satisfied.

This very idea is applied to image processing. In a noisy endgere are both bright
and dark areas, and we would like each of these to be rekativeéform. One way is to
open the gates for intensity to flow just as air temperatuesds brightnesses blend,
the visual effect is blurring. While this has the positivéeet of smoothing out noise, the
unconstrained flow will also mix very bright and very dark@seWhen our goal is image
segmentation, different regions of the image are of inteseswe’'d like to keep the bright
areas bright and the dark areas dark, but still remove thgendihis can be accomplished
by impeding the flow of brightness across region boundaries.

As we allow intensity to flow through the image, details teagtode. So long as the
impediment that constrains intensity flow never stops tgdther, all regions will even-
tually blend to a uniform intensity. Imagine a hot cup of eaffon a desk inside the only
heated room of an otherwise well-insulated house. Whilaribg keeps the coffee warm,
unfortunately, no one has developed the perfect cup thatskeeffee hot indefinitely, so
heat escapes little by little from the mug into the room, lusterything within is the same
temperature. On a larger scale, the four walls of the roonv ghe transfer of heat into the
chilly house. But, in much the same way, the room does notwtagn forever, and even-
tually the whole house is the same temperature throughaum, the cold mug of coffee to
the far end of the hall.

While cold coffee may not be enticing, the same effect agpieeimages is quite at-
tractive. Some details of an medical image are unimportarth as noise. Other details,
such as an edema caused by stroke are highly pertinent. db&epr we face is deciding
ultimately how much detail is needed to correctly identhg region of tissue damaged by
stroke. What is a significant change in brightness? Whatiigrafieant region size? Since
there is a considerable amount of variation in lesions, tievars to these questions are
not always the same. Therefore, we seek a framework thatslls to evaluate an image
when the answers to questions such as these are differemtsclile-space theory provides
just such a framework. Consider the lesion in Figure 6. Isdifference in intensity be-
tween the area below the left-hand finger and the rest of tbkgoaund significant? Is
the black stripe of CSF through the lower-right corner of lggon large enough to worry
about? This section reviews the model that describes thediomage intensity, how it is
directed, and how it is constrained.
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3.1 Theory

Scale-space theory has become more fully developed as adhetlexamining an image
and its features at multiple scales. While proposed in thst g Witkin [52], there is
evidence of formal scale-space theory decades earliepanJE6]. In its simplest, un-
committed form, the single-parameter family of images cadéfined by convolution with
a Gaussian kernel of increasing width, which is a solutioth&olinear diffusion equation
[21]. Other scale-spaces are created by generalizing fhesidin equation [30]. These
methods allow us to disambiguate some object boundaries@msider stroke lesions at
different scales, in essence modeling the variability gnsentation styles and the interpre-
tation of various tissue types damaged by stroke.

3.1.1 Physical Background

In a classic paper, Koenderink discusses the structureajes especially scale and reso-
lution, and how a family of images can be generated from dsipgrameter [20]. Koen-
derink concluded that the heat conduction equation gowemso-called deep structure of
the image. Later work expounded upon the axioms, such asldgusnd extrema non-
enhancement, that govern the scale-space of an image [2].

Weickert characterizes the physical background of difosas follows [46, 47]. Dif-
fusion is based on a physical process that creates an equilibbetween differences in
concentrations while conserving some quantity, such as masnergy. In MR imagery,
this quantity is image intensity. A concentration gradiesuises a flux that strives to com-
pensate for the gradient. This is capturedrick’s Law,

j=—-D-Vu,

where a diffusion tensab, a positive definite symmetric matrix, characterizes ttetien-
ship between a gradieRtu and the flux;j it induces.
Thecontinuity equatiomeflects the preservation of mass by diffusion,

Oru = —div (j)

wheret represents time, and divergence is given\by j. Thediffusion equatioris the
result of substituting Fick’s law into the continuity eqigait:

Oyu =div(D - Vu), 1)

thus unifying the conservation of mass, temperature, sitgretc., with the description of
the quantity’s flux.

It is important to distinguish several special cases of {¥hen;j andVu are parallel,
the equilibrium is calledsotropic and the diffusion tensor may be replaced by a positive
scalar-valuedliffusivity, g. In the general case when the flyppand gradient®vV« are not
parallel, the system is calleghisotropic When the diffusion tensor is constant over the
entire image, the diffusion is said to Il®mogeneoyswvhile space-dependent filtering is
known asinhomogeneousAnother distinction can be made when the diffusion tensor o
scalar diffusivity is a function of the evolving image, whileads to a nonlinear equation.
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Nonlinear diffusion in the context of image processing gitlee following model. Let
ad-dimensional image domain b&:= (0,a) x ... x (0, a;) with boundarn™ := 0Q2. The
filtered versionu (z,t) : Q x [0,0c) — R? of an imagef (z) € L> (Q) is the solution of
a diffusion equation (1) withf’ as the initial condition and reflecting boundary conditions
[42]:

Oyu = div (D (Vu) Vu) on £ x (0,00) 2
u(z,0)=f(z) on Q 3)
(D (Vu)Vu,n) =0 on T x (0,00) 4)

wheren denotes the outer normal and.) the inner product oiR?. Thus (2) describes the
flow of heat through a house or intensity through an image &sciontrolled byD (Vu),
(3) describes the starting temperature of everything inhitnese or the initial image, and
(4) says the house is perfectly insulated or that no intgresir leaves an image.

Nonlinear diffusion was applied to MRI data shortly afterintroduction [12]. Recent
research points out the tacit assumption of Gaussian noistandard filtering methods
and the bias accompanying that assumption [35]. Our relsdas not yet made use of
developments without the assumption.

3.1.2 Linear and Nonlinear Diffusion

When the diffusion is isotropic, the diffusion tensor islexed by a positive scalar,
dyu = div (gVu). (5)

Thus, g influences the magnitude of the diffusion in the directiorthe gradient. In the
special case wherg= c is a constant, (5) reduces to

Ou = div(cVu) =V - (c¢Vu) (6)
= ¢V, (7)

where V? is the Laplacian operator. As it turns out, this is equivalenthe common
Gaussian blur. The solution to the isotropic linear diftusequation in (7) witle = 1 and

conditions (3) and (4) is the convolution gfwith a Gaussian of standard deviatigf2t

[22].

While isotropic homogeneous linear diffusion—Gaussiamriiig—meets the criteria
for a scale-space, there are both advantages and disagearitausing it. Koenderink
noted first and foremost that it makes analysis very sim@pdeially since a solution to the
diffusion equation may be found for it), but he also remarkeat isotropy, homogeneity,
and linearity are by no means necessary. Furthermore, tietaat, uniform diffusion gives
no preference to any region of the image for any reason—éviewy is blurred equally. In
some cases this may be an advantage, but it quickly desiaysrés we are interested in
when attempting to segment images, especially edges aoeiyasle boundaries.

Two of the axioms for scale-spaces are causality (strustatecoarser scales should
be a result of structures from finer scales, rather than thiesspace operator) and non-
enhancement of extrema (extrema monotonically convergels well-documented that
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while Gaussian blurring obeys these axioms, the locatiostroictures, such as extrema,
are dislocated; features drift in scale-space. Thus, winemteresting feature (e.g. an
edge) is found at a particular scale, its “true” location trues traced back through scale
space to the finer scale, a correspondence problem that iglicated and expensive [7].

Here, we are seeking to localize object boundaries and vaifitto use a semantically
meaningful scale-space. Perona and Malik introduced nealidiffusion as a way to con-
trol the process in a manner that better preserves objectdaoies [30].

Perona and Malik proposed to drastically slow the rate dtigibn at object boundaries.
However, we do not know where exactly object boundaries areur problem would
already be solved. Fortunately, the gradient of the imageeseas a good indicator of
object boundaries. Hence, the magnitude of the gradienthainay also be thought of
edge strength, is used to control the diffusivity. When fisek is introduced to the system
so that diffusion is directed not by the initial image, butthg evolving image, the resulting
general nonlinear isotropic diffusion equation is

Oyu = div (g (|Vu\2) Vu) . (8)

The functiong : R — (0, 1] controls the amount of diffusion at any point. If our goalas t
remove noise but preserve significant boundaries, gh&mould encourage blurring within
regions and discourage blurring between regions. Sincéntage gradient magnitude is
our approximate indicator of boundaries, a thresholddicating how strong the gradient
must be before it is considered significant should be estaddi. Diffusivities such as

g (IVul?)

1

T 1+ (V) ®)

and
g (\Vu\z) = exp (— |Vu\2/)\2) (10)

were initially proposed [30, 31] (Figure 4(a)). The resuitthe filtered images will be to
remove noise and small features (whé¢va:| < \) while leaving edges pronounced and
their locations preserved.

Weickert further developed the scale-space theory of &oigic nonlinear diffusion
in [42, 43]. Additional properties of Perona and Malik’s peering work are covered in
[18, 19, 49].

3.1.3 Edge Enhancement

By slowing the diffusion at strong gradients, we preventrmaries from quickly eroding.
But by selectingy carefully, the process can actuabyphanceedges as well as preserve
them. This is accomplished by having the slope of the edge guer time—the boundary
thus becomes sharper and more distinct. When a stroke lasian MR image has a
weak or ambiguous boundary, edge enhancement can be usistingush regions more
precisely. Areas of tissue unaffected by stroke are blend@darly uniform intensity via
the noise removal properties described in the previousmsecthis section describes how
lesion boundaries can be made more prominent.
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The one-dimensional version of (5) is
Oyu = 0, ® (O,u) = @' (O,u) Oppu (12)

whered (9,u) = g (0,u?) d,u is the flux. We want to know how the slope of an edge
changes with time, which is described &y(0,u). If we reverse the order of differentiation
and substitute (11), then

Oy (Opu) = 0y (Oyu) = 0, (0, (Opu))
D" 0yt + D' 0pyytt.

Without loss of generality, suppose the edge ramps up,8a> 0. The edge’s inflection
point 0,,u = 0 corresponds to the location of maximum slope,dsg,u < 0. Around
this inflection, the change in the edge slope with tith€o,u) has sign opposite td'.
Therefore, when the derivative of the flux is positidé(d,u) > 0, the slope of the edge
is increasing. Similarly, the slope of the edge decreasestone whend’ (9,u) < 0 [30].
Therefore, edge enhancement happens precisely when teeséate is increasing with
time.

The negative flux derivative giving rise to edge-enhancermaumses backward diffusion
via the inverse heat equation, a problem well-known to bpabed [19]. While discretiza-
tion has certain stabilizing effects, Catté et al. formahzsolution’s existence, uniqueness,
and regularity by replacing the diffusivity (|Vu|®) with g (|Vu,|”) whereu, := G, * u,
G, is the Gaussian with standard deviatiorand= is the convolution operator [5]. Thus,
the gradient is replaced by its estimate, and the equatjoni(@iffuse only if the gradient
is estimatedo be small.

The need for regularization comes from the fact that the rmalliews for backward
diffusion. When the flux is monotonically increasing, théulion always runs forward in
time. While this ensures well-posedness properties, i doeallow for edge-enhancement
[46]. Backward diffusion sharpens and enhances edges;cilitdte this behavior, the
flux function must be decreasing (have a negative derivasiemewhere. Diffusion with
nonmonotonic flux functions is ill-posed in general, but tbégularization described above
gives well-posedness results.

Weickert has proposed the additional diffusivity function

2 Cm
Vul’) =1—exp | ——2 1, 12

for m € (0, 00), whereC,, is a constant described below (Figure 4(a)). Like (9) and,(10
the expression contains a contrast paramatérat will allow us to specify where blur-
ring should occur (forward diffusion) and where edge shampg should occur (backward
diffusion).

The flux of the continuity-cum-diffusion equation (8) is

® (Vu) = g (|Vul?) Vu.

As shown above, for the diffusion process to smooth unwaletdres and enhance desired
edges, the flux function (in a simple one-dimensional systauost satisfyd’ (Vu) > 0
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Figure 4: (a) Diffusivity functions; (b) Flux using equati¢12).

for |[Vu| < Xand®' (Vu) < 0 for [Vu| > A [30, 47]. In (12), the constarit,, should

be chosen accordingly. If we assume that an inflection paittte flux function occurs at
|Vu| = A, so that the derivativé’ takes on the appropriate positive and negative values,
we may solve foiC,, by setting the derivative equal to zero whi@nu| = A. The result

turns out to be . X .
Cpn=-W_ 1| ——exp|—— - —
2m 2m 2m

where W, (z) is the Lambert W function for thé’th branch! Figure 4 illustrates the
diffusivity functions (9), (10), and (12), each with the sawalue for\. The Perona-Malik
diffusivities (9) and (10) are very rough approximationsthe type of control that may
be desired. The Weickert diffusivity blurs at the maximurteralmost until the contrast
parameter is reached (Figure 4). Thus in (22)nay be thought of as a decay parameter—
asm increases, the diffusivity drops off more rapidly, and ipapaches a step function.

As demonstrated in Figure 2(a), lesions often have very guthis boundaries. The
edge-enhancement allowed by diffusion with a non-monatfiuk function, such as (12),
gives rise to more easily detectable object boundaries. réfidt is an image containing
regions of essentially piecewise constant intensity. Thusnotonic ramps become stair-
cased plateaus. For some applications this is an undesiraslilt, and some interesting
modifications have been explored; complex diffusion preessare proposed in [13], and
diffusion over the gradient of the image, rather than thegenigself, is discussed in [25].

Because we are interested in detecting boundaries, it csiateresting to examine
wherethese plateaus will arise. Backward diffusion occurs whenderivative of the flux
is negative®’ (Vu) < 0, which we have established occurs wh&h| > \. Boundaries
between plateaus will become evident at the points wherlewzad diffusion is greatest,
or when the change in flux has an extremum. Thus, we seek thenextofd’' (Vu) in

1The Lambert W function is the inverse of the functipiv) = We'. See [9].
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| Diffusivity g ([Vu|") | Maximal backward diffusion |

T
1+\Vu\2//\2 \/g)\
exp (— \Vu|2/ A?) @)\
Crm Cm 2™
1 —exp <—(vu2/)\2)m> (Pﬁ) A

Table 1: Maximal backward diffusion for various diffusiyitunctions.

regions of backward diffusion, or
Y ={|Vu|: ®" (Vu) = 0and|Vu| > A}

Table 1 gives these points of maximal backward diffusiormmis of the contrast parameter
for some diffusivity functions. For diffusivities (9) and.@), there is but one point, a
constant multiple of the contrast parameteiHowever, for diffusivity (12), the point inp
is also a function ofn. If we let
= ()
2m

so thaty = {A,,\}, it may be proven that

lim 4,, = oc
m—0t
lim A, = 1.
m— o0

Therefore, this diffusivity allows explicit control ovelné gradient strength that is required
for maximal edge enhancement, relative to the contrasipeter. For example, the stan-
dard valuen = 4 gives A\ ~ 1.1812)\ < @)\ < V3.

The implications of the relationship betweenand \ are illustrated in Figure 5. The
Gauss-like function in 5(a) is filtered using diffusivityAllwith m = 4. The absolute
value of the gradient is shown in 5(b). Backward diffusiosws here in regions above the
bottom-most line, whefiVu| > A. Figure 5(d) shows the flux and its derivative. Backward
diffusion is maximal at the extrema df, which are the points wherd& «| crosses) in
5(b). Figure 5(c) shows the filtered functiontat 1, with extrema of®’ (Vu (x; t = 1))
marked. Naturally, as changes with the diffusion process, so Ya, ® (Vu), and the
locations of the extrema. Therefore, the stability of theakions|Vu| = ¢ through the
diffusion process will determine the strength of the plagar even their number. The
significance of the relationship betweenand A should now be apparent. The contrast
parameter is intended to specify what magnitude of gradienstitutes a significant edge.
However, when) > )\, the points of maximal edge enhancement are likely far froen t
points that begin to meet the minimum criterion. As— A, which we can accomplish
throughA,, andm — oo, the plateaus—the very edges we use to segment an image—can
be pushed as close as desired to the locations exhibitingnéfisant edge. Additional
analysis can be found in [28, 51]
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Figure 5: Edge enhancement and creation. (a) Original fomet (x;t = 0) = f (z)
with maximal backward diffusion locations; (By «| with contrast parametey and maxi-
mal backward diffusion intersections; (c) Resulting stased image (z;¢ = 1); (d) Flux
function® (Vu) with derivative®’ (Vu) and regions of backward diffusion with maximal

points marked.
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3.1.4 Isotropic and Anisotropic Diffusion

When the diffusion is isotropic, blurring nearly stops atdtons with a large gradient.
Thus, while this process stops diffusion across the edgegahe direction of the gradient),
it does not allow smoothing along the edge, leaving edgesynBor many image denoising
and enhancement applications, this is a problem. The usdesfsar to control both the
magnitude and direction of diffusion gives an extra elenaénbntrol. Indeed, the diffusion
can be directed purely across the gradient, so as to enhlamceherence of images, such
as fingerprints [48].

Unfortunately, anisotropic diffusion can present probdemien applied to objects with
structures as small as those found in some stroke lesionge-Eiahancing anisotropic
nonlinear diffusion via the construction of a diffusion $en is formulated by Weickert
as follows [44]. In ad-dimensional system, let;, v;, i = 2...d be the orthonormal
system of eigenvectors of the diffusion tendor such thatv||Vu, andv; L Vu,. The
corresponding eigenvalueg and )\; then control the amount of smoothing across and
along the edge, respectively. Weickert proposes to use anmadblur along edges by
setting these eigenvalues to be

A= g(|VuU\2) 13)
N o= 1,i=2,....d. (14)

Once againg is a function controlling diffusivity, but now it is only inhe direction of
the gradient. All other directions have maximal diffusidrhis has the effect of rounding
smaller structures and highly curved objects. While theafis less adverse for larger
images, it may be problematic for our application. Strok&das often contain delicate
protrusions of abnormal tissue into healthy tissue, andeiecome rapidly blurred under
maximal anisotropic diffusion.

One alternative would be to use a reduced diffusivity alotges, e.gA; = « € (0, 1).
We may not sed, = x = 0 becausd) must be positive definite. This model works poorly
in practice for two reasons. First, if we sehear one, the rounding and blurring problems
of maximal diffusivity manifest themselves. Alternatiygf « is set near zero, then smooth
regions will experience a large diffusivity in the direatiof the gradient, but only a small
diffusivity in all other directions, severely reducing tadvantageous blurring properties.

A slightly improved model we experimented with is:

Moo= g (IVuel?) (15)
A = max{k,\},i=2...d (16)

whererx € (0,1]. Obviously, whenx = 1, the model is equivalent to Weickert's. As
k — 0, the amount of blurring along edges decreases, howeverrevasaured that diffu-
sion perpendicular to the gradient is never less than thatlpbto the gradient. This means
that even with a conservative, small value fgra smooth region will give rise to a large
diffusivity in both directions, but strong gradients wilivg rise to a sharply reduced dif-
fusivity across edges and a moderate diffusivity along th€he diffusivity function must
always be positive and setting= 0 would have the effect of setting = \;, which would
yield isotropic diffusion. We may now control the amount d@ffukion along edges, and
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settingx < 1 helps preserve the finer lesion structures and reduce thelnog effect of
anisotropic diffusion. Unfortunately, the directionaffdsivity (16) violates the assump-
tions required for the proof of scale-space properties aflinear anisotropic diffusion,
namely thatD is Lipschitz continuous andl; € C* ([0, oo) ; (0, 1]) [42].

3.1.5 Robust Estimation

Black et al. have proven that isotropic diffusion is equardlto a robust estimation proce-
dure that estimates a piecewise smooth image. They iltestthat diffusion is the gradient
descent of an estimation problem with a robust error norm\Mhere as diffusion with dif-
fusivity functions that never drop to zero ensures that thage approaches uniformity,
the results on robust estimation allow for converting ddfe error norms into diffusiv-
ity functions that eventually halt, always preserving #igant edges, just like the perfect
heat-trapping coffee mug.

In earlier work on this problem, a portion of the segmentaiias due to hypothesis
testing, which was part of the so-called packing method 823, To determine whether
a set of pixels was completely within a lesion, the hypothésst involved comparing the
mean intensity of the pixels under consideration to the megmsity of already accepted
lesion pixels. This assumed that the complete lesion conoes & unimodal (Gaussian)
distribution, which is not necessarily the case (cf. 82).e Hpproach we take is to use
nonlinear diffusion to restore the noisy image to piecewisestant regions. Since diffu-
sion is equivalent to robust estimation, the resulting ienagbuilt upon solid theoretical
foundation, just as the packing method is, but allows fapbleswith more than one mode.

3.2 Implementation

The transition from continuous theory to discrete impletagan is documented in [43,
47]. In the fully discrete (time and space) model, thdimensional image of siz8/; x

... X Ngwith N = Hle N, total pixels is modeled as a vectpre RY with components
fi»i = 1...N. The index: represents some pixel and f; is the intensity at the pixel.
Time is discrete with;, := k7, wherek € Ny andr is the step size. The approximation of
u (z;, ;) is denoted:?. The discrete model is then summarized by

u = f (17)

Wt = Q (ub) W, VE €N, (18)

where() is a matrix describing the update ofrom stepk to £+ 1. The value for**! may
be arrived at by an explicit, semi-implicit, or even fully jiicit scheme. More precisely,

the explicit scheme is a forward Euler explicit numericdiame. To see this, we begin to
transform the continuous equation (2) into its discretentcerpart:

d
Oyu = Z Oy, (Dij (|Vu{,\2) amju) ) (29)

ij=1
For example, in two dimensions, we have
V . (DVU) = aml (Duamu + Dnaq;?U) + (’)h (Dglamu + DQQ@Z\ZU) .
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Figure 6: Evolution of a lesion in an MRI slice (image 3P) und® isotropic
diffusion (m =4, 0 =1, A =255 7 =2.5). Left to right, top to bottom: ¢ =
0, 37, 81, 181, 602, 2441, 5432, 26903.
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In the isotropic case, there are no mixed derivatives, so &g simplify (19) to a single-
index summation

oyu = Z aT, g |Vu(,\ ax,u) ) (20)

3.2.1 Explicit Schemes

We can approximate the effect of the partial derivative afi®o,, on some functiory at
each location with the central dn‘ferencg} > jen (fi — fi), whereN, (i) is the set of
neighbors to pixef along direction/ (border plxels have but one neighbor), ands the
resolution along thé dimension. Using this as the approximation to the spatialdtve
and a backward difference to approximate the time derigatvsimple discretization of
(20) takes the form

k+1

_ZZ (]7—1—(]2 /? uf),

I=1 jeN (i)

whereg; is an approximation tg (\Vug|2) at that pixel. This can be written in vector-
matrix notation as [45]

T =y A () W, (21)
Isolatingu**! gives

d
— ([ +TZAl (uk)> u®. (22)
=1

This scheme is explicit because it allows for calculatitig' from «* directly and without
any matrix inversions. Thus the explicit scheme for the nh¢ti®) is

Q (u*) = (1 +r é A, (uk)) |

Since no matrix inversions are necessary, each step mayrfmerped quickly. However,
in order to guarantee stability, the step size must be sb@jl [

A typical MRI has voxel dimensionsx 1 x 2.5 mm. To perform explicit diffusion in three
dimensions with this method would require a step size neelafgan about 0.23.

A slightly different (perhaps even more straightforwardjpeoach to an explicit scheme
in two dimensions is detailed in [41]. However, the approatthis section is preparation
for a review of the more efficient additive operator spligiischemes.
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3.2.2 Additive Operator Schemes

Because it requires many iterations, the step size of thiscebgzheme is highly prohibitive
in practice. However, we may consider the slightly more choaped scheme

uk+

"t ’ kY, k+1
f:ZAl(u)u+ (23)
=1

which gives the iteration step

J -1
b = (I — TZAl (uk)> uk. (24)
=1

This scheme does not givé*! directly, rather, it requires a matrix inversion and is thus
semi-implicit. Unfortunately, the matriB := [ — 7 Zld’:] Ay (uk) does not lend itself to
efficient inversion [50]. Fortunately, this limitation mdye overcome by modifying the
semi-implicit scheme, resulting in the additive operafaitsng (AOS)

d

uFtt = %lz]: (] —dT A, (uk)) bk, (25)
This discretization has several benefits. First, the firdepTaylor expansion of (25) is
the same for the explicit scheme (22) and the semi-implahiesne (24), so they are con-
sistent approximations to the continuous equation. Seaariike multiplicative splittings,
all dimensions are treated equally. Third, it meets digcsele space properties, such as
convergence to the mean intensity as a steady state andttbeneaxn principle (causality).
Most importantly, it is efficient. While it requires aboutite the effort of a typical explicit
scheme, this modification of a semi-implicit scheme guaasistability with no limit on
step size. The only remaining consideration is a trade-giffveen accuracy and speed.
With B, (uf) := I — dr A, (u*), the iterative step in (18) has

The discrete scale-space properties of this scheme arempiiav[45]. If we letw, :=
Bflu’“, we see that we need to solve equations of the fé&m, = «* so that we may
calculate (25) as

d
1
uF ! = pi Z w. (26)
=1
Each diffusion directiohl has a matrix4 (u*) = (a;; (u*)), with
k gk . )
y,2h129] je M (z)
(kY ' agh
g5 (U ) = _ Zne./\fl(z) 912_}:;_“ ] =1
0 otherwise

2We temporarily abstain from specifying the diffusion ditiea with notation such as,, (u*) to avoid
notational baggage.
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Therefore the entries 08 (u*) = (b;; (u*)) are

Vi J € N (1)
0 otherwise
where
k k
o +dr Z' e (27)

neN (i)

k k

g9; +4

The tridiagonal and diagonally dominant matfxtakes the form

_al V12 ]

Y21 Qo Y23

B(uk): 5

YN-2N—-1 CQN-—1 YN-1N
YNN-1 QN

where the unmarked entries are all 0. But we observe fromt{&8)y;; = v,;, SO may we
reduce storage overhead by using a single index for
[ ar M ]
Y1ooQ Y2
B (u*) = . (29)
YTN-2 QN-1 7YN-1
YN an

The most efficient way of solving an equation suchBas;, = «* with system matrix (29)
is the Thomas algorithm. It involves three basic steps: andeBomposition, a forward
substitution, and a backward substitution. These detegls@avered very well in [50].

Some further implementation details are worth mentioniriggis not necessary to
convert an image stored asdimensional arrays to a vector. Consider a regular two-
dimensional image having/; rows and/N, columns. Rather than constructing a single
vectoru € RMN2 with a new pixel ordering, diffusion along the row dimensieould
actually be implemented a§, diffusion processes—one for each column. For a three-
dimensional MR image, there would be a diffusion processeeh columrand slice.
MATLAB's built-in component-wise operations are a simple way totlis. One only
needs to explicitly perform diffusion along each dimengimws, columns, slices), allow-
ing MATLAB to implicitly handle the fact that there are many paralldfudiion processes
occurring. Proceeding in this manner, tNg N, equations for each dimensidmre solved
in one fell swoop (see Appendix).
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Unfortunately, the potential of AOS for performing anisaic diffusion is limited. The
number of directional diffusivities jumps frorin the isotropic case t@ in the anisotropic
case. The simplest discretization of (19) is

Once againd;; represents a central difference approximatiofto( D;; (|Vu,|*) 0y, u).
The explicit scheme for this discretization is given by

d

ij=1

As mentioned before, this scheme requires small time steptain stable. Additionally,
an AOS scheme such as

J 1
uFtt = % <I — d*r Z Ajj (uk)> u®

ij=1

is problematic because the directional diffusivitids; must be non-negative [26, 47].
Therefore, an AOS-stabilized scheme

zi: (I —drAy (uh) (1 +7 i S, (M)) uf

was proposed [48]. Since they are potentially negative pfirdiagonal diffusivities are
calculated via an explicit scheme, givin§ = (I +ry¢ >z Aij (uk)> uk. The re-
maining non-negative matricés (u*) := I—dr A, (u*) that describe the diffusion caused
by diagonal entries of the diffusion tensor each give a sysbaw, = v*. The result**!

is then the same as (26) and is also solved for with the Thoitgasithm. A step size of
T = 21is commonly used.

y =

QUl

4 Deformable Models

In 83 we described a procedure that allows one to examine Mdg@® at different levels
of scale. We now approach the problem of segmenting suchamade Level Set Method
(LSM), a common technigue used for image segmentation, weaslaped by Osher and
Sethian in 1988 [29] and was subsequently refined to a momesftimplementation, the
Fast Marching Method (FMM) [1]. We use FMM for image segmé&nta Unlike so-called
“snakes,” which use an explicit, parametric representatibthe contour [17], FMM uses
an implicit representation where the contour deformat®hased on geometric measures
that allow it to segment highly irregular structures. Suthures are common in lesions
and are often missed in segmentations performed by snalke® dusmoothing caused by
regularization.
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4.1 Theory
4.1.1 Parametric Deformable Models

Previous work used parametric deformable models, also kresvsnakes, to segment le-
sions. An initial contour, was drawn roughly around the lesion and allowed to deform to
a local energy minimum that closely matches the lesion bagndTrhe contour is repre-
sented explicitly as a parametric curve defined in the 2D enagne. The energy of curve

v parameterized by € [0, 1] is given by

Etotal - /Einternal+ /Eea:ternal (30)

where , )
dv dv?

& TP

and F.....na IS @ function of the image gradient and an additional statiktforce”
[23]. By manipulating the constantsandf in E;,;..n.;, ON€ can control the elasticity and
rigidity of the curve, respectively. The contouris represented numerically as a spline,
So it must remain simply connected to avoid costly re-patanmations. Toward this end,
«a andg are given relatively large values to penalize irregularitiypfortunately, regularity
constraints keep the contour from filling the intricate éesstructures mentioned in §1.2.3.

(31)

Einternal =«

4.1.2 The Level Set Method

In contrast with snakes, LSM does not represent the segngecdintour explicitly. Instead,
it is embedded within a higher dimensional functidn(t). Images of arbitrary dimension
may be segmented by LSM, so we consider a higher dimensioadgto the contour: a
surface or front. Assume that we are given an initial frothi&i inside or outside the lesion
in question. IfR? is set of points in the image hyper-plane,1ett) C R? be a family of
surfaces in the image found by evolving the initial frani0) with speedF in the direction
outward normal tob. Like the external energy of snakes,can be a function of global,
local, or independent properties. LSM defireas a surface so that for each poiats R?,

® (x;t) is the distance to the evolving front(¢). Hence, for any given time

P (v(t);t) =0, (32)
and

® (x;t) = ¢,

wherec is the signed distance fromto the closest point on the front(¢) (points inside
the front are negative). Equation (32) tells us that the seding surface can be found at
any timet by identifying the zero level set of the functidn(~ (¢) ; t).

Given a speed functiof' (x) and initial fronty(0), the next step is to devise an update
rule, or evolution equation, fob . We follow the formulation used in [24]. Consider the
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pathx (¢) ,¢ € [0, 00) of a particle on the segmenting surfacg) € v (¢). It moves in the
direction of the surface outward normal with a prescribeglesh

ox Vo
—(t)=F —.
57 (1) = F <) g
Since the poink is always ony and® (v (¢) ;¢) = 0 for all t > 0, we know that
¢ (x(t),t) =0.

By the chain rule,

0 Oz,
Z ox; Ot (33)

S (o oy v
Ox; Ot  \Oxy 0wy " 0Oxy ot ot ot
0x (t)
ot

= V@-(F@qﬂ)%%%)

_ F(x(t)

= e (V®) - (V)
_ Fx()

= e VO

= F(x()[Vel. (34)

where,

= Vo-

Substituting (34) into (33) gives the evolution equationdo

0o

& HEIVe =0, (35)

4.1.3 The Fast Marching Method

The representation of the implicit frontabove can be discretized directly to form an algo-
rithm for segmenting images. However, a faster algorithmimaformulated by embedding
~v in a conceptually different function callé, rather than® [33]. T (x) gives the arrival
time of the front at some point € R? in the image. Again, we assume the existence of a
function F' (x) that gives the speed of a pointin the outward normal direction. Here we
will also require that?” (x) be strictly positive. In the last section we formulated aalev
tion equation to constru@t, here we will take advantage of the restricted speed fun¢tio
formulate a boundary value problem to constriict

The key to the boundary value representation of surfaceuéeol is that the gradient
magnitude off" is inversely proportional to the speed of the surface ata@itts:
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Figure 7: An evolving front inflates to lesion boundaries.

VT|F = 1. (36)

FMM is developed in the following section as a numerical sebdor systematically con-
structing the arrival time functiofi. The boundary condition completing the problem is

T (v(0)) =0, (37)

which asserts that the arrival time of the front is zero foy @oint on the front. It is
important to note that a strictly positive speed functioméeded to solve the boundary
value problem (36). The restricted speed function enfothesdea that the segmenting
front should begin at exactly the points specified by the llamy condition (37). Figure 7
shows a front evolving from an initial seed point, and infigtuntil slowed drastically by
the speed function at lesion boundaries. Since we havedysfositive speed function,
the segmenting contour will always have a real arrival tihalbpoints in the image. In
practice the actual segmentation will correspond to thefgakels at which the segmenting
surface’s arrival time is within a reasonable threshold.

4.2 Implementation

So far we have been discussing image segmentation in a sahawstract manner. We
have assumed that the image hyper-plane is continuous anhthéhmethods of segmenta-
tion (snakes, LSM, and FMM) operate on this continuous plarech is not the case in
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reality. In this section we discuss implementation defaitgliscrete images.

Define a discrete image hyper-plafieC N° tobe) :=[0,1,...,a1] x [0,1,..., as] X
[0,1,...,as3], whereq,; is the maximum image index value in the dimensiofThe initial
surfacey (0) is given by the set of voxels C Q2. A point in the image plane is assumed to
be a single voxel indexed by three natural numbers, forit&é, j, k) € 2. Often it will
be convenient to refer to such points as the veston, or w. Further notational issues are
addressed in context.

4.2.1 Implementation of FMM

The basic idea behind FMM is to construct the arrival timecfion 7" outward from the
initial surface,l’y. The construction process will involve updating pointshaiiicreasing
arrival time until a predefined time threshold is reached. Ak a single initial point, so
thatl'y = {2 }. As the algorithm runs, three disjoint sets of voxels arentzned: accepted
(A), candidate), and faraway ") points, whered U C' U W = Q). When the algorithm
terminates, the image segmentation corresponds to thé aetepted voxels!.

Algorithm 1 The Fast Marching Method.

Initialization:
(a) A+ Iy
T, < 0Vv e A
(b) CUyeaN (v)
T, FAVVV € C whereA is the voxel distance from the closest element in
A.
(c) W+« Q\(Au(O)
Ty, < oo Vv
Iteration:
€)) u < argminyec Ty
(b) A+ AU{u}
(c) C <+ N(u)u(C\{u})

T, < U, Vv e N (u)

(d) The algorithm terminates when the difference betweerathival time at the
previous pointz and the current poini is greater than a predefined threshold.

Algorithm 1 follows the description in [33]. At each iterati, we choose from the
candidate set the voxal with the smallest arrival time . Led : Q@ — o (Q) be the
function returning the set of a voxel's neighbors. The vadfi¢/ (introduced on the last
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Figure 8: FMM update neighborhood.

line of algorithm 1) is at the heart of the algorithm becaus#efines the direction of the
propagating front. It is given by the numerical approxiroatof (36)

max (D;4T,,0)° + min (DF47,,0)° 1%
+max (D, #/T,0)" + min (DFST,,0) | = 2 (38)
+max (Dy “*Ty,0)° + min (DF*FTy,, 0)°

where
) Tiv—Ti 1k
D*AZTV = 2,7, 2 5]
v JAV)
is the backward difference approximation and
) Tivvin—Tiik
D+AZTV = 1+ 3]s 2,7,
v JAV)

is the forward difference approximation to the derivative p with respect to.

During each iteration, (38) is solved féy, using values of" from the previous iteration
at all voxels neighboring. Figure 8, a visual representation of the update processysh
v as the large black point in the center of the voxel neighboda&ach smaller gray point
represents one of the voxels that is used to update the brecKlde update process works
by using (38) to find the largest solution fér at the black point, using the values at the
gray points from the previous update.

As afinal note, FMM is a fast algorithm in part because all adaig points are stored in
a min-heap. This structure keeps the elements with the sstathlue (in this case smallest
anticipated arrival time) at the top of the heap. Updatirggiteap with new candidate points
is a logarithmic time task.

4.2.2 The Speed Function

In section 4.1.3 we discussed how FMM uses a speed functiconstruct the arrival time
of each point on the segmenting surface, and thus the fregitf.itn this section we define
our speed function.



4 DEFORMABLE MODELS 34

/ /

Background Background

Lesion

Figure 9: Example intensity profile of a multi-modal lesion.

Section 1.2.4 describes how the intensity of lesions candié-modal. Some of these
lesion regions might have an intensity that is closer to #hekiground than the rest of the
lesion, as the leftmost lesion plateau in Figure 9. In thaecdiffusion will never be able
to blend all the lesion pixels to uniform intensity becausels from the fringe mode will
blend with the background first. By itself, gradient infortioa for detecting boundaries is
not enough to allow the front to envelop the entire lesion.

We also know that lesion intensity is higher than backgroumensity, but when am-
biguous boundaries are present there is never a strongegtaidi indicate any type of
boundary. Therefore intensity information must be incogted as a stopping criterion as
well.

BecauseF' determines the speed of the segmenting front at every inagion, it
makes sense to assidgha large value at voxels believed to be part of the lesion and a
small value at those believed to be part of the backgroundgérintensity and gradient
information are the the simplest, reliable clues for detemgy whether a voxel is part of
the lesion or not. Segmentation proceeds under the assumipiat lesion voxels have
higher intensity than non-lesion voxels. Therefore, we introduce a threshold on voxel
intensity that will slow the front down in darker, non-lesiareas. In contrast to simple
intensity values, gradient magnitudes are often used &ctbbrders. Large gradients are
indicative of boundaries and are also good clues for whestdp the front. We combine
this information into a speed function that is a hybrid oficgg(intensity) and boundary
(gradient) based segmentation strategies.

When we segment an imagehat has been diffused to a particular scalaye assume
we know something about the intensity of the lesion and tkengity of the non-lesion
background. Therefore, we conclude there is some intefidily which the voxels at least
that bright are lesion, and voxels darker than it are baakgdo Thus, we use a speed
function that slows the front down when image intensities laglow the threshol@ and
encourage propagation otherwise:

o ()

The parametet controls the slope of this speed function about the infleghoint 5. Thus
higher values ofi cause a steeper dropoffdrop-off in speed aindicating our confidence
in that value as a threshold. Figure 10(a) shows this intgmsised speed function for
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Intensity Speed Function Gradient Speed Function

H(x)
G(|0u(x;s)l)

[Ou(x;s)|

Figure 10: Intensity (left) and gradient magnitude (rigtgmponents of the final speed
function.

various values of.

The gradient of the filtered image allows us to search for bades between regions
of different overall intensity. The 3D gradient is estinttey convolving an image with
the separable filters

i = [1 3 1]
fo = [1 0 —1]
fs =13 1]

These are modeled after an optimally rotationally invariib filter in [32]. The filters are
combined as follows to producéu = (u;, u;, u;), where

1

u; = 50Aif;*ff*f3/‘*u
1

71,]‘ = M ﬁ*f;*f{‘*u
1

Up = m.fﬁ*.ﬁi*ff*w

Eachu,, is the approximation of the partial derivative of the imag&wespect to direction
w. The orientation of each convolution kernel is specified Byperscript arrow, witlf ~a
filter alongi, f'a filter alongj and f-” a filter alongk.

To reduce the front’s speed at a strong gradient we use

G (v) =exp (=b|Vu(v;s)]), (40)

whereb is a parameter controlling the sensitivity to gradient magte of the image at
scales. Figure 10(b) plotgs over the domain of gradient magnitudes for various values of
b.
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Speed Function

Figure 11: Hybrid gradient and intensity speed functign=0.4, a = 4, b = 3.5).

Our hybrid speed function is formed as the product of theisity and gradient function
H andG respectively

F(v) = H(V)G(v)
= exp <— (ﬁ)a—MVU (v;s)\) . (41)

This function allows large speeds where the intensity onfribiet is above the threshold
and there is little boundary evidence but slows when eitheritensity drops or a large
gradient is encountered. The function approaches zerdlyawhen both events occur, as
shown in Figure 11.

5 Experiments

5.1 Experimental Data

Experiments were performed on 10 MR images of various moddsvaxel dimensions
from 7 patients, as indicated in Table 2. Images with the saomber are scans of the
same patient from different orientations. The volumes af tvand segmentations from
two physicians are reported for 6 of these images (1, 2, 3R, @)),in [23]. For 5 additional

images, the segmentations themselves were obtained, llbusng for a more careful

evaluation and comparison of automatic segmentationswbhlein [23, 38] used a version
of the image of patient 1 that was altered by artifacts fronmoaversion tool. We have
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| Image | Mode | Voxel Size | Orientation |
1 T, 1x1x1mm’ Axial
2 FLAIR 1x1x25mm Axial
3P T, 1x1x25mm Sagittal
3Q T, 1x1x25mm Coronal
3R T, 2.5 % 2.5 x 2.5mn? Axial
4 FLAIR 1x1x25mm Coronal
5 FLAIR 1x1x25mnm Coronal
6 FLAIR 1x1x25mm Coronal
7Q | FLAIR | 0.5 x 0.5 x 2.5 mn? Coronal
7R FLAIR | 0.5 x 0.5 x 2.5 mn? Axial

Table 2: Test data from ten MRI scans.

chosen to use the original version in our experiments becawgscannot be sure of the
nature of the alterations to the image. Since it is mostYikbht the image histogram
was stretched, the effect of the alterations should beaalplie through our segmentation
framework.

5.2 Evaluation Criteria

We use several criteria to evaluate different aspects ofnoethod. These include vol-
umetric error to capture the amount of overall agreement whysician segmentations,
information retrieval metrics for comparing actual deoisistrategies, and a new form of
variance to measure the sensitivity of the method to inzidion.

If, as in §3.2, we view an image as a set of vox&ls- {z;}.',, then a segmentation is
some subset ak'. For exampleS C X could be a computer segmentation &id- X a

hand segmentation.

5.2.1 Volume

Results in [23, 38] were reported in absolute volumes, whigsician results alongside
those from automatic segmentations. To allow for comparisee measure the relative
disparity between the volumes of automatic and physicigmsatations, with volume
error given by

:V0|umaistimate - VOIuma:’hysician _ |S‘ - ‘H‘

FE
VOlquDhysician ‘H|

However, this is not always a meaningful comparison.

In the extreme case, two completely disjoint segmentatibtiee same image may have
the same volume. Of course, results reported earlier digxioibit behavior this extreme.
However, it leaves open the possibility that in certain sas@me regions of tissue may
be excluded by the computer that were included by physiciand thevolumeof these
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RID. 0.1

Figure 12: Topr: Slices from the original version of image 1.0BToM: The same slices
from the altered version of image 1 used in [23, 38].

regions could be compensated for by other regions (inctiydeacluded by the computer.
This motivates the use of the following measurements.

5.2.2 Precision, Recall, and F-measure

Itis important to evaluate whether the computer is makimgsidime decisions as physicians
in labeling tissue normal and abnormal. In this casés the set of “retrieved” voxels and
H is the set of “relevant” voxels. Along these lines we measheeprecision and recall of
the computer segmentations. the precistband recallR are defined as

SN H|
P
5]
SN H|
R = .
H|

The precision is thus the fraction of retrieved voxels that ielevant (i.e. correct), and
recall is the fraction of relevant voxels that are retrieved

A segmentation may have perfect recall by including all tb&els, but it will have
poor precision because it includes many voxels that areasadh. For example, this might
happen when the speed function intensity threshallset too low and the evolving front
“leaks” outside the lesion boundary somewhere and evdgtnaludes much of the image.
Conversely, a segmentation may have very good precisiondiyding only a few (correct)
pixels, but it also has poor recall because it misses maigne®xels. This might happen
when the same threshold is set too high and the propagatngftils to “inflate.”

These two values are combined to form the F-measure of a segtiua,

2PR
P+ R’
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which is the harmonic mean of precision and recall. This giwe a single value to max-
imize and is more sensitive than the average to a differepb@d®n precision and recall

5.2.3 Set Variance

Finally, it will be of use to investigate the variation in segntations. As described before,
it is possible for the volume of a segmentatiofi, whereS C X, to be misleading. By
a similar argument, the standard deviation of segmentattummes could be misleading.
If n segmentations consist of spheres of the same radius, etith different center, then
the volumes of the spheres are precisely the same, and tiaide\f the volumes is zero.
This counters intuition since the segmentations themseletially do differ. We are there-
fore motivated to construct a definition of the “variancezoa collection of segmentations
S;CX,i=1...n

Given a random, real-valued sample: = 1...n, the sample mean and sample vari-
ance are given by

§° = ' (y7—1j)2

The variance is the average squared deviation from the midamwever, the notion of a
“mean” set is elusive, so we manipulate the variance exjness reveal

s? = P Y =) ZZ —yj ) (42)

11]1

We are now prepared to define an analog to sample variancevahaybservation is not a

number, but a set. That is, we view segmentations as obserg&t of a random sefb €

o (X). In this case, the usual variance (42) is evaluated overdeines, or cardinalities,
The symmetric difference between two sdtsB is defined as

ASB:=(AUB)\ (ANB). (43)

The indicator function of the symmetric difference is thelesive OR of the operands’
indicator functions; an element is included in the resgltaet if and only if it is in one
or the other, but not both. Thus, if two sets are very similagjr symmetric difference is
nearly empty, and if two sets are very dissimilar, the synmimelifference is nearly their
union.

We propose to use the following as a measure of variance fopkeasegmentations

s 1= 5 n_122|595| (44)

i=1 j=1
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Figure 13: Images for comparing volume variance and seamad. Mean area= 1395.5,
variances® = 22.474, set variance?, = 31677.

Qes

Thus, (44) is analogous to (42) in that it measures the ps@naguared difference between
all samples; these pairwise terms are then summed and ripethddy the same factor.
Whereas (42) squares the difference to yield squared matmi{44) measures the cardi-
nality of the symmetric difference in order to obtain a magde of the difference between
the sets. (The cardinality measurement thereby ignorepangcular elements of con-
tention between the pair, since they are not of direct conbere. However, if further
examination of the discrepancy between two segmentatiare wesired, the actuakt
S; © S; would likely prove useful.)

As an example, forn. disjoint segmentations each of volumes? = 0 while s =
n%”]v?. Figure 13 shows 36 images of a single shape at variousaotatiaving a mean
area 1395.5. The variance of the area (caused by discretiy& just 22.474, while the set
variance is 31677. This rather dramatic difference indisdtow different the black areas
are when considered to be segmentations.

These two results show how the measures can be differenyéatso show how they
can be the same.
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Fact5.1 If a sampleS;, i« = 1...n has the property that; C S; or S; C S; for all
i,j =1...n,thens* = 2.

Proof:
I S; C Sj, thenSi U Sj = Sj, S; N Sj =5;, and

S;e 8P = [(SsuS)\ (Sins))|”
= [S;\ Sif?
= (18| = [S:)” = (ISi] = |S;])°.

BecauseS, is a subset of;, the cardinality of the set difference is merely the numadric
difference of their cardinalities, which facilitates treest step above. If; C S;, similar
calculations give the same result. Thus,

1 n
2 Z 2
& 2n (n — 1) T | i

= o o8- 18’

17]
2

= s°.
| |
We see that when a sample of sets is like a Russian doll, wiaete @bservation fits
inside another, the new set variance measure is preciselyaime as the usual variance of
volumes.

5.3 Segmentation Model
5.3.1 Scale and Threshold Parameters

Physicians in the process of manually segmenting imagebie®hio behaviors worth not-
ing. First, as mentioned in 82, they adjust the brightnesscamtrast levels of the image
so that they may perceive greater discrimination in the i8&x8econd, they zoom in to
draw careful contours and zoom out when unsure of a partibadandary area. These two
behaviors indicate the use of scale in regard to both sizerdedsity.

These observations led us to conduct segmentations widmeders varying along two
axes (Figure 14):

Scale: Diffusion timet

Threshold: Speed function intensity threshaotd

The lowest scale used is a small value that is close to thénatignage, yet removes a
small amount of noise. The largest scale used is a value ahwhost lesions are reduced
to a single blob, presumably near the last stable scaledbfing mixed with normal brain

tissue.
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Figure 14: Parameter space induced by segmenting imagesgasbbkscales and thresholds.

Since different images have different intensity propsitibe threshold axis of the pa-
rameter space is restricted to bounds patrticular to the éentegng segmented. The two
intensities of primary interest are those within the lesimmd that of the healthy brain tis-
sue immediately surrounding it. Thus, two points are selkab the original image by a
technologist (Figure 15):

1. aninterior seed poirif and
2. an exterior baseline poibt

The interior seed point gives both an intensity value of &sédn and a location from which
the segmenting surface is inflated. The exterior point gavbaseline on lesion intensity;
since it corresponds to healthy tissue, no lesion will hawvmgensity that low in the filtered
images where the intensity distribution within image regigs highly peaked.

The average of intensities in a 3 voxel neighborhood arobedrterior seedt a par-
ticular scaleis used as an upper bound on the threshold. Similarly, thegeef intensities
in a 3 voxel neighborhood around the exterior point at théesisaa lower bound on the
threshold. The point selected outside the lesion shoulledspond roughly to the brightest
region excluded from the lesion. Under the imaging modaditised in this evaluation, this
generally corresponds to normal brain tissue. Figure listithtes an interior seed point
and a baseline point in the healthy tissue just outside gierie Notice the ambiguous left
boundary of the lesion. By choosing a baseline point wedl i¢althy tissue, varying the
threshold between the intensities of these two points valt@ the lesion boundary given
by automatic methods at varying places along the ambigudges.e

It is important to note that while the location of the poingsdonstant through the
segmentation process, the intensities at the points vatyseale. What explicitly varies
along the horizontal axis of segmentation parameters (Eigd) is not the threshold used,
but the percentage different®tweenthe point intensities that are used to calculate the
threshold used. Hence,#(0; ¢) := u (b; t) is the intensity of the exterior baseline point at
scalet andg (1;t) := u (1; ) is the intensity of the interior seed point at scalthe explicit
segmentation parameter along the threshold axiswhere) < p < 1 and we use

B(p;t) == B(0;t) +p(B(1;t) — B(0;1))

for 0 < p < 1 as the speed function intensity threshold parameter.
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Figure 15: Example of an interior seed polrand exterior baseline poihit.

5.3.2 Confidence Parameter

Section 1.4 describes how the frequency of a voxel’s inolugi a segmentation is related
to our confidence in it being lesion. We therefore “marginglithe scale and threshold pa-
rameters into a space of segmentations based on confidéffcand?P are the (finite) sets
of scales and threshold ratio parameters used, let a part®egmentation b& (¢, p) C Q
fort € T andp € P. The frequency of a voxel’s inclusion is given by

1
¢ (V) = |7-‘ "P| ZZXS(M’) (V)=

teT peP

which is the total number of times a voxele () appears in all segmentations divided by
the number of segmentations. We define a confidence segerttabe the set of voxels
above some minimum frequency:

Cl)={veQig(v)=c}

for0 <e¢<1.

5.4 Experimental Details

We use isotropic nonlinear diffusion exclusively in all exjpnents for the following rea-
sons:

e Edge-enhancing anisotropic diffusion with maximal diffity along edges, as in
(14) quickly wipes out the fine structures of some lesions.

e The scale-space framework is important to our model of segatien, and thus a
modified, non-differentiable diffusivity such as (16) cabbe used since it does not
guarantee the scale-space axioms are upheld.

e Using a constant reduced diffusivity along edges is lesctffe than isotropic dif-
fusion when\; > \;.
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Additionally, the diffusivity function (12) is used in an A implementation with the fol-
lowing parameters:

= 4
1
= 2.55
= 2.5.

9 > 9 3
Il

The Fast Marching Method is used for all image segmentatisnmobust treatment of
complex lesion structure coupled with the low time complexif the method itself make
FMM an ideal choice.

The hybrid speed function (41) drives segmentation in tre¢ Marching Method. Sec-
tion 5.3 explains the selection of the intensity threshaddameter5. The values of the
other parameters are:

a = 40
b = 3.5

The timest at which the image is segmented are discretely sampled ogagitlomic
scale, as this is commonly held as the natural scale paraftéte20]. Along the threshold
axis,p is sampled linearly.

We exclude segmentations in the following cases:

¢ the propagating front fails to expand beyond the voxelshaiging the interior seed
point, i.e. the resulting segmentation volume is less tt@awndXels

e the propagating front reaches a boundary of the image in tNepkane

The first case is an example of an invalid under-segmentafiois might happen when the
threshold parameter is set so close to the intensity of tiialipoint that the front has no
speed. Regarding the second case, it is fairly easy to gpe@idbx bounding the lesion in
two dimensions across all slices. We assume lesions aradaigé from such a boundary
that if the front reaches a boundary it has over-segmentedrasult of poor parameters,
i.e. a large scale or a low threshold. (Fronts reaching a @anin the Z direction are
not disqualified because some images exhibit lesion inia#sl) These segmentations are
identifiably incorrect and are thus excluded from the meaments to avoid skewing them.

5.5 Results

The results of our segmentation model are dependent upee ghimary factors: the scale
at which the image is examined, the threshold used for shgpihie propagating front, and
the seed points used to initialize the algorithm. This sectivaluates each of these.
First, the space of scale and threshold parameters is stémmihe parameter pair that
gives the minimum absolute volume error for each image. da&bgives the minimum
volume error achieved on each image when compared with tigegnal physician hand
segmentation mean volumes reported in [23]. The sensitifithe optimal parameters is
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| Image| Volume Error| Scalet | Thresholdp |

Doctor 1
1 -0.148 362217 0.45
2 -0.001 1636 0.95
3R 0.000 330 0.95
4 0.007 8103 0.95
5 -0.000 270 0.75
6 0.000 55 0.95

Doctor 2
1 -0.095 362217 0.45
2 0.000 40135 0.95
3R 0.000 1998 0.85
4 0.004 8103 0.85
5 -0.004 45 0.75
6 0.005 4447 0.75

Table 3: Minimum volume error for each image and the pararaetewhich each occurs.

illustrated graphically in Figure 16. The means and stashdi®viations of volume over

a three scale, one threshold neighborhood (thus, twergyetnservations) around these
minimizing parameters are plotted beside the mean and amdiatd deviation of each

physician’s segmentations.

Next, the space of scale and threshold parameters is scdon#dte parameter pair
that gives the minimum total absolute volume error for theeasix patients. For each
doctor the parameters (scale and threshold) that gave diseé tigtal error magnitude over
the six images were identified. Table 4 gives individual woduerrors at the parameters
for which total absolute volume error occurs for each dqdtars adapting parameters to a
particular physician segmentation style. On the other h@alble 5 gives individual volume
errors at the parameters for which total absolute volumerdor both doctors occurs,
thus constraining the algorithm to a unique parameterrgethnd comparing the behavior
to that of physicians. Table 6 compares volumes from phgsitiand segmentations
and the results from [23] with new results from diffusion/MMAs before, means and
standard deviations of volume are taken over a 3 scale, $hbte neighborhood around
parameters minimizing total absolute error for each dodbe same results are illustrated
graphically in Figure 17. The mean and standard deviati@n ascales and all thresholds
is illustrated in Figure 18.

Once again, the space of scale and threshold parametersnisest; this time for the
pair giving the best F-measure for each image whose physsgigmentation we obtained.
Table 7 gives the F-measure, precision and recall at thes@aparameters, along with
the corresponding volumetric error. Figure 19 shows thednsegmentation of image 2
alongside the closest automatic segmentation.

To evaluate the sensitivity of the segmentations to theiorteeed point location (and
by extension, intensity), we chose 100 interior seed paint®rmly at random from the
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Figure 16: Mean and standard deviations of volumes from iplays and automatic seg-
mentations over the neighborhood around optimal paramétereach image and each
doctor.
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\Volume Error

Image | Doctor 1| Doctor 2
1 -0.766 | -0.705
2 0.020 0.102
3R -0.152 0.004
4 0.007 0.051
5 0.009 -0.006
6 -0.046 | -0.030

Table 4: Individual errors at the parameters where minimatal tabsolute volume error
occurred for each doctort = 8103, p = 0.95 for doctor 1 andt = 602, p = 0.85 for
doctor 2.

Volume Error

Image| Doctor 1| Doctor 2
1 -0.723 | -0.705
2 0.110 0.048
3R -0.095 | -0.001
4 0.150 0.062
5 -0.008 0.071
6 -0.012 | -0.026

Table 5: Individual errors at the parameters where minimatal tabsolute volume error
occurred for both doctorg:= 1636, p = 0.85.
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Doctor 1 Snake Hybrid || Diffusion/FMM \

Image| mean sd mean sd mean sd
1 2069 120 1927.6 | 49.3 || 594.3 | 925
2 3416 | 139.7 || 3841.5| 277.8|| 3849.0 | 292.2
3R 23555 | 762.3 || 21821.9| 617.7| 21096.7| 1041.4
4 9962.5| 67.2 10031 | 906.8|| 11078.8| 875.0
5 10131 | 740.7 || 9536.9 | 251.8|| 10623.8| 673.6
6 34525 | 35.3 3525 | 117.9| 3422.1| 103.8
Doctor 2 Snake Hybrid || Diffusion/FMM

1 19475 | 245 | 1927.6 | 49.3 | 579.7 | 814
2 3617.5| 183.8 || 3841.5| 277.8| 3933.6 | 362.0
3R 21359 | 618.7 || 21821.9| 617.7| 22183.0| 1810.5
4 10787.5| 449.0 | 10031 | 906.8| 11358.7| 1028.9
5 9377.5| 1064.2|| 9536.9 | 251.8|| 8681.9 | 1205.8
6 3504 | 160.9 3525 | 117.9| 3408.1 | 148.7

Table 6: Means and standard deviations of physician segtiens, the previous hybrid
method (using five initializations), and the diffusion/FMivethod (using one initialization
over a range of 7 scales and 3 thresholds).

| Image| Precision| Recall| F-measurd Volume Error| Scalet | Thresholdp |

2 0.860 | 0.827 0.843 -0.039 01998 0.45
3P 0.935 | 0.833 0.881 -0.109 00330 0.35
3Q 0.934 | 0.834 0.881 -0.108 03641 0.15
7Q 0.861 | 0.690 0.766 -0.198 06634 0.35
7R 0.861 | 0.537 0.661 -0.377 22026 0.65

Table 7: Maximum F-measure for each image and the paransdtersich each occurs.

| Image| Segmentations Mean | Median | Std | Set Std| Volume Error|
1 20 1536.50 | 1475.50| 164.93 | 165.48 -0.2349
2 100 3709.80 | 3557.50| 921.68 | 921.68 0.0860
3P 63 28534.37| 28952.50| 993.26 | 993.26 -0.1223
3Q 79 27577.91| 27560.00; 110.76 | 110.77 -0.1045
3R 84 21701.08| 22398.44| 5882.13| 5882.13 -0.0787
4 100 11163.95H 10716.25| 1832.79| 1832.79 0.1206
5 67 10651.72| 10440.00f 494.56 | 494.56 0.0514
6 80 2879.91 | 3192.50| 1031.20| 1031.20 -0.1658
7Q 60 28707.75| 29389.06| 1952.33| 1952.33 -0.2145
7R 41 22122.21| 22451.25| 861.00 | 861.01 -0.3881

Table 8: Segmentation results at one scale and threshdidseseral seed points.
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Manual Automatic Manual Automatic

Figure 19: Physician manual segmentation and its closéstraatic segmentation for im-
age 2.
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Mean Volume Error
Volume Error
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Figure 20: Error vs. Confidence: (a) mean volume error; (lbywve error for each image.

most conservative automatic segmentation of each imagegloscale, highest threshold)
and segmented each image at the most accurate scale armbttii@smbination as reported
in Tables 3 (for doctor 1 only) and 7. As before, invalid segtagons were discarded from
the calculations. Table 8 reports the number of valid segatems out of 100 possible, the
mean, median, and standard deviation of the volume, ancetrstadard deviation, which
is the square root of (44). The volume error compares the melkme to the manually
established volume.

For seven lesions in our data set, the error on segmentaifaagplotted versus confi-
dence in Figure 20. The swaths of CSF through images 7Q ande/Rrge enough that
they do not disappear before the maximum scale of the expetsns reached. The seg-
mentation style of the doctor on these two images is toordiffefrom the algorithm’s and
is thus irreconcilable in the current parameter space, @p dne omitted from the calcula-
tions. Image 1 is omitted as well because its behavior of usdgmenting at almost all
parameters due to a leaking tendency is atypical. Table @stite individual error on the
lesions at the confidence yielding zero mean error.

5.6 Analysis

Clearly the segmentation model has the capacity to perfémmost identically to physi-
cians. The results of Table 3 show that it is possible to aeh&most zero volume error
for each image and each physician at some parameter séfttiegonly exception, image 1,
would certainly achieve a small error comparable to theersept for the fact it neighbors
a brain ventricle that is as bright as the lesion itself. A& scales, it becomes possible
to segment the multimodal lesion of image 1 in a fashion sintd that exhibited by the
doctors, but the lesion and ventricle also begin to join,scay the propagating front to
leak.

While the model has the capacity to perform perfectly on gvesion, if automatic
segmentations are required, then parameters must be @ioestr As described in the in-
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Overall Optimal (Zero Mean Error Individual Optima
Image \Volume Error Optimalc \ \olume Error\ F-measure
2* 0.086 0.67 -0.001 0.849
3P -0.301 0.03 -0.059 0.894
3Q -0.236 0.13 0.087 0.886
3R 0.087 0.71 0.002 -
4 0.352 0.91 -0.002 -
5 -0.049 0.45 -0.001 -
6 0.055 0.76 -0.001 -

Table 9: Individual errors at optimal confidenee=£ 0.53) with zero mean error, standard
deviation 0.220, and individual optimal confidence valué worresponding F-measure
and/or volume error. F-measure is the primary optimizingedon with volume error a
secondary fall back. *Image 2 gives individuabnd volume results based on original
volumetric data, and F-measure based on a segmentatiomexttater.

troduction, this means picking the consistent strategy ginges the least error. Earlier
results used a single set of parameters over six patientasagth five initializations. If

we restrict our parameters to a single scale and threshaldséem to fit a doctor’s seg-
mentation style, the results are still almost entirely with 10% error, as shown in Table
4. Image 1 was acquired with a very different MRl mode calledSince different tissue
types image quite differently undég, this image requires a much larger scale to achieve
results closer to the physician volume. It might be more appate to consider this image
(and any othefl’, images) separately due to the different magnitude of scabpsred. In
any case, the large error on image 1 should not be consideoeskverely. The lower res-
olution of image 3R causes a narrow finger of lesion (cf. Fegzd(b)) to be absent at the
higher scale parameter£ 8103) used to emulate the segmentations of doctor 1, thus caus-
ing the underestimate. These results show that even whesebioé rules is required for a
doctor, the results are still extremely good. Moreover,tfaglel demonstrates a reasonable
insensitivity to the scale and threshold when compared thighphysician segmentations
and the previous work (Table 6 and Figure 17). If parametearstrbe constrained even
further to one setting for all doctors, the results are sanhyl good, and the total error for
each doctor increases only slightly (by 0.024 for doctord @917 for doctor 2), as shown

in Table 5.

Error versus confidence plotted in Figure 20 show the prorofsihe frequency ap-
proach to segmenting. The intuition that over-segmemagiwmuld occur when low confi-
dence is required and under-segmentation should occur wigénconfidence is required
is born out in Figure 20(a). Therefore, we might set a defearifidence requirement at the
zero crossing: = 0.53, where the average error is zero. That the confidence givang z
mean error is almost exactly one half is very appealing. Addally, the standard devi-
ation of volume error i$).220, barely above the error deemed clinically useful by physi-
cians. Interestingly, using the confidence measure to aggiiate segmentations increased
F-measure slightly over the best possible using only onmsetation (from Table 7).
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While we do not have the means to do an evaluation pairingedhiechnologists with
the automatic segmentation, we do not feel the “single patanfor all lesions” setup
is the best or most appropriate. A glance at the numbers deTalindicates why. The
large negative error on images 3P and 3@ at0.53 are because both contain ambiguous
regions that doctors ended up including. These areas ofrtanty are only included at
lower confidence levels, and similar uncertain structurdsalvays be eliminated at the
“average” confidence level. Conversely, image 4 contairadthne tissue that is relatively
bright in some regions. When the baseline point does nat limée of these brighter regions
(as it did not in our experiments), the segmentation incduttheem at lower thresholds.
Hence, only with stricter confidence will the correct reglmnisolated.

Rather than allowing these anatomical nuances to be ignonedrsuit of correct seg-
mentation of the more typical lesions, we propose to allowseruo choose the voxel
inclusion frequency isocontour—confidence—he or she fisellse best representative of
actual lesion boundaries, as described in 81.4. This islagdd by the results in Table
7, which gives the maximum F-measure on the images for whielda have physician
segmentations (instead of only volumes). Figures 19, 2d 2&show select slices of the
physicians’ manual segmentations alongside the autorsegjmentation with the highest
precision and recall. The contours are similar in appeaamcl the differences in volume
are within the clinically useful bounds of 20%. Segmentai® a tedious process when
done manually because it requires classification congsigtever several slices. So-called
“ground-truth” data is not a gold standard because it is pfimninconsistency. It might be
said that the closest automatic segmentations as giverbile Taare the closest fit to the
manual segmentation, but with a consistent decision pgoces

The larger errors reported for images 7Q and 7R in Table 7 &gaaining. While the
precision is comparable to that of the other images, dastitow recall (and thus large
volumetric error) is caused by the refusal of the algoritorimtlude the large black regions
of CSF, as described in §1.2.3. Manual segmentations aeusius and time consuming,
so for these two images doctors drew a consunroundingaffected areas. As mentioned
before, physicians have informed us that such results areao@ssarily incorrect [15].

Figures 23-25 show frequency isocontours for slices frotrepaimages. Cool colors
indicate few inclusions, and warm colors indicate manyusmns. The outermost blue
contour encloses voxels included in the lesion segmenmntatiteast once, and the innermost
red contour encloses voxels included every time.

Image 2 in Figure 23(a) finds “uncertainty” in the finger on tight-hand side the
lesion, but it turns out this is similar to the physician segtation (cf. Figure 19). One
outlying contour in 23(b) indicates the ambiguity of thetde&nd region. As it happens,
this outer contour is also similar to the physician segmentdound in Figure 26(a). An
interesting example is found in 24(a). As we witnessed thgsiglan segmenting this
image, he spent considerable time evaluating the tissuleeirupper-right corner of the
lesion, before eventually including the area indicatedh®y dutermost contour, shown in
Figure 26(b). Figure 25(a) indicates that the uncertaimdmoipart of the lesion is included
in at least some segmentations, but the parameters at whechdcurred made the results
too different from the hand segmentation we received to berted as the most accurate
(cf. Figure 22). Finally, the cool colors in the disconnektgper-right contours of Figure
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Figure 21: Selected slices from a physician manual segrentdeft) and its closest au-
tomatic segmentation (right) for image 3Q.
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Manual Automatic Manual Automatic

Figure 22: Selected slices from a physician manual segrmentand its closest automatic
segmentation for image 7Q.
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(b)

Figure 23: Frequency isocontours plotted at ten confideened: (a) image 2; (b) image
3P.
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(b)

Figure 24: Frequency isocontours plotted at ten confidemaadd: (a) image 3Q; (b) image
3R; (c) image 5.
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(b)

Figure 25: Frequency isocontours plotted at ten confidezxasdd: (a) image 7Q); (b) image
7R.
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(b)

Figure 26: Slices of physician segmentations: (a) imaggBRmage 3Q.

60
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25(b) indicate the uncertainty of our algorithm concernimigether the region is lesion.
Because this region is typically bright since it neighbdms ventricle, it is in fact one that
should be excluded (cf. §1.2.1).

Finally, we test the sensitivity of the segmentation predeshe location and intensity
of the interior point, as demonstrated in Table 8. The begtnsamtation of image 1 was
achieved previously at a very low threshold for the maximegaieswe allowed. Itis logical
that many segmentations of image 1 had to be discarded, $estight deviation from the
intensity of the original point at such a low threshold makes front prone to leaking.
If the threshold were to be raised, more consistency wolklel\libe found, but a larger
average error would result due to smaller volumes. The geevalume error for images 2,
3R and 5, is roughly consistent with, though slightly lartfem, the volume errors reported
in Table 3; errors for 3P, 3Q, 7Q, and 7R are also consistahtwalume errors in Table 7.
Image 6 is a multi-modal lesion, so there is still a largeat#ohn in the intensity of the seed
point because the minimum volume error happened to occuvatyalow scale. Finally,
note that there is almost no difference whatsoever betwsendual measure of standard
deviation over volume and our proposed definition over selss is due to Fact 5.1. The
algorithm is not making inconsistent segmentations byuidiclg some areas at one time,
and other areas at another time, rather, it is excludingsaredifferent degrees. That s, all
the segmentations are subsets of each other and the iptégtlaeen the intensity of the
seedpoint relative to the threshold ratio parameter ctjust how far the front expands
before stopping. This is the only source of inconsistendyictv the confidence measure
essentially eliminates.

6 Conclusions

Without the incorporation of anatomical knowledge or a ngi@nount of user guidance, it
is unlikely that any segmentation method could capture tivls nuances of stroke lesions
in MR imagery. Common segmentation strategies using iftieasd intensity changes are
a solid starting point, but fall short when medical knowledgust come into play.

Our previous work implicitly incorporated human guidan@ée process of drawing an
initial contour that surrounds the lesion in a base slicelititfy directs the segmentation
toward those edges near the initialization. The work preseim this paper can incorporate
a similar amount of user direction, but performs well on agerwithout it.

We have proposed methods for overcoming the variabilitytwke lesions. The com-
bination of scale-space and implicit contours can matclséggnentations given by physi-
cians. Even when a consistent strategy is chosen, the maa#ydeviates from physician
volumes.

Our confidence model provides an alternative method for simga segmentation strat-
egy. When fully automatic, the intuitive fifty percent corditte strategy gives accurate le-
sion volumes on average, with a standard deviation onlysjigabove our clinical target.
This method needs only two mouse clicks, which is much less ggidance than previ-
ously required. If a small amount of guidance is allowedpzeror can be achieved on
almost every lesion. The amount of user guidance in the netliodds substantially less
than the old because it only requires to choose from a setrabaos, rather than carefully
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drawing an initial contour.

Because human segmentations are prone to variation, iistemsy, and can be taxing
for those involved, it is unlikely we would have enough tragndata to do a fuller test of
the system. However, since the model proposes contoursonitha simple initialization
step, the system could be tested on a wide scale by havingasphgsicians select the most
appropriate contour on a large number of lesions. Suchnmtion could eventually indi-
cate whether constraining the model to a particular scalelaeshold is the best strategy,
or whether a different confidence level might be more appat@ion average. The authors
presume it would indicate that no single parameter, whesbale, threshold, or confidence,
will make the system robust under all lesion types. Ratherfeel it would verify that the
problem can not be fully solved without medical knowledgemlght also illustrate the
degree of subjectivity in “ground-truth:” even with autoticasegmentations, doctors may
individually, if even consistently, prefer different cotince levels in ambiguous lesions.

The statistics of sets is a relatively unexplored area. lith a new confidence-based
segmentation model, we also presented a new direction fickitly about the variability
in segmentations. By capturing the fundamental differdret&veen segmentations, rather
than volumes, we give a set “statistic” that is similar tanskard statistics of volume mea-
surements when the segmentations are similar. Futurerobsesay explore the relation-
ship between the usual variance and the set variance, apexd to how they will differ
as segmentations contain more discrepancies. Perhapsimenesting is the notion of a
“mean” set, which remains to be defined. Like set variancemsan might relate to a
traditional statistical analog, such as the value miningzihe expected squared deviation
from the population or sample.

Another possible avenue for investigation is a directiahffisivity function (or the use
of an existing one) that meets the continuity and diffeintity scale-space requirements
yet also reduces the rate at which fine structures are blameds not inferior to isotropic
diffusion. Such a model might prove more useful in image pssing contexts, where how
the image looks after diffusion is more important.

We have introduced a model for segmenting lesion imagesehatres little user input.
Clinically useful bounds can be achieved even when all paters are constrained, but
some types of lesions to do not lend themselves to accurgtaesgation with a single
parameter set. Thus, even more precise volumes may be editdia user selects from
some candidate segmentations.
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Appendix A

The following is code for MTLAB 6 that implements the additive operator splitting scheme
for isotropic diffusion in three dimensions. It is modeladthe pseudo-code detailing the
algorithm in [50] and Matlab code for an explicit scheme it][4

function u = snld3D( f, lanbda, m sigma, dim tau, k)
% SNLD3D Scal ar (1sotropic) Nonlinear D ffu-

sion in 3D

%

% U = SNLD3D( f, lanbda, m sigma, dim tau, k)
%

%f := input inmage

% | anbda : = constrast paraneter

% m:=diffusitivity decay

% sigma : = regul ari zation scale

%dim:=relative coordi nate di nensi on size

%tau := stepsize

% k : = nunsteps

%
% Uses Weickert’s isotropic edge enhancing diffu-
sion filter.

Cm = CMconstant (m ;

Cm= -lanbertw(-1,-1/(2*m * exp(- 1/(2*m)) -

1/ (2*m;
u=r;
for i = 1:Kk
% G adi ent
ux = gb3D( u, sigm, dim 1, 0, 0 );
uy = gb3D( u, sigm, dim 0, 1, 0 );
uz = gb3D( u, sigm, dim 0, 0, 1);

% Gradi ent Magni t ude Squar ed
uw2 = ux.”2 + uy.”"2 +uz.”"2;

% Prevent Division by Zero
uwPoS = (uw2>0);
UW2NZ = uw2. *uwPOS + ones(si ze(uw?)). *~uwPGCs;

g = ones(size(uw2)) - uwPGCS. *exp(-
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Cm/ ((uw2Nz/ | ambda)."m)) ;

u = aosstep3D( u, tau, dim g );

N—r

, sigma, dim ox, oy, oz
i vative) Convolution in 3D

function g = gD3D
% GD3D Gaussi an (De
%

% G = GD3D(f, sigma, dim ox, oy, 0z)
%

—_ =h

% sigma : = scale
%dim:=relative coordi nate di nensi on size
% ox := order of derivative wt x (cols)

% oy
% oy

order of derivative wt y (rows)
order of derivative wt z (slices)

% Model ed on 2D code by R van den Boongaard

K
X

ceil( 3 * sigm );
-KE K

Gsx = gDeriva-

tive( ox, x.*dim(1l), gauss(x.*dinm(l),sigm), sigm );
Gsy = gDeriva-

tive( oy, x.*dim2), gauss(x.*dim2),sigm), sigm );
Gsz = gDeriva-

tive( oz, x.*dim(3), gauss(x.*dinm(3),sigm), sigm );

g = conv3Brd( f, Gsx, Gy, Gsz );

function r = gDerivative( order, x, Gs, sigm )
switch order

case O
r = Gs;
case 1
r = -x/(sigm"2) .* Gs;
case 2
r = (x."2-sigma"2)/(sigmn4) .* Gs;
ot herw se

error(’only derivatives up to second or-
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der are supported’);
end
r = r/(sumabs(r));
function gs = gauss( X, signg)
gs = exp( - x.*"2 /[ (2*sigma™2) );

3Brd( f,
% CONV3BRD Separ abl e convolutlon with reflected bor-
ders in 3D
%
% G = CONV3BRD( F, Wi, W2, W)
%
%f := input
%wl := x direction (cols) kerne

% w2
% w3 :

y direction (rows) kerne
z direction (slices) kernel

% Model ed on 2D code by R van den Boongaard

N = size(f,1);

M= size(f, 2);

P = size(f, 3);

I = (size(wl(:),1)-1)/2;

J = (size(W2(:),1)-1)/2;

K= (size(w3(:),1)-1)/2;

iind = mn(max((1: (N+2*1))-1,1),N);
jind = mn(max((1:(M2*J))-J, 1), M;
kind = min(max((1: (P+2*K))-K, 1), P);

fwo = f(:,jind, :);
gl = convn(fwb,wl, valid);

fwo = gl(iind,:,:);
cl ear g1;

g2 = convn(fwb, w2', ’'valid);

fwo = g2(:,:,kind);
cl ear g2;
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g=convn(fwb, reshape(w3, 1,1, ength(w3)), valid);

% U = ACSSTEP3D( F, TAU, DIM G)
%

%f := input inmage
%tau := step size
%dim:=relative coordinate dinension (voxel) size
%g :=diffusivity

tol = 0; %set to eps to avoid divide by zero er-
ror s/ warni ngs

d = 3; % nunber of dinensions

cycle =[2 3 1];

u = zeros(size(f));

for k=1:d % | oop over each dinension

[NL, N2, N3] = size(f);

% Current di nensi on size

hl = di m(Kk);
al pha = zeros(N1, N2, N3) ;
m = zer os( N1, N2, N3);
| = zeros(N1-1, N2, N3);
y = zeros(N1, N2, N3);
w = zeros(N1, N2, N3);
I e I

% Di f fusi on al ong row di nensi on

% Step Zero -- Create the tridiagonal matrix
% si ngl e neighbor at ’'left’ border

al -

pha(l,:,:) =1 + d*tau*( g(1,:,:) +9(2,:,:) )/ ( 2 * h1r2);

% two nei ghbors
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al pha(2:N1-1,:,:) =1 + d*tau* ...
( 2*g(2:N1-1,:,:) + g(21:N1-
2,:,:7) +9g(3:NL,:,:) )/ ( 2 * hir2);
% si ngl e nei ghbor at 'right’ border

al pha(NL,:,:) =1 + d*tau*( g(Ni,:,
1,:,:) )/ ( 2 * h1ir2);

gamma = - d*tau*( g(1:NIL-
1,:,:) +9g(2:NL,:,:) )/ ( 2 * h1ir2);

% Step One -- LR Deconposition
m1,:,:) = alpha(l,:,:);
for i=1:N1-1

L (i,:,:) = gamma(i,:,:) ./ ( n(i,

m(i+1,:,:) = alpha(i+1,:,:) -
L(i,:,:) .* ganma(i,:,:);

end;

% Step Two -- Forward Substitution
y(1,:,:) =1(1,:,:);

for i=2:N1

y(i,:,:) =f(i,:, ) - 1(i-1,:,1)

1,:,:);
end;

1) + g(NI-

c,.) + tol);

oy

% Step Three -- Backward Substitution

WNL, :,:) = y(NL,:,:) ./ ( m(NL:,:) + tol );

for i=N1-1:-1:1
Wi, o, ) =y, ) -

gamma(i,:,:).*wi+1,:,:) ) ./ ( mii,:,:) +tol );

end;

71
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% cycle input image and di ffusivity di mensions
f permute(f, cycle);
g permut e(g, cycl e);

% inversely cycle w back to original dinen-
si on order

for j=1:k-1
w = i permute(w, cycle);
end;

u=uH+w
end;

u=(1d * u
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