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Abstract

Automatic segmentation of stroke lesions in magnetic resonance imagery is a dif-
ficult problem because anatomical knowledge is required forthe most accurate deci-
sions. Without such knowledge, classification rules seem inconsistent. We propose
a hybrid boundary and region based segmentation model builtupon nonlinear scale-
space and geometric active contours that captures the various segmentation rules nec-
essary to segment lesions. After a user selects a point within damaged tissue and
another point within healthy tissue, the image is examined at several levels of detail.
At each such scale, the lesion is segmented several times by varying a parameter that
models the range of criteria for boundaries between healthyand damaged tissue. These
segmentations are collected, and the relative frequency oftissue being labeled lesion
is regarded as a measure of confidence in the classification ofthe tissue as damaged.
Experiments compare volumes and segmentations of lesions given by physicians to
those given by the automatic method. Performance upper bounds are established by
matching automatic segmentation parameters (scale, threshold, and/or confidence) for
each image with each physician’s hand segmentation. These results may be compared
with results that fix parameters for a particular physician’s segmentation or all physi-
cians’ segmentations. Sensitivity to parameter values andinitializations are tested as
well. With little initialization, the model achieves zero error on average with a stan-
dard deviation near clinically useful bounds. A modest amount of additional input
gives zero error on each image.
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1 Introduction

1.1 Background

Magnetic resonance imagery (MRI) is noisy by nature, and much research has been done on
the properties of the noise, as well as methods for overcoming it [3, 14, 27]. Segmenting
MRIs in general is a challenge for this reason as well as others that may depend on the
physiology of what is being imaged. There is a wealth of literature on MRI segmentation,
much of it geared toward specific applications [23, 39]. Ischemic stroke lesions in MR
imagery are difficult to segment for their own reasons, but especially shape complexity and
ambiguity. Creating and evaluating automatic methods for segmenting lesions is difficult
because ground-truth is elusive and stroke lesions are widely varied.

The concept of a ground-truth segmentation is elusive. There is much variability in
manual segmentation, and it occurs on three levels. Different doctors may give substantially
different segmentations of the same lesion. The same doctoron different occasions might
produce different segmentations. Additionally, when evaluating an MRI with several slices,
the same doctor may not exhibit a consistent strategy throughout all slices. Ambiguity in
a lesion boundary is one cause of the variance, while some other lesions are so convoluted
that accurate manual segmentation is prohibitively tedious. Even segmenting the most basic
lesions is a taxing manual process, so a large scale study is infeasible and a large window
of results in a small study should be expected.

The second difficulty is that lesions vary quite widely. Muchof the finesse in diag-
nosing tissue as affected by stroke is due to anatomical knowledge, which can be difficult
to incorporate in automatic methods. Some imaging methods show distinct tissue types
differently, requiring an allowance for multiple intensities within a lesion. In other cases,
doctors know that stroke never stops at cortical boundaries, so even the faintest signal in
regions neighboring the primary affected area are likely tobe labeled stroke, whereas in
other lesions a similar drop in intensity might signal a boundary with healthy tissue or a
normal imaging artifact. The result is that simple rules relying on intensity patterns and
changes therein are inconsistent across lesions, even on the small dataset explored in this
work.

Given the hurdles before us, what is the best we can do? The simplest solution is to find
the consistent strategy that gives the least error. This works reasonably well on average,
but is unsatisfying on lesions where there is ambiguity or subtle anatomical knowledge is
required. Alternatively, one might trade the overhead of image registration and attempt
to tie in more medical domain knowledge in hopes of eliminating the error. We argue,
however, that with minimal additional user interaction, these subtleties can be hypothesized
automatically and confirmed manually.

The intensity nuances found in stroke lesions are well-modeled by a computer vision
theory called scale-space, which facilitates the inspection of an image at varying levels of
detail. For segmenting both complex and regular shapes quite easily, we employ geometric
deformable models, which require a single click to initialize and inflate like balloons that
fill to lesion boundaries.

The paper is organized as follows: Section 2 discusses the nature of MR image slices
and a method for normalizing intensity across slices; Section 3 gives an overview and
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technical review of nonlinear diffusion scale-space, how it relates to MR imagery, and
some implementation details; Section 4 covers the fundamentals of level sets and the fast
marching method for geometric contours as well as a functionfor integrating region and
boundary information for robust segmentation; Section 5 describes the segmentation model
incorporating scale-space and active contours, how these are integrated into a segmentation
confidence, introduces a new metric for segmentation variance, and gives results on several
experiments. The remainder of this section discusses the nature of stroke lesions in more
detail, the results of previous work, and our new approach.

1.2 Problem Description

Ischemic stroke can be a critical medical condition. Treatment for stroke is often a time-
sensitive issue, and quick, consistent computer segmentations should be useful [23]. Given
an MRI of a stroke victim, the primary task is to separate voxels (volume elements) deemed
clinically to be lesion from those voxels which are not. The primary difficulty is that the
segmentation occurs over an indirect observation, rather than directly from the generating
process (i.e. tissue). Of course, the noisiness of MRIs is one issue that needs to be handled,
but others include tissue mixtures, low contrast boundaries, multi-modal lesion intensity,
complex shape, and anatomical knowledge.

1.2.1 Normal and Abnormal Tissue

Because voxels are discrete observations, their intensities are a spatial average of responses.
The volume a voxel covers might include more than one tissue type, which gives rise to
terms like “mixels,” which views voxels as mixtures of tissues, rather than the observation
from a single class [6]. However, when manually segmenting lesions, physicians refer to
areas as being “normal” and “abnormal,” which hints at a slightly different segmentation
philosophy. They must compare regions around the infarct (the area of dead tissue) to other
regions of the same scan because tissue near folds and ventricles may brighten, which is
normal.

This comparison can involve questions of inclusion or exclusion. Figure 1(a) shows a
sagittal slice where the tissue is bright near the folds of the brain, and slightly darker toward
the “center.” While the lesion in the lower right portion of the brain has a relatively clear
left boundary, as the lesion extends to the right, the tissueat the right edge of the brain must
be compared to tissues in other similar regions, not just to the darkest of gray regions in the
center of the folds. After consideration, a physician who segmented this image labeled the
upper-right corner as an abnormal region of tissue affectedby stroke.

Figure 1(b) illustrates a lesion that borders part of the ventricle in a coronal sequence.
The tissue surrounding both the left and right ventricles isbright in appearance. Since the
region immediately inside both ventricles is normally bright, the physician excludes that
tissue from the segmentation of lesion immediately left of the right ventricle. gray

Finally, different doctors may simply have entirely different ideas for what constitutes
normal and abnormal. We received two segmentations of one image by different doctors
that differ in volume by over sixty percent.
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(a) (b)

Figure 1: Comparing normal and abnormal regions. (a) Probable inclusion,T1 sequence;
(b) Probable exclusion, FLAIR sequence.
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(a) (b) (c)

Figure 2: Stroke lesions: (a) Ambiguous boundary,T1 sequence; (b) Complex shape,
FLAIR sequence; (c) Multi-modal intensity,T2 sequence.

1.2.2 Ambiguous Boundaries

While some lesions have boundaries that are very obvious under some MRI modalities, oth-
ers exhibit intensities that slowly drift toward that of healthy brain tissue. Physiologically,
this may be due to a gradual change in the healthiness of the tissue. This ambiguity often
makes precise segmentations difficult, or even non-existent. Therefore, some variance is to
be expected from both manual human and automatic segmentations.

The left boundary of the lesion in Figure 2(a) is difficult to pinpoint; there does not
appear to be a definite delineation between bright lesion andgray brain matter. While
physicians attempt to use consistent criteria when segmenting the slices of one MRI, these
may change from one time to the next, giving rise to intra-observer segmentation variabil-
ity. Furthermore, some physicians may be more conservativethan others in classifying
abnormalities. For instance, when manually segmenting a slice similar to 2(a), one physi-
cian admitted the possibility of varying the segmentation by up to a centimeter in one
dimension.

1.2.3 Complex Shape

Figure 2(b) shows a slice from a stroke lesion with a highly irregular shape. This is because
the lesion envelops several folds of the brain containing cerebro-spinal fluid (CSF). While
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these areas are not lesion in the most technical sense, physicians often include them in man-
ual segmentations, both because stroke can induce swelling, which reduces the “empty”
volume in these areas, but also because the complex shape makes their exclusion difficult.
However, exclusion of CSF is a valid segmentation policy [15]. The main advantage of an
automatic system pointed to by physicians would be consistency.

Interpreting CSF in a scan falls roughly into one of three cases. In the first, there is clear
and definite separation between CSF and brain tissue. In the second, there is only moder-
ate separation between the regions—black CSF areas are averaged in the imaging process
with the brighter edema of stroke, resulting in a kind of gray. Finally, in a third case there
is no separation, where stroke edema has completely squeezed out CSF from between the
folds, leaving perhaps only the barest trace of it in the image. The segmentations required
in the first and last cases are quite clear: definite exclusionand inclusion, respectively. It is
the middle, in-between case that is the most ambiguous. Here, the consistency of a com-
puter segmentation will be advantageous, because the strategy may vary from physician to
physician.

1.2.4 Variable Tissue Response

Lesions and their surrounding areas also tend to contain regions of varying brightness.
Determining which regions ought to be considered lesion is achallenge different from am-
biguous borders. The response of different tissue types is different under various MRI
modalities. For instance, the edema in aT2 image shows up much more brightly in subcor-
tical white matter than in the cortex. Thus, images may contain abnormal regions that are
brighter than healthy tissue, yet darker than the brightestlesion areas. Figure 2(c) illustrates
such a case.

Very often, physiological and anatomical constraints aid physicians in determining what
is abnormal. For instance, physicians know that stroke doesnot respect cortical boundaries.
Therefore, when even the faintest response is registered ina region, they are likely to extend
a segmentation to cover it because they know that the infarctmost likely extends to a
different boundary, such as the extreme right of the lesion in Figure 1(a).

1.3 Relation to Previous Work

Our previous work used a parametric active contour model [17]. In two dimensions, this
may be thought of either as a curve that actively seeks a localenergy minimum, or as a curve
subject to “forces” that pull it into particular directions. The same thing happens when the
force of gravity pulls a ball down a ramp; the ball is just minimizing its potential energy.
The energy of (or force upon) an active contour is defined by both the internal properties of
the curve and external properties of the image. Ordinarily,the primary external force upon
the contour is gradient magnitude, so that the contour is drawn to edges.

The previous segmentation process began with the user drawing a rough contour around
the lesion in some user chosen base slice. The active contourthen minimized energy based
on the usual gradient forces, presumably to lesion boundaries. A separate similar (in the ge-
ometric sense) contour was then automatically initializedoutside the original contour and



1 INTRODUCTION 10

allowed to deform. The resulting two regions within the outer contour provided initializa-
tion for a course-to-fine statistical packing method requiring samples from the lesion and
non-lesion voxel populations. The results of a segmentation due to statistical packing were
then used as an additional force upon the contour [23, 38, 39]. In this sense, the work was
a hybrid of both gradient (boundary) and intensity (region)based segmentation methods.
Yet the method was not without its limitations.

The active contour model was represented as a stack of 2D contours rather than a true
3D surface, which in practice is a parametric mesh. The contour in each slice was deformed
under forces derived from the image, the statistical segmentation, and the contours in neigh-
boring slices (although no two contours were completely independent of one another, since
the forces can propagate from slice to slice). This approachsuffered from several limita-
tions. First and foremost, the 2D stack of contours restricts the topology of a segmentation.
While a stroke lesion may be a contiguous volume in 3D, a single slice through it may ren-
der the lesion as multiple disconnected blobs in 2D. Additionally, a 2D slice may contain
a “hole” within a lesion, which may or may not be a hole in 3D as well. For example,
an object and a slice through it may have different Euler characteristics. However, the ex-
plicit nature of parametric methods does not allow them to change topology without the
addition of complicated schemes. Moreover, extending parametric contours to be fully
three-dimensional requires significant computational overhead [8]. All these issues reflect
poorly on the appropriateness of both parametric contours and the constrained 2D contours
to imitate a full 3D model. In short, lesions change topologyfrom slice to slice, which is
difficult for the parametric contour stack to handle. Topology can also differ from lesion to
lesion, preventing the use of a constant number of multiple contours for slice segmentation,
a practice common to heart ventricle segmentation.

In a standalone setting, the statistical packing method operated effectively in 3D, which
is advantageous. However, it required a large amount of userinput to define a region of
interest. Moreover, the statistical tests involved assumed a unimodal distribution on lesion
intensity, which is not always the case (cf. §1.2.4).

One of the reasons the previous work was so successful in achieving volumes compa-
rable to those of hand segmentations is that it captured the segmentation mechanics (and
limitations therein) of the manual process. Doctors segment lesions by examining them on a
slice by slice basis, often glancing at neighboring slices for cues, which is precisely the way
the stack of active contours is built and deformed. Furthermore, because segmentation can
be difficult and tedious, doctors tend to draw regularized curves surrounding affected areas,
rather than producing detailed complex curves that might include strictly tissue, rather than
CSF (§1.2.3). While our previous work dovetailed nicely with the manual segmentations
provided by physicians, an approach that allows for full 3D consideration of MR imagery
and its possible intricate structures should prove advantageous.

1.4 Overview of Our Approach

As suggested in §1.1 and detailed in §1.2, different lesionsexhibit different intensity pat-
terns and thus often require different rules for segmentation. We do not propose the use of
prior anatomical knowledge, but to approximate it with rules that can vary what constitutes
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a significantly bright intensity and a significantly large change in intensity. This character-
ization allows us to consider varying strengths of boundaries, such as contrasting the oft
less-significant cortical boundaries with those that are stronger. Simultaneously, such rules
will also allow for considering that different lesions are often characterized by different
brightnesses.

We therefore propose to segment the MRI at several scales andwith varying intensity
“thresholds” for a different type of active contour. In thistwo-dimensional parameter space,
the frequency of a voxel being labeled lesion by the algorithm will be regarded as a measure
of confidence in the classification of that voxel. The more often a voxel is included, the
more certain the algorithm, without prior anatomical knowledge, can be about the results.
To see why this is the case, we may reason about the two parameters independently. When
the scale is increased, more and more details of the lesion fade away. As protrusions blend
into background, only the strongest, most stable parts of the lesion remain and are included
in segmentations. As small swaths of CSF merge with the lesion, holes within begin to be
included in segmentations. The result is that these regionsare included (excluded) only at
the lowest scales and the only most persistent areas of the lesion (background) are included
(excluded) ineverysegmentation. Orthogonal to scale, changing an intensity ”threshold”
will also change segmentation results. When the threshold is set just above the intensity of
the background, the classification criterion is quite liberal and many voxels are included.
As the threshold rises, segmentations become more conservative, and only the brightest
voxels, those of which we can be most certain, are included. Again, the result is that
the brightest voxels most likely to be lesion are included innearly all segmentations, and
those less likely are included in fewer. Voxels included less frequently may correspond to
neighboring structures, spurious image properties, or areas of lesion that have not affected
tissue as strongly.

When each voxel has an inclusion frequency, the frequency isocontours of the resulting
segmentations might be used in one of many ways. If a more automatic segmentation is
desired, a certain frequency threshold could be specified, say 50%, giving a contour corre-
sponding to voxels that were labeled lesion in at least half the segmentations. Alternatively,
trained technologists could manually choose the frequencycontour they feel best specifies
the lesion boundaries.

Such frequency isocontours are a shortcut for the scale selection problem. Large changes
in image entropy have been proposed as boundaries between stable scales [36, 37]. While
we do not make use of this method, it might be an interesting avenue for further research.
Instead, since the frequency of a voxel’s inclusion is proportional to the number of scales
at which it is included, the isocontours may be thought of as segmentations at empirically
derived pseudo-scales.

The extensions discussed in this paper overcome the restrictions mentioned in the pre-
vious section. They allow for a selection of a segmentation from various scales and thresh-
olds, which captures the variability of conservative and liberal segmentations often given
by physicians.

The rest of the paper is organized as follows: Section 2 dealswith the nature of MR im-
agery, the nature of stroke lesions, and the problem of theirsegmentation in such imagery.
Scale-space and diffusion are discussed in Section 3, whileSection 4 covers geometric de-
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formable models such as level set and fast marching methods.Experiments and results are
presented in Section 5, and the conclusions appear in Section 6.

2 MR Images

A 3D MRI is acquired as a sequence of 2D images, called slices.Unfortunately, some
MR images have slices that exhibit intensity levels vastly different from neighboring slices.
This is a result of the imaging process rather than what is being imaged. These intensity
variations cause problems for segmentation methods that require a consistent 3D image.

Since MR images are captured in a slice-by-slice fashion, our goal is to bring the in-
tensity values from the same population into closer alignment across slices. While there
are several regions from which intensity populations are drawn, we concentrate on the three
most plainly visible: black background, gray brain tissue,and white skull. The overall pop-
ulation image intensities may be thought of as samples from amixture of these different
distributions.

While the noise present in MRIs is Rician [14], for simplicity we assume it is additive
Gaussian because the maximum-likelihood equations are straightforward and give reason-
able results. Maximum-likelihood methods do exist for the Rician distribution and may
be substituted in the future [34]. We use the expectation-maximization algorithm (EM)
[10] to recover the mean, standard deviation, and mixing parameters for these three popu-
lations. The white pixels of the skull are actually a small percentage of the pixels and can
be broadly distributed as well. As a result, EM occasionallyfinds modes that do not corre-
spond exactly to the populations we are interested in because it is not a global maximization
method. Care must be taken to ensure that the distribution parameters returned by EM are
the “right” ones. While we have not developed a method to handle this automatically, it
should not be difficult to introduce a constraint on the reasonableness of the result. Indeed,
once one knows what a reasonable result is, it may be used as aninitial condition for the
algorithm. This is the approach we have taken and in practicefew incorrect modes were
returned by EM.

The distributions’ means returned by EM are used as anchor points for stretching the
histogram of each slice. One representative slice is chosenwhose anchor points will be
used as the basis for all other slices. With the minimum and maximum intensity values
(i.e. 0 and 255) included as the extreme anchor points, the histograms for all slices are
stretched so that the anchor points align with those of the representative slice. We use a
linear adjustment with
 = 1, although perhaps some bias toward gray matter from the
background may be advantageous. See Figure 3 for an example,and note that the top two
images have much less contrast than the bottom three.

Modifying the images is not necessarily medically inappropriate. As physicians manu-
ally segment slices of an MR image, they themselves adjust the brightness and contrast of
each slice, playing with the values and watching how the image changes before settling on
values and segmenting.
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Figure 3: Intensity normalization with row three as the representative slice. (a) Original
slices; (b) Slice histogram with fitted mixture models and means; (c) Stretched histograms
with aligned means; (d) Resulting images.
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3 Diffusion

Diffusion is a description of a physical process with its foundations well outside image
processing. Imagine a room in which some of the air is cold andsome of the air is hot.
Our intuition should agree with the laws of physics, which say that by mixing together,
the cold air wants to warm up and the hot air wants to cool off. The differences in air
temperature cause heat to flow in manner such that the room temperature will eventually
be absolutely uniform. But what if a person on one side of the room wanted it to remain
warm, and someone on the other side wanted it to remain cold? They would likely erect
an impediment to air flow that allows their respective sides to converge on an average
temperature of their individual liking, preventing hot from mixing with cold and keeping
both satisfied.

This very idea is applied to image processing. In a noisy image, there are both bright
and dark areas, and we would like each of these to be relatively uniform. One way is to
open the gates for intensity to flow just as air temperature does. As brightnesses blend,
the visual effect is blurring. While this has the positive effect of smoothing out noise, the
unconstrained flow will also mix very bright and very dark areas. When our goal is image
segmentation, different regions of the image are of interest, so we’d like to keep the bright
areas bright and the dark areas dark, but still remove the noise. This can be accomplished
by impeding the flow of brightness across region boundaries.

As we allow intensity to flow through the image, details tend to erode. So long as the
impediment that constrains intensity flow never stops it altogether, all regions will even-
tually blend to a uniform intensity. Imagine a hot cup of coffee on a desk inside the only
heated room of an otherwise well-insulated house. While themug keeps the coffee warm,
unfortunately, no one has developed the perfect cup that keeps coffee hot indefinitely, so
heat escapes little by little from the mug into the room, until everything within is the same
temperature. On a larger scale, the four walls of the room slow the transfer of heat into the
chilly house. But, in much the same way, the room does not staywarm forever, and even-
tually the whole house is the same temperature throughout, from the cold mug of coffee to
the far end of the hall.

While cold coffee may not be enticing, the same effect applied to images is quite at-
tractive. Some details of an medical image are unimportant,such as noise. Other details,
such as an edema caused by stroke are highly pertinent. The problem we face is deciding
ultimately how much detail is needed to correctly identify the region of tissue damaged by
stroke. What is a significant change in brightness? What is a significant region size? Since
there is a considerable amount of variation in lesions, the answers to these questions are
not always the same. Therefore, we seek a framework that allows us to evaluate an image
when the answers to questions such as these are different. The scale-space theory provides
just such a framework. Consider the lesion in Figure 6. Is thedifference in intensity be-
tween the area below the left-hand finger and the rest of the background significant? Is
the black stripe of CSF through the lower-right corner of thelesion large enough to worry
about? This section reviews the model that describes the flowof image intensity, how it is
directed, and how it is constrained.



3 DIFFUSION 15

3.1 Theory

Scale-space theory has become more fully developed as a method of examining an image
and its features at multiple scales. While proposed in the west by Witkin [52], there is
evidence of formal scale-space theory decades earlier in Japan [16]. In its simplest, un-
committed form, the single-parameter family of images can be defined by convolution with
a Gaussian kernel of increasing width, which is a solution tothe linear diffusion equation
[21]. Other scale-spaces are created by generalizing the diffusion equation [30]. These
methods allow us to disambiguate some object boundaries andconsider stroke lesions at
different scales, in essence modeling the variability in segmentation styles and the interpre-
tation of various tissue types damaged by stroke.

3.1.1 Physical Background

In a classic paper, Koenderink discusses the structure of images, especially scale and reso-
lution, and how a family of images can be generated from a single parameter [20]. Koen-
derink concluded that the heat conduction equation governsthe so-called deep structure of
the image. Later work expounded upon the axioms, such as causality and extrema non-
enhancement, that govern the scale-space of an image [2].

Weickert characterizes the physical background of diffusion as follows [46, 47]. Dif-
fusion is based on a physical process that creates an equilibrium between differences in
concentrations while conserving some quantity, such as mass or energy. In MR imagery,
this quantity is image intensity. A concentration gradientcauses a flux that strives to com-
pensate for the gradient. This is captured inFick’s Law,j = �D � ru;
where a diffusion tensorD, a positive definite symmetric matrix, characterizes the relation-
ship between a gradientru and the fluxj it induces.

Thecontinuity equationreflects the preservation of mass by diffusion,�tu = �div (j) ;
wheret represents time, and divergence is given byr � j. Thediffusion equationis the
result of substituting Fick’s law into the continuity equation:�tu = div (D � ru) ; (1)

thus unifying the conservation of mass, temperature, intensity, etc., with the description of
the quantity’s flux.

It is important to distinguish several special cases of (1).Whenj andru are parallel,
the equilibrium is calledisotropic, and the diffusion tensor may be replaced by a positive
scalar-valueddiffusivity, g. In the general case when the fluxj and gradientru are not
parallel, the system is calledanisotropic. When the diffusion tensor is constant over the
entire image, the diffusion is said to behomogeneous, while space-dependent filtering is
known asinhomogeneous. Another distinction can be made when the diffusion tensor or
scalar diffusivity is a function of the evolving image, which leads to a nonlinear equation.
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Nonlinear diffusion in the context of image processing gives the following model. Let
ad-dimensional image domain be
 := (0; a1)� : : :�(0; ad) with boundary� := �
. The
filtered versionu (x; t) : 
 � [0;1) ! Rd of an imagef (x) 2 L1 (
) is the solution of
a diffusion equation (1) withf as the initial condition and reflecting boundary conditions
[42]: �tu = div (D (ru)ru) on 
� (0;1) (2)u (x; 0) = f (x) on 
 (3)hD (ru)ru; ni = 0 on �� (0;1) (4)

wheren denotes the outer normal andh:; :i the inner product onRd . Thus (2) describes the
flow of heat through a house or intensity through an image as itis controlled byD (ru),
(3) describes the starting temperature of everything in thehouse or the initial image, and
(4) says the house is perfectly insulated or that no intensity ever leaves an image.

Nonlinear diffusion was applied to MRI data shortly after its introduction [12]. Recent
research points out the tacit assumption of Gaussian noise in standard filtering methods
and the bias accompanying that assumption [35]. Our research has not yet made use of
developments without the assumption.

3.1.2 Linear and Nonlinear Diffusion

When the diffusion is isotropic, the diffusion tensor is replaced by a positive scalar,�tu = div (gru) : (5)

Thus,g influences the magnitude of the diffusion in the direction ofthe gradient. In the
special case whereg = 
 is a constant, (5) reduces to�tu = div (
ru) = r � (
ru) (6)= 
r2u; (7)

wherer2 is the Laplacian operator. As it turns out, this is equivalent to the common
Gaussian blur. The solution to the isotropic linear diffusion equation in (7) with
 = 1 and
conditions (3) and (4) is the convolution off with a Gaussian of standard deviation

p2t
[22].

While isotropic homogeneous linear diffusion—Gaussian blurring—meets the criteria
for a scale-space, there are both advantages and disadvantages to using it. Koenderink
noted first and foremost that it makes analysis very simple (especially since a solution to the
diffusion equation may be found for it), but he also remarkedthat isotropy, homogeneity,
and linearity are by no means necessary. Furthermore, the constant, uniform diffusion gives
no preference to any region of the image for any reason—everything is blurred equally. In
some cases this may be an advantage, but it quickly destroys features we are interested in
when attempting to segment images, especially edges and perceivable boundaries.

Two of the axioms for scale-spaces are causality (structures at coarser scales should
be a result of structures from finer scales, rather than the scale-space operator) and non-
enhancement of extrema (extrema monotonically converge).It is well-documented that
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while Gaussian blurring obeys these axioms, the location ofstructures, such as extrema,
are dislocated; features drift in scale-space. Thus, when an interesting feature (e.g. an
edge) is found at a particular scale, its “true” location must be traced back through scale
space to the finer scale, a correspondence problem that is complicated and expensive [7].

Here, we are seeking to localize object boundaries and will want to use a semantically
meaningful scale-space. Perona and Malik introduced nonlinear diffusion as a way to con-
trol the process in a manner that better preserves object boundaries [30].

Perona and Malik proposed to drastically slow the rate of diffusion at object boundaries.
However, we do not know where exactly object boundaries are,or our problem would
already be solved. Fortunately, the gradient of the image serves as a good indicator of
object boundaries. Hence, the magnitude of the gradient, which may also be thought of
edge strength, is used to control the diffusivity. When feedback is introduced to the system
so that diffusion is directed not by the initial image, but bythe evolving image, the resulting
general nonlinear isotropic diffusion equation is�tu = div

�g �jruj2�ru� : (8)

The functiong : R ! (0; 1℄ controls the amount of diffusion at any point. If our goal is to
remove noise but preserve significant boundaries, theng should encourage blurring within
regions and discourage blurring between regions. Since theimage gradient magnitude is
our approximate indicator of boundaries, a threshold� indicating how strong the gradient
must be before it is considered significant should be established. Diffusivities such asg �jruj2� = 11 + jruj2Æ�2 (9)

and g �jruj2� = exp �� jruj2Æ�2� (10)

were initially proposed [30, 31] (Figure 4(a)). The result on the filtered images will be to
remove noise and small features (wherejruj < �) while leaving edges pronounced and
their locations preserved.

Weickert further developed the scale-space theory of anisotropic nonlinear diffusion
in [42, 43]. Additional properties of Perona and Malik’s pioneering work are covered in
[18, 19, 49].

3.1.3 Edge Enhancement

By slowing the diffusion at strong gradients, we prevent boundaries from quickly eroding.
But by selectingg carefully, the process can actuallyenhanceedges as well as preserve
them. This is accomplished by having the slope of the edge grow over time—the boundary
thus becomes sharper and more distinct. When a stroke lesionin an MR image has a
weak or ambiguous boundary, edge enhancement can be used to distinguish regions more
precisely. Areas of tissue unaffected by stroke are blendedto nearly uniform intensity via
the noise removal properties described in the previous section. This section describes how
lesion boundaries can be made more prominent.
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The one-dimensional version of (5) is�tu = �x� (�xu) = �0 (�xu) �xxu (11)

where� (�xu) = g (�xu2) �xu is the flux. We want to know how the slope of an edge,�xu
changes with time, which is described by�t (�xu). If we reverse the order of differentiation
and substitute (11), then�t (�xu) = �x (�tu) = �x (�x� (�xu))= �00�xxu2 + �0�xxxu:
Without loss of generality, suppose the edge ramps up, so�xu > 0. The edge’s inflection
point �xxu = 0 corresponds to the location of maximum slope, so�xxxu � 0. Around
this inflection, the change in the edge slope with time�t (�xu) has sign opposite to�0.
Therefore, when the derivative of the flux is positive,�0 (�xu) > 0, the slope of the edge
is increasing. Similarly, the slope of the edge decreases over time when�0 (�xu) < 0 [30].
Therefore, edge enhancement happens precisely when the edge slope is increasing with
time.

The negative flux derivative giving rise to edge-enhancement causes backward diffusion
via the inverse heat equation, a problem well-known to be ill-posed [19]. While discretiza-
tion has certain stabilizing effects, Catté et al. formalize a solution’s existence, uniqueness,
and regularity by replacing the diffusivityg �jruj2� with g �jru�j2� whereu� := G� � u,G� is the Gaussian with standard deviation�, and� is the convolution operator [5]. Thus,
the gradient is replaced by its estimate, and the equation (8) will diffuse only if the gradient
is estimatedto be small.

The need for regularization comes from the fact that the model allows for backward
diffusion. When the flux is monotonically increasing, the diffusion always runs forward in
time. While this ensures well-posedness properties, it does not allow for edge-enhancement
[46]. Backward diffusion sharpens and enhances edges; to facilitate this behavior, the
flux function must be decreasing (have a negative derivative) somewhere. Diffusion with
nonmonotonic flux functions is ill-posed in general, but theregularization described above
gives well-posedness results.

Weickert has proposed the additional diffusivity functiong �jruj2� = 1� exp � Cm� jruj2Æ�2�m! ; (12)

for m 2 (0;1), whereCm is a constant described below (Figure 4(a)). Like (9) and (10),
the expression contains a contrast parameter� that will allow us to specify where blur-
ring should occur (forward diffusion) and where edge sharpening should occur (backward
diffusion).

The flux of the continuity-cum-diffusion equation (8) is� (ru) = g �jruj2�ru:
As shown above, for the diffusion process to smooth unwantedfeatures and enhance desired
edges, the flux function (in a simple one-dimensional system) must satisfy�0 (ru) � 0
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Figure 4: (a) Diffusivity functions; (b) Flux using equation (12).

for jruj � � and�0 (ru) < 0 for jruj > � [30, 47]. In (12), the constantCm should
be chosen accordingly. If we assume that an inflection point in the flux function occurs atjruj = �, so that the derivative�0 takes on the appropriate positive and negative values,
we may solve forCm by setting the derivative equal to zero whenjruj = �. The result
turns out to be Cm = �W�1 �� 12m exp�� 12m��� 12m
whereWk (x) is the Lambert W function for thek’th branch.1 Figure 4 illustrates the
diffusivity functions (9), (10), and (12), each with the same value for�. The Perona-Malik
diffusivities (9) and (10) are very rough approximations tothe type of control that may
be desired. The Weickert diffusivity blurs at the maximum rate almost until the contrast
parameter is reached (Figure 4). Thus in (12),mmay be thought of as a decay parameter—
asm increases, the diffusivity drops off more rapidly, and it approaches a step function.

As demonstrated in Figure 2(a), lesions often have very ambiguous boundaries. The
edge-enhancement allowed by diffusion with a non-monotonic flux function, such as (12),
gives rise to more easily detectable object boundaries. Theresult is an image containing
regions of essentially piecewise constant intensity. Thus, monotonic ramps become stair-
cased plateaus. For some applications this is an undesirable result, and some interesting
modifications have been explored; complex diffusion processes are proposed in [13], and
diffusion over the gradient of the image, rather than the image itself, is discussed in [25].

Because we are interested in detecting boundaries, it is also interesting to examine
wherethese plateaus will arise. Backward diffusion occurs when the derivative of the flux
is negative,�0 (ru) < 0, which we have established occurs whenjruj > �. Boundaries
between plateaus will become evident at the points where backward diffusion is greatest,
or when the change in flux has an extremum. Thus, we seek the extrema of�0 (ru) in

1The Lambert W function is the inverse of the functionf (W ) =WeW . See [9].
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Diffusivity g �jruj2� Maximal backward diffusion 11+ jruj2/�2 p3�exp �� jruj2Æ�2� p62 �1� exp�� Cm( jruj2/�2)m� � Cm1� 12m � 12m �
Table 1: Maximal backward diffusion for various diffusivity functions.

regions of backward diffusion, or = fjruj : �00 (ru) = 0 and jruj > �g
Table 1 gives these points of maximal backward diffusion in terms of the contrast parameter
for some diffusivity functions. For diffusivities (9) and (10), there is but one point, a
constant multiple of the contrast parameter�. However, for diffusivity (12), the point in 
is also a function ofm. If we let Am := � Cm1� 12m� 12m
so that = fAm�g, it may be proven thatlimm!0+Am = 1limm!1Am = 1:
Therefore, this diffusivity allows explicit control over the gradient strength that is required
for maximal edge enhancement, relative to the contrast parameter. For example, the stan-
dard valuem = 4 givesA4� � 1:1812� < p62 � < p3�.

The implications of the relationship between and� are illustrated in Figure 5. The
Gauss-like function in 5(a) is filtered using diffusivity (12) with m = 4. The absolute
value of the gradient is shown in 5(b). Backward diffusion occurs here in regions above the
bottom-most line, whenjruj > �. Figure 5(d) shows the flux and its derivative. Backward
diffusion is maximal at the extrema of�0, which are the points wherejruj crosses in
5(b). Figure 5(c) shows the filtered function att = 1, with extrema of�0 (ru (x; t = 1))
marked. Naturally, asu changes with the diffusion process, so doru, � (ru), and the
locations of the extrema. Therefore, the stability of the locationsjruj =  through the
diffusion process will determine the strength of the plateaus, or even their number. The
significance of the relationship between and� should now be apparent. The contrast
parameter is intended to specify what magnitude of gradientconstitutes a significant edge.
However, when � �, the points of maximal edge enhancement are likely far from the
points that begin to meet the minimum criterion. As ! �, which we can accomplish
throughAm andm!1, the plateaus—the very edges we use to segment an image—can
be pushed as close as desired to the locations exhibiting a significant edge. Additional
analysis can be found in [28, 51]
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Figure 5: Edge enhancement and creation. (a) Original function u (x; t = 0) = f (x)
with maximal backward diffusion locations; (b)jruj with contrast parameter� and maxi-
mal backward diffusion intersections; (c) Resulting staircased imageu (x; t = 1); (d) Flux
function� (ru) with derivative�0 (ru) and regions of backward diffusion with maximal
points marked.
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3.1.4 Isotropic and Anisotropic Diffusion

When the diffusion is isotropic, blurring nearly stops at locations with a large gradient.
Thus, while this process stops diffusion across the edge (along the direction of the gradient),
it does not allow smoothing along the edge, leaving edges noisy. For many image denoising
and enhancement applications, this is a problem. The use of atensor to control both the
magnitude and direction of diffusion gives an extra elementof control. Indeed, the diffusion
can be directed purely across the gradient, so as to enhance the coherence of images, such
as fingerprints [48].

Unfortunately, anisotropic diffusion can present problems when applied to objects with
structures as small as those found in some stroke lesions. Edge-enhancing anisotropic
nonlinear diffusion via the construction of a diffusion tensor is formulated by Weickert
as follows [44]. In ad-dimensional system, letv1, vi, i = 2 : : : d be the orthonormal
system of eigenvectors of the diffusion tensorD, such thatv1kru� and vi?ru�. The
corresponding eigenvalues�1 and�i then control the amount of smoothing across and
along the edge, respectively. Weickert proposes to use a maximal blur along edges by
setting these eigenvalues to be�1 := g �jru�j2� (13)�i := 1; i = 2; : : : ; d: (14)

Once again,g is a function controlling diffusivity, but now it is only in the direction of
the gradient. All other directions have maximal diffusion.This has the effect of rounding
smaller structures and highly curved objects. While the effect is less adverse for larger
images, it may be problematic for our application. Stroke lesions often contain delicate
protrusions of abnormal tissue into healthy tissue, and these become rapidly blurred under
maximal anisotropic diffusion.

One alternative would be to use a reduced diffusivity along edges, e.g.�i = � 2 (0; 1).
We may not set�2 = � = 0 becauseD must be positive definite. This model works poorly
in practice for two reasons. First, if we set� near one, the rounding and blurring problems
of maximal diffusivity manifest themselves. Alternatively, if � is set near zero, then smooth
regions will experience a large diffusivity in the direction of the gradient, but only a small
diffusivity in all other directions, severely reducing theadvantageous blurring properties.

A slightly improved model we experimented with is:�1 := g �jru�j2� (15)�i := max f�; �1g ; i = 2 : : : d (16)

where� 2 (0; 1℄. Obviously, when� = 1, the model is equivalent to Weickert’s. As� ! 0, the amount of blurring along edges decreases, however, we are assured that diffu-
sion perpendicular to the gradient is never less than that parallel to the gradient. This means
that even with a conservative, small value for�, a smooth region will give rise to a large
diffusivity in both directions, but strong gradients will give rise to a sharply reduced dif-
fusivity across edges and a moderate diffusivity along them. The diffusivity function must
always be positive and setting� = 0 would have the effect of setting�2 = �1, which would
yield isotropic diffusion. We may now control the amount of diffusion along edges, and
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setting� � 1 helps preserve the finer lesion structures and reduce the rounding effect of
anisotropic diffusion. Unfortunately, the directional diffusivity (16) violates the assump-
tions required for the proof of scale-space properties of nonlinear anisotropic diffusion,
namely thatD is Lipschitz continuous and�i 2 C1 ([0;1) ; (0; 1℄) [42].

3.1.5 Robust Estimation

Black et al. have proven that isotropic diffusion is equivalent to a robust estimation proce-
dure that estimates a piecewise smooth image. They illustrated that diffusion is the gradient
descent of an estimation problem with a robust error norm [4]. Where as diffusion with dif-
fusivity functions that never drop to zero ensures that the image approaches uniformity,
the results on robust estimation allow for converting different error norms into diffusiv-
ity functions that eventually halt, always preserving significant edges, just like the perfect
heat-trapping coffee mug.

In earlier work on this problem, a portion of the segmentation was due to hypothesis
testing, which was part of the so-called packing method [23,39]. To determine whether
a set of pixels was completely within a lesion, the hypothesis test involved comparing the
mean intensity of the pixels under consideration to the meanintensity of already accepted
lesion pixels. This assumed that the complete lesion comes from a unimodal (Gaussian)
distribution, which is not necessarily the case (cf. §2). The approach we take is to use
nonlinear diffusion to restore the noisy image to piecewiseconstant regions. Since diffu-
sion is equivalent to robust estimation, the resulting image is built upon solid theoretical
foundation, just as the packing method is, but allows for lesions with more than one mode.

3.2 Implementation

The transition from continuous theory to discrete implementation is documented in [43,
47]. In the fully discrete (time and space) model, thed-dimensional image of sizeN1 �: : :� Nd with N = Qdl=1Nl total pixels is modeled as a vectorf 2 RN with componentsfi, i = 1 : : : N . The indexi represents some pixelxi andfi is the intensity at the pixel.
Time is discrete withtk := k� , wherek 2 N0 and� is the step size. The approximation ofu (xi; tk) is denoteduki . The discrete model is then summarized byu0 = f (17)uk+1 = Q �uk�uk; 8k 2 N0 ; (18)

whereQ is a matrix describing the update ofu from stepk to k+1. The value foruk+1 may
be arrived at by an explicit, semi-implicit, or even fully implicit scheme. More precisely,
the explicit scheme is a forward Euler explicit numerical scheme. To see this, we begin to
transform the continuous equation (2) into its discrete counterpart:�tu = dXi;j=1 �xi �Dij �jru�j2� �xju� : (19)

For example, in two dimensions, we haver � (Dru) = �x1 (D11�x1u+D12�x2u) + �x2 (D21�x1u+D22�x2u) :
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Figure 6: Evolution of a lesion in an MRI slice (image 3P) under 3D isotropic
diffusion (m = 4; � = 1; � = 2:55; � = 2:5). Left to right, top to bottom: t =0; 37; 81; 181; 602; 2441; 5432; 26903.
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In the isotropic case, there are no mixed derivatives, so we may simplify (19) to a single-
index summation �tu = dXl=1 �xl �g �jru�j2� �xlu� : (20)

3.2.1 Explicit Schemes

We can approximate the effect of the partial derivative operator�xl on some functionf at
each locationi with the central difference1hl Pj2Nl(i) (fj � fi), whereNl (i) is the set of
neighbors to pixeli along directionl (border pixels have but one neighbor), andhl is the
resolution along thel dimension. Using this as the approximation to the spatial derivative
and a backward difference to approximate the time derivative, a simple discretization of
(20) takes the form uk+1i � uki� = dXl=1 Xj2Nl(i) gkj + gki2h2l �ukj � uki � ;
wheregi is an approximation tog �jru�j2� at that pixel. This can be written in vector-
matrix notation as [45] uk+1 � uk� = dXl=1 Al �uk�uk: (21)

Isolatinguk+1 gives uk+1 =  I + � dXl=1 Al �uk�! uk: (22)

This scheme is explicit because it allows for calculatinguk+1 from uk directly and without
any matrix inversions. Thus the explicit scheme for the model (18) isQ �uk� =  I + � dXl=1 Al �uk�! :
Since no matrix inversions are necessary, each step may be performed quickly. However,
in order to guarantee stability, the step size must be small [50]:� �  dXl=1 2h2l !�1 :
A typical MRI has voxel dimensions1�1�2:5 mm. To perform explicit diffusion in three
dimensions with this method would require a step size no larger than about 0.23.

A slightly different (perhaps even more straightforward) approach to an explicit scheme
in two dimensions is detailed in [41]. However, the approachof this section is preparation
for a review of the more efficient additive operator splitting schemes.
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3.2.2 Additive Operator Schemes

Because it requires many iterations, the step size of the explicit scheme is highly prohibitive
in practice. However, we may consider the slightly more complicated schemeuk+1 � uk� = dXl=1 Al �uk� uk+1 (23)

which gives the iteration stepuk+1 =  I � � dXl=1 Al �uk�!�1 uk: (24)

This scheme does not giveuk+1 directly, rather, it requires a matrix inversion and is thus
semi-implicit. Unfortunately, the matrixB := I � �Pdl=1Al �uk� does not lend itself to
efficient inversion [50]. Fortunately, this limitation maybe overcome by modifying the
semi-implicit scheme, resulting in the additive operator splitting (AOS)uk+1 = 1d dXl=1 �I � d�Al �uk���1 uk: (25)

This discretization has several benefits. First, the first-order Taylor expansion of (25) is
the same for the explicit scheme (22) and the semi-implicit scheme (24), so they are con-
sistent approximations to the continuous equation. Second, unlike multiplicative splittings,
all dimensions are treated equally. Third, it meets discrete scale space properties, such as
convergence to the mean intensity as a steady state and the extremum principle (causality).
Most importantly, it is efficient. While it requires about twice the effort of a typical explicit
scheme, this modification of a semi-implicit scheme guarantees stability with no limit on
step size. The only remaining consideration is a trade-off between accuracy and speed.

With Bl �uk� := I � d�Al �uk�, the iterative step in (18) hasQ �uk� := 1d dXl=1 B�1l :
The discrete scale-space properties of this scheme are proven in [45]. If we letwl :=B�1l uk, we see that we need to solve equations of the formBlwl = uk so that we may
calculate (25) as uk+1 = 1d dXl=1 wl: (26)

Each diffusion direction2 l has a matrixA �uk� = �aij �uk��, withaij �uk� := 8>><>>: gki +gkj2h2l j 2 Nl (i)�Pn2Nl(i) gki +gkn2h2l j = i0 otherwise:
2We temporarily abstain from specifying the diffusion direction with notation such asalij �uk� to avoid

notational baggage.
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Therefore the entries ofB �uk� = �bij �uk�� arebij �uk� := 8<: 
ij j 2 Nl (i)�i j = i0 otherwise:
where �i := 1 + d� Xn2Nl(i) gki + gkn2h2l (27)
ij := �d� gki + gkj2h2l (28)

The tridiagonal and diagonally dominant matrixB takes the formB �uk� = 2666664 �1 
12
21 �2 
23
. .. . . . . . .
N�2N�1 �N�1 
N�1N
N N�1 �N

3777775 ;
where the unmarked entries are all 0. But we observe from (28)that
ij = 
ji, so may we
reduce storage overhead by using a single index for
:B �uk� = 2666664 �1 
1
1 �2 
2

. . . . . . . . .
N�2 �N�1 
N�1
N �N
3777775 : (29)

The most efficient way of solving an equation such asBlwl = uk with system matrix (29)
is the Thomas algorithm. It involves three basic steps: an LRdecomposition, a forward
substitution, and a backward substitution. These details are covered very well in [50].

Some further implementation details are worth mentioning.It is not necessary to
convert an image stored asd-dimensional arrays to a vector. Consider a regular two-
dimensional image havingN1 rows andN2 columns. Rather than constructing a single
vectoru 2 RN1N2 with a new pixel ordering, diffusion along the row dimensionwould
actually be implemented asN2 diffusion processes—one for each column. For a three-
dimensional MR image, there would be a diffusion process foreach columnand slice.
MATLAB ’s built-in component-wise operations are a simple way to dothis. One only
needs to explicitly perform diffusion along each dimension(rows, columns, slices), allow-
ing MATLAB to implicitly handle the fact that there are many parallel diffusion processes
occurring. Proceeding in this manner, theN=Nl equations for each dimensionl are solved
in one fell swoop (see Appendix).
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Unfortunately, the potential of AOS for performing anisotropic diffusion is limited. The
number of directional diffusivities jumps fromd in the isotropic case tod2 in the anisotropic
case. The simplest discretization of (19) isuk+1 � uk� = dXi;j=1Aij �uk� uk:
Once again,Aij represents a central difference approximation to�xi �Dij �jru�j2� �xju�.
The explicit scheme for this discretization is given byuk+1 =  I + � dXi;j=1Aij �uk�!uk:
As mentioned before, this scheme requires small time steps to remain stable. Additionally,
an AOS scheme such asuk+1 = 1d2  I � d2� dXi;j=1Aij �uk�!�1 uk
is problematic because the directional diffusivitiesAij must be non-negative [26, 47].
Therefore, an AOS-stabilized schemeuk+1 = 1d dXl=1 �I � d�All �uk���1 I + � dXi=1 Xj 6=i Aij �uk�! uk
was proposed [48]. Since they are potentially negative, theoff-diagonal diffusivities are

calculated via an explicit scheme, givingvk = �I + �Pdi=1Pj 6=iAij �uk�� uk. The re-

maining non-negative matricesBl �uk� := I�d�All �uk� that describe the diffusion caused
by diagonal entries of the diffusion tensor each give a systemBlwl = vk. The resultuk+1
is then the same as (26) and is also solved for with the Thomas algorithm. A step size of� = 2 is commonly used.

4 Deformable Models

In §3 we described a procedure that allows one to examine MR images at different levels
of scale. We now approach the problem of segmenting such images. The Level Set Method
(LSM), a common technique used for image segmentation, was developed by Osher and
Sethian in 1988 [29] and was subsequently refined to a more efficient implementation, the
Fast Marching Method (FMM) [1]. We use FMM for image segmentation. Unlike so-called
“snakes,” which use an explicit, parametric representation of the contour [17], FMM uses
an implicit representation where the contour deformation is based on geometric measures
that allow it to segment highly irregular structures. Such structures are common in lesions
and are often missed in segmentations performed by snakes due to a smoothing caused by
regularization.
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4.1 Theory

4.1.1 Parametric Deformable Models

Previous work used parametric deformable models, also known as snakes, to segment le-
sions. An initial contour� was drawn roughly around the lesion and allowed to deform to
a local energy minimum that closely matches the lesion boundary. The contour is repre-
sented explicitly as a parametric curve defined in the 2D image plane. The energy of curve� parameterized bys 2 [0; 1℄ is given byEtotal = Z Einternal + Z Eexternal (30)

where Einternal = � ����d�ds ����2 + � ����d�2d2s ����2 (31)

andEexternal is a function of the image gradient and an additional statistical “force”
[23]. By manipulating the constants� and� in Einternal, one can control the elasticity and
rigidity of the curve, respectively. The contour� is represented numerically as a spline,
so it must remain simply connected to avoid costly re-parameterizations. Toward this end,� and� are given relatively large values to penalize irregularity. Unfortunately, regularity
constraints keep the contour from filling the intricate lesion structures mentioned in §1.2.3.

4.1.2 The Level Set Method

In contrast with snakes, LSM does not represent the segmenting contour explicitly. Instead,
it is embedded within a higher dimensional function,� (t). Images of arbitrary dimension
may be segmented by LSM, so we consider a higher dimensional analog to the contour: a
surface or front. Assume that we are given an initial front either inside or outside the lesion
in question. IfRd is set of points in the image hyper-plane, let
 (t) � Rd be a family of
surfaces in the image found by evolving the initial front
 (0) with speedF in the direction
outward normal to�. Like the external energy of snakes,F can be a function of global,
local, or independent properties. LSM defines� as a surface so that for each point,x 2 Rd ,� (x; t) is the distance to the evolving front
 (t). Hence, for any given timet� (
 (t) ; t) = 0; (32)

and � (x; t) = 
;
where
 is the signed distance fromx to the closest point on the front
 (t) (points inside
the front are negative). Equation (32) tells us that the segmenting surface can be found at
any timet by identifying the zero level set of the function� (
 (t) ; t).

Given a speed functionF (x) and initial front
(0), the next step is to devise an update
rule, or evolution equation, for� . We follow the formulation used in [24]. Consider the
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pathx (t) ; t 2 [0;1) of a particle on the segmenting surfacex(t) 2 
 (t). It moves in the
direction of the surface outward normal with a prescribed speed:�x�t (t) = F (x(t)) r�jr�j :
Since the pointx is always on
 and� (
 (t) ; t) = 0 for all t � 0, we know that� (x (t) ; t) = 0:
By the chain rule, ���t + dXi=1 ���xi �xi�t = 0 (33)

where, dXi=1 ���xi �xi�t = � ���x1 ; ���x2 ; : : : ; ���xd� ���x1�t ; �x2�t ; : : : ; �xd�t �= r� � �x (t)�t= r� � �F (x (t)) r�jr�j�= F (x (t))jr�j (r�) � (r�)= F (x (t))jr�j jr�j2= F (x (t)) jr�j : (34)

Substituting (34) into (33) gives the evolution equation for �:���t + F jr�j = 0: (35)

4.1.3 The Fast Marching Method

The representation of the implicit front
 above can be discretized directly to form an algo-
rithm for segmenting images. However, a faster algorithm can be formulated by embedding
 in a conceptually different function calledT , rather than� [33]. T (x) gives the arrival
time of the front at some pointx 2 Rd in the image. Again, we assume the existence of a
functionF (x) that gives the speed of a pointx in the outward normal direction. Here we
will also require thatF (x) be strictly positive. In the last section we formulated an evolu-
tion equation to construct�, here we will take advantage of the restricted speed function to
formulate a boundary value problem to constructT:

The key to the boundary value representation of surface evolution is that the gradient
magnitude ofT is inversely proportional to the speed of the surface at all points:
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Figure 7: An evolving front inflates to lesion boundaries.jrT jF = 1: (36)

FMM is developed in the following section as a numerical scheme for systematically con-
structing the arrival time functionT . The boundary condition completing the problem isT (
 (0)) = 0; (37)

which asserts that the arrival time of the front is zero for any point on the front. It is
important to note that a strictly positive speed function isneeded to solve the boundary
value problem (36). The restricted speed function enforcesthe idea that the segmenting
front should begin at exactly the points specified by the boundary condition (37). Figure 7
shows a front evolving from an initial seed point, and inflating until slowed drastically by
the speed function at lesion boundaries. Since we have a strictly positive speed function,
the segmenting contour will always have a real arrival time at all points in the image. In
practice the actual segmentation will correspond to the setof pixels at which the segmenting
surface’s arrival time is within a reasonable threshold.

4.2 Implementation

So far we have been discussing image segmentation in a somewhat abstract manner. We
have assumed that the image hyper-plane is continuous and that the methods of segmenta-
tion (snakes, LSM, and FMM) operate on this continuous plane, which is not the case in
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reality. In this section we discuss implementation detailsfor discrete images.
Define a discrete image hyper-plane
 � N3 to be
 := [0; 1; : : : ; a1℄� [0; 1; : : : ; a2℄�[0; 1; : : : ; a3℄, whereai is the maximum image index value in the dimensioni. The initial

surface
 (0) is given by the set of voxels� � 
. A point in the image plane is assumed to
be a single voxel indexed by three natural numbers, for instancehi; j; ki 2 
. Often it will
be convenient to refer to such points as the vector,v;u orw. Further notational issues are
addressed in context.

4.2.1 Implementation of FMM

The basic idea behind FMM is to construct the arrival time function T outward from the
initial surface,�0. The construction process will involve updating points with increasing
arrival time until a predefined time threshold is reached. Weuse a single initial point̂x, so
that�0 = fx̂g. As the algorithm runs, three disjoint sets of voxels are maintained: accepted
(A), candidate (C), and faraway (W ) points, whereA [ C [W = 
. When the algorithm
terminates, the image segmentation corresponds to the set of accepted voxelsA.

Algorithm 1 The Fast Marching Method.

Initialization:

(a) A �0Tv  0 8v 2 A
(b) C  Sv2AN (v)Tv  4Fv 8v 2 C where4 is the voxel distance from the closest element inA.

(c) W  
 n (A [ C)Tv  18v
Iteration:

(a) u argminv2C Tv
(b) A A [ fug
(c) C  N (u) [ (C n fug)Tv  Uv 8v 2 N (u)
(d) The algorithm terminates when the difference between the arrival time at the

previous pointu and the current pointu is greater than a predefined threshold.

Algorithm 1 follows the description in [33]. At each iteration, we choose from the
candidate set the voxelu with the smallest arrival time . LetN : 
 ! } (
) be the
function returning the set of a voxel’s neighbors. The valueof U (introduced on the last
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Figure 8: FMM update neighborhood.

line of algorithm 1) is at the heart of the algorithm because it defines the direction of the
propagating front. It is given by the numerical approximation of (36)264 max �D�4iv Tv; 0�2 +min �D+4iv Tv; 0�2+max �D�4jv Tv; 0�2 +min �D+4jv Tv; 0�2+max �D�4kv Tv; 0�2 +min �D+4kv Tv; 0�2 375 12 = 1F (v) (38)

where D�4iv Tv � Ti;j;k � Ti�1;j;k4i
is the backward difference approximation andD+4iv Tv � Ti+1;j;k � Ti;j;k4i
is the forward difference approximation to the derivative of Tv with respect toi.

During each iteration, (38) is solved forTv using values ofT from the previous iteration
at all voxels neighboringv. Figure 8, a visual representation of the update process, showsv as the large black point in the center of the voxel neighborhood. Each smaller gray point
represents one of the voxels that is used to update the black one. The update process works
by using (38) to find the largest solution forT at the black point, using the values at the
gray points from the previous update.

As a final note, FMM is a fast algorithm in part because all candidate points are stored in
a min-heap. This structure keeps the elements with the smallest value (in this case smallest
anticipated arrival time) at the top of the heap. Updating the heap with new candidate points
is a logarithmic time task.

4.2.2 The Speed Function

In section 4.1.3 we discussed how FMM uses a speed function toconstruct the arrival time
of each point on the segmenting surface, and thus the front itself. In this section we define
our speed function.
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Background Lesion Background

Figure 9: Example intensity profile of a multi-modal lesion.

Section 1.2.4 describes how the intensity of lesions can be multi-modal. Some of these
lesion regions might have an intensity that is closer to the background than the rest of the
lesion, as the leftmost lesion plateau in Figure 9. In that case, diffusion will never be able
to blend all the lesion pixels to uniform intensity because pixels from the fringe mode will
blend with the background first. By itself, gradient information for detecting boundaries is
not enough to allow the front to envelop the entire lesion.

We also know that lesion intensity is higher than backgroundintensity, but when am-
biguous boundaries are present there is never a strong gradient to indicate any type of
boundary. Therefore intensity information must be incorporated as a stopping criterion as
well.

BecauseF determines the speed of the segmenting front at every image location, it
makes sense to assignF a large value at voxels believed to be part of the lesion and a
small value at those believed to be part of the background. Image intensity and gradient
information are the the simplest, reliable clues for determining whether a voxel is part of
the lesion or not. Segmentation proceeds under the assumption that lesion voxels have
higher intensity than non-lesion voxels. Therefore, we will introduce a threshold on voxel
intensity that will slow the front down in darker, non-lesion areas. In contrast to simple
intensity values, gradient magnitudes are often used to detect borders. Large gradients are
indicative of boundaries and are also good clues for where tostop the front. We combine
this information into a speed function that is a hybrid of region (intensity) and boundary
(gradient) based segmentation strategies.

When we segment an imageu that has been diffused to a particular scale,s, we assume
we know something about the intensity of the lesion and the intensity of the non-lesion
background. Therefore, we conclude there is some intensity� for which the voxels at least
that bright are lesion, and voxels darker than it are background. Thus, we use a speed
function that slows the front down when image intensities are below the threshold� and
encourage propagation otherwise:H (v) = exp��� �u (v; s)�a� : (39)

The parametera controls the slope of this speed function about the inflection point�. Thus
higher values ofa cause a steeper dropoffdrop-off in speed at�, indicating our confidence
in that value as a threshold. Figure 10(a) shows this intensity based speed function for
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Figure 10: Intensity (left) and gradient magnitude (right)components of the final speed
function.

various values ofa.
The gradient of the filtered image allows us to search for boundaries between regions

of different overall intensity. The 3D gradient is estimated by convolving an image with
the separable filters f1 = [1 3 1℄f2 = [1 0 �1℄f3 = [1 3 1℄
These are modeled after an optimally rotationally invariant 2D filter in [32]. The filters are
combined as follows to produceru = hui; uj; uki, whereui = 1504if!2 ? f "1 ? f%3 ? uuj = 1504j f!1 ? f "2 ? f%3 ? uuk = 1504kf!1 ? f "3 ? f%2 ? u:
Eachuw is the approximation of the partial derivative of the image with respect to directionw. The orientation of each convolution kernel is specified by asuperscript arrow, withf!a
filter alongi, f "a filter alongj andf% a filter alongk.

To reduce the front’s speed at a strong gradient we useG (v) = exp (�b jru (v; s)j) ; (40)

whereb is a parameter controlling the sensitivity to gradient magnitude of the image at
scales. Figure 10(b) plotsG over the domain of gradient magnitudes for various values ofb.
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Figure 11: Hybrid gradient and intensity speed function (� = 0:4, a = 4, b = 3:5).

Our hybrid speed function is formed as the product of the intensity and gradient functionH andG respectivelyF (v) = H (v)G (v)= exp ��� �u(v;s)�a � b jru (v; s)j� : (41)

This function allows large speeds where the intensity on thefront is above the threshold
and there is little boundary evidence but slows when either the intensity drops or a large
gradient is encountered. The function approaches zero rapidly when both events occur, as
shown in Figure 11.

5 Experiments

5.1 Experimental Data

Experiments were performed on 10 MR images of various modes and voxel dimensions
from 7 patients, as indicated in Table 2. Images with the samenumber are scans of the
same patient from different orientations. The volumes of two hand segmentations from
two physicians are reported for 6 of these images (1, 2, 3R, 4,5, 6) in [23]. For 5 additional
images, the segmentations themselves were obtained, thus allowing for a more careful
evaluation and comparison of automatic segmentations. Thework in [23, 38] used a version
of the image of patient 1 that was altered by artifacts from a conversion tool. We have
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Image Mode Voxel Size Orientation
1 T2 1� 1� 1mm3 Axial
2 FLAIR 1� 1� 2:5mm3 Axial
3P T1 1� 1� 2:5mm3 Sagittal
3Q T1 1� 1� 2:5mm3 Coronal
3R T1 2:5� 2:5� 2:5mm3 Axial
4 FLAIR 1� 1� 2:5mm3 Coronal
5 FLAIR 1� 1� 2:5mm3 Coronal
6 FLAIR 1� 1� 2:5mm3 Coronal

7Q FLAIR 0:5� 0:5� 2:5mm3 Coronal
7R FLAIR 0:5� 0:5� 2:5mm3 Axial

Table 2: Test data from ten MRI scans.

chosen to use the original version in our experiments because we cannot be sure of the
nature of the alterations to the image. Since it is most likely that the image histogram
was stretched, the effect of the alterations should be replicable through our segmentation
framework.

5.2 Evaluation Criteria

We use several criteria to evaluate different aspects of ourmethod. These include vol-
umetric error to capture the amount of overall agreement with physician segmentations,
information retrieval metrics for comparing actual decision strategies, and a new form of
variance to measure the sensitivity of the method to initialization.

If, as in §3.2, we view an image as a set of voxelsX = fxigNi=1, then a segmentation is
some subset ofX. For example,S � X could be a computer segmentation andH � X a
hand segmentation.

5.2.1 Volume

Results in [23, 38] were reported in absolute volumes, with physician results alongside
those from automatic segmentations. To allow for comparison, we measure the relative
disparity between the volumes of automatic and physician segmentations, with volume
error given by E : =

VolumeEstimate � VolumePhysi
ian
VolumePhysi
ian = jSj � jHjjHj :

However, this is not always a meaningful comparison.
In the extreme case, two completely disjoint segmentationsof the same image may have

the same volume. Of course, results reported earlier did notexhibit behavior this extreme.
However, it leaves open the possibility that in certain cases some regions of tissue may
be excluded by the computer that were included by physicians, and thevolumeof these
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Figure 12: TOP: Slices from the original version of image 1. BOTTOM: The same slices
from the altered version of image 1 used in [23, 38].

regions could be compensated for by other regions (incorrectly) included by the computer.
This motivates the use of the following measurements.

5.2.2 Precision, Recall, and F-measure

It is important to evaluate whether the computer is making the same decisions as physicians
in labeling tissue normal and abnormal. In this case,S is the set of “retrieved” voxels andH is the set of “relevant” voxels. Along these lines we measurethe precision and recall of
the computer segmentations. the precisionP and recallR are defined asP := jS \HjjSjR := jS \HjjHj :
The precision is thus the fraction of retrieved voxels that are relevant (i.e. correct), and
recall is the fraction of relevant voxels that are retrieved.

A segmentation may have perfect recall by including all the voxels, but it will have
poor precision because it includes many voxels that are not lesion. For example, this might
happen when the speed function intensity threshold� is set too low and the evolving front
“leaks” outside the lesion boundary somewhere and eventually includes much of the image.
Conversely, a segmentation may have very good precision by including only a few (correct)
pixels, but it also has poor recall because it misses many lesion voxels. This might happen
when the same threshold is set too high and the propagating front fails to “inflate.”

These two values are combined to form the F-measure of a segmentation,F := 2PRP +R;
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which is the harmonic mean of precision and recall. This gives us a single value to max-
imize and is more sensitive than the average to a difference between precision and recall
.

5.2.3 Set Variance

Finally, it will be of use to investigate the variation in segmentations. As described before,
it is possible for the volume of a segmentation,jSj whereS � X, to be misleading. By
a similar argument, the standard deviation of segmentationvolumes could be misleading.
If n segmentations consist of spheres of the same radius, each with a different center, then
the volumes of the spheres are precisely the same, and the deviation of the volumes is zero.
This counters intuition since the segmentations themselves actually do differ. We are there-
fore motivated to construct a definition of the “variance” over a collection of segmentationsSi � X, i = 1 : : : n.

Given a random, real-valued sampleyi, i = 1 : : : n, the sample mean and sample vari-
ance are given by �y := 1n nXi=1 yis2 := 1n� 1 nXi=1 (yi � �y)2 :
The variance is the average squared deviation from the mean.However, the notion of a
“mean” set is elusive, so we manipulate the variance expression to reveals2 = 12n (n� 1) nXi=1 nXj=1 (yi � yj)2 : (42)

We are now prepared to define an analog to sample variance where an observation is not a
number, but a set. That is, we view segmentations as observationsSi of a random setS 2} (X). In this case, the usual variance (42) is evaluated over set volumes, or cardinalities,
with yi = jSij.

The symmetric difference between two setsA;B is defined asA	 B := (A [B) n (A \B) : (43)

The indicator function of the symmetric difference is the exclusive OR of the operands’
indicator functions; an element is included in the resulting set if and only if it is in one
or the other, but not both. Thus, if two sets are very similar,their symmetric difference is
nearly empty, and if two sets are very dissimilar, the symmetric difference is nearly their
union.

We propose to use the following as a measure of variance for sample segmentationsSi � X, i = 1 : : : n: s2	 := 12n (n� 1) nXi=1 nXj=1 jSi 	 Sjj2 : (44)
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Figure 13: Images for comparing volume variance and set variance. Mean area�y = 1395:5,
variances2 = 22:474, set variances2	 = 31677.

Thus, (44) is analogous to (42) in that it measures the pairwise squared difference between
all samples; these pairwise terms are then summed and normalized by the same factor.
Whereas (42) squares the difference to yield squared magnitude, (44) measures the cardi-
nality of the symmetric difference in order to obtain a magnitude of the difference between
the sets. (The cardinality measurement thereby ignores theparticular elements of con-
tention between the pair, since they are not of direct concern here. However, if further
examination of the discrepancy between two segmentations were desired, the actualsetSi 	 Sj would likely prove useful.)

As an example, forn disjoint segmentations each of volumev, s2 = 0 while s2	 =2nn�1v2. Figure 13 shows 36 images of a single shape at various rotations having a mean
area 1395.5. The variance of the area (caused by discretization) is just 22.474, while the set
variance is 31677. This rather dramatic difference indicates how different the black areas
are when considered to be segmentations.

These two results show how the measures can be different, butwe also show how they
can be the same.
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Fact 5.1 If a sampleSi, i = 1 : : : n has the property thatSi � Sj or Sj � Si for alli; j = 1 : : : n, thens2 = s2	.

Proof:
If Si � Sj, thenSi [ Sj = Sj, Si \ Sj = Si, andjSi 	 Sjj2 = j(Si [ Sj) n (Si \ Sj)j2= jSj n Sij2= (jSjj � jSij)2 = (jSij � jSjj)2 :

BecauseSi is a subset ofSj, the cardinality of the set difference is merely the numerical
difference of their cardinalities, which facilitates the last step above. IfSj � Si, similar
calculations give the same result. Thus,s2	 := 12n (n� 1) nXi;j jSi 	 Sjj2= 12n (n� 1) nXi;j (jSij � jSjj)2= s2:

We see that when a sample of sets is like a Russian doll, where each observation fits
inside another, the new set variance measure is precisely the same as the usual variance of
volumes.

5.3 Segmentation Model

5.3.1 Scale and Threshold Parameters

Physicians in the process of manually segmenting images exhibit two behaviors worth not-
ing. First, as mentioned in §2, they adjust the brightness and contrast levels of the image
so that they may perceive greater discrimination in the voxels. Second, they zoom in to
draw careful contours and zoom out when unsure of a particular boundary area. These two
behaviors indicate the use of scale in regard to both size andintensity.

These observations led us to conduct segmentations with parameters varying along two
axes (Figure 14):

Scale: Diffusion timet
Threshold: Speed function intensity threshold�
The lowest scale used is a small value that is close to the original image, yet removes a
small amount of noise. The largest scale used is a value at which most lesions are reduced
to a single blob, presumably near the last stable scale before being mixed with normal brain
tissue.
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Figure 14: Parameter space induced by segmenting images at several scales and thresholds.

Since different images have different intensity properties, the threshold axis of the pa-
rameter space is restricted to bounds particular to the image being segmented. The two
intensities of primary interest are those within the lesion, and that of the healthy brain tis-
sue immediately surrounding it. Thus, two points are selected in the original image by a
technologist (Figure 15):

1. an interior seed pointl, and

2. an exterior baseline pointb.

The interior seed point gives both an intensity value of the lesion and a location from which
the segmenting surface is inflated. The exterior point givesa baseline on lesion intensity;
since it corresponds to healthy tissue, no lesion will have an intensity that low in the filtered
images where the intensity distribution within image regions is highly peaked.

The average of intensities in a 3 voxel neighborhood around the interior seedat a par-
ticular scaleis used as an upper bound on the threshold. Similarly, the average of intensities
in a 3 voxel neighborhood around the exterior point at the scale is a lower bound on the
threshold. The point selected outside the lesion should correspond roughly to the brightest
region excluded from the lesion. Under the imaging modalities used in this evaluation, this
generally corresponds to normal brain tissue. Figure 15 illustrates an interior seed point
and a baseline point in the healthy tissue just outside the lesion. Notice the ambiguous left
boundary of the lesion. By choosing a baseline point well into healthy tissue, varying the
threshold between the intensities of these two points will place the lesion boundary given
by automatic methods at varying places along the ambiguous edge.

It is important to note that while the location of the points is constant through the
segmentation process, the intensities at the points vary with scale. What explicitly varies
along the horizontal axis of segmentation parameters (Figure 14) is not the threshold used,
but the percentage differencebetweenthe point intensities that are used to calculate the
threshold used. Hence, if� (0; t) := u (b; t) is the intensity of the exterior baseline point at
scalet and� (1; t) := u (l; t) is the intensity of the interior seed point at scalet, the explicit
segmentation parameter along the threshold axis isp, where0 � p � 1 and we use� (p; t) := � (0; t) + p (� (1; t)� � (0; t))
for 0 < p < 1 as the speed function intensity threshold parameter.
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Figure 15: Example of an interior seed pointl and exterior baseline pointb.

5.3.2 Confidence Parameter

Section 1.4 describes how the frequency of a voxel’s inclusion in a segmentation is related
to our confidence in it being lesion. We therefore “marginalize” the scale and threshold pa-
rameters into a space of segmentations based on confidence. If T andP are the (finite) sets
of scales and threshold ratio parameters used, let a particular segmentation beS (t; p) � 

for t 2 T andp 2 P. The frequency of a voxel’s inclusion is given by� (v) = 1jT j jPjXt2T Xp2P �S(t;p) (v) ;
which is the total number of times a voxelv 2 
 appears in all segmentations divided by
the number of segmentations. We define a confidence segmentation to be the set of voxels
above some minimum frequency:C (
) = fv 2 
 j � (v) � 
g
for 0 � 
 � 1.

5.4 Experimental Details

We use isotropic nonlinear diffusion exclusively in all experiments for the following rea-
sons:� Edge-enhancing anisotropic diffusion with maximal diffusivity along edges, as in

(14) quickly wipes out the fine structures of some lesions.� The scale-space framework is important to our model of segmentation, and thus a
modified, non-differentiable diffusivity such as (16) cannot be used since it does not
guarantee the scale-space axioms are upheld.� Using a constant reduced diffusivity along edges is less effective than isotropic dif-
fusion when�1 > �i.
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Additionally, the diffusivity function (12) is used in an AOS implementation with the fol-
lowing parameters: m = 4� = 1� = 2:55� = 2:5:

The Fast Marching Method is used for all image segmentation.Its robust treatment of
complex lesion structure coupled with the low time complexity of the method itself make
FMM an ideal choice.

The hybrid speed function (41) drives segmentation in the Fast Marching Method. Sec-
tion 5.3 explains the selection of the intensity threshold parameter�. The values of the
other parameters are: a = 40b = 3:5

The timest at which the image is segmented are discretely sampled on a logarithmic
scale, as this is commonly held as the natural scale parameter [11, 20]. Along the threshold
axis,p is sampled linearly.

We exclude segmentations in the following cases:� the propagating front fails to expand beyond the voxels neighboring the interior seed
point, i.e. the resulting segmentation volume is less than 28 voxels� the propagating front reaches a boundary of the image in the X-Y plane

The first case is an example of an invalid under-segmentation. This might happen when the
threshold parameter is set so close to the intensity of the initial point that the front has no
speed. Regarding the second case, it is fairly easy to specify a box bounding the lesion in
two dimensions across all slices. We assume lesions are far enough from such a boundary
that if the front reaches a boundary it has over-segmented asa result of poor parameters,
i.e. a large scale or a low threshold. (Fronts reaching a boundary in the Z direction are
not disqualified because some images exhibit lesion in all slices.) These segmentations are
identifiably incorrect and are thus excluded from the measurements to avoid skewing them.

5.5 Results

The results of our segmentation model are dependent upon three primary factors: the scale
at which the image is examined, the threshold used for stopping the propagating front, and
the seed points used to initialize the algorithm. This section evaluates each of these.

First, the space of scale and threshold parameters is scanned for the parameter pair that
gives the minimum absolute volume error for each image. Table 3 gives the minimum
volume error achieved on each image when compared with the original physician hand
segmentation mean volumes reported in [23]. The sensitivity of the optimal parameters is
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Image Volume Error Scalet Thresholdp
Doctor 1

1 -0.148 362217 0.45
2 -0.001 1636 0.95

3R 0.000 330 0.95
4 0.007 8103 0.95
5 -0.000 270 0.75
6 0.000 55 0.95

Doctor 2
1 -0.095 362217 0.45
2 0.000 40135 0.95

3R 0.000 1998 0.85
4 0.004 8103 0.85
5 -0.004 45 0.75
6 0.005 4447 0.75

Table 3: Minimum volume error for each image and the parameters at which each occurs.

illustrated graphically in Figure 16. The means and standard deviations of volume over
a three scale, one threshold neighborhood (thus, twenty-one observations) around these
minimizing parameters are plotted beside the mean and and standard deviation of each
physician’s segmentations.

Next, the space of scale and threshold parameters is scannedfor the parameter pair
that gives the minimum total absolute volume error for the same six patients. For each
doctor the parameters (scale and threshold) that gave the least total error magnitude over
the six images were identified. Table 4 gives individual volume errors at the parameters
for which total absolute volume error occurs for each doctor, thus adapting parameters to a
particular physician segmentation style. On the other hand, Table 5 gives individual volume
errors at the parameters for which total absolute volume error for both doctors occurs,
thus constraining the algorithm to a unique parameter setting and comparing the behavior
to that of physicians. Table 6 compares volumes from physician hand segmentations
and the results from [23] with new results from diffusion/FMM. As before, means and
standard deviations of volume are taken over a 3 scale, 1 threshold neighborhood around
parameters minimizing total absolute error for each doctor. The same results are illustrated
graphically in Figure 17. The mean and standard deviation over all scales and all thresholds
is illustrated in Figure 18.

Once again, the space of scale and threshold parameters is scanned, this time for the
pair giving the best F-measure for each image whose physician segmentation we obtained.
Table 7 gives the F-measure, precision and recall at these optimal parameters, along with
the corresponding volumetric error. Figure 19 shows the hand segmentation of image 2
alongside the closest automatic segmentation.

To evaluate the sensitivity of the segmentations to the interior seed point location (and
by extension, intensity), we chose 100 interior seed pointsuniformly at random from the
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Figure 16: Mean and standard deviations of volumes from physician and automatic seg-
mentations over the neighborhood around optimal parameters for each image and each
doctor.
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Volume Error
Image Doctor 1 Doctor 2

1 -0.766 -0.705
2 0.020 0.102

3R -0.152 0.004
4 0.007 0.051
5 0.009 -0.006
6 -0.046 -0.030

Table 4: Individual errors at the parameters where minimum total absolute volume error
occurred for each doctor:t = 8103; p = 0:95 for doctor 1 andt = 602; p = 0:85 for
doctor 2.

Volume Error
Image Doctor 1 Doctor 2

1 -0.723 -0.705
2 0.110 0.048

3R -0.095 -0.001
4 0.150 0.062
5 -0.008 0.071
6 -0.012 -0.026

Table 5: Individual errors at the parameters where minimum total absolute volume error
occurred for both doctors:t = 1636; p = 0:85.
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Doctor 1 Snake Hybrid Diffusion/FMM
Image mean sd mean sd mean sd

1 2069 120 1927.6 49.3 594.3 92.5
2 3416 139.7 3841.5 277.8 3849.0 292.2

3R 23555 762.3 21821.9 617.7 21096.7 1041.4
4 9962.5 67.2 10031 906.8 11078.8 875.0
5 10131 740.7 9536.9 251.8 10623.8 673.6
6 3452.5 35.3 3525 117.9 3422.1 103.8

Doctor 2 Snake Hybrid Diffusion/FMM
1 1947.5 24.5 1927.6 49.3 579.7 81.4
2 3617.5 183.8 3841.5 277.8 3933.6 362.0

3R 21359 618.7 21821.9 617.7 22183.0 1810.5
4 10787.5 449.0 10031 906.8 11358.7 1028.9
5 9377.5 1064.2 9536.9 251.8 8681.9 1205.8
6 3504 160.9 3525 117.9 3408.1 148.7

Table 6: Means and standard deviations of physician segmentations, the previous hybrid
method (using five initializations), and the diffusion/FMMmethod (using one initialization
over a range of 7 scales and 3 thresholds).

Image Precision Recall F-measure Volume Error Scalet Thresholdp
2 0.860 0.827 0.843 -0.039 01998 0.45

3P 0.935 0.833 0.881 -0.109 00330 0.35
3Q 0.934 0.834 0.881 -0.108 03641 0.15
7Q 0.861 0.690 0.766 -0.198 06634 0.35
7R 0.861 0.537 0.661 -0.377 22026 0.65

Table 7: Maximum F-measure for each image and the parametersat which each occurs.

Image Segmentations Mean Median Std Set Std Volume Error

1 20 1536.50 1475.50 164.93 165.48 -0.2349
2 100 3709.80 3557.50 921.68 921.68 0.0860

3P 63 28534.37 28952.50 993.26 993.26 -0.1223
3Q 79 27577.91 27560.00 110.76 110.77 -0.1045
3R 84 21701.08 22398.44 5882.13 5882.13 -0.0787
4 100 11163.95 10716.25 1832.79 1832.79 0.1206
5 67 10651.72 10440.00 494.56 494.56 0.0514
6 80 2879.91 3192.50 1031.20 1031.20 -0.1658

7Q 60 28707.75 29389.06 1952.33 1952.33 -0.2145
7R 41 22122.21 22451.25 861.00 861.01 -0.3881

Table 8: Segmentation results at one scale and threshold with several seed points.
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Figure 17: Mean and standard deviations of volumes from physician and automatic seg-
mentations over the neighborhood around the optimal parameters for each doctor.
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Figure 18: Mean and standard deviations of volumes from physician and automatic seg-
mentations over the entire experiment parameter space.
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Manual Automatic Manual Automatic

Figure 19: Physician manual segmentation and its closest automatic segmentation for im-
age 2.
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Figure 20: Error vs. Confidence: (a) mean volume error; (b) volume error for each image.

most conservative automatic segmentation of each image (lowest scale, highest threshold)
and segmented each image at the most accurate scale and threshold combination as reported
in Tables 3 (for doctor 1 only) and 7. As before, invalid segmentations were discarded from
the calculations. Table 8 reports the number of valid segmentations out of 100 possible, the
mean, median, and standard deviation of the volume, and the set standard deviation, which
is the square root of (44). The volume error compares the meanvolume to the manually
established volume.

For seven lesions in our data set, the error on segmentationsof is plotted versus confi-
dence in Figure 20. The swaths of CSF through images 7Q and 7R are large enough that
they do not disappear before the maximum scale of the experiments is reached. The seg-
mentation style of the doctor on these two images is too different from the algorithm’s and
is thus irreconcilable in the current parameter space, so they are omitted from the calcula-
tions. Image 1 is omitted as well because its behavior of under segmenting at almost all
parameters due to a leaking tendency is atypical. Table 9 shows the individual error on the
lesions at the confidence yielding zero mean error.

5.6 Analysis

Clearly the segmentation model has the capacity to perform almost identically to physi-
cians. The results of Table 3 show that it is possible to achieve almost zero volume error
for each image and each physician at some parameter setting.The only exception, image 1,
would certainly achieve a small error comparable to the restexcept for the fact it neighbors
a brain ventricle that is as bright as the lesion itself. At larger scales, it becomes possible
to segment the multimodal lesion of image 1 in a fashion similar to that exhibited by the
doctors, but the lesion and ventricle also begin to join, causing the propagating front to
leak.

While the model has the capacity to perform perfectly on every lesion, if automatic
segmentations are required, then parameters must be constrained. As described in the in-
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Overall Optimal (Zero Mean Error) Individual Optima
Image Volume Error Optimal
 Volume Error F-measure

2* 0.086 0.67 -0.001 0.849
3P -0.301 0.03 -0.059 0.894
3Q -0.236 0.13 0.087 0.886
3R 0.087 0.71 0.002 -
4 0.352 0.91 -0.002 -
5 -0.049 0.45 -0.001 -
6 0.055 0.76 -0.001 -

Table 9: Individual errors at optimal confidence (
 = 0:53) with zero mean error, standard
deviation 0.220, and individual optimal confidence values with corresponding F-measure
and/or volume error. F-measure is the primary optimizing criterion with volume error a
secondary fall back. *Image 2 gives individual
 and volume results based on original
volumetric data, and F-measure based on a segmentation acquired later.

troduction, this means picking the consistent strategy that gives the least error. Earlier
results used a single set of parameters over six patient images with five initializations. If
we restrict our parameters to a single scale and threshold that seem to fit a doctor’s seg-
mentation style, the results are still almost entirely within a 10% error, as shown in Table
4. Image 1 was acquired with a very different MRI mode calledT2. Since different tissue
types image quite differently underT2, this image requires a much larger scale to achieve
results closer to the physician volume. It might be more appropriate to consider this image
(and any otherT2 images) separately due to the different magnitude of scalesrequired. In
any case, the large error on image 1 should not be considered too severely. The lower res-
olution of image 3R causes a narrow finger of lesion (cf. Figure 24(b)) to be absent at the
higher scale parameter (t = 8103) used to emulate the segmentations of doctor 1, thus caus-
ing the underestimate. These results show that even when oneset of rules is required for a
doctor, the results are still extremely good. Moreover, themodel demonstrates a reasonable
insensitivity to the scale and threshold when compared withthe physician segmentations
and the previous work (Table 6 and Figure 17). If parameters must be constrained even
further to one setting for all doctors, the results are similarly good, and the total error for
each doctor increases only slightly (by 0.024 for doctor 1 and 0.017 for doctor 2), as shown
in Table 5.

Error versus confidence plotted in Figure 20 show the promiseof the frequency ap-
proach to segmenting. The intuition that over-segmentation should occur when low confi-
dence is required and under-segmentation should occur whenhigh confidence is required
is born out in Figure 20(a). Therefore, we might set a defaultconfidence requirement at the
zero crossing
 = 0:53, where the average error is zero. That the confidence giving zero
mean error is almost exactly one half is very appealing. Additionally, the standard devi-
ation of volume error is0:220, barely above the error deemed clinically useful by physi-
cians. Interestingly, using the confidence measure to agglomerate segmentations increased
F-measure slightly over the best possible using only one segmentation (from Table 7).
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While we do not have the means to do an evaluation pairing trained technologists with
the automatic segmentation, we do not feel the “single parameter for all lesions” setup
is the best or most appropriate. A glance at the numbers of Table 9 indicates why. The
large negative error on images 3P and 3Q at
 = 0:53 are because both contain ambiguous
regions that doctors ended up including. These areas of uncertainty are only included at
lower confidence levels, and similar uncertain structures will always be eliminated at the
“average” confidence level. Conversely, image 4 contains healthy tissue that is relatively
bright in some regions. When the baseline point does not lie in one of these brighter regions
(as it did not in our experiments), the segmentation includes them at lower thresholds.
Hence, only with stricter confidence will the correct regionbe isolated.

Rather than allowing these anatomical nuances to be ignoredin pursuit of correct seg-
mentation of the more typical lesions, we propose to allow a user to choose the voxel
inclusion frequency isocontour—confidence—he or she feelsis the best representative of
actual lesion boundaries, as described in §1.4. This is validated by the results in Table
7, which gives the maximum F-measure on the images for which we do have physician
segmentations (instead of only volumes). Figures 19, 21, and 22 show select slices of the
physicians’ manual segmentations alongside the automaticsegmentation with the highest
precision and recall. The contours are similar in appearance and the differences in volume
are within the clinically useful bounds of 20%. Segmentation is a tedious process when
done manually because it requires classification consistency over several slices. So-called
“ground-truth” data is not a gold standard because it is prone to inconsistency. It might be
said that the closest automatic segmentations as given in Table 7 are the closest fit to the
manual segmentation, but with a consistent decision process.

The larger errors reported for images 7Q and 7R in Table 7 bearexplaining. While the
precision is comparable to that of the other images, drastically low recall (and thus large
volumetric error) is caused by the refusal of the algorithm to include the large black regions
of CSF, as described in §1.2.3. Manual segmentations are strenuous and time consuming,
so for these two images doctors drew a contoursurroundingaffected areas. As mentioned
before, physicians have informed us that such results are not necessarily incorrect [15].

Figures 23-25 show frequency isocontours for slices from patient images. Cool colors
indicate few inclusions, and warm colors indicate many inclusions. The outermost blue
contour encloses voxels included in the lesion segmentation at least once, and the innermost
red contour encloses voxels included every time.

Image 2 in Figure 23(a) finds “uncertainty” in the finger on theright-hand side the
lesion, but it turns out this is similar to the physician segmentation (cf. Figure 19). One
outlying contour in 23(b) indicates the ambiguity of the left-hand region. As it happens,
this outer contour is also similar to the physician segmentation found in Figure 26(a). An
interesting example is found in 24(a). As we witnessed the physician segmenting this
image, he spent considerable time evaluating the tissue in the upper-right corner of the
lesion, before eventually including the area indicated by the outermost contour, shown in
Figure 26(b). Figure 25(a) indicates that the uncertain bottom part of the lesion is included
in at least some segmentations, but the parameters at which this occurred made the results
too different from the hand segmentation we received to be recorded as the most accurate
(cf. Figure 22). Finally, the cool colors in the disconnected upper-right contours of Figure
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Figure 21: Selected slices from a physician manual segmentation (left) and its closest au-
tomatic segmentation (right) for image 3Q.
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Manual Automatic Manual Automatic

Figure 22: Selected slices from a physician manual segmentation and its closest automatic
segmentation for image 7Q.
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(a)

(b)

Figure 23: Frequency isocontours plotted at ten confidence levels: (a) image 2; (b) image
3P.
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(a)

(b)

(c)

Figure 24: Frequency isocontours plotted at ten confidence levels: (a) image 3Q; (b) image
3R; (c) image 5.
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(a)

(b)

Figure 25: Frequency isocontours plotted at ten confidence levels: (a) image 7Q; (b) image
7R.
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(a)

(b)

Figure 26: Slices of physician segmentations: (a) image 3R;(b) image 3Q.
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25(b) indicate the uncertainty of our algorithm concerningwhether the region is lesion.
Because this region is typically bright since it neighbors the ventricle, it is in fact one that
should be excluded (cf. §1.2.1).

Finally, we test the sensitivity of the segmentation process to the location and intensity
of the interior point, as demonstrated in Table 8. The best segmentation of image 1 was
achieved previously at a very low threshold for the maximum scale we allowed. It is logical
that many segmentations of image 1 had to be discarded, because slight deviation from the
intensity of the original point at such a low threshold makesthe front prone to leaking.
If the threshold were to be raised, more consistency would likely be found, but a larger
average error would result due to smaller volumes. The average volume error for images 2,
3R and 5, is roughly consistent with, though slightly largerthan, the volume errors reported
in Table 3; errors for 3P, 3Q, 7Q, and 7R are also consistent with volume errors in Table 7.
Image 6 is a multi-modal lesion, so there is still a large variation in the intensity of the seed
point because the minimum volume error happened to occur at avery low scale. Finally,
note that there is almost no difference whatsoever between the usual measure of standard
deviation over volume and our proposed definition over sets.This is due to Fact 5.1. The
algorithm is not making inconsistent segmentations by including some areas at one time,
and other areas at another time, rather, it is excluding areas to different degrees. That is, all
the segmentations are subsets of each other and the interplay between the intensity of the
seedpoint relative to the threshold ratio parameter controls just how far the front expands
before stopping. This is the only source of inconsistency, which the confidence measure
essentially eliminates.

6 Conclusions

Without the incorporation of anatomical knowledge or a modest amount of user guidance, it
is unlikely that any segmentation method could capture the subtle nuances of stroke lesions
in MR imagery. Common segmentation strategies using intensity and intensity changes are
a solid starting point, but fall short when medical knowledge must come into play.

Our previous work implicitly incorporated human guidance.The process of drawing an
initial contour that surrounds the lesion in a base slice implicitly directs the segmentation
toward those edges near the initialization. The work presented in this paper can incorporate
a similar amount of user direction, but performs well on average without it.

We have proposed methods for overcoming the variability of stroke lesions. The com-
bination of scale-space and implicit contours can match thesegmentations given by physi-
cians. Even when a consistent strategy is chosen, the model hardly deviates from physician
volumes.

Our confidence model provides an alternative method for choosing a segmentation strat-
egy. When fully automatic, the intuitive fifty percent confidence strategy gives accurate le-
sion volumes on average, with a standard deviation only slightly above our clinical target.
This method needs only two mouse clicks, which is much less user guidance than previ-
ously required. If a small amount of guidance is allowed, zero error can be achieved on
almost every lesion. The amount of user guidance in the new method is substantially less
than the old because it only requires to choose from a set of contours, rather than carefully
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drawing an initial contour.
Because human segmentations are prone to variation, inconsistency, and can be taxing

for those involved, it is unlikely we would have enough training data to do a fuller test of
the system. However, since the model proposes contours withonly a simple initialization
step, the system could be tested on a wide scale by having several physicians select the most
appropriate contour on a large number of lesions. Such information could eventually indi-
cate whether constraining the model to a particular scale and threshold is the best strategy,
or whether a different confidence level might be more appropriate on average. The authors
presume it would indicate that no single parameter, whetherscale, threshold, or confidence,
will make the system robust under all lesion types. Rather, we feel it would verify that the
problem can not be fully solved without medical knowledge. It might also illustrate the
degree of subjectivity in “ground-truth:” even with automatic segmentations, doctors may
individually, if even consistently, prefer different confidence levels in ambiguous lesions.

The statistics of sets is a relatively unexplored area. Along with a new confidence-based
segmentation model, we also presented a new direction for thinking about the variability
in segmentations. By capturing the fundamental differencebetween segmentations, rather
than volumes, we give a set “statistic” that is similar to standard statistics of volume mea-
surements when the segmentations are similar. Future research may explore the relation-
ship between the usual variance and the set variance, especially as to how they will differ
as segmentations contain more discrepancies. Perhaps moreinteresting is the notion of a
“mean” set, which remains to be defined. Like set variance, set mean might relate to a
traditional statistical analog, such as the value minimizing the expected squared deviation
from the population or sample.

Another possible avenue for investigation is a directionaldiffusivity function (or the use
of an existing one) that meets the continuity and differentiability scale-space requirements
yet also reduces the rate at which fine structures are blurredand is not inferior to isotropic
diffusion. Such a model might prove more useful in image processing contexts, where how
the image looks after diffusion is more important.

We have introduced a model for segmenting lesion images thatrequires little user input.
Clinically useful bounds can be achieved even when all parameters are constrained, but
some types of lesions to do not lend themselves to accurate segmentation with a single
parameter set. Thus, even more precise volumes may be obtained if a user selects from
some candidate segmentations.
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Appendix A

The following is code for MATLAB 6 that implements the additive operator splitting scheme
for isotropic diffusion in three dimensions. It is modeled on the pseudo-code detailing the
algorithm in [50] and Matlab code for an explicit scheme in [41].

function u = snld3D( f, lambda, m, sigma, dim, tau, k )
% SNLD3D Scalar (Isotropic) Nonlinear Diffu-
sion in 3D
%
% U = SNLD3D( f, lambda, m, sigma, dim, tau, k )
%
% f := input image
% lambda := constrast parameter
% m := diffusitivity decay
% sigma := regularization scale
% dim := relative coordinate dimension size
% tau := stepsize
% k := numsteps
%
% Uses Weickert’s isotropic edge enhancing diffu-
sion filter.

Cm = CMconstant(m);

Cm = -lambertw(-1,-1/(2*m) * exp(- 1/(2*m))) -
1/(2*m);

u = f;

for i = 1:k
% Gradient
ux = gD3D( u, sigma, dim, 1, 0, 0 );
uy = gD3D( u, sigma, dim, 0, 1, 0 );
uz = gD3D( u, sigma, dim, 0, 0, 1 );

% Gradient Magnitude Squared
uw2 = ux.^2 + uy.^2 +uz.^2;

% Prevent Division by Zero
uwPOS = (uw2>0);
uw2NZ = uw2.*uwPOS + ones(size(uw2)).*~uwPOS;

g = ones(size(uw2)) - uwPOS.*exp(-
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Cm./((uw2NZ/lambda).^m));

u = aosstep3D( u, tau, dim, g );

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function g = gD3D( f, sigma, dim, ox, oy, oz )
% GD3D Gaussian (Derivative) Convolution in 3D
%
% G = GD3D(f, sigma, dim, ox, oy, oz)
%
% sigma := scale
% dim := relative coordinate dimension size
% ox := order of derivative wrt x (cols)
% oy := order of derivative wrt y (rows)
% oy := order of derivative wrt z (slices)

% Modeled on 2D code by R. van den Boomgaard

K = ceil( 3 * sigma );
x = -K:K;

Gsx = gDeriva-
tive( ox, x.*dim(1), gauss(x.*dim(1),sigma), sigma );

Gsy = gDeriva-
tive( oy, x.*dim(2), gauss(x.*dim(2),sigma), sigma );

Gsz = gDeriva-
tive( oz, x.*dim(3), gauss(x.*dim(3),sigma), sigma );

g = conv3Brd( f, Gsx, Gsy, Gsz );

function r = gDerivative( order, x, Gs, sigma )
switch order
case 0

r = Gs;
case 1

r = -x/(sigma^2) .* Gs;
case 2

r = (x.^2-sigma^2)/(sigma^4) .* Gs;
otherwise

error(’only derivatives up to second or-
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der are supported’);
end
r = r/(sum(abs(r));

function gs = gauss( x, sigma)
gs = exp( - x.^2 / (2*sigma^2) );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function g = conv3Brd( f, w1, w2, w3 )
% CONV3BRD Separable convolution with reflected bor-
ders in 3D
%
% G = CONV3BRD( F, W1, W2, W3)
%
% f := input
% w1 := x direction (cols) kernel
% w2 := y direction (rows) kernel
% w3 := z direction (slices) kernel

% Modeled on 2D code by R. van den Boomgaard

N = size(f,1);
M = size(f,2);
P = size(f,3);

I = (size(w1(:),1)-1)/2;
J = (size(w2(:),1)-1)/2;
K = (size(w3(:),1)-1)/2;

iind = min(max((1:(N+2*I))-I,1),N);
jind = min(max((1:(M+2*J))-J,1),M);
kind = min(max((1:(P+2*K))-K,1),P);

fwb = f(:,jind,:);

g1 = convn(fwb,w1,’valid’);

fwb = g1(iind,:,:);
clear g1;

g2 = convn(fwb, w2’, ’valid’);

fwb = g2(:,:,kind);
clear g2;
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g=convn(fwb,reshape(w3,1,1,length(w3)),’valid’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function u = aosstep3D(f, tau, dim, g )
% AOSSTEP3D Additive Operator Splitting Step in 3D
%
% U = AOSSTEP3D( F, TAU, DIM, G )
%
% f := input image
% tau := step size
% dim := relative coordinate dimension (voxel) size
% g := diffusivity

tol = 0; % set to eps to avoid divide by zero er-
rors/warnings
d = 3; % number of dimensions
cycle = [2 3 1];

u = zeros(size(f));

for k=1:d % loop over each dimension

[N1, N2, N3] = size(f);

% Current dimension size
h1 = dim(k);

alpha = zeros(N1,N2,N3);
m = zeros(N1,N2,N3);
l = zeros(N1-1,N2,N3);
y = zeros(N1,N2,N3);
w = zeros(N1,N2,N3);
%----------------------------------------------

-----------------------------
% Diffusion along row dimension

% Step Zero -- Create the tridiagonal matrix

% single neighbor at ’left’ border
al-

pha(1,:,:) = 1 + d*tau*( g(1,:,:) + g(2,:,:) )/( 2 * h1^2 );

% two neighbors
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alpha(2:N1-1,:,:) = 1 + d*tau* ...
( 2*g(2:N1-1,:,:) + g(1:N1-

2,:,:) + g(3:N1,:,:) )/( 2 * h1^2 );

% single neighbor at ’right’ border
alpha(N1,:,:) = 1 + d*tau*( g(N1,:,:) + g(N1-

1,:,:) )/( 2 * h1^2 );

gamma = - d*tau*( g(1:N1-
1,:,:) + g(2:N1,:,:) )/( 2 * h1^2 );

% Step One -- LR Decomposition

m(1,:,:) = alpha(1,:,:);

for i=1:N1-1

l(i,:,:) = gamma(i,:,:) ./ ( m(i,:,:) + tol);

m(i+1,:,:) = alpha(i+1,:,:) -
l(i,:,:) .* gamma(i,:,:);

end;

% Step Two -- Forward Substitution

y(1,:,:) = f(1,:,:);

for i=2:N1
y(i,:,:) = f(i,:,:) - l(i-1,:,:) .* y(i-

1,:,:);
end;

% Step Three -- Backward Substitution

w(N1,:,:) = y(N1,:,:) ./ ( m(N1,:,:) + tol );

for i=N1-1:-1:1
w(i,:,:) = ( y(i,:,:) -

gamma(i,:,:).*w(i+1,:,:) ) ./ ( m(i,:,:) + tol );
end;
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% cycle input image and diffusivity dimensions
f = permute(f,cycle);
g = permute(g,cycle);

% inversely cycle w back to original dimen-
sion order

for j=1:k-1
w = ipermute(w,cycle);

end;

u = u + w;

end;

u = (1/d) * u;


