Automated Generation of Understandable
Contingency Plans

Max Horstmann and Shlomo Zilberstein
UMass Computer Science Technical Report #03-18
April 7,2003

Automated Generation of Understandable Contingency Plans

Max Horstmann and Shlomo Zilberstein
Department of Computer Science
University of Massachusetts at Amherst

UMass Computer Science Technical Report 03-18

Abstract

Markov decision processes (MDPs) and contin-
gency planning (CP) are two widely used ap-
proaches to planning under uncertainty. MDPs
are attractive because the model is extremely
general and because many algorithms exist for
deriving optimal plans. In contrast, CP is nor-
mally performed using heuristic techniques that
do not guarantee optimality, but the resulting
plans are more compact and more understand-
able. The inability to present MDP policies in
a clear, intuitive way has limited their applica-
bility in some important domains. We examine
the relationship between the two paradigms and
present an anytime algorithm for deriving opti-
mal contingency plans for an MDP. The result-
ing algorithm combines effectively the strengths
of the two approaches.

1 Introduction

Two closely related decision-theoretic planning paradigms
have emerged in the area of planning under uncertainty,
each offering a different set of advantages. One paradigm
is based on the Markov decision process (MDP) which has
become a general framework for planning (Boutilier et al.,
1999) and reinforcement learning (Sutton and Barto, 1998).
The other paradigm is Contingency Planning (CP) (Bresina
and Washington, 2001; Dearden et al., 2002). The ap-
proaches are closely related and in many cases they share
the same underlying representation of actions. In both
cases, an agent is manipulating an environment by perform-
ing actions with uncertain outcomes. Both paradigms have
been applied to domains with continuous state variables,
but we assume here that the environment has a discrete set
of states and that it satisfies the Markov assumption (i.e.,
the outcome state is independent of the entire history given
the current state and action). In each move, the agent re-
ceives some reward and the overall goal is to maximize the

cumulative reward.

MDPs are solved by deriving a policy, which maps do-
main states to actions, typically represented as a large table.
Several existing algorithms can construct optimal policies,
but the resulting plans are not easy to visualize or under-
stand. To reduce policy size and improve the efficiency
of policy construction, researchers have developed fac-
tored representations that address the exponential growth
of the state space with state features (Boutilier et al., 1999;
Feng and Hansen, 2002). Reachability analysis and heuris-
tic search have been used to constrain the number of ex-
amined states (Feng and Hansen, 2002) and macro actions
have been used to further exploit the structure of the do-
main (Lane and Kaelbling, 2002). These techniques can
solve efficiently realistic problems, but they do little to im-
prove understandability.

CP is another widely used approach in stochastic domains,
which allows plans to include branches that may depend
on arbitrary memory states. It has been used to aug-
ment classical STRIPS-style planners (Blum and Langford,
1999), to add execution-time branch conditions to stochas-
tic plans (Dearden et al., 2002), or to represent plans with
loops in a hybrid approach (Smith and Williamson, 1995).
Contingency plans are typically constructed using heuristic
search and are not optimal, but the representation is much
more intuitive and easy to understand.

It is clear why optimal or compact plans are desirable, but
the issue of understandability is less obvious. In fact, for
some applications, a plan represented as a large table map-
ping states to actions may be perfectly suitable. However,
the lack of clarity has limited the adoption of MDP plan-
ning in some application domains such as space explo-
ration (Bresina et al., 2002). In the domain of our interest,
unmanned rovers equipped with cameras and scientific in-
struments are sent to collect scientific data from other plan-
ets. Because communication with the rover is restricted, it
is necessary to send to the rover plans to control its oper-
ation over an extended period of time. In such high-cost
missions, plan verification is crucial. Currently, NASA
does not employ MDP-based planning because it is con-

sidered too risky. MDP policies are optimal as long as the
model used to create them is accurate. Otherwise, they may
introduce anomalous behavior that may be hard to detect.
To maximize the safety of the mission, the 1997 Sojourner
rover only executed a sequence of time-stamped low-level
actions. This method does provide maximum safety, but it
lacks efficiency: The average downtime due to plan fail-
ure has been estimated at 50% - 70%. More recently, less
conservative approaches, which introduce branching, have
been developed (Bresina and Washington, 2001; Dearden
et al., 2002).

The rest of the paper examines the relationship between
policies and contingency plans. In Section 2, we define the
two representations and a precise measure of the complex-
ity of a contingency plan. We introduce several problem
domains in Section 3 to illustrate the definitions and for
later evaluation. Section 4 describes an algorithm for gen-
erating and optimizing the clarity of contingency plans. Im-
plementation and evaluation of the algorithm are discussed
in Section 5. We conclude with a summary of the contribu-
tion of this work and future research directions.

2 Formal Problem Description

A Markov Decision Process (MDP) with goal states is a
tuple (S, A, P,R,sp,G). Where S = S; x - -+ x S, is
a factored state space and S; is the finite domain of fea-
ture . We assume without loss of generality that S; =
{1,2,...,]8:|}. Ais the set of actions, P : S x A — §
is a probability distribution over successor states for each
state-action pair. R : .S x A x .S — R gives the expected
immediate reward for each triple of state, action and suc-
cessor state. so € S is the initial state and G C S is a set of
terminal states. Note that G can be empty, so the definition
includes MDPs without terminal states.

A policy, 7 : S — A is a mapping from states to actions.
An agent acts according to policy 7 by executing the action
7(s) whenever it is in state s € S (initially so), observing
the successor state s’ € S and making it the current state.

Following the notation in (Littman et al., 1998), a Contin-
gency Plan (CP) for a given MDP (S, A, P, R, s¢,G) is a
tuple (V, E, vg, p, 6), where (V, E) is a directed graph with
start state vg € V. p : V — A associates an action with
each node of the graph. 6 : E — 2° labels each edge with
a set of states. Every pair of state sets on outgoing edges of
the same node has to be disjoint; formally:
V(v,v"), (v,v") € E:§(v')NJ0R") =0

An agent acts according to the CP by executing the action
p(v) of the current graph node v (initially vg), observing
the successor state s’ € S from the environment and suc-
ceeding to the graph node v’ that satisfies s’ € §(v, v').

A label descriptor D is a mapping D(6) : E — L(S),
where L£(S) represents a set of states in some compact

Figure 1: A simple Gridworld

and understandable language. This language could be very
expressive, using various relations among state features
(e.g., “the remaining distance divided by speed is less than
5.”). The language used in this paper is interval label
descriptors, which represents state sets as intervals over
the feature domains defined as follows: D;,:(6) : E —
{Il, 12, ,Ik} where Ij = {[Ll, Ul], ey [Lna Un] | 1 S
L, <U; <]5|V1 < i< n} Note that the results
we report could be generalized to more sophisticated label
descriptors.

2.1 The Complexity of a Contingency Plan

We define the complexity of a plan to measure how hard
it is to understand; the measure does not reflect the com-
putational complexity of constructing the plan. Obviously,
complexity depends on several different factors and is sub-
jective, reflecting the perceptions and preferences of the
user. Nevertheless, it is easy to identify some obvious fea-
tures of a contingency plan that affect its complexity: the
total number of nodes in the graph, the average branch-
ing factor, and the complexity of the labels, which depends
on the representation language. These three indicators are
combined into one measure of complexity by multiplying
them, although our algorithm works with whatever measure
of complexity is provided.

Formally, given an MDP (S, A, P, R, 5o, G), a contingency
plan CP (V, E, v, p,0) and an interval label descriptor
Dint(6), we define a the complexity of the plan as follows:

Complex(MDP, CP, D;,:(0)) = |V |- ABF - ALDS

The value is nonnegative, with higher values representing
more complex plans. Therefore, our goal is to increase clar-
ity by minimizing this measure.

ABF is the average branching factor:

1
ABF = 0 3 ool €V, (v,0') € B,
veV

ALDS is the average label descriptor size:

1
ALDS = — Z LabelSize(v,v")
|E| (vw'")EE

where the size of a label descriptor is the number of con-
strained intervals.

2.2 The Value of a Contingency Plan

Given a fixed policy, an MDP becomes a Markov chain
and the value of each state can be computed by solving the
following set of equations:

Val™(s) = Z P(s,m(s),s")(R(s,7n(s),s)+vy-Val™(s")
s'eS

The value of each state is the expected discounted future re-
ward when the agent follows 7 from state s (where vy is the
discount factor). There are many standard algorithms for
solving these equations precisely or approximately (Sutton
and Barto, 1998).

The value V al” of a contingency plan P = (V, E, vg, p, 6)
can be similarly computed. However, because nodes of the
graph represent non-stationary memory states, it is not pos-
sible to associate a fixed value with each node of the graph.
To overcome this problem, consider the Markov chain in-
duced by the new state set S X V and transition proba-
bilities prescribed by the MDP. The value of each state-
node pair (s,v) satisfies the following Bellman equation:
Valf (s,v) =

> P(s,p(v),8)(R(s, p(v),s') +7- Val"(s',0(v,5)))
s'eS

where 6(v, s") is the successor node v’ € V that satisfies
s' € 6(v,v"). Obviously, if a policy 7 and a contingency
plan P lead to identical behavior in every possible situa-
tion, their values are the same. But there are non-obvious
cases. For example, a contingency plan may have an opti-
mal value without matching any single policy, and a very
compact contingency plan may have near-optimal value.

3 Sample Problems

The following sample problems are used to illustrate the
definitions and to evaluate the algorithm we developed.

3.1 A Simple Gridworld and Mazes

Consider an agent in a Gridworld shown in Figure 1. The
agent starts in s = (1,1) and can move left, right, up or
down: A = {L,R,U,D}. Each action moves the agent
either one or two positions (avoiding the blocked grey po-
sitions) in the desired direction with probability 0.5 for
each outcome. The agent receives a negative reward of
r = —1 after each step until it reaches the absorbing state
G = (3,5). The arrows show an obvious optimal policy.

Figure 2 shows three possible contingency plans. Plan (a)
is obtained by simply mapping every action of the MDP to

Rewards for
successful collects

05

Left
04 . 84
03 .06 -|
02 .04 -
01 e
0

os Right 0.06 -
o4 0.04
08 0.03
02 0.02 4
0.1 0.01

0 0

Figure 3: The planetary rover problem.

Collecton 7

N2
>
@
%
k4
%
%
%
%@

a graph node, connecting every pair of nodes with an edge
and labeling the edges according to the optimal policy 7.
Formally: V' = {vy,...,v4}, E = VXV, p(v;) = 7(a;),
0(vi,vj) = {s € S|r(s) = a;}. The start node vy is the
node labeled with 7 (sg). Obviously, this plan is not simple.
Its complexity is: 4 - 4 - 88/16 = 88.

Plan (b) is the result of simplifying plan (a) by eliminating
unreachable states and taking advantage of the interval la-
bel descriptors. As a final step intervals are represented by
equations leading to further simplification. The complexity
of the plan is reduced to: 4-10/4 - 14/10 = 14.

Plan (c) shows another improvement. Intuitively, this plan
“remembers” whether the agent is walking down in the first
column (z = 1) or the third one (z = 3), by splitting a
node. Even though we increase the number of nodes, we
improve clarity; it is now very easy to understand what the
plan tells the agent, because every label consists only of
one expression and the average branching factor is slightly
reduced from 2.5 to 2.2. The self-loop edge of the second
D-node has no label at all; once this node is entered, the
agent goes down unconditionally until it reaches the goal.
The complexity of this planis: 5-11/5-10/11 = 10.

The above simple Gridworld is small enough to illustrate
our motivation and objectives. We have also experimented
with larger, randomly generated mazes, to test the scalabil-
ity of the algorithm described in Section 4.

S1={(4,2),(4,3)} St
Sp={(1.3).(2.3)}
Su={(1.4)}
Sp={(1.1).(1.2).(3.1),
(3.2).(3.3).(3.4)}

(b)

Figure 2: Three possible contingency plans for the Gridworld

3.2 A Planetary Rover Problem

The second set of problems we used involve a rover on a
slope that has a limited amount of time to perform some
scientific experiments and collect data (See Figure 3). Each
state includes the current position of the rover, 1 < Pos <
7, and the remaining time 0 < T" < maxTime. The action
Left and Right control the movement of the rover and the
action Collect performs an experiment and saves the data.
One interesting target for experimentation is at the bottom
of the slope (Pos = 1), where each Collect has a reward
of 10. Another target is at the top (Pos = 7), with a higher
reward of 100. In other positions C'ollect does nothing (can
be used to idle). The rover starts and must finish its activity
in position 4; there is a penalty of —10, 000 for not reaching
this position by the deadline (" = 0). There is uncertainty
about the duration of each action, described by a Gaussian
distribution. Going right (up) takes on average more time
than going left (down), and collecting data in position 7
takes significantly more time than in other positions.

With maxTime = 240 seconds, an optimal policy rep-
resented as a lookup table has about 1500 entries and is
therefore not easy to understand. Figure 4 shows two pos-
sible contingency plans for the problem, derived from an
optimal policy. The top graph shows an initial plan gen-
erated by mapping every action to one node and labeling
the edges appropriately. Because the state sets on the la-
bels are large (on average &~ 500 elements), this plan scores
poorly according to our complexity measure; its complex-
ity is 10122.

The bottom graph shows one of the best possible contin-
gency plans. Although the number of nodes is doubled, the
labels are very compact. The average branching factor also
goes down from to 3 to 1.83. The complexity of this plan
is6-11/6 -1 = 11. The challenge is therefore to gen-
erate such contingency plans automatically. The following
sections introduce an effective algorithm for doing that and
examine its performance.

Figure 4: Two possible contingency plans for the rover.

Anytime Contingency Plan Generation

S,A,P,R,s0,G,m,¢€
 is a policy for an MDP (S, A, P, R, 59, G)
€ is the fraction of optimality that may be lost

inputs:

C'P < CREATEINITIALPLAN(7)

STATEREACHABILITY(C P)

MERGEINTERVALS(C P)

while not interrupted do
CP' + CorY(CP)
CHOOSEPARTITION(CP', S1, S2)
SPLITNODES(CP’, S1, S2)
STATEREACHABILITY(C P/, ¢)
MERGEINTERVALS(C'P’, €)
if Complex(CP') < Complex(C P)

then CP < CP'
end
return C P

Figure 5: The contingency plan generation algorithm.

4 Automated Contingency Plan Generation

The algorithm for automated generation of understand-
able contingency plans is shown in Figure 5. Our
approach relies on solving first the underlying MDP,
(S, A, P,R,sp,G) and obtaining an optimal policy 7.
The algorithm generates an initial contingency plan, con-
structed directly from the policy as illustrated in Fig-
ure 2(a). The resulting plan is (V' = {v1,...,vj4}, E =
V x V. plv;) = mla;), 8(vi,v;) = {5 € Slr(s) = a;}).
Then, the following operators are used to reduce the com-
plexity of the plan.

4.1 Reachability Analysis

Algorithms that compute policies for MDPs can be im-
proved by taking into account the fact that some states are
not reachable from the start state. Furthermore, a policy
need not specify actions for states not reachable under that
policy. Search algorithms such the LAO™* take advantage
of this (Hansen and Zilberstein, 2001).

The same applies to contingency plans: A state on an
edge-label that can never be reached when the plan is ex-
ecuted can be removed. Formally, s’ € §(v,v’) can be
removed from §(v,v’) if for any (s,v) that is reachable
from (sg,vo), P(s,p(v),s") = 0. If all the states on an
edge label can be removed, the edge itself can be removed.
If a node becomes unreachable due to removed edges, it
can also be removed. The procedure STATEREACHABIL-
ITY performs this simplification by performing a depth-first
search over the set of all reachable edges between the state-
node pairs.

4.2 Merging Intervals to n-dimensional Boxes

As illustrated in Section 3.1, a benefit of interval label de-
scriptors is the ability to capture easily large sets of states
and simplify the branch conditions. This is particularly ef-
fective when the order of feature values corresponds to a
natural ordering in the domain such that neighboring val-
ues are likely to have the same optimal action. One typical
example is resource variables such as time or energy, for
which the optimal behavior in certain situations depends on
whether the value has dropped below some critical thresh-
old.

Formally, given a state set d(v,v’) C S, la-
bel descriptor minimization involves finding
argmin; -[NTERVALSs) LabelS ize(I). Finding an

optimal label descriptor is certainly intractable for larger
state sets, but we developed a simple approximation
that performs surprisingly well. The idea is to initially
select an ordering of the state features and then combine
“neighboring” intervals subsequently along the dimensions
of the state space. In other words, given an ordering
{81 < 82 < ... < S,}, the method first tries to combine
sets of states that are identical in all state variables except
S1. The resulting set of intervals are being merged
where possible along S and so on. The procedure
MERGEINTERVALS performs this optimization.

4.3 Splitting Nodes

Even with reduced label sizes and after removing unreach-
able states, the initial contingency plan with one node per
action basically just reproduces the policy on the outgoing
labels of each node. The real strength of a plan represen-
tation lies in the encoding of partial state information in
the nodes, leading to multiple nodes with the same action.
Therefore, further reduction in complexity is possible by
splitting nodes. Intuitively, we want to identify groups of
states that have the same optimal action according to the
policy 7. When subsets of the group can be described with
a small set of descriptors, whereas the union is not easy to
describe, a split could be beneficial.

The procedure SPLITNODES performs this operator on a
contingency plan, splitting a node into two nodes with the
same action, adapting the incoming and outgoing edges of
the original node to the new nodes. For example, with
a state set S = {u,v,w,z,y, 2} and the partition S; =
{u,v,w}, S2 = {z,y, z}, the result of a split operator is
illustrated below:

Note that the gray node labeled with the action “A” is being
split.

4.4 The Overall Plan Generation Algorithm

The operators described above are used by the contingency
plan generation algorithm. After constructing the initial
plan and performing state reachability analysis and merg-
ing intervals, the algorithm performs additional improve-
ments in a stochastic manner and can be stopped at any
time. The interruptible loop involves choosing candidates
for node splitting and keeping the new plan if it is more un-
derstandable (i.e., less complex) than the current best plan.
Exhaustive search for candidates for splitting is not feasi-
ble. Instead, candidates are chosen at random or using a
domain specific heuristic, which can also be randomized.
After splitting nodes, the algorithm performs reachability
analysis and merges intervals on the resulting plan to re-
duce its complexity. This part of the algorithm is interrupt-
ible, offering a tradeoff between computation time and plan
complexity.

The algorithm can handle effectively the problems we used
for evaluation. Consider for example the Gridworld prob-
lem and the contingency plans shown in Figure 2. In this
case, the STATEREACHABILITY and MERGEINTERVALS
operators transform the initial plan (a) into the plan (b). To
get the improved plan (c), the SPLITNODES operator could
be applied to “D”, using the partition S; = {(z,y)|z =
3}, 52 = {(z,y)|z # 3} before performing again reacha-
bility analysis merging intervals.

4.5 Trading off Optimality for Clarity

Besides a tradeoff between computation time and plan
complexity, the final algorithm has a parameter that intro-
duces another tradeoff: between optimality (the value of
the plan) and clarity (the complexity of the plan). This
tradeoff is controlled by the parameter ¢ which indicates
that (1 —€)Val™ is an acceptable value if it facilitates com-
plexity reduction. When e = 0, the algorithm returns only
optimal plans. Otherwise, the operators discussed above
use € in a variety of ways to achieve further reduction in
complexity. Consider for example the MERGEINTERVALS
operator. If the values of a feature extend to a large region
except for some a small number of cases, then the operator
can ignore these “holes” and construct a large interval cov-
ering the entire region. This could reduce a label descriptor

36:00.0

28:48.0 —

21:36.0 — ———t—Value Iteration

time

Reachability Analysis
—a— Evaluation

14:24.0

07:12.0

00:00.0 “‘M

0 500 1000 1500 2000 2500 3000
ISl

Figure 6: Execution time in minutes and seconds of value
iteration, reachability analysis and plan evaluation applied
to different versions of the rover problem.

size dramatically and improve the clarity of the plan, so we
might be willing to accept a small loss of value (bounded

by €).

This leads to the following interesting optimization prob-
lem. For any given MDP (S, A, P, R, so,G) and a known
optimal value V al,, 4, find a contingency plan and interval
label descriptors that have at least a value of (1 —¢€)Val 4z
while minimizing the complexity of the plan. In other
words, we want to find a member of the following set that
has the lowest complexity.

{CP = (Va Ea Vo5 P Dznt(é)) | Va'lCP Z (1_€)Va'lmaz}

While the computational complexity of this problem has
not been determined, it is clear that optimizing both plan
value and complexity is too hard. Hence, our algorithm
guarantees an arbitrary level of optimality, but it does not
guarantee finding the most compact plan.

5 Experimental Results

We have implemented the contingency planning algorithm
and tested it with the Gridworld problem, maze problems
ranging from 10 x 10 to 90 x 90, and rover problems with
maxTime between 30 and 390. The maximum number of
states is 8100 for the maze problems and 2737 for the rover
problems. Because the algorithm is an anytime algorithm,
its overall run-time depends on the user’s preferences. So
we examined instead the run-time of the two operators that
dominate its run time: reachability analysis and contin-
gency plan evaluation. We also measured the computation
time needed to solve the original MDP by value iteration,
because that policy is needed for constructing the initial
CP. Figure 6 shows execution times for different instances
of the rover problem; the results with mazes show a similar
behavior, although the cost of the operators is somewhat
lower. As one would expect, reachability analysis is the
most expensive operator, whereas node splitting and merg-
ing intervals take a negligible amount of time. Contingency
plan evaluation has a significant cost, but it does not grow

as fast as the cost of reachability analysis. From this we
conclude that improving the efficiency of reachability anal-
ysis is needed in order to apply the technique to much larger
problem instances.

5.1 Performance with Maze Problems

While the generation of the optimal contingency plan for
the simple Gridworld in Figure 1 is trivial and can be found
by the algorithm in a few seconds, finding optimal contin-
gency plans is much harder for the larger maze problems.
However, in our experimentation we found that the algo-
rithm produces surprisingly good plans and exhibits very
interesting behavior. One typical complexity reduction in
this domain can be attributed to detecting a “bottleneck”
through which the agent must pass. In this case the al-
gorithm splits the nodes according to the partition derived
from the states before and after the bottleneck. Another
typical situation that the algorithm can detect involves clus-
ters of neighboring states with the same optimal action that
can be split into single nodes with one outgoing edge and
one self-loop edge. This produces very simple label de-
scriptors with low branching factor. There are additional
classes of simplifications that the algorithm detects; they
are best illustrated graphically, but due to space limitation
we cannot include these figures.

5.2 Performance with Rover Problems

In the rover domain we have experimented with different
problem instances by varying the amount of available time.
The optimal plans exhibit a similar behavior over all in-
stances. As long as there is enough time available for the
fruitful, but time-consuming experiments on the right tar-
get, the rover drives there and performs these experiments.
As soon as the time drops below a certain threshold, the
rover drives to the leftmost position, exploiting as much of
the remaining time as possible on the smaller target. When
the remaining time drops further below a second critical
threshold, the rover finally decides to return to the home
position.

Observing these characteristics of the optimal policy, it is
possible to guide the algorithm to try the split operators
on the “collect” node: The different split nodes memorize
whether the rover is “on its way” to the right target, the left
target or the home position. This illustrates how domain
structure could be exploited in order to heuristically guide
the algorithm to avoid searching in the space of all possi-
ble plan transformations, resulting in a very understandable
plan. Applied to the initial contingency plan at the top of
Figure 4, this heuristic guides the algorithm to produce the
bottom plan in less then 4 minutes. For larger instances of
the problem, such heuristics cannot guarantee finding the
optimal plan within a reasonable amount of time. But the
algorithm can still produce understandable plans. Further

ways to exploit domain structure will be examined in future
experiments.

6 Conclusions and Future Directions

The main objective of this work has been to find solutions
for decision-theoretic planning problems that are optimal
(or near-optimal), compact, and understandable. Our so-
lution leverages the optimality of MDP policies and the
compactness and clarity of contingency plans to form plans
that share the advantages of both paradigms. Others have
introduced CP to approximate the solution to an MDP by
searching in the space of finite state controllers (e.g., (Kim
et al., 2000)). But the motivation has been to reduce com-
putation time, not to improve the clarity of the result. To
our knowledge, this is the first attempt to optimize the clar-
ity of MDP policies. The resulting plans are attractive in
mission-critical domains in which the ability to understand
and verify a plan is as important as its optimality.

We defined a precise measure of the complexity of con-
tingency plans, reflecting their size, branching factor and
the size of the label descriptors. We then introduce sev-
eral operators to reduce the complexity of plans. Because
a complete search through the space of all possible trans-
formations is obviously intractable, an iterative improve-
ment anytime algorithm is constructed than can be guided
by domain-specific heuristic knowledge. The experimental
results with small and medium size problem instances are
encouraging. They show that we can automate the process
of generating understandable plans that previously had to
be hand crafted.

There are several interesting ways in which the algorithm
can be generalized and improved. First, a better measure of
the complexity of plans could be developed. For instance,
it might be acceptable to have a large number of nodes, as
long as the overall plan is decomposable into different re-
gions that can be analyzed by experts independently. Sec-
ond, additional operators for reducing complexity could be
added. Finally, the language for representing edge labels
could be enriched with various predicates and allow state
features to be continuous. The results reported in this pa-
per provide a good framework for further exploration of
these research directions.

Acknowledgments

Support for this work was provided in part by NASA un-
der grant NAG-2-1463. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not reflect the views of NASA.

References

J. Bresina and R. Washington. Robustness via Run-Time
Adaptation of Contingent Plans. AAAI Spring Symposium
on Robust Autonomy, 2001.

J. Bresina, R. Dearden, N. Meuleau, S. Ramakrishnan,
D. Smith, and R. Washington. Planning Under Continu-
ous Time and Resource Uncertainty: A Challenge for Al.
Conference on Uncertainty in Artificial Intelligence, Ed-
monton, Alberta, July 2002.

A. Blum and J. Langford. Probabilistic Planning in the
Graphplan Framework. Proceedings of the Fifth European
Conference on Planning, 319-332, 1999.

C. Boutilier, T. Dean, and S. Hanks. Decision-Theoretic
Planning: Structural Assumptions and Computational

Leverage. Journal of Artificial Intelligence Research,
11:1-94, 1999.

R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith,
and R. Washington. Contingency Planning for Planetary
Rovers. Third International NASA Workshop on Planning
& Scheduling for Space, Houston, Texas, 2002.

Z. Feng and E.A. Hansen. Symbolic Heuristic Search
for Factored Markov Decision Processes. Eighteenth Na-
tional Conference on Artificial Intelligence, Edmonton,
Alberta, July 2002.

E.A. Hansen and S. Zilberstein. LAO*:A Heuristic
Search Algorithm that Finds Solutions with Loops. Ar-
tificial Intelligence, 129(1-2):35-62,2001.

K.-E. Kim, T.L. Dean and N. Meuleau. Approximate
Solutions to Factored Markov Decision Processes via
Greedy Search in the Space of Finite State Controllers.
Fifth International Conference on Artificial Intelligence
Planning and Scheduling, Breckenridge, Colorado, 2000.

T. Lane and L.P. Kaelbling. Nearly Deterministic Abstrac-
tion of Markov Decision Processes. Eighteenth National
Conference on Artificial Intelligence, Edmonton, Alberta,
July 2002

M.L. Littman, J. Goldsmith, and M. Mundhenk. The
Computational Complexity of Probabilistic Planning.
Journal of Artificial Intelligence Research, 9:1-36, 1998.

D. Smith and M. Williamson. Representation and Evalua-
tion of Plans with Loops. AAAI Spring Symp. on Extended
Theories of Action, Stanford, CA, 1995.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

