
Design and Analysis of a Leader Election Algorithm for Mobile Ad Hoc
Networks

Sudarshan Vasudevan, Jim Kurose, Don Towsley

Department of Computer Science,
University of Massachusetts,

Amherst, MA 01003
svasu,kurose,towsley @cs.umass.edu

UMass Computer Science Techincal Report 03-20

Abstract

Leader election is a very important problem, not only in wired networks, but in mobile, ad hoc networks as
well. Existing solutions to leader election do not handle frequent topology changes and dynamic nature of mobile
networks. In this paper, we present a leader election algorithm that is highly adaptive to arbitrary (possibly
concurrent) topological changes and is therefore well-suited for use in mobile ad hoc networks. The algorithm
is based on finding an extrema and uses diffusing computations for this purpose. We show, using linear-time
temporal logic, that the algorithm is “weakly” self-stabilizing and terminating. We also simulate the algorithm
in a mobile ad hoc setting. Through our simulation study, we elaborate on several important issues that can
significantly impact performance of such a protocol for mobile ad hoc networks such as choice of signaling,
broadcast nature of wireless medium etc. Our simulation study shows that our algorithm is quite effective in that
each node has a leader approximately 97-99% of the time in a variety of operating conditions.

1 Introduction

Leader election is a fundamental control problem in both wired and wireless systems. For example, in group com-
munication protocols, the election of a new coordinator is required when a group coordinator crashes or departs the
system. In the context of wireless networks, leader election has a variety of applications such as key distribution [3],
routing coordination [17], sensor coordination [21], and general control [6, 5]. When nodes are mobile, topologies
can change and nodes may dynamically join/leave a network. In such networks, leader election can occur frequently,
making it a particularly critical component of system operation.
The classical statement of the leader election problem [1] is to eventually elect a unique leader from a fixed set

of nodes. Indeed, several algorithms have been proposed to solve this problem. However, in the context of mobile,
ad hoc networks this statement must be specialized in two important ways :

The election algorithm must tolerate arbitrary, concurrent topological changes and should eventually termi-
nate electing a unique leader.

1



The elected leader should be the most-valued-node from among all the nodes within that connected com-
ponent, where the value of a node is a performance-related characteristic such as remaining battery life,
minimum average distance to other nodes or computation capabilities.

The first modification is motivated by the need to accommodate frequent topology changes - changes that can
occur during the leader election process itself. Network partitions can form due to node movement; multiple parti-
tions can also merge into a single connected component. It is important to realize that it is impossible to guarantee
a unique leader at all times. For example, when a network partition occurs or when two components merge, it will
take some time for a new leader to be elected. Thus, the modified problem definition requires that eventually every
connected component has a unique leader. Our second modification arises from the fact that in many situations, it
may be desirable to elect a leader with some system-related characteristic rather than simply electing a “random”
leader. For example, in a mobile ad hoc network it might be desirable to elect the node with maximum remaining
battery life, or the node with a minimum average distance to other nodes, as the leader. Leader election based on
such an ordering among nodes fits well in the class of leader election algorithms that are known as “extrema-finding”
leader-election algorithms. The second modification to the statement of leader election problem, therefore, requires
the elected leader to be the most-valued-node from the set of nodes in its connected component. Given the modi-
fications described above, the requirements for leader election algorithm become: Given a network of mobile nodes
each with a value, after a finite number of topological changes, every connected component will eventually select a
unique leader, which is the most-valued-node from among the nodes in that component.
Existing solutions to the problem of leader election do not work in the highly dynamic environment found in

mobile networks. Existing solutions to the leader election problem assume a static topology (e.g. [11, 12, 20, 21, 16,
22, 7, 8]), or assume that topological changes stop before an election starts (e.g. [28, 13]) or assume an unrealistic
communication model such as existence of reliable broadcast and an message-order preserving network [32]. While
there are some proposals for leader election in mobile networks [5], these algorithms are designed to perform random
node election and cannot be modified to perform extrema-finding. We therefore propose an election algorithm to
perform extrema-finding in a highly dynamic and asynchronous environment such as found in a mobile, ad hoc
network. Unlike these previous works, this paper also presents a detailed simulation study of the proposed election
algorithm in a mobile environment.
Our proposed algorithm uses the concept of diffusing computations [14] to perform leader election. Informally,

the algorithm operates as follows. When an election is triggered at a node, the node starts a diffusing computation
to determine its new leader. Several nodes can start diffusing computations in response to the departure of a leader
and hence several diffusing computations can be in progress concurrently; however, a node participates in only
one diffusing computation at a time. Eventually, when a diffusing computation terminates, the node initiating the
computation informs other nodes of the identity of the elected leader. An election can be triggered at a node for a
number of reasons such as disconnection from its leader or the value of the leader falling below some application-
defined threshold. We emphasize that the operation of our election algorithm is generic and does not depend on how
elections are triggered.
The contributions of this paper are the following:

We present an extrema-finding leader election algorithm that operates asynchronously and accommodates

2



arbitrary topological changes induced by node mobility. We prove using temporal logic that this algorithm
achieves a “weak” form of stabilization, i.e., given that each process starts in a designated initial state, that
after a finite number of topological changes the algorithm converges to a desired stable state in finite amount
of time.

We develop an improved understanding of how to design and implement a distributed algorithm, such as
extrema-finding leader election, that accounts for the broadcast nature of wireless channels and the mobility
found in an ad hoc network. In the context of leader election, we observe that the choice of signaling used in
the protocol, accounting for the broadcast nature of wireless medium, and making subtle design changes in the
leader election algorithm can greatly affect the performance of our algorithm. In our context, this results in an
algorithm that ensures that a node has a leader over 97% of the time in a wide variety of operating conditions.

We present a thorough study of the performance of the algorithm as a function of mobility, transmission range
and node density.

The remainder of the paper is organized as follows. In Section 2, we discuss related work. Section 3 describes our
model assumptions and objectives. In Section 4, we first provide an overview of our algorithm and then describe the
actual algorithm in detail. In Section 6, we describe the simulation setting and performance metrics for evaluating
our algorithm. Section 7 describes the lessons learned during algorithm design. In Section 5, we formally specify the
various correctness properties of our algorithm. In Section 8, we discuss how our algorithm is affected by different
parameters such as mobility and transmission range. Finally, we conclude in Section 9.

2 Related Work

Although leader-election is a fairly old problem, it has received surprisingly little attention in the context of mobile,
ad hoc networks.
Leader election algorithms for static networks have been proposed in [11, 12]. These algorithms work by con-

structing several spanning trees with a prospective leader at the root of the spanning tree and recursively reducing
the number of spanning trees to one. However, these algorithms work only if the topology remains static and hence
cannot be used in a mobile setting. There have been several clustering and hierarchy-construction schemes that can
be adapted to perform leader election [20, 21, 16, 22, 7, 8]. However, these algorithms either assume static networks
or a synchronous system and therefore cannot be used in an asynchronous, mobile system.
Several leader election algorithms [32, 28, 13] have been proposed for wired networks that assume process crashes

and link failures and are therefore closely related to our work. However, in [28, 13] process failures are assumed
to occur before election starts while in [32] the election algorithms make strong assumptions such as requiring that
every message be reliably broadcast to all other nodes and that the network be order-preserving i.e., a message m
sent by a node i at time t is received by all nodes before another message m’ sent by node j at some instant .
Such assumptions are very strong and make these solutions impractical in mobile environments.
There has been some work on spanning tree construction in the domain of self-stabilizing systems [23] that is

related to our work. Informally, a self-stabilizing system is one that can recover from any arbitrary global state and

3



reach a desired stable global state within finite time. Self-stabilizing spanning tree algorithms have been proposed
in [24, 26, 27]. However, these algorithms assume a shared-memory model and are not suitable for a message-
passing system such as an ad hoc network. In particular, in a message-passing system these algorithms cannot be
terminating [25], i.e., they do not reach a state in which all program actions are disabled; instead nodes have to
exchange infinitely many messages to detect that a stable state has been reached. We will later see that our election-
algorithm achieves a “weaker” form of stabilization, but that it terminates once the stable state has been reached.
Leader election algorithms for mobile ad hoc networks have been proposed in [5, 6]. As noted earlier, we are

interested in an extrema-finding algorithm, because for the applications discussed in Section 1, it is desirable to elect
a leader with some system-related attributes such as maximum battery life or maximum computation power. The
algorithms in [5] are not extrema-finding and cannot be extended to perform extrema-finding. In the algorithms
in [5], a node that detects a partition in the network gets elected as the leader and a partition can be detected by
any “random” node. Also, no proof of correctness of their algorithms has been provided for the case of concurrent
topological changes. Although, extrema-finding leader election algorithms for mobile ad hoc networks have been
proposed in [6], these algorithms are unrealistic as they require nodes to meet and exchange information in order to
elect a leader and are not well-suited to the applications discussed earlier. Several clustering algorithms have been
proposed for mobile networks(e.g. [9, 10]), but these algorithms elect clusterheads only within their single hop
neighborhood.
Designing a leader election algorithm that can tolerate arbitrary, concurrent node and link crashes, network par-

titioning/merging and which executes in an asynchronous fashion is a difficult and challenging task. This is the
focus of this paper. Using linear-time temporal logic, we prove that our algorithm stabilizes to a desired state de-
spite arbitrary topological changes caused by node mobility. An important distinction of our work from previous
work on leader election is that, we have performed a detailed simulation study of our leader election algorithm to
understand its performance in a mobile, ad hoc setting. Our simulations show that the algorithm works very well,
with each node having a leader for 97%-99% of time. Furthermore, we present several interesting insights culled
from our experiences in simulating these algorithms in mobile environments. In particular, we observe that subtle
and seemingly small changes in the election algorithm and choice of signaling can have significant performance
consequences. These insights can be very useful in the design of other protocols for mobile, ad hoc networks.

3 Objectives, Constraints and Assumptions

In developing a leader election algorithm, we first define our system model, assumptions, and goal. We model an
ad hoc network as an undirected graph that changes over time as nodes move. The vertices in the graph correspond
to mobile nodes and an edge between a pair of nodes represents the fact that the two nodes are within each other’s
transmission radii and, hence, can directly communicate with one another. The graph can become disconnected if
the network is partitioned due to node movement. We make the following assumptions about the nodes and system
architecture:

1. Unique and Ordered Node IDs: All nodes have unique identifiers. They are used to identify participants
during the election process. Node IDs are used to break ties among nodes which have the same value.

4



2. Links: Links are bidirectional and FIFO, i.e. messages are delivered in order over a link between two
neighbors.

3. Node Behavior: Node mobility may result in arbitrary topology changes including network partitioning and
merging. Furthermore, nodes can crash arbitrarily at any time and can come back up again at any time.

4. Node-to-Node Communications: A message sent by a node is eventually received by the intended receiver,
provided that the two nodes remain connected forever starting from the instant the message is sent.

5. Buffer Size: Each node has a sufficiently large receive buffer to avoid buffer overflow at any point in its
lifetime.

The objective of our leader election algorithm is to ensure that after a finite number of topology changes, eventu-
ally each node i has a leader which is the most-valued-node from among all nodes in the connected component to
which i belongs.

4 Leader Election Algorithm

Our leader election algorithm is based on the classical termination-detection algorithm for diffusing computations by
Dijkstra and Scholten [14]. In this section, we describe a leader election algorithm based on diffusing computations.
In later sections, we will discuss in detail how this algorithm can be adapted to a mobile setting.

4.1 Leader Election in a Static Network

We first describe our election algorithm in the context of a static network, under the assumption that nodes and
links never fail. The algorithm operates by first “growing” and then “shrinking” a spanning tree rooted at the node
that initiates the election algorithm. We refer to this computation-initiating node as the source node. As we will
see, after the spanning tree shrinks completely, the source node will have adequate information to determine the
most-valued-node and will then broadcast its identity to the rest of the nodes in the network.
The algorithm uses three messages, viz. Election, Ack and Leader.
Election. Election messages are used to “grow” the spanning tree. When election is triggered at a source node s

(for instance, upon departure of its current leader), the node begins a diffusing computation by sending an Election
message to all of its immediate neighbors. Each node, i, other than the source, designates the neighbor from which
it first receives an Election message as its parent in the spanning tree. Node i then propagates the received Election
message to all of its neighboring nodes (children) except its parent.
Ack. When node receives an Election message from a neighbor that is not its parent, it immediately responds

with an Ack message. Node does not, however, immediately return an Ack message to its parent. Instead, it waits
until it has received Acks from all of its children, before sending an Ack to its parent. As we will see shortly, the Ack
message sent by to its parent contains leader-election information based on the Ack messages has received from
its children.

5



Once the spanning tree has completely grown, the spanning tree “shrinks” back toward the source. Specifically,
once all of ’s outgoing Election messages have been acknowledged, i sends its pending Ack message to its parent
node. Tree “shrinkage” begins at the leaves of the spanning tree, which are parents to no other node. Eventually,
each leaf receives Ackmessages for all Electionmessages it has sent. These leaves thus eventually send their pending
Ack messages to their respective parents, who in turn send their pending Ack messages to their own parents, and so
on, until the source node receives all of its pending Ack messages. In its pending Ack message, a node announces
to its parent the identifier and the value of the most-valued-node among all its downstream nodes. Hence the source
node eventually has sufficient information to determine the most-valued-node from among all nodes in the network,
since the spanning tree spans all network nodes.
Leader. Once the source node for a computation has received Acks from all of its children, it then broadcasts a

Leader message to all nodes announcing the identifier of the most-valued-node.
Example:
Let us illustrate a sample execution of the algorithm. We describe the algorithm in a somewhat synchronous

manner even though all the activities are in fact asynchronous. Consider the network shown in Figure 1. In this
figure, and for the rest of the paper, thin arrows indicate the direction of flow of messages and thick arrows indicate
parent pointers. These parent pointers together represent the constructed spanning tree. The number adjacent to
each node in Figure 1(a) represents its value. As shown in Figure 1, node A is a source node that starts a diffusing
computation by sending out Election messages (denoted as “E” in the figure) to its immediate neighbors, viz. nodes
B and C, shown in Figure 1(a). As indicated in Figure 1(b), nodes B and C set their parent pointers to point to node
A and in turn propagate an Election message to all their neighbors except their parent nodes. Hence B and C send
Election messages to one another. These Election messages are immediately acknowledged since nodes B and C
have already received Election messages from their respective parents. Note that immediate acknowledgments are
not shown in the figure. In Figure 1(c), a complete spanning tree is built. In Figure 1(d), the spanning tree starts
“shrinking” as nodes D and F send their pending Ack messages (denoted by “A”) to their respective parent nodes in
the spanning tree. Each of these Ack messages contains the identity of the most-valued-node (and its actual value)
downstream to nodes D and F, in this case the nodes themselves, since they are the leaves of the tree. Eventually,
the source A hears pending acknowledgments from both B and C in Figure 1(e) and then broadcasts the identity of
the leader, D, via the Leader message (denoted by “L” in the figure) shown in Figure 1(f).

4.2 Execution Model:

The LeaderElection algorithm specified in Figure 2 runs on each node and is of the form:
module module name
var variable declarations ;
initialization assignment statements ;
begin

action action action
end
The algorithm has a set of variables, an initialization section and a set of actions. Each variable in the variable

6



A

(f)(e)

(d)(c)

(b)(a)

C

B

D

F

A

B

D

F

"E"

"E"

"E"

"E"

"E"

"E"

A

C

B

D

F

"E"

"E"
A

C

B

D

F

A

C

B

D

F

A

C

B

D

F

C

3

5

2

10

7

,"A(D,10)"

"A(F,7)"

"A(D,10)"

"A(F,7)"

"L(D,10)"

"L(D,10)"

Figure 1: An execution of leader election algorithm based on Dijkstra-Scholten termination detection algorithm.
Thin arrows indicate direction of flow of messages while the thick arrows represent the constructed spanning tree.

declarations list is local only to the election module on a particular node and can be updated only by that module.
Variables are initialized to appropriate values in the initialization part of the module. Each action in the action set
is of the form

guard command

Each guard is a boolean expression over variables in the module and some boolean predicates. “Command” repre-
sents a list of assignment statements and perhaps one or more primitives such as send message, remove a message
from receive buffer etc.
We now introduce some additional terms and definitions which we shall use throughout the rest of the paper. A

system is defined to be a collection of processes and interconnections between processes. The state of the system is
an assignment of values to every variable and every predicate of every process in the system. An action whose guard
evaluates to true in some system state is said to be enabled at that state. Multiple actions can be simultaneously
enabled in the same system state. In such a case, any one of the enabled actions is non-deterministically chosen for
execution and the command corresponding to the guard is executed. Also, if multiple actions are simultaneously
enabled, then execution of one action in the current state can potentially disable other previously enabled actions
in the next system state. A computation of the system is a maximal, fair sequence of steps : in each state, an
enabled action in that state is executed, which takes the system into its next state. The maximality of computation
requires that no computation be a proper prefix of another computation while the fairness constraint states that every
continuously enabled action is eventually executed. Also, all action executions are atomic operations.

7



module (i : )

var : boolean;
: ;

= : integer, ;
:

initialization

begin

/*Start a new computation*/
1. ;

/*Join the computation*/
2.

/* Already in computation; or I still have my leader */
3.

/* Update list of nodes to be heard from*/
4.

if ( and and )
then ;
if then ;

/*Report pending Ack to parent*/
5.

if then ;
/*Terminate computation, announce leader*/
6.

;

/*Adopt a new leader*/
7. ;

/*Announce my leader to a new neighbor*/
8.

/*Send reply in response to received Probe message*/
9.

/* Deque message if no other action is enabled */
10.

end

Figure 2: Leader Election Algorithm Specification

8



Message Purpose
Election for growing a spanning tree
Ack to acknowledge receipt of an Election msg

Leader to announce the new leader
Probe to determine if a node is still connected
Reply sent in response to a Probe msg

Table 1: Message Types used in the Election Algorithm.

Variables Meaning
a binary variable indicating if i is currently
in an election or not
i’s parent node in the spanning tree
a binary variable indicating if i has sent an
Ack to or not
i’s leader
i’s current neighbors
set of nodes from which i is yet to hear an Ack
from
i’s computation-index

Table 2: List of Variables Maintained by a node i during the Election Process.

4.3 Leader Election in a Mobile, Ad Hoc Network

We now describe the operation of our leader election algorithm in the context of a mobile, ad hoc network. In the
previous section, we provided an overview of the algorithm’s operation in a static network. But with the introduction
of node mobility, node crashes, link failures, network partitions and merging of partitions, the simple algorithm is
inadequate. Furthermore, we assumed in the previous section that only one node triggers an election. In reality, many
nodes may concurrently trigger leader elections, with each of them independently starting a diffusing computation,
due to lack of knowledge of other computations started by other nodes.
We note that throughout the discussion of our algorithm’s operation and for the rest of the paper, we assume that

the value of the node is same as its identifier. We emphasize that this assumption has been made only for simplicity
of presentation and results in no loss of generality.
Before we describe how our algorithm accommodates node mobility, we describe the variables and messages used

by the algorithm.

4.3.1 Variables and Message types

The message types and variables used in the algorithm are shown in Table 1 and Table 2 respectively. The algorithm
involves five message types: Election, Ack, Leader, Probe and Reply. The first three message types were described
in Section 4.1. We will discuss the use of Probe and Reply messages while describing our algorithm’s operation.
Each node i maintains a boolean variable , whose value is 0 if node i has a leader, and 1 if it is in the process

9



of electing one. The variable contains the computation-index of the diffusing computation in which node i is
currently participating. As we will see in Section 4.3.3, this computation-index uniquely identifies a computation
and is required to handle multiple, concurrent computations. During a diffusing computation, node i keeps track of
its parent, . Variable is set to 0 if node i has sent its pending Ack message to its parent and 1 if it has not (i.e.,
it is still in the spanning tree). Each node i maintains its current leader in . is the list of i’s current neighbors
(maintained by periodic exchange of messages between neighbors) and, represents the set of nodes that i has yet
to hear an Ack message from. It is updated each time i receives an Ack message.

4.3.2 Bootstrapping the Election Process

Each node starts execution by initializing the different variables of the leader election algorithm. After the initial-
ization, the algorithm in each node loops forever, and on each iteration, checks if any of the actions in the algorithm
specification are enabled, executing at least one enabled action on every loop iteration. Formal specification of the
algorithm and the execution model are presented in Figure 2 and Section 4.2 respectively.

4.3.3 Handling Multiple, Concurrent Computations

The leader of a connected component periodically sends heartbeat messages to other nodes. The absence of a
heartbeat message from its leader for a predefined timeout period triggers a fresh leader election process at a node.
It should be noted that more than one node can concurrently detect leader departure and each node can initiate
diffusing computations independently, leading to concurrent diffusing computations. We handle multiple, concurrent
diffusing computations by requiring that each node participate in only one diffusing computation at a time. In order
to achieve this, each diffusing computation is identified by a computation-index. This computation-index is a pair,
viz. , where represents the identifier of the node that initiated that computation and is an integer,
which is described below.
Definition:
A diffusing computation A is said to have higher priority than another diffusing computation B iff computation-

index computation-index
A given source always starts a diffusing computation with greater than that of any other computation it

previously initiated, while the source-id field is used to break ties among concurrent diffusing computations with
different sources but the same value. As a result, there is a total ordering on computation-indices. The
variable is incremented each time a node starts a fresh diffusing computation. When a node participating in
a diffusing computation “hears” another computation with a higher computation-index, the node stops participating
in its current computation in favor of the higher computation-index. For instance, in Figure 3(a), node G sends
an Election message with computation-index, , to node A whose current computation-index is . Upon
receiving this Election message, node A stops participating in its current computation, sets its computation-index to

, as shown in Figure 3(b), and propagates the received Election message to nodes B and C.

10



(a)

B

C

A

<3,D> <3,D>
G

D

<3,D>
H

<3,D>

(b)
C

B

<2,B>
<2,B>

<2,B>

A G

<3,D>
D

H

<3,D>

Figure 3: Handling concurrent diffusing computations

4.4 Algorithm Performed by the Nodes

The main idea of our algorithm is to “grow” and “shrink” a spanning tree during the election process and announce
the leader after the tree shrinks completely. However, if node movement results in changes to this spanning tree,
then nodes detect these changes and take appropriate actions. In this section, we describe through examples, how
our election algorithm accommodates arbitrary changes in topology induced by node mobility.
Initiate Election: Node i begins the election process in response to the departure of its current leader. As

described in Section 4.1, node i starts the process of “growing” a spanning tree by propagating Election messages
to its neighbors, informing them of the start of an election of a new leader. In triggering a fresh election, node i sets
its variable to 1 to indicate that it is currently involved in an election. As described in Section 4.1, i announces
a leader only after it hears Ack messages from all the nodes to which it sends an Election message. The list is,
therefore, initialized to , i’s current neighbors.
Spanning Tree Construction: Node j, upon receiving an Election message from node i, say E, joins the spanning

tree by setting its parent pointer, , and in turn propagates Election messages to its own neighbors in the set .
As described in Section 4.1, these Election messages are propagated forward to all nodes and eventually a spanning
tree of nodes is constructed.
Handling Node Partitions: Once node i joins an election, it must receive Ack messages from all nodes in list
before it can report an Ack message to its parent node. However, because of node mobility, it may happen that

node j, which has yet to report an Ack message, gets disconnected from node i. Node i must detect this event, since
otherwise it will never report an Ack message to its parent and, therefore, no leader will be announced.
Consider a scenario in which a parent-child pair becomes disconnected during the election process, i.e. the

condition is true for some , as illustrated in Figure 4. Figure 4(a) shows an example topology where
the parent pointers represent the constructed spanning tree. Because of node mobility, node A becomes disconnected
from the rest of the nodes and the topology changes to that shown in Figure 4(b). In order to detect such events,
each node in the spanning tree sends periodic Probe messages to every node j in its list . A node which receives a
Probe message responds with a Reply message. The absence of a Reply message from a node j for a certain timeout
period causes node i to remove j from list and to no longer wait for an Ack message from node j. As shown in
Figure 4, node B, which has already received an Ack message from node C but has yet to hear an Ack message from
node A, eventually infers, using Probe messages, that node A has departed. Node B therefore removes A from the
list . Node B now has no more Ack messages to wait for and broadcasts a Leader message announcing C as the
leader as illustrated in Figure 4(c).
When a node disconnects from its parent, it can no longer report an Ackmessage to its parent. Hence, it terminates

11



B

C A

D

H E

(a)

B

C

D

H E

B

C

D

H E

B

C

D

H E

Ldr(H)

Ldr(C)

(c) (d) (e)

A

B

C

D

H E

(b)

Ldr(C)
Ldr(H)

Figure 4: Operation of Leader Election Algorithm in the face of partitions

the diffusing computation by announcing its maximal downstream node as the leader. In our example, node D, which
has A as its parent, eventually receives Ack messages from all its immediate children. As shown in Figure 4(d),
node D subsequently detects node A’s departure and terminates the computation by broadcasting a Leader message,
announcing H as the leader. In essence, node D, in the absence of a parent node, reports its maximal downstream
node through its current neighbors.
Finally, node C, whose current leader is itself, propagates the new leader, H, upstream to node B. Thus, all nodes

eventually have node H as their leader. Node A also eventually detects the departure of node D and its parent, node
B. In this case, node A announces itself to be the leader.
Handling Partition Merges: Node mobility can also cause partitions to merge. There are several possibilities.

The simplest case, as shown in Figure 5(a), involves two connected components, each with a unique leader, merging
together by the formation of a new link between nodes A and U (indicated by a dashed line). Nodes A and U then
exchange their leader identities over the newly formed link. Since node U has a higher-identity-leader (W) than A
(C), A adopts W as its own leader and then broadcasts the new leader to the rest of the nodes in its component.

Ldr(W)

U

V

W

(a) (b)

Ldr(C)
A

C

B
A

C

Ldr(C) B
U

W

V

V

W

A

V

(c)

U
B

A

(d)
C

W

U
B

C

Ldr(W)Ldr(W)

Figure 5: Operation of Leader Election Algorithm in the face of merges

12



Another possibility is that one or both of the components merging together are without a leader and are involved
in a computation. As shown in Figure 5(b), nodes U, V, W are involved in a computation and merge with nodes
A, B and C which have C as their leader. Our algorithm handles this case by allowing the ongoing computation to
terminate before the exchange of leader identities takes place. In Figure 5(b), node A, upon detecting a new link
formation announces its leader identity to node U. Upon termination of the ongoing computation, node U announces
its leader (node W) to node A, which adopts W as its new leader and propagates this information to nodes B and C.
The case when both merging components have an ongoing computation is also handled similarly.
Handling Node Crashes and Restarts: Our algorithm also tolerates arbitrary node crashes and recoveries. A

node failure is treated as an instance of network partitioning and appropriate actions are taken, as described earlier.
For our algorithm to tolerate node recoveries, we assume that when a node recovers from a crash, it first bootstraps
the election process as described in Section 4.3.2. At the end of the bootstrap phase, the recovered node is without
a leader and therefore starts a new election to find its leader. In essence, node crashes are treated as occurrences of
partitions while the event of a node recovering from a failure is treated as the merging of two components.
Having described the operation of our election algorithm and its ability to adapt to arbitrary topological changes,

we next study its performance through simulation in a mobile, ad hoc network under a variety of operating condi-
tions.

5 Formal Verification of Algorithm

We formally verify the correctness of the election algorithm, titled Election-Opt in the previous section. We use
linear time temporal logic as a formal tool for this purpose. An extensive introduction to temporal logic is available
in [33]. We just present a sketch of our proofs here, while detailed proofs are presented in the Appendix.
A temporal formula consists of predicates, boolean operators ( ), quantification operators ( )

and temporal operators like (’at every moment in the future’), (’eventually’), (’at some moment in the past’),
that are used to reason about past and the future. We use temporal logic to formally specify algorithm properties and
establish invariants of our leader election algorithm.
We show that starting in an initial state (specified in the initialization part of the formal algorithm specification in

Figure 2, the system is guaranteed to reach a state satisfying predicate P after an arbitrary number of changes and
that it will forever remain in a state satisfying P, where

In words, predicate P describes the set of all states in which a node i’s leader ( ) is l, the maximum-identifier-node
in i’s connected component, and that l remains i’s leader forever. Thus, we achieve a weaker form of stabilization
with our algorithm, in which stabilization is guaranteed provided each process starts execution in a designated initial
state. The proof of our algorithm is divided into two parts:

Safety Property: If diffusing computations stop in the network, then eventually all nodes will have a unique
leader from within their connected component which is the maximum-identifier-node in that component. More
formally:

13



If

then we prove that

Progress Property: We also show that eventually there are no more diffusing computations in the network,
i.e., holds true.

Termination Property: Eventually the algorithm terminates, i.e., none of the program actions are enabled.

The Safety and Progress properties together ensure that the system eventually reaches a stable state. The Termi-
nation property is achieved as a consequence of the Safety and Progress properties.

6 Simulation Setting

We simulate our algorithm using GloMoSim [15], an event-driven, packet-level simulator. The main objective of
our simulations was to gain a better understanding of how to design and implement leader election algorithms for ad
hoc networks and also study in detail how various simulation parameters impact the performance of our algorithm.
The performance metrics which we consider in our simulations are the Fraction of Time Without Leader, Message-
Overhead, Election-Time and Election-Rate defined below.

6.1 Performance Metrics

We now define the various performance metrics considered. Fraction of Time Without Leader (F) is the fraction of
simulation time that a node is involved in an election (as indicated by ). Election-Rate (R) is defined as the
average number of elections that a node participates in per unit time (i.e. the average rate at which node i goes from

to ). Election-Time (T) is defined as the mean time elapsed between the instant at which a node begins
participating in an election process (corresponds to in our algorithm) and the instant at which it knows the
identity of its leader ( ). In some cases, node partitions occur during the election process, as shown in Figure 4.
In that example, node B first chose C as its leader and then subsequently it chose node H as its leader. Election-Time
corresponds to the time elapsed from the instant at which node B starts participating in the election until the time at
which B chose H as its leader. Message-Overhead (M) is defined as the average number of messages sent by a node
per election.
In all of our simulations, we study the behavior of the various performance metrics as a function of the number of

nodes (N) in the simulation. For a given N, the results are averaged over all nodes in each simulation run and over
10 different simulation runs. We plot the 95% confidence intervals on the graphs.

6.2 Simulation Environment

Nodes are randomly placed in a 2000m 2000m terrain. For all network sizes, nodes move according to the Random
Waypoint mobility model. The parameters of this model are the minimum node speed ( ), maximum node speed

14



( ) and node pause time ( ). In accordance with suggestions made in [31], we set the minimum node speed to a
positive value (1m/s in our case) throughout our simulations. Throughout our simulations, we use the IEEE 802.11
MAC protocol and Free Space Propagation path-loss model. For the results reported in this paper, the underlying
routing protocol used is AODV [17]. We note that we simulated our algorithm with DSR [18] as the routing protocol
and observed very little change in the results shown in this paper.
In our simulations, a leader node periodically broadcasts Beacon messages to other nodes. Absence of some

number (indicated by max-beacon-loss) of Beacon messages from its leader causes a node to start a fresh election.
In our simulations, we set the value of beacon-interval to 20 seconds and of max-beacon-loss to 6. This means that
a node triggers an election, if it does not receive a heartbeat from the leader for a duration of two minutes. Note that
max-beacon-loss is arbitrarily chosen and can be set according to application requirements.

7 Design Issues and Lessons Learned

We now describe various issues involved in designing an efficient leader election algorithm with particular emphasis
on the fact that the election algorithm operates in a mobile, wireless ad hoc network. Using simulations, we illustrate
how subtle changes in the algorithm and signaling methods it uses result in dramatic differences in its performance.
We believe that the lessons learned from our simulations can be useful in other protocol designs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  20  40  60  80  100  120  140

Fr
ac

tio
n 

of
 T

im
e 

W
ith

ou
t a

 L
ea

de
r

Number of Nodes in Simulation

Election-TCP
Election-UDP

Election-Bcast
Election-Opt

Figure 6: “Evolution” of Leader Election Algorithm

In Figure 6, we plot the fraction of time a node is without a leader (F) against number of nodes (N) for four
different implementations of our election algorithm, which we call Election-TCP, Election-UDP, Election-Bcast
and Election-Opt. Each of these versions will be described very shortly. The curves were obtained from a scenario
in which nodes moved according to Random Waypoint model with , and .
The node transmission range was 200m and each simulation was run for 100 simulation minutes. Each point is
obtained by averaging over 10 different runs. The main purpose of this graph is merely to depict the dramatic
improvements in performance by careful design choices.
From Figure 6, several interesting insights can be gleaned as we change from one algorithm to another, improving

the algorithm each time based on the insights obtained. We explain how each change to the algorithm improves upon

15



the previous case, until we achieve a really efficient algorithm.

1. Election-TCP: The uppermost-most curve in Figure 6 represents the Election-TCP version of our election
algorithm. In this version, all messages (except the Leader message which is always flooded) are sent using
TCP. This curve can be regarded as the most naive implementation of our election algorithm and serves as a
baseline against which the other versions can be compared.

From Figure 6, we see that the fraction of time that the node is without a leader is 0.54, when N = 120. There
are several reasons that Election-TCP performs very poorly. Firstly, each leader-election message incurs the
additional overhead of a three-way handshake before it is actually sent and a connection teardown phase after
it is sent. This introduces a significant overhead on the wireless link bandwidth. Secondly, the large TCP
timeout values for connection set-up, introduce a significant delay before node disconnections are detected by
our algorithm, thereby resulting in an increased election duration. We therefore conclude that TCP is not a
suitable choice for signaling for our election algorithm.

2. Election-UDP: The next curve immediately below Election-TCP in Figure 6, represents the Election-UDP
version. In this version, all algorithm messages are sent point-to-point using UDP. If the message delivery
fails after a fixed number of trials, the destination is assumed to be disconnected.

We observe from the graph that the fraction F drops significantly from 0.54 to 0.37, when N = 120. This
confirms our conclusion that TCP is not suitable for messaging in wireless networks, especially for distributed
algorithms such as leader election. Although Election-UDP shows a significant improvement over Election-
TCP, we will soon see that we can make further improvements in the performance of our algorithm.

3. Election-Bcast: The curve immediately below Election-UDP is labeled Election-Bcast and represents the
version in which Election messages are sent using UDP broadcast. We will see shortly that broadcasting
Election messages can help reduce not only the Election messages but also the number of Ack messages.

(a) Reduction in number of Election messages: Recall from the algorithm description that, on joining an
election, each node sends Election messages to all of its neighbors. In Election-UDP, a node unicasts
an Election message to each of its immediate neighbors. However, because of the broadcast nature of
wireless medium, a single broadcast Election message is sufficient to reach all neighbors.

(b) Reduction in number of Ack messages: One interesting “side-effect” of using broadcast to send Elec-
tionmessages is that nodes need not maintain a list of their neighbors, as is done in the Election-TCP and
Election-UDP versions of our algorithm. In Election-TCP and Election-UDP versions of our algorithm,
node i reports an Ack message for each Election message it receives. This means that the number of Ack
messages that a node has to send increases with the number of neighbors.

Example:

Consider an example network as shown in Figure 7.

Node A is the source of the computation and nodes B, C and D are its children. Based on our algorithm
description, nodes B,C and Dwould each receive three Electionmessages. Since each node sends an Ack

16



D

A

B

C

Figure 7: An example network and the corresponding spanning tree

message for every Election message it receives, a total of 9 Ack messages are sent in the Election-TCP
and Election-UDP versions of our algorithm.

We can reduce the number of Ackmessages by observing that a child-node needs to send an Ackmessage
only to its parent node and can “ignore” Election messages received from other nodes. In Figure 7,
upon receiving an Election message from node A, nodes B, C and D each report back an explicit Child
message to node A, accepting A as their parent. This step is necessary, since in Election-Bcast version,
nodes do not maintain a list of their neighbors. Based on the received Child messages, each parent
knows precisely who its children are in the spanning tree. Meanwhile, node A, after sending an Election
message, starts a timer called CHILD-TIMEOUT, to receive Child messages from its children and upon
expiry of CHILD-TIMEOUT,A knows that nodes B, C and D are its children. Nodes B, C and D in turn
propagate Election messages to one another. Since each of these nodes already has node A as its parent,
none of them report Ack messages to one another. Eventually, nodes B, C and D report their pending
Ack message to their parent-node A. Thus, with the proposed modification nodes B, C and D send 2
messages (1 Child + 1 Ack) each and therefore the total number of messages is reduced from 9 to 6. This
modification can greatly reduce the number of Ackmessages in a densely connected network, where each
node has a large number of neighbors and consequently experiences contention for the shared wireless
medium.

As seen in Figure 6, use of the above optimizations causes a further decrease in F from about 0.37 to 0.11
when there are 120 nodes. Thus we see that the reduction in message overhead also translates into a reduction
in fraction F. The key insight we obtain from Election-Bcast is that the broadcast nature of wireless medium
should be exploited not only for efficient messaging, but also in the form of optimizations to the proposed
algorithm itself.

4. Election-Opt: In the Election-TCP, Election-UDP and Election-Bcast versions of the algorithm, whenever a
node receives an Election message, it immediately joins the election by propagating the Election message to
its own immediate neighbors. However, if a node currently has a leader that is not the same as departed leader
(as indicated in the received Election message), then a node need not join the election. But it adopts a new
leader if the newly elected leader has higher identity than its current leader.

Example:

Consider the scenario in Figure 8, when a node G, which is without a leader, starts a new computation and
almost simultaneously merges (represented by a dashed line in the figure) with another connected component

17



which has a leader, viz node C. Node A, upon receiving an Election message from node G does not propagate
G’s Election message any further and immediately reports back an Ack message to node G. But eventually
when node H is elected as the leader (by nodes D, G and H), G’s Leader message propagates to node A. Since
H has a higher identifier than node A’s current leader (node C), A adopts H as its leader and in turn propagates
a Leader message to nodes B and C, which eventually adopt H as their leader.

C

B
G

D

H

C
C

C

"E" "E"

A

Figure 8: Optimization : Avoiding unnecessary elections

With this optimization, the fraction F again shows another significant decrease from 0.11 in case of Election-
Bcast to about 0.025 when N = 120. The lowest curve, in particular, demonstrates the efficiency of our
algorithm, in that each node has a leader up to 97.5% of the time.

From this section, we observe that careful signaling choices and algorithm optimizations can result in a very
efficient algorithm design. We next formally specify the various correctness properties (detailed proofs in Appendix)
of our Election-Opt algorithm using temporal logic and subsequently study, using simulations, its performance in a
wide variety of operating conditions.

8 Sensitivity Analysis : Results and Discussion

8.1 Election-Rate and Fraction of Time Without Leader

We will first study the impact of node mobility and transmission range of nodes on Election-Rate and Fraction
of Time Without Leader. We run each of our simulations for a duration of 400 minutes while discarding the data
obtained from the first 150 minutes (corresponding to initial transient phase).
1. Impact of Node Mobility : In order to study the impact of node mobility, we vary , the maximum node

speed while keeping pause times and minimum node speed fixed. The graphs in Figure 9, show the Election-Rate
and Fraction of Time Without Leader for three different values of viz. 3m/s, 9m/s, 19m/s.
The first conclusion we draw based on 9(a) is that, irrespective of actual value of , the Election Rate of a node

first increases with N and then starts decreasing with any further increase in N. This is because when , most
of the nodes can be expected to be isolated (i.e. not connected to any other node) and remain so for long durations.
But as N increases, there will be a few components each with a few nodes. Node mobility results in frequent leader
departures and hence an increased Election Rate. But after a certain threshold, the node density (nodes per unit area)
becomes very high and most of the nodes belong to a large connected component. Although nodes move around,
high node density means that components remain connected for longer durations and, hence, Election Rate drops.
The second observation from Figure 9(a) is that Election-Rate, rather interestingly, decreases with the increase in
node speeds for large values of N. We explain this behavior based on an observation made in [30] that higher speeds

18



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  20  40  60  80  100  120  140

M
ea

n 
El

ec
tio

n 
Ra

te
 (p

er
 m

in
)

Number of Nodes in Simulation (N)

Vmax = 3m/s
Vmax = 9m/s

Vmax = 19m/s

(a)Mean Election Rate

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  20  40  60  80  100  120  140

Fr
ac

tio
n 

of
 T

im
e 

W
ith

ou
t L

ea
de

r

Number of Nodes in Simulation

Vmax = 3m/s
Vmax = 9m/s

Vmax = 19m/s

(b) Fraction (F)

Figure 9: Performance Vs . Here , and

lead to a shorter lifetime of small components. In our case, what this means is that even though nodes might get
disconnected from their leaders, at higher speeds they are disconnected only for very short durations. Hence, before
max-beacon-loss becomes 6 these disconnected nodes get connected back to their leaders, thereby avoiding a fresh
election.
From Figure 9(b), the Fraction of Time Without Leader(F) of a node initially increases with increase in N but then

eventually drops slightly with further increase in N. This behavior can be described based on the trends observed in
Election-Rate. Initially, with increase in N, F also increases because of increase in Election-Rate and also because
elections can be expected to be longer when there are more nodes. However, for , longer election
durations are more than compensated by a sharp decrease in Election-Rate and this accounts for the slight drop in
F. Also, with an increase in , the fraction F drops still further because of the decrease in Election-Rate as
described earlier. As seen from Figure 9(b), the fraction F is always below 3% and is very close to 0 when =
19m/s. This means that each node always has a leader 97 to almost 100% of the time.
We also studied the impact of pause times ( ) on Election-Rate and Fraction(F). We observed that pause times

cause very little change in the performance metrics. In Figure 10, keeping fixed at 3 m/s, we plot various
performance metrics for four different pause times 0s, 10s, 20s and 30s. As can be seen in Figure 10, the curves
match each other very closely. Repeating the experiment for and also showed that
pause times do not affect Election-Rate and Fraction(F).
2. Impact of Transmission Range ( ) : Keeping the node speeds and pause times fixed, we study the impact of
on Election-Rate and fraction F for three different choices of , viz. 200m, 250m and 300m. From Figure 11(a),

we see that increased transmission range of nodes leads to a higher Election-Rate when N is small (i.e. ).
Intuitively, this is because for a large value of , there are fewer isolated nodes, but each component still has only
a few nodes. For large values of N ( ), the Election-Rate becomes smaller with increase in . This is
because for a given N, the component sizes are larger for large values of and partitions occur less frequently.
From Figure 11(b), we see that the fraction F increases with for small values of N, but for large values of N, it

19



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120 140

El
ec

tio
n 

Ra
te

 (p
er

 m
in

)

Number of Nodes in Simulation

Pt = 0s
Pt = 10s
Pt = 30s
Pt = 30s

(a) Election Rate

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120 140

Fr
ac

tio
n 

of
 T

im
e 

W
ith

ou
t L

ea
de

r (
F)

Number of Nodes in Simulation

Pt = 0s
Pt = 10s
Pt = 20s
Pt = 30s

(b) Fraction(F)

Figure 10: Performance Vs . Here , and .

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  20  40  60  80  100  120  140

M
ea

n 
El

ec
tio

n 
Ra

te
 (p

er
 m

in
)

Number of Nodes in Simulation (N)

Tx = 200m
Tx = 250m
Tx = 300m

(a)Mean Election Rate

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  20  40  60  80  100  120  140

Fr
ac

tio
n 

of
 T

im
e 

W
ith

ou
t L

ea
de

r

Number of Nodes in Simulation

Tx = 200m
Tx = 250m
Tx = 300m

(b) Fraction (F)

Figure 11: Performance Vs . Here , and

20



decreases with because of corresponding decrease in Election-Rate. Again, we see that the fraction F is very low
: always less than 3% and almost 0% when and .

8.2 Election-Time and Message-Overhead

We observed in Section 8.1 that the Election-Rate in some scenarios is very low (almost 0) and therefore, to get
meaningful estimates of Election-Time and Message Overhead we would have had to run the simulations for very
long durations. Therefore, in order to study Election-Time andMessage-Overhead, we perform simulations in which
elections are triggered at periodic intervals of time. Each simulation is run for a duration of 200 minutes and we
discard the data from the first 50 minutes allowing for the nodes to converge to a constant average speed.
1. Impact of Node Mobility : As in Section 8.1, we plot the performance curves for three different choices of
, viz. 3m/s (low speed), 9m/s (medium) and 19m/s (high speed), and are shown in Figure 12. The pause time

is fixed at 10 seconds for all node speeds.

 0

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100  120  140

M
ea

n 
El

ec
tio

n 
Ti

m
e 

(T
) (

in
 s

ec
s)

Number of Nodes in Simulation (N)

Vmax = 3m/s
Vmax = 9m/s

Vmax = 19m/s

(a)Mean Election Time

 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100  120  140

M
es

sa
ge

 O
ve

rh
ea

d

Number of Nodes in Simulation (N)

Bcast + Vmax = 3m/s
Bcast + Vmax = 9m/s

Bcast + Vmax = 19m/s
Ucast + Vmax = 3m/s
Ucast + Vmax = 9m/s

Ucast + Vmax = 19m/s

(b)Message Overhead

Figure 12: Performance Vs . Here , and

We first observe from Figure 12(a) that, irrespective of , Election-Time increases with N. This is intuitive
since as N increases, both the node density and the number of nodes involved in an election are expected to increase.
This leads to greater contention for channel bandwidth and higher message delays. Furthermore, for a given N, the
mean Election-time of a node increases with increase in node speed. This, most likely, is due to increased message
delays incurred by the unicast Ack and Child messages. At higher node speeds, link breaks occur more frequently,
therefore increasing, both the routing overhead (in terms of number of control packets) and unicast message delays.
From Figure 12(a), the Election-Time ranges from 15 seconds when to about 23 seconds when

.
TheMessage Overhead is shown in Figure 12(b). Broadcast message overhead and unicast message overhead are

shown separately. Recall from Section 7 that, any node (except for the source) in the spanning tree sends at least one
unicast Child message and one Ackmessage to its parent. In addition, it sends at least 2 broadcast messages, viz. one
Election message upon joining the election and one Leader message upon termination. From Figure 12(b), we see

21



that when , (i.e.there are many isolated nodes), each of which just sends 2 broadcast messages, 1 Election
+ 1 Leader per election. But with the increase in N, both the broadcast message overhead and unicast message
overhead increase, irrespective of actual value of . This is because as N increases, components become larger
and several nodes initiate elections concurrently when a leader departs. The broadcast overhead increases because
each node sends one broadcast Election message for every computation it joins, while the unicast overhead increases
since each node sends a unicast Child message for every computation it joins. The broadcast Message-Overhead
shows very little difference with increase in , while the unicast Message-Overhead increases only slightly. This
is because, as elections get longer (with increasing ), the parent and child nodes in the spanning tree are more
likely to exchange Probe and Reply messages, leading to increase in unicast overhead. However, it is evident from
the graphs that this increase is very small. We thus conclude from Figure 12(b) that theMessage-Overhead incurred
by our algorithm is very small, ranging from 2-3 broadcast messages and 0-3 unicast messages per node per election.
As in the case of Election-Rate and Fraction(F), we observe that pause times cause very little change in both

Election-Time and Message-Overhead. In Figure 13, keeping fixed at 3 m/s, we plot various performance
metrics for four different pause times 0s, 10s, 20s and 30s. As can be seen in Figure 13, the curves match each other
very closely.

 0

 5

 10

 15

 20

 25

 0  20  40  60  80  100  120  140

M
ea

n 
El

ec
tio

n 
Ti

m
e 

(T
) (

in
 s

ec
s)

Number of Nodes in Simulation (N)

Pause Time = 0s
Pause Time = 10s
Pause Time = 20s
Pause Time = 30s

(a)Mean Election Time

 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100  120  140

M
es

sa
ge

 O
ve

rh
ea

d

Number of Nodes in Simulation (N)

Bcast + Pause Time = 0
Bcast + Pause Time = 10s
Bcast + Pause Time = 20s
Bcast + Pause Time = 30s
Ucast + Pause Time = 0s

Ucast + Pause Time = 10s
Ucast + Pause Time = 20s
Ucast + Pause Time = 30s

(b)Message Overhead

Figure 13: Performance Vs . Here , and .

2. Impact of Transmission Range of Nodes : We next study the effect of transmission range ( ) of individual
nodes on Election-Time and Message-Overhead. Keeping all other parameters fixed, we plot Election-Time and
Message-Overhead against N for different values of . Our study showed that for a given N, the Election-Time
increases with an increase in . This is intuitive, since the increase in transmission range leads to increased node
density (average number of neighbors for a given node) and larger component sizes. Hence, there will be larger
numbers of nodes participating in any given election. Increased node density also translates into greater contention
for the channel bandwidth leading to greater message delays. The Message-Overhead was again observed to be
fairly small. However, it showed a slight increase with increase in . This is because, as components grow larger in
size and fewer in number, higher will be the number of concurrent elections triggered on leader departure, leading

22



 0

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100  120  140

M
ea

n 
El

ec
tio

n 
Ti

m
e 

(T
) (

in
 s

ec
s)

Number of Nodes in Simulation (N)

Tx = 200m
Tx = 250m
Tx = 300m

(a)Mean Election Time

 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100  120  140

Br
oa

dc
as

t M
es

sa
ge

 O
ve

rh
ea

d
Number of Nodes in Simulation (N)

Tx = 200m
Tx = 250m
Tx = 300m

(b) Broadcast Message Overhead

 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100  120  140

Un
ica

st
 M

es
sa

ge
 O

ve
rh

ea
d

Number of Nodes in Simulation (N)

Tx = 200m
Tx = 250m
Tx = 300m

(c) Unicast Message Overhead

Figure 14: Performance Vs . Here , and .

to a higher message overhead as explained earlier.

8.2.1 Choice of Routing Protocol

Finally, we study the performance of our algorithm using two popular routing algorithms in ad hoc networks, viz.
DSR [18] and AODV. The motive here is to study whether the choice of routing protocols makes a significant
difference to various performance metrics. The resulting graphs are shown in Figure 15. We show the mean Election-
Time using AODV and DSR for and .

 0

 5

 10

 15

 20

 25

 30

 35

 0  20  40  60  80  100  120  140

M
ea

n 
El

ec
tio

n 
Ti

m
e 

(T
) (

in
 s

ec
s)

Number of Nodes in Simulation (N)

DSR + Vmax = 3m/s
AODV + Vmax = 3m/s
DSR + Vmax = 19m/s

AODV + Vmax = 19m/s

(a)Mean Election Time

 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100  120  140

Br
oa

dc
as

t M
es

sa
ge

 O
ve

rh
ea

d

Number of Nodes in Simulation (N)

DSR + Vmax = 3m/s
AODV + Vmax = 3m/s
DSR + Vmax = 19m/s

AODV + Vmax = 19m/s

(b) Broadcast Message Overhead

 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100  120  140

Un
ica

st
 M

es
sa

ge
 O

ve
rh

ea
d

Number of Nodes in Simulation (N)

DSR + Vmax = 3m/s
AODV + Vmax = 3m/s
DSR + Vmax = 19m/s

AODV + Vmax = 19m/s

(c) Unicast Message Overhead

Figure 15: Performance Vs Routing Protocol. Here ,

From Figure 15, we conclude that there is no clear choice between AODV and DSR. However, we would like
to point that the implementation of AODV in GloMoSim follows the specification in AODV Internet Draft (draft-
ietf-manet-aodv-03.txt) and since then, many improvements to AODV have been proposed. It will be interesting to

23



see whether our algorithm shows any improvements using the optimizations made to AODV and also by using other
routing protocols such as GPSR [19].

8.3 Summary of Sensitivity Analysis

Our simulation study has shown that :

1. Our election algorithm shows very good performance in terms of Fraction of Time Without Leader (F). The
fraction F was almost always less than 3% over a wide variety of operating conditions.

2. The Election-Rate, decreases with the increase in node speeds as well as transmission range.

3. The Election-Time increases as and increase.

4. The Message-Overhead of our algorithm is very small. Neither node speeds nor pause times significantly
impact Message Overhead, but increase in transmission range of nodes leads to a small increase in Message
Overhead.

5. We observed that pause times do not impact the performance metrics significantly. We also simulated our
algorithm with DSR and observed that the results obtained were similar as that of AODV.

9 Conclusions and Discussion

In this paper, we proposed an asynchronous, distributed extrema finding algorithm for mobile, ad hoc networks and
showed it to be “weakly” self-stabilizing. We formally established this property of our algorithm using temporal
logic. Finally, we simulated our algorithm and through our study provide useful insights, based on our experiences
in designing a leader election algorithm. We found that subtle changes to algorithm and the signaling methods it
uses lead to dramatic improvements in our algorithm performance. We also studied in detail the impact of various
parameters such as node mobility, transmission range, etc. on the various performance metrics of our algorithm.
Although, in this paper we described our algorithm as an extrema-finding one, our algorithm can be used in

scenarios where just a unique leader is desired. Also, it might sometimes be useful to elect top k nodes in the
network as opposed to just a single node with the extrema. This case can be trivially handled by modifying our
algorithm to have each node report the top k downstream nodes in its Ack message to its parent during the election
process. Also, in Section 3, we assumed that the links were bidirectional. However, the algorithm should work
correctly even in the case of unidirectional links, provided that there is symmetric connectivity between nodes. We
are currently working on the proof of correctness in the case of unidirectional links. We are also investigating on
how our election algorithm can be adapted to perform clustering in wireless, ad hoc networks. Finally, we note that
the concept of diffusing computations is quite generic in nature and can potentially be applied to other distributed
problems in ad hoc networks.

24



References

[1] N. Lynch. Distributed Algorithms. c 1996, Morgan Kaufmann Publishers, Inc.

[2] C. Wong, M. Gouda and S. Lam. Secure Group Communication using Key Graphs. In Proceedings of ACM SIGCOMM
’98, September 1998.

[3] B. DeCleene et al. Secure Group Communication for Wireless Networks. In Proceedings of MILCOM 2001, VA, October
2001.

[4] H. Harney and E. Harder. Logical Key Hierarchy Protocol. Internet draft, draft-harney-sparta-lkhp-sec00.txt, March
1999.

[5] N. Malpani, J. Welch and N. Vaidya. Leader Election Algorithms for Mobile Ad Hoc Networks. In Fourth International
Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, Boston, MA, August 2000.

[6] K. Hatzis, G. Pentaris, P. Spirakis, V. Tampakas and R. Tan. Fundamental Control Algorithms in Mobile Networks. In
Proceedings of 11th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 251-260, 1999.

[7] A. Amis, R. Prakash, T. Vuong, and D.T. Huynh. MaxMin D-Cluster Formation in Wireless Ad Hoc Networks. In
Proceedings of IEEE Conference on Computer Communications (INFOCOM), March 1999.

[8] S. Banerjee and S. Khuller. A Clsutering Scheme for Hierarchichal Control in Multi-HopWireless networks. In Proceed-
ings of IEEE Conference on Computer Communications (INFOCOM), Anchorage, Alaska, Apr. 2001.

[9] C. Lin and M. Gerla. Adaptive Clustering for Mobile Wireless Networks. In IEEE Journal on Selected Areas in Commu-
nications, 15(7):1265-75, Sep 1997.

[10] P. Basu, N. Khan and T. Little. A Mobility based metric for clustering in mobile ad hoc networks. In International
Workshop on Wireless Networks and Mobile Computing, Apr. 2001.

[11] R. Gallager, P. Humblet and P. Spira. A Distributed Algorithm forMinimumWeight SpanningTrees. InACMTransactions
on Programming Languages and Systems, vol.4, no.1, pages 66-77, January 1983.

[12] D. Peleg. Time Optimal Leader Election in General Networks. In Journal of Parallel and Distributed Computing, vol.8,
no.1, pages 96-99, January 1990.

[13] G. Taubenfeld. Leader Election in presence of n-1 initial failures. In Information Processing Letters, vol.33, no.1, pages
25-28, October 1989.

[14] E.W. Dijkstra and C.S. Scholten. Termination detection for diffusing computations. In Information Processing Letters,
vol. 11, no. 1,pp. 1-4, August 1980.

[15] X. Zeng, R. Bagrodia and M. Gerla. GloMoSim: a Library for Parallel Simulation of Large-scale Wireless Networks. In
Proceedings of 12th Workshop on Parallel and Distributed Simulations, Alberta, Canada, May 1998.

[16] D. Estrin,R. Govindan,J. Heidemann and S. Kumar. Next Century Challenges : Scalable Coordination in Sensor Networks.
In Proceedings of ACM MobiComm,August 1999.

[17] C. Perkins and E. Royer. Ad-hoc On-Demand Distance Vector Routing. In Proceedings of the 2nd IEEE Workshop on
Mobile Computing Systems and Applications, New Orleans, LA, February 1999, pp. 90-100.

[18] D. Johnson and D. Maltz. DSR : The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks. In
Ad Hoc Networking, edited by Charles E. Perkins, Chapter 5, pp. 139-172, Addison-Wesley, 2001.

[19] B. Karp and H. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless Networks. In Proceedings of ACM
Mobicom, August 6-11, 2000.

[20] D. Coore, R. Nagpal and R. Weiss. Paradigms for Structure in an Amorphous Computer. Technical Report 1614, Mas-
sachussetts Institute of Technology Artificial Intelligence Laboratory, October 1997.

[21] W. Heinzelman,A. Chandrakasan and H. Balakrishnan. Energy-Efficient Communication Protocol for Wireless Microsen-
sor Networks. In Proceedings of Hawaiian International Conference on Systems Science, January 2000.

25



[22] S. Vasudevan, B. DeCleene, N. Immerman, J. Kurose and D. Towsley. Leader Election Algorithms for Wireless Ad Hoc
Networks. In Proceedings of IEEE DISCEX III, April 22-24, 2003.

[23] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. In Communications of the ACM, 17:634-644,1974.

[24] A. Arora and M. Gouda. Distributed Reset. In IEEE Transactions on Computers, 43(9), 1026–1038, 1994.

[25] A. Arora and M. Nesterenko. Unifying stabilization and termination in message-passing systems. 21st International
Conference on Distributed Computer Systems (ICDCS’01), Phoenix, 2001.

[26] Y. Afek, S. Kutten and M. Yung. Local Detection for Global Self Stabilization. In Theoretical Computer Science, Vol 186
No. 1-2, 339 pp. 199-230, October 1997.

[27] S. Dolev, A. Israeli and S. Moran. Uniform dynamic self-stabilizing leader election part 1: Complete graph protocols.
Preliminary version appeared in Proceedings of 6th International Workshop on Distributed Algorithms, (S. Toueg et. al.,
eds.), LNCS 579, 167-180, 1992), 1993.

[28] M. Aguilera, C. Gallet, H. Fauconnier, S. Toueg Stable leader election. In LNCS 2180, p. 108 ff.

[29] C. Perkins and E. Royer Ad-hoc On Demand Distance Vector Routing. In Proceedings of the 2nd IEEE Workshop on
Mobile Computing Systems and Applications, New Orleans, LA, February 1999, pages 90-100.

[30] T. Chu and I. Nikolaidis. On the Artifacts of RandomWaypoint Simulations. InProceedings of 1st InternationalWorkshop
on Wired/Wireless Internet Communications (WWIC 2002), in conjunction with International Conference on Internet
Computing (IC’02)., 2002.

[31] J. Yoon, M. Liu and B. Noble. RandomWaypoint Considered Harmful In Proceedings of IEEE Infocom, 2003.

[32] J. Brunekreef, J. Katoen, R. Koymans and S. Mauw. Design and Analysis of Leader Election Protocols in Broadcast
Networks. In Distributed Computing, vol. 9 no. 4, pages 157-171, 1996.

[33] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems - Specification.

APPENDIX

A Introduction to Temporal Logic

We use temporal logic as the formal tool for proving correctness of our algorithm. A temporal formula consists
of predicates, boolean operators ( ), quantification operators ( ) and temporal operators like
(’at every moment in the future’), (’eventually’), (’at some moment in the past’), (’at every moment in the
past’), (’at next time instant’), (’until’), (’unless’), (’since’), (’just’). If and are arbitrary formulas,
then means is true at every moment in the future. means will be true at some moment in the future.

means that will eventually be true and will be continuously true until that moment. is a “weak until”
operator, i.e. means that either holds indefinitely or holds. means that at every moment in the
past holds true. means that at some moment in the past holds. means that has been true at some
moment in the past and has been continuously true since that moment. means that at the next time instant
will hold true while means that has just become true. For ease of representation, we introduce two temporal
operators and . means that was true at very moment in the past since time , while means at
some moment in the past after , holds true.

26



B Notation Used in Proofs

Before proving the correctness, we will formally state the definitions of various symbols and predicates employed
by our proofs.

: a binary variable which is 0 if a node i is not currently in an election; otherwise it is 1.

: distance from node i to node j.

: a variable which contains the value of i’s current leader if ; else if it contains the value of
i’s last leader.

: node i’s current list of neighbors, as known to node i.

: computation-index of last computation node i participated in.

: is true i.e., a node j that causes
node i to begin participation in computation k.

: a predicate at node i, which is set to true when a new link is formed between nodes i and j, i.e.
when a node j not previously in has just been added to . More formally,

(1)

Once is set to true, it will continuously remain true until it is falsified by execution of action 8 in
Figure 2.

: a predicate which is true at some time instant t if an action is executed at time t in which node i
executes the send action to send a message m to node j. Note that the predicate is only true at that
time instant t and is false immediately preceding and following t.

: a predicate which is true at the instant when a message m sent by node j is at the head of node i’s
receive buffer (and therefore ready to be processed by node j). It is falsified once the message is dequeued.

C Assumptions

We now state the various assumptions made in our proofs:

1. Links: We assume that links are bidirectional. Although we make this simplifying assumption for ease of
proof of correctness, we strongly believe that our algorithm would still work correctly if links were unidirec-
tional, as long as all nodes are connected (have a path) to each other. The proof in the case of unidirectional
links is currently being worked on. Also, links are assumed to be FIFO, i.e. messages do not get reordered in
the links.

27



2. Receive Buffers: The receiver buffer size is large enough so as not to cause buffer overflows at any instant
in the execution of the algorithm. We also assume that for every message m in the receiver buffer eventually

will be true.

3. Uniqueness of Messages: Each message m sent via the send action is unique. A message m sent (by a send
action) at some time instant t is distinct from a message m’ sent (by send action) at some other time instant t’.

4. Reliable Delivery: We make a “weak” reliability requirement, in which a message sent will eventually be
received provided that the receiver is guaranteed to remain connected to the sender forever. More formally,

(2)

D Proof of Correctness

As stated in Section 5, the proof of correctness of our leader election algorithm involves proofs of Safety and
Liveness conditions. In particular, assuming each node i starts execution in a state satisfying predicate , we will
show that starting in a state satisfying predicate B that could have been reached after a finite number of arbitrary
changes, eventually the system is guaranteed to reach a state satisfying predicate P, where

a predicate that describes a state reached after a finite number of topological changes, assuming each node i
starts execution in a state satisfying predicate .

Note that a state satisfying predicate P is a stable state, i.e. once P holds true it will hold forever.

D.1 Safety Property

Let
Then the Safety Property states that upon reaching a state satisfying the predicate , the system is guaranteed to

reach a state in which each node has a leader which is the maximum-identity-node in its connected component, i.e.
eventually predicate P holds true.
The Safety Property can be stated more formally as:

(3)

Proof of Safety Property:
In order to establish the Safety Property, we will first prove the following claim:
Claim 1:

(4)

Note that a node could have adopted a leader with identifier, , at many different time instants in the past. But
for the sake of convenience of notation, we will always use to refer to the leader message sent after node i last

28



adopted leader .
Proof of Claim 1: Claim 1 intuitively means that whenever a node i has a leader, it has either already sent this

leader identity to all its neighboring nodes or it is the case a new neighboring node j has arrived and the predicate
is true. As we will see, using Claim 1 we will later establish that if G holds true, then all nodes within

a connected component will eventually agree on a common leader. This will trivially lead to establishment of the
Safety Property.
We will prove statement (4) by contradiction, i.e. let us assume that:

(5)

Let us consider one such pair of nodes, i and j, satisfying (5).
Let t be the time instant at which node i last adopted its current leader and let t’ be the time instant at which the

predicate was last set to false by node i. Stated formally,

(6)

(7)

From (5), we have
(8)

From (6), (7), and (8), it follows that :
(9)

There are two only possibilities :

1. t t’ : This means that node i adopted its current leader, after j was last added to . Therefore, node i
would have executed action 6 or action 7 of the algorithm at the time t when it adopted leader, . Since t t’,
from (9), it follows that :

(10)

(11)

But this contradicts our assumption 5.

2. t t’ : This means that node i adopted before node j became its neighbor. Recall that, the list (node i’s
neighbors) is initialized to empty set and by definition (1) will be set to true whenever node j is newly added to
. In accordance with assumption (5), the only way is set to false is by action 8 of the algorithm.

But in executing this action, node i would have sent leader to node j. Hence, we have

(12)

Again, this leads to a contradiction of our assumption (5).

29



Hence, our assumption (5) is wrong. This proves Claim 1.

Now the following statement trivially holds true:

(13)

Substituting from (4) in (13), we get

(14)

From (9), (11) and (12), we conclude that if was true at some moment in the past then node j was
i’s neighbor ever since and including the instant when was true and will forever be i’s neighbor (as no
more changes occur). Thus it follows that,

(15)

Since no more changes occur and holds true (as G is true), if is true for a pair of neighbors i
and j, action 8 of the algorithm will remain continuously enabled and hence executed eventually. Therefore,

(16)

Since no more topological changes occur, will forever remain false. Hence,

(17)

Substituting from (17) in (15), we get

(18)

From Assumption (2) it follows that,

(19)

(20)

The proof Safety Property involves proving the following components:

30



Eventually each node has a leader and it remains with that leader forever, i.e. leader changes stop.

Eventually all nodes in a connected component agree on a unique leader.

The elected leader is from within the connected component, and finally

The elected leader is the maximum-identifier-node in that connected component.

We first argue that eventually leader changes stop. This is because all leader ids are finite and totally ordered. As
each node changes its leader only in favor of a higher-identity-leader, each node can change its leader only a finite
number of times.

(21)

We will now use (19) to prove Claim 2 which states that eventually all nodes in a connected component have the
same leader.
Claim 2:

(22)

Proof of Claim 2: In Claim 2, we show that eventually any two neighboring nodes always agree on a common
leader. Because of Assumption (1) stating that links are bidirectional, Claim 2 will trivially imply that all nodes in
a connected component have the same leader.
The proof is by contradiction. Let us assume that

(23)

From (21) and (23), we infer

(24)

Since no more topological changes occur, we can rewrite (24) to get

(25)

(26)

Substituting from (20) in (26),

(27)

31



Let us assume without loss of generality in (27). In (27), could only have been true at instant
before j last adopted . Otherwise, node j would have chosen as its leader following its last adoption of by
executing action 7 of the algorithm, thus violating (26) which states that will remain j’s leader forever since the
instant it last adopted .
This means that could have been true only after was true. From (27) we infer,

(28)

(29)

When a node iwith a leader receives such that , action 8 of the algorithm will eventually get executed.
This means that node i will send its leader once again to node j. Substituting in (29) we get,

(30)

The notation in (30) is used to distinguish from , since refers to the second time node i sends a
leader message with identifier after it last adopted as its leader.

(31)

But could have been true only after j last adopted , since was sent in response to .
Hence by execution of action 7 of the algorithm, node j on receiving will be forced to adopt as its leader
since , and thereby violating (25) which states that will remain j’s leader forever since the instant it last
adopted . We can reason in the same manner for the case when and arrive at a contradiction. Hence, our
initial assumption in (23) must be wrong. Thus Claim 2 is proved.

Now predicate G and (22) trivially imply that eventually each node has a leader from within its connected compo-
nent; otherwise action 1 of the algorithm will remain continuously enabled in every node i with that leader, since no
more leader changes occur. This causes an election to be triggered in node i leading to the condition , which
violates predicate G. More formally,

(32)

Finally, we claim that the elected leader is the maximum-identifier-node from within the connected component.

32



This is because, the variable in a node i is initialized to its own identifier (in actions 1 and 2) and is updated
only (by action 4) when an Ack message is received with a higher identifier than ’s current value. When a node
currently in a diffusing computation receives a Leader message, a node will adopt a leader only if the received leader
identity is at least as large as . When a node is not in a diffusing computation (i.e.it has a leader), it will adopt
a leader only with a higher identity than its current one.

(33)

From (21), (32) and (33), we can infer that

(34)

Thus the Safety Property stated in (3) is proved.

D.2 Liveness Property

The Liveness Property states that starting from a state satisfying predicate B, eventually (in a finite time) predicate
G will hold true. Stated formally,

(35)

Proof of Liveness Property:
The proof of Liveness Property involves proof of the following two components :

Once topological changes stop, only a finite number of diffusing computations are initiated thereafter.

Once topological changes stop, every diffusing computation is guaranteed to terminate.

We will prove the first component of Liveness Property. Let D be the set of diffusing computations that are
initiated once B holds true. More formally,

(36)

Claim 3:
(37)

Proof of Claim 3: Recall from Section 4.3.3 that each source can only initiate one diffusing computation with
a given computation-index. Hence,(37) is sufficient to represent that “only finite number of diffusing computations
are ever initiated.”
In order to prove Claim 3, we first prove the following claim:

33



Claim 3.1

(38)

The above statement implies that once node i receives Acks from all its children, the identifier it would report in
its Ack message to its parent is guaranteed to be that of a node within its connected component.
Proof of Claim 3.1: We will show Claim 3.1 to hold for an arbitrary diffusing computation m initiated after the

last topological change occurred.
From the algorithm description, each node i for which is true, should have been true at the

same instant when is set to 0 (action 5 of the algorithm), where
i.e., k is the maximal downstream node from

node i, which is also stored in variable .
Since , should have been earlier true such that and which reported Acks to node i. Stated

formally,
If , and

, we have

(39)

We will next show that the identifier reported by each node i to its parent in the Ack message to its parent is the
identifier of a node from within i’s connected component. More formally, we will show that

(40)

We will use a result from ([1], Lemma 19.1) which states that for any diffusing computation m parent pointers are
acyclic, i.e.,

(41)

Also, each node can participate in at most one diffusing computation at any given time. Hence,

(42)

Since there are only finite nodes in the network, (42) will imply that there will eventually be nodes which do not
have any children, which we call leaf nodes. From the algorithm description, these leaf nodes report only their own
identities in the Acks to their parent nodes. Also, a node i updates the variable based only on the Acks received
from its children, which are identified by . Hence, every node i which is not a leaf node reports ,
such that . Since the diffusing computation m was initiated
only after the last topological change occurred, the identity reported by each node i in its Ack to its parent must be

34



within i’s connected component. Thus (39), will become

(43)

Thus (40) is proved.
From (40), we can infer that

(44)

(38) trivially follows from (44).
This proves Claim 3.1.

From (38), it follows that,

(45)

This is because, from action 6 of the algorithm, the leader identifier reported by an initiator i of a diffusing com-
putation m is same as the value in variable . From (38), we know that is true. Hence, every node
j that adopts as its leader should also have holding true.

We now continue with our proof for Claim 3.
Define,

(46)

In other words, set L represents the set of nodes which get elected as leaders but which are disconnected from the
nodes which have chosen them as their leader. Thus, L represents the set of departed leaders. We will show that the
set of departed leaders is a finite set. i.e.,

(47)

This is because there are always only a finite number of nodes in the network and therefore, only a finite number
them have leaders. Since each node has at most one leader at any given time, there are only a finite number of
leaders at any given time. Also from (45), it follows that eventually forever for any diffusing computation m, the
leader identifier l announced by an initiator i upon termination of m, is that of a node within i’s connected component
and therefore cannot belong to the set L. This means that eventually no more additions to the set L can take place.
Therefore, must hold true.

So far we have established that the set L of departed leaders is a finite set. We will use this result to prove (37).
The proof of (37) is by contradiction. i.e. let us assume that , i.e, infinite number of diffusing computations

35



are initiated. This means that there exists a node i that initiates infinite number of diffusing computations. A node
i initiates a fresh diffusing computation only by action 1 of the algorithm, i.e. when . Since

(from (47)), for a node i to initiate infinite number of diffusing computations, there must exist a node
such that node i adopts k infinite number of times.
In other words, for to hold, the following condition must hold :

(48)

We rewrite (48) as,
(49)

where
Let A and B are two nodes such that holds true. From (38), we know that every time node A participates

in a diffusing computation will eventually contain an identifier from within A’s connected component. Thus
for (48) to hold, we must have

(50)

(50) informally means that for (48) to hold, there exists a neighboring node j from which A receives message
following which it adopts B as its leader.
Define,

(51)

In other words, represents the set of i’s neighboring nodes that force node i to adopt a leader infinite
number of times. Define,

(52)

Thus, represents the set of nodes that adopt leader B an infinite number of times, given that holds
true.
In order to complete the proof for Claim 3, we next prove the following claim:
Claim 3.2:

(53)

The above statement means that there must exist a node m in the set that itself initiates an infinite number of
computations by adopting a leader an infinite number of times and such a leader k’ has a strictly higher
identifier than node k. Claim 3.1 and Claim 3.2 will together prove Claim 3.

36



Proof of Claim 3.2: We will prove (53) by contradiction. Let us assume that

(54)

Let us assume for the rest of proof of Claim 3.2 that A and B are nodes such that is true.
Then (54) can be restated as :

(55)

Thus, there are two possible cases in (55). Let us first consider that is true.
Now we know that

(56)

Substituting from (56) in (54) for , we get

(57)

where,
, and

From (57), we get
(58)

(59)

By definition of , since is true , it means that , for some node n. This means that node
n receives from node m infinite number of times. This means that node m adopts leader B infinite number
of times. But from (59), if holds, then node m will eventually no longer adopt leader B. Hence

must be true. But this leads to a contradiction. Hence cannot be true.

(60)

Substituting from (60) in (55), we get

(61)

In order to complete the proof for Claim 3.2, we will prove four claims Claim 3.2.1-Claim 3.2.4. Let us go
through the proofs of each of these four claims in turn.
Claim 3.2.1:

(62)

i.e, every node in will participate in an infinite number of computations initiated in response to departure of

37



leader B.
Proof of Claim 3.2.1:
Assume that the negation of (62) holds true. Hence, we must have

(63)

(64)

From (64), must be true, leading to a contradiction. Hence (62) must be true. This proves Claim
3.2.1.

Claim 3.2.2: We now claim that for every node m in , eventually every time node m has a leader, its
identifier will be at most as large as that of B.

(65)

Proof of Claim 3.2.2:
Once again, we can prove (65) by assuming its negation holds true. i.e.,

(66)

But since is true, from(66), we must have

(67)

(68)

But (68) contradicts (61). Hence our assumption in (66) is wrong. Therefore, (65) must be true. This proves Claim
3.2.2

From Claim 3.2.2 we can infer that

(69)

This statement means that eventually, whenever a node m adopts B, it will continuously have B as its leader until
it begins to participate in a computation started by a node that detected B’s departure. This follows from Claim 3.2.2
which states that eventually m can only adopt a leader with identifier and that .

38



Define,
(70)

Thus, represents the set of nodes in that participate in diffusing computation k triggered in response
to B’s departure.
From (38), we can infer that:

(71)

This means that for a node to adopt leader B in the future (and it will have to, as it is in the set ), a
node must send to either node i directly or to some other node which in turn “propagates”

either directly to node i or through a series of nodes along a path to node i.
Let us now formally represent the set of nodes which participated in diffusing computation k and which will

receive sent by a node that did not participate in k.
Define ( ),

(72)

In other words, represents the set of nodes in that participated in diffusing computation k and to which
node j “propagated” leader B.
Also, eventually such a node j could only be a node in ; this is because each node j can force

its neighbors to adopt B only a finite number of times and will therefore eventually stop sending messages.
Hence, by definition of ,

Hence, we must have
(73)

We next claim that :
Claim 3.2.3:

(74)

Proof of Claim 3.2.3:
From definitions of and in (72) and (70) respectively and (73), we know that every node in

is also a node in .

39



Therefore from Claim 3.2.1,

(75)

Thus Claim 3.2.3 is proved.

Again from (38) and (74) it follows that,

(76)

We next claim that all nodes in will participate in the same diffusing computation.i.e.,
Claim 3.2.4:

(77)

Proof of Claim 3.2.4:
From(74), we state that:

(78)

From the algorithm specification, each node i participating in a computation, will report an Ack to its parent node
only after it has received Acks from each of its neighboring nodes j. Each node j will report an Ack to i only after
receiving an Election message from i. This means that node i’s Election message is guaranteed to be received before
i reports an Ack to its parent node. Formally stated,

(79)

Because of our assumption that links are FIFO, if a node i begins participation in a computation
triggered in response to B’s departure, then the Election message it propagates will be eventually be received by all
of its neighbors m and this Election message will be received only after is true.
From (79) we state,

(80)

where represents an Election message with computation-index . This means that, every Election message
that a node i receives, it is guaranteed to be received by all of i’s neighbors only after
its message has reached them.

40



From the definition of , every node must have at least one neighbor m
that forces node i to adopt leader B after computation k. More formally,

(81)

Let
Then substituting in (81), we get

(82)

From Claim 3.2.1, we know that eventually for every node , whenever i adopts B as its leader it will con-
tinuously have B as its leader until it begins participation in a computation . Hence, from definition of ,
if is true for some node m, then there can be no node other than m such that is
true.

(83)

Also, it is obvious that

(84)

This is because, before a node m forces node i to adopt B as its leader, m itslef should have adopted B as its leader
from some other node .
From (83) and (84), we infer that

(85)

Statements (82) and (85) together informally imply that if , then the parent pointers
form an acyclic tree rooted at node j.
Restating (75), we get

(86)

From (80), we know that i’s Election message will be received by all of its neighbors only after its message.
From the algorithm operation and our premise that no more topological changes occur, i must have received Acks
from all of its neighbors before is set to 0. This means that for any i , its
Election message, , will cause each of its neighboring nodes m, such that
holds true, to begin participation in computation or m is already in some computation such that . In

41



that case, we know from (80), i will eventually receive from its neighbors.
We know that there exists a total ordering on computation indices and from (86), we know that a node i can

change its computation-index only a finite number of times before is set to 0. We, therefore, infer that

(87)

The above statement means that eventually for every node i will participate in the same computation
as the node m which forced it to adopt B and also the node which was forced by node i to adopt B.
From (82), (85) and (87), we infer that eventually all nodes in must participate in the same diffusing

computation.
Hence,

(88)

Substituting from Claim 3.2.1 in (88),

(89)
Thus Claim 3.2.4 is proved.

From the definition of ,

(90)

Also, we must have that

(91)

The above statement means that a node i in the set could not have received from a node in
; otherwise by definition of , node i should have been in as well.

From (38), we know that any node i in the set , at the end of computation (i.e. ), can
adopt leader B only if a node j “propagates” to node i.
Let
But from (72), we know that .
Let be initialized to , for some k. Consider the set , for some computation

such that . Now, it is clear that . This is because, by definition of ,
contains a node j which does not belong to . Thus, any node can adopt a leader B again only if

a node “propagates” to node i, i.e. only if , where .
Thus, after every computation , triggered in response to departure of node B, the size of has to grow at least

42



by one, i.e. after every computation at least one new node is added to every time. Since there are only finite
number of nodes eventually will include all nodes in the network. Hence the set cannot grow any further.
This means that there will be no more diffusing computations in the network contradicting our initial assumption
that infinite number of computations are triggered or .
Hence, our assumption in (54) is wrong. This proves Claim 3.2.

Let
But, recursively applying Claim 3.2, we must have

(92)

This leads to a contradiction as is the maximum-identifier-node in set L.
Hence our assumption that is wrong. Hence, Claim 3 is proved.

Claim 4:
We will next prove the second component of Liveness Property which states that starting in a state satisfying

predicate B, eventually all diffusing computations are terminated.

(93)

Proof: We know from the operation of the algorithm that when a node that is currently in a diffusing computation
with computation-index m, “hears” another diffusing computation with a higher computation-index m’, it stops
participating in computation m in favor ofm’. But we proved earlier that only finite number of diffusing computations
are ever initiated (i.e. ), once predicate B is satisfied. This means that each node can “change” its diffusing-
computation at most finite number of times. Hence,

(94)

Let us prove (93) by contradiction. Let us assume that

(95)

Substituting from (94) in (93), we get

(96)

43



This means that either node i has reported an Ack message to its parent node or it is still

(97)

Let us consider the two cases in (97) in turn:
Case 1:

(98)

We know from the algorithm operation that,

(99)

where denotes Ack message with its field set to m.
From (99) in (98), we get

(100)

In this case, node i will eventually send Probe messages to node j. If , then absence of any Rep message
from node j will eventually cause node i to time out and remove j from . However, if node i receives a Rep (R)
message from node j, the following cases can arise:

1. : In this case, action 4 of the algorithm will be enabled and will cause
node i to remove j from .

2. : Again by action 4, node j will be removed from .

3. : Since , node i is NOT j’s parent
node. Hence, by action 4 of the algorithm node j will be removed from .

4. : This means that and in turn is
non-empty.

Hence, from the above conditions we can infer that for (100)to hold,

(101)

We will now use a well-known result ([1], Lemma 19.1) that for any single computation m the parent pointers of
all nodes i participating in computation m are acyclic. But if we recursively apply (101), we must have an infinitely
long chain of parent pointers if (100) is to hold true. Since there are only finite nodes in the network, our claim
in (98) must be incorrect.

(102)

44



Case 2: Let us consider the remaining case in (97).

(103)

This means that node i has reported an Ack to its parent, but it is yet to hear a Leader message. In this case, node
i will periodically send Probe messages to its parent node, . The parent node in turn will respond with Rep(R)
messages.
Now, if is true, then action 6 of the algorithm will eventually be executed and hence

will be set to 0. Thus, for (103) to hold,

(104)

Substituting from (102) in (104), we get

(105)

Arguing in the same way as in Case 1, recursive application of (105) and the fact that the pointers are acyclic,
will yield that there must be infinite nodes in the network. Again, this leads to a contradiction. Therefore, our claim
in (103) must be wrong.
This means that our assumption (95) must be wrong. This proves Claim 4.

Thus, we have proved the two obligations, viz. Claim 3 and Claim 4, required for the Liveness Property to hold
true.

D.3 Termination Property

The Termination Property states that eventually all program actions are disabled. This follows trivially once pred-
icate P is established. This is because once predicate P is established, from the algorithm actions it is clear that
eventually no more messages are sent or received. Also the predicate will eventually be set to false for all
nodes . It is easy to see that none of the program actions are enabled thereafter.

45


