Performance Comparison of Stateful and
Stateless Group Rekeying Algorithms

W. Chen & L. R. Dondeti

CMPSCI TR 03-32

Performance Comparison of Stateful and Stateless Group
Rekeying Algorithms

Weifeng Chent and Lakshminath R. Dondeti *

Technical Report 2003-32
Department of Computer Science
University of Massachusetts, Amherst

Abstract

Scalable group rekeying schemes proposed in the literature can be classified into three categories:
stateful schemes, stateless schemes and self-healing schemes. They differ mainly on the interdependency
of rekey messages and messaging overhead in rekeying. Logical key hierarchy (LKH) based approaches
are stateful in that members should have received past rekeying messages to decrypt current rekeying
messages. Stateless rekeying algorithms, such as subset difference based member revocation (SDR)
mechanism, on the other hand, use keys sent during member registration/initialization to encrypt the
group key. In other words rekeying messages are independent of each other and consequently members
going offline can decrypt the group key without having to consult the group manager. This is an important
property considering that reliable delivery of rekey messages is a significant issue in deploying group
and multicast security solutions. While in self-healing schemes, a rekeying message contains not only
the current key, but also the shares of previous and future keys such that a member can recover a missed
key by combining corresponding shares received by the member through other rekeying messages.

SDR messaging overhead in rekeying is dependent on the membership during an entire multicast
session whereas LKH messaging overhead is dependent on membership of the group during a rekeying
instance. In this paper, we study the advantages and applicability of stateful and stateless rekeying al-
gorithms to different groups and muiticast security applications. We analytically compare the storage
cost and the rekeying cost (number of unit-size encrypted messages) of LKH and SDR in immediate
and batch rekeying scenarios. We implemented the two algorithms and simulated different membership
scenarios to compare the rekeying cost. The simulation study shows that LKH performs better in im-
mediate rekeying and small batch rekeying, whereas stateless rekeying performs better as we process
membership changes in larger batches. In some cases, stateless rekeying was observed to be as ineffi-
cient as encrypting the group key separately for each member of the group. We also report on the effect
of member adjacency on SDR rekeying cost that it seems to have more impact on rekeying cost than the
number of membership changes.

*This work is supported by the Defense Advanced Research Projects Agency (DARPA) under contract N66001-00-C- 8011.

TDepartment of Computer Science, University of Massachusetts, Amherst, MA 01003. chenwf@cs.umass.edu

+Strategic protocols group, Nortel Networks, 600 Technology Park Drive, MS E65-60-202, Billerica, MA 01821. Ildon-
deti@nortelnetworks.com

1 Introduction

The dramatic growth of profi table services on the Internet, such as Pay-Per-View, stock quote distribution,
has been benefi ted from the successful deployment of secure communication. The IETF multicast security
working group identifi ed three problem areas in secure group communication, viz., key distribution, data
origin authentication, and policy management. Group key distribution facilitates confi dential group com-
munication as well as enforcement of access control. A group key kg, thus, is introduced to encrypt group
data. Strict group privacy requires that a host be able to decrypt group communications only when it is a
member of the group. Thus, when a new member joins, kg needs to be updated in order to prevent the new
member from accessing past communications in the group. This property is known as backward access
control. The group key also needs to be changed to prevent departing members from accessing future data
and enforce forward access control. Although it is easy to enforce backward access control — by multicast-
ing the new group key, k'g, encrypted using the current k, — it is diffi cult to ensure forward access control.
Typically, we need to encrypt k; with a common key (or set of keys) known only to the remaining mem-
bership. Many algorithms [2, 7, 8, 10, 15] have been proposed for scalable rekeying of large groups (in the
order of thousands or more 6f members). Several surveys of group rekeying algorithms are available in the
literature [9, 11]. In the rest of this paper, we will refer to an entity called Group Controller and Key Server

(GCKS), by the IETF MSEC framework for dealing with key distribution and rekeying.

11 Classification of group rekeying algorithms

Based on the interdependency of rekeying messages, group key management algorithms can be classifi ed

into stateless ([10]), stateful ([2, 7, 15]) and self-healing rekeying schemes ([13]).

In stateless rekeying, rekey messages are encrypted only by the keys distributed during member regis-
tration. This allows rekey messages to be independent of each other. But in stateful schemes, the GCKS
uses key encryption keys (KEKs) sent in a given rekeying instance to encrypt the keys to be sent in the
next (or future) rekeying instance(s). Finally in self-healing schemes, the GCKS sends out not only the
updated group key, but also some redundant information of previous group keys or future group keys, in a
rekeying message. Active members who miss a particular group key are able to derive it using the redundant

information embedded in other rekeying messages.

In stateful rekeying, the GCKS uses keys sent in a given rekeying instance to encrypt the keys to be sent

in the next or future rekeying instance(s). Thus, a member that goes offline during a rekeying instance may

‘not be able to decrypt any future rekey messages. In other words, authorized members may be inadvertently
excluded from the group when stateful rekeying is employed. Consequently, reliable transport of rekey
messages is a requirement for effective use of stateful rekeying. Furthermore, some members may have to
contact the GCKS for re-synchronization with the rekeying mechanism. Rekeying algorithms based on a

logical hierarchy of KEKs fall into this category.

When stateless rekeying is employed, a member that goes offline misses only the data and the keys sent
while it was offline. Once online, the member can decrypt future keys and data without having to contact
the GCKS. Note however that stateless rekeying is not a substitute for reliable delivery of rekey messages.
More specifi cally, if secure multicast data is being sent over a reliable channel, group keys must also be sent
using a reliable delivery mechanism. Otherwise, it is plausible that members may receive data, but miss the
group key(s) required to decipher the data. The advantage of stateless rekeying is that the GCKS has some
leeway if the application tolerates loss of data in sending rekey messages. In contrast, if stateful rekeying
(e.g. LKH) is used, reliable transmission of rekey messages is necessary even if the multicast application
tolerates data losses. In [10], D. Naor, et al. describe two stateless rekeying schemes: Complete Subtree
Revocation (CSR) and Subset Difference Revocation (SDR). SDR is the more effi cient approach among the

two.

Stateless rekeying comes at a cost however. More specifi cally, rekeying cost, measured by the number
of unit-size encrypted messages during rekeying, in SDR could be more than that in LKH. Analytical cost
comparison of these two schemes has been done elsewhere [10], but an important difference between the
two schemes was overlooked in that study. LKH rekeying is based on instantaneous membership in the
group, whereas SDR rekeying is based on total membership of the group during the entire secure multicast

session, and the revoked member set at the time of rekeying. These differences are highlighted in this paper.

Active members who miss a stateful group rekey message may request the GCKS for retransmission by
sending a NACK [16], or a request for re-synchronization. This is a possibility in stateless rekeying as well
since although members can correctly decrypt rekeying messages even after being offline for a while, they
cannot recover the missed group keys without contacting the GCKS. Thus members need a back channel to

GCKS in both stateful and stateless scheme to achieve reliable rekeying.

However, this is not the case in the self-healing schemes, whereby members can derive the lost keys
without contacting the GCKS. Particularly, the GCKS predesigns a series of group keys, each for a rekeying
instance. Each rekeying message not only contains the current group key, but also embeds the redundant

information, referred to as share in [13], for previous and future group keys. These shares can then be used

to recover the missed group keys. This property makes self-healing attractive in applications where back
channels do not exist, or expensive (e.g. satellite broadcast TV). But rekeying using the self-healing scheme

is computationally expensive and may be susceptible to collusion attacks from excluded members.

In this paper, we focus on the messaging overhead of the rekeying schemes that do not include retrans-
missions to cover packet losses. Thus we assume that there is no packet loss when rekeying. Specifi cally, we
only compare LKH and SDR. We exclude the self-healing scheme from this study for it is clearly ineffi cient

compared to LKH and SDR and is susceptible to collusion attacks from non-members.

Considering that rekeying cost in LKH and SDR is dependent on members’ positions in the key trees, and
on the key tree sizes, we use simulation for the comparison study. We use both real-life group membership
data and DaSSF [5] generated data. Our simulation result shows that LKH requires fewer rekeying messages
than SDR in immediate rekeying and in small batch rekeying. However, when the batch size increases, SDR
outperforms LKH. And we also observe that SDR performs better in large groups than small groups. This
study helps us understand the respective advantages of these two schemes, and provides guidelines for
applications in choosing the appropriate rekeying scheme according to the group membership behavior and

rekeying policy.

The rest of this paper is organized as follows. In Section 2, we briefly overview LKH and SDR. We
present an analytical comparison between LKH and SDR in Section 3. Section 4 describes our implementa-

tion and simulation. Section 5 concludes the paper and outlines our future work.

2 LKH and SDR

In LKH [14, 15], the GCKS organizes the keys in a logical hierarchy. The root node of the key tree represents
the group key and each of other nodes corresponds a KEK. Each active member in the group is assigned
a leaf node and receives all the KEKs of nodes along the path from its leaf to the root. Consequently, the
group key is known to all active members and the leaf nodes represent the unique keys that each member
shares with the GCKS. When a member joins or leaves the group, in order to keep the backward/forward
access control, all the keys in its path to the root must be changed, each of which is encrypted by the KEKs
correspondiné to the node’s children and sent out. Since KEKs themselves may be updated and future rekey
messages may be encrypted using the changed KEKSs sent in the current rekey message, a member may
not be able to decrypt future rekey messages to retrieve the group data keys if he/she does not receive the

current rekeying message. But this scheme is effi cient since only as many keys as the height of the tree

change during rekeying. For effi cient operation, the size of the LKH key tree is maintained to be just enough
to hold all active members currently in the group. Generally, the key tree is contracted (or expanded) when
members leave (or join) the group. Furthermore, keeping the LKH key tree balanced so as to achieve the

minimum height of the key tree can reduce the number of keys to be updated during rekeying.

Similar to LKH, SDR constructs a binary key tree and each node in the binary tree corresponds a key.
Each member is also assigned a leaf node, whose position determines the set of keys distributed to the
member. Active members during an instance of rekeying are divided into the predefi ned subsets (as we
will detail shortly), and the group key is sent encrypted with the keys of resultant subsets. The keys of
the resultant subsets, the KEKs in SDR, can be computed from the key sets that members receive during
registration. SDR is a stateless scheme because the key sets, thus the KEKs, are not changed during rekeying.
As a consequence, once a leaf node in the SDR key tree has been assigned to a member, it cannot be assigned
to any other members even when that member leaves the group. This results in the SDR key tree requirement
of being large enough to hold all unique members; thus no dynamical adjustment (contracting or expanding)

of the key tree can be done.

In the rest of this paper, a leaf node in the key tree and the member assigned to that node are treated

indistinguishable when there is no risk of ambiguity.

2.1 Key tree size

The key tree size is an important difference, which is overlooked in a quick comparison of LKH and SDR

in [10].

Due to the fact that all the keys known to (or to be known to) departing (or joining) members are changed
during rekeying, LKH allows reassignment of an empty tree node position left by a departing member, to a
joining member. Additionally, recalling that reke;ying overhead is dependent on the height of the key tree, it
is effi cient to dynamically contract or expand the key tree. The LKH key tree is thus maintained to just hold
current members in the group. Some algorithms have been proposed to dynamically keep the tree full and

balanced [4, 16].

However, each leaf node in the SDR key tree cannot be assigned to more than one member, for the
corresponding keys are unchanged. The SDR key tree is thus larger than the LKH key tree. In particular, the
SDR key tree should be large enough to hold all potential members. Typically, the size of all potential mem-

bers is estimated and then the SDR key tree is constructed in advance. The number of potential members is

dependent on the length of the multicast session, e.g., a military battle or a baseball game on Pay-Per-View.
Generally speaking, the longer the session is, the larger the size of potential members is. Thus, when we
compare the performance of these two schemes, we consider a particular multicast session assuming that
the size of potential members of the session is estimated correctly. When the multicast session is given, the
difference between the size of a LKH key tree and a SDR key tree obviously depends on the relationship be-
tween the number of potential members and concurrent members. This relationship is application-specifi c,

as we will see in this paper.

2.2 Immediate and batch rekeying

Given a multicast session, the total number of rekeying instances in the whole session varies depending on
the rekeying strategies. A GCKS may process membership changes immediately or in a batch. Immediate
rekeying results in excessive computation and communication overhead but provides strict access control.
It is preferred in the applications where strict confi dentiality is required (e.g., military applications). Batch
rekeying is then proposed to reduce the excessive overhead but with loss of strict access control [12]. Two
types of thresholds can be used for batch rekeying. In the fi rst, the GCKS rekeys after a fi xed time period (T')
and in the second, it rekeys after a fi xed number of members have left the group. We refer to these variations
as periodic batch rekeying and membership batch rekeying, respectively. The lower overhead makes batch
rekeying attractive for commercial applications that use secure multicasting to facilitate periodic billing
(e.g., 30-minute segments of TV programming). We will consider both periodic and membership batch

rekeying strategies in our comparison between LKH and SDR.

Recently, an exposure-oriented rekeying scheme is proposed to consider the cost of not rekeying [17].

This paper focuses on the rekeying cost and does not include the exposure-oriented rekeying.

2.3 Symbols used in the paper
Some notation need to be introduced for our further discussion.

e N: the set of potential members in the given multicast session. This is only used in SDR. N=|N|.

e m: the set of members to stay in the group after the rekeying, referred to as remaining members.

m=|m|.

e j: the set of joining members since last rekeying. It may be empty in the case where the GCKS

conducts an immediate rekeying when a member leaves the group. j=|j|.

r: the set of departing members since last rekeying. Similarly, r may be empty. r=|r].

n: the set of members at the time when the GCKS is going to perform rekeying, i.e., n = m +r.

n=|n|.

R is only used in SDR. R=|R|.

{kg}r,y: kg is encrypted with kg.

Figures 1 and 2 show the snapshots of a LKH and an SDR key tree in two consecutive rekeying in-
stances !, where N = {ml,mQ,mg,m4,m5,m6,m7,m8}. Specifi cally, in Figure 1(b) and 2(b), n =
{ma, ms, m7,mg}, m = {mg,ms,mg},j =0, r = {mr} and R = {m1, m3, m4, mg, m7}. As we will

see, the performance of SDR is dependent on N and R whereas that of LKH is dependent on 7, j and r.

To clearly differentiate the overhead of LKH and SDR, we illustrate the rekeying procedures of these

two schemes in the following two subsections.

2.4 Tlustration of LKH-based rekeying

Using LKH, the keys to be updated during rekeying are encrypted by KEKs and multicast. There are three
approaches to organize the rekeying messages: user-oriented, key-oriented and group-oriented [15], which
result in different number of rekeying messages. For example, in Figure 1(a), when members m and my
depart, k1,9, ka5, k1,5 and kg need to be updated. With key-oriented rekeying, GCKS sends out the following
rekeying messages: {ka5}k,, {k2,5 b kss {k;}kz,s’ and {k;}h,g; 4 messages in all. Note that the LKH key
tree in Figure 1(b) has been contracted. Using user-oriented and group-oriented approaches, the number of
rekeying messages for this particular rekeying is 3 and 1 respectively. It should be noted that the size of each
message varies in these three approaches. Thus it is not appropriate to measure the rekeying cost just using
the number of rekeying messages. Instead, the size of each message needs to be considered. We use the
number of unit-size encrypted messages to measure the rekeying cost. Specifi cally, if a message contains
k encrypted keys, the message incurs k units cost. The cost associated with a rekeying instance is then the

total cost of all the rekeying messages required to fulfi Il the rekeying. In this sense, the number of rekeying

!The degree of the LKH key tree may be varied. We only demonstrate the binary one although we also consider other degrees
in Section 4.

R: all potential members except those to be in the group after the rekeying,ie. R=N—-m =N —n +r.

messages using key-oriented approach in LKH is exact the number of unit-size encrypted messages. Also

note that key-oriented approach has the minimum unit-size cost among the three approaches [6].
U :departing member

@ B :remaining member
] ® :key to be updated

& &

>

@
N

>®

>@

B®
B&e

@

@

&
oo @
s)

=@
B®

@ ®)

Figure 1: Stateful rekeying of LKH.

Figure 1 also illustrates the stateful property of LKH rekeying. In order to be able to decipher the
rekeying messages when member my leaves (Figure 1(b)), members mqy and ms need to have kg 5, which
was sent when members m; and my left (shown in Figure 1(a)). Thus failure to receive past rekeying
messages may affect members’ ability to decipher current rekeying messages. It should be pointed out
that some members missing some rekeying messages may still be able to decrypt future messages. This
occurs when the missed messages did not contain updated KEKs known to the members. For example, in
Figure 1(a), if m7 and mg miss the rekeying messages when members m1 and my depart, they are still able

to decipher future rekeying messages since the KEKs known to my and mg (k7, ks and k7 g) are not updated.

2.5 Ilustration of rekeying using SDR

Although SDR constructs a binary key tree similarly with LKH, the SDR rekeying is quite different.

As we mentioned before, in SDR, a tree large enough to hold N potential members is constructed in
advance and members are assigned to leaf nodes. For simplicity, we assume that log, IV is an integer that
the SDR key tree is balanced. When the GCKS is going to rekey at time ¢, there are three types of leaf nodes
in an SDR tree: nodes that correspond to remaining members my; nodes that correspond departing members
since last rekeying, denoted as r;; and nodes not yet assigned, called e;. Directly, it follows n; = m; + 1y
and R; = N — m;. For instance, in Figure 2(a), m; = {8, 11, 13, 14}, r; ={7, 10}, e; = {9, 12} and
R; = {7,9,10,12}. In the rest of this paper, R; and n; are simplifi ed as R and n.

During each rekeying, it is required that only the remaining members, N — R, be able to decrypt the

rekeying messages to get the updated group key k;. This is accomplished by sending k; encrypted by the

0: departing member
o B : remaining member

. @: node ot assigned
1 2 L member having
left the group

30) 4 5Q) 6 3
04 @;@R 9%@% 0
i

Figure 2: Stateless rekeying of SDR.

keys known only to N — R.. To do so, N — R is divided into a set of subsets, each of which associated with
a key known only to the members covered by the subset. Then k; is encrypted by the keys of the resultant

subsets and multicast.

Subsets are defi ned through the SDR key tree as follows [10]. For node u in the key tree, let S, be the
set of leaf nodes which are descendants of u. For two nodes « and v, where v is a descendant of u, we defi ne
subset Sy,y as Su\Sy, L.e., Sy,p={leaf w | w is a descendant of u but not of v}. Using the partition algorithm

in [10], N — R can then be divided into total SubN subsets: {Sy, v, , Suz.vg; - - - ; Sususn,vsusy } SUCh that

UZ4N Sy =N —R o))

and Sy, [V Supw, =0 if i £k 2

. From (1) and (2), it is clear that any remaining member is exactly covered by one subset. Each subset
Su,v 1s associated with a key K, ,,, which can be computed only by the members covered by Sy using the

information received during member registration.

SDR rekeying is then conducted by sending k; encrypted individually with keys K, ,, (i = 1,..., SubN).
Based on (1), only the remaining members are able to decrypt the rekeying messages to get k'g. For exam-
ple, in Figure 2(a), when members m; and m, depart, the GCKS divides the remaining members into
S3;7 = {ma} and Sy 12 = {ms, m7, ms}. The updated group key k'g 1s encrypted by K37 and K> 15 sep-
arately and sent out, such that only mg, ms, m7 and mg can retrieve k'g. Figure 2 also shows the stateless
property of SDR rekeying. Specifi cally, if member my did not receive the rekeying message {k;} K12 SENL
when the members m; and my4 departed, it is still able to decrypt the next rekeying message {k;’ } K5 12 SENL

when member my7 departs later (Figure 2(b)), since K. 5,12 is kept unchanged during rekeying.

Notice that the rekeying messages in SDR are also key-oriented, i.e., each message contains a single key

(the updated group key) encrypted by the key of a subset.

In summary, Figures 1 and 2 demonstrate the distinction between LKH and SDR key trees for two
consecutive rekeying instances in the same group. One can see that the LKH key tree can be dynamically
adjust and has the varying n, whereas the SDR key tree has a fi xed size of N. It should be noted that
the relationship between N and n is application dependent. To get an idea for the comparison of N and
n, consider that N would represent the total number of TVs tuned to any part of a SuperBowl broadcast,

whereas n would represent the number of TVs tuned to a given part of the broadcast.

Having laid the necessary groundwork, we begin to compare the performance of the two rekeying algo-

rithms, detailed in the next section.

3 Analytical comparison

Two performance metrics are considered in our comparison between LKH and SDR: (i) key storage at both
member side and the GCKS side and (ii) rekeying cost. The rekeying cost includes unicast cost (to new

joining members) and multicast cost (to other members).

As already mentioned, the performance of LKH depends on the height of the key tree, which is related
to the degree of the key tree. Throughout our comparison, we use binary key tree for LKH considering that
SDR is also based on binary key trees. LKH with other degrees have qualitatively similar results with the

one with degree 2 as we will see from Figure 9 in Section 4.2.2.

3.1 Member and GCKS storage

We fi rst compare the key storage in this subsection, followed by the rekeying cost in the next.

The GCKS using LKH needs to store all the keys in the key tree (internal nodes and leaf nodes), incurring

a storage cost of 2n — 1. Each member stores all the keys along its path to the root, i.e., log n keys.

The stateless property of SDR requires additional key storage at both the GCKS and the member. Specif-
ically, the GCKS randomly chooses a key k,, associated with node u in the SDR key tree and selects a
pseudo-random generator G, which extends a b-bit input z into a 3b-bit output: G : {0,1}® — {0,1}3. Let
G1(z), Gr(z) and G (z) denote the left third, right third and middle third of the output of G (z) respec-
tively. To assign the keys of subsets, the GCKS also introduces a LABEL [10]. In particular, any node v has
a LABEL to each of its ancestors u, denoted as L, ,. For example, in Figure 2(a), node 4 has two labels:

Lo 4 and Ly 4 to its two ancestors 0 and 1 respectively. Figure 3 shows the process used by the GCKS to

10

generate L,, ,, based on k, and G.

ComputeLabel (u,v, k) :
/IPrecondition: v is a descendant of u

L=ky;
while (v is a descendant of u) {
if (v is a descendant of u’s left child)
L =Gr(L),u = wsleft child
else L = Gp(L), u = u’s right child

return L

Figure 3: Pseudo code for calculating LABEL Ly,onk,
[10].

Specifi cally, the key K, ,, of the subset S,, ,, takes the value of G M(Ly).

Based on the discussion above, the GCKS has to store one group key, 2N — 1 node keys and the keys
of all possible subsets. To calculate the number of all possible subsets in an SDR key tree, we defi ne the
height of a node in the key tree as the length of the path from the node to a leaf node and implicitly, the
height of a leaf node is 0. The height of a key tree is consequently defi ned as the height of the root. Given
an SDR key tree with height h = log NV, node v with height ¢ has 2¢+1 — 2 descendants, each of which, v,
incurs a possible subset .S,, ,,. There are 27~% nodes with height i. Thus the number of all possible subsets is
St 2h=i(2+1 _ 9) This results in the key storage of the GCKS conducting SDR is

h
1+ (2N —1) + > "2h7%(27+1 _2) = 2N log N + 2 3)
i=1

However, one might argue that the GCKS conducting SDR only needs to store a secret seed, and other
keys, including group keys, node keys and keys of subsets, can be computed using one-way functions based
on the seed. Particularly, the current group key can be the output of using a one-way function on the last
one; the node keys can be computed based on the seed and the node ID; the keys of subsets can be obtained
by executing the procedure in Figure 3 and applying G. Similarly, the GCKS conducting LKH only needs

to store a secret seed based on this argument.

Although such argument sounds reasonable, we would like to point out that, in this case, the GCKS
has to introduce much computation when rekeying. It is a trade-off between computation and storage. The

summary of the key storage for the two schemes in Table 1 reflects this argument.

We have mentioned previously that the key of a subset can be computed by the members covered by

the subset using the information received during member registration. Let T4 be the secret information

11

that member A receives when registers. 14 includes the a set of LABELSs necessary to obtain the keys of
the subsets to which A may belong. The total number of subsets to which a member belongs is O(N).
However, due to two facts that a member belonging to subset S, always belongs to Su,w where w is a
descendant node of v, and that K, ,, for any descendant w of v can be computed if u, v, and L,, 5 is known,
member A only needs to store the smaller set of LABELs: {Ly,} with size (log? N + log N)/2 [10],
where u is an ancestor of A and v is the first descendant of u off the path from A to u. To exemplify,
consider the SDR key tree in Figure 2, member ms (node 11) belongs to 16 subsets, i.e., Sp.1, 50,3, S04,
So.7» Sog» S0, So,10- S0,6s 50,13, S0,14, S0,12, S2,6 52,13, 52,14,52,12, and Ss,12. However, ms only
needs Iy = {Lo,1,Log, Lo,12, L2,6, L2,12, Ls 12} to calculate the keys for all of the 16 subsets. In [10],
the authors point out that 4 also includes an additional key corresponding to the case when all potential
members afe in the group, i.e., R = . Then |I4] = (log? N +log N)/2+ 1. Considering that each member
also needs to store the group key, the key storage at member side is totally (1og2 N +logN)/2 +2.

Table 1 summaries the above comparison, where we can see that SDR is expensive in both the member

storage and the GCKS storage, due to the large key tree size (N > n).

Table 1: Key storage of LKH and SDR.
GCKS storage Member storage
LKH on —1lor1ll logn
SDR | 2N1log N +2or 10 | (log”* N +log N)/2 + 2
*#[1]: In the case that only the secret seed is stored.

It will be helpful to see the actual key storage requirements for GCKS and group members in practice.

We list them in the next section when we have values for N and n in specifi ¢ scenarios.

3.2 Rekeying cost

In this subsection, we compare the rekeying cost of LKH and SDR, including unicast cost and multicast

cost.

Unicast is conducted to deliver information to a single receiver while multicast is applied to distribute
for multiple receivers. Generally in rekeying, the GCKS unicasts the keys required to be known to the
joining members, and multicasts the messages containing updated keys to other members in the group.
Consequently, we separate the rekeying cost comparison into unicast cost and multicast cost. The unicast

cost is then equal to the member’s key storage shown in Table 1 and multicast cost is measured as the number

12

of key-oriented multicast messages.

However, it should be pointed out that the unicast cost to a joining member in SDR varies, depending
on whether the joining member is a new member or a rejoining member. This variance comes from the
fact that the keys associated with the SDR key tree nodes are unchanged during rekeying. A leaf node can
only be assigned to at most one member in SDR; when a member goes offline and joins the group again,
the member is typically assigned the same leaf node as before such that the SDR key tree has size equal to
the total number of unique members, rather than to the total number of joining instances. Thus if a joining
member A had been in the group, the GCKS does not need to unicast any keys to A. If it is the first time
that A joins the group, the unicast cost is the same as the key storage. But in LKH, every joining member,

no matter new or rejoining, incurs the same amount of unicast cost equal to the key storage at member side.

Work in [6, 15] provides an analysis of the multicast cost for LKH rekeying. In LKH immediate rekey-
ing, only the keys along the path from the departing/joining member to the root are updated. Each of the
updated key is multicast encrypted by the KEKs corresponding to the node’s children, resulting in 2logn
multicast cost. Batch rekeying cost using LKH depends on the relationship between the number of joining

members (7) and the number of departing members () during a batch. More details can be found in [6].

The multicast cost of SDR is equal to the number of resultant subsets for N — R since the updated group
key is multicast encrypted using the keys of the resultant subsets. D. Naor et al. pointed out in [10] that
the SDR multicast cost is 2R — 1 in the worst case and 1.38R in average. This statement is not complete
since it overlooks the relationship between N and R. Since subset S, , = S,\S, ={descendants of node
u}-{descendants of node v}, at least one member in N and one member in R are required to generate a
subset of N — R. If either R or NV — R is small, fewer subsets are generated to cover N — R. Consequently,

the multicast cost should be determined by min(N — R, R), achieving the highest value when R equals to
N/2.

The preceding comparison is summarized in Table 2, where we do not include the cost of batch rekeying
due to the complicated expression for LKH batch multicast cost detailed in [6]. As for the batch SDR

multicast cost, we conjecture that it is similar with the immediate one since SDR is stateless. Such conjecture

is verifi ed by our simulation described in the next section. We also use simulation to do more detailed

comparison on the batch multicast cost of the two schemes.

As a fi nal comment, we regard the multicast cost as the critical cost of the rekeying cost for the following
two reasons. First, multicast accounts for most of the rekeying traffic. Second, multicast cost is more

expensive than unicast cost with respect to the number of links that a message travels. In the rest of this

13

Table 2: Rekeying cost of LKH and SDR.

Immediate
Unicast cost multicast cost
LKH logn 2logn
ol or
SDR | (log? N +1log N)/2 + 2@ | O(min(R, N — R))
*[1]: to rejoining members. [2]: to new members.

paper, we do not explicitly distinguish multicast cost from rekeying cost.

4 Comparison using simulation

In this section, we first verify the relationship of the SDR rekeying cost on N and R. We then use both real-
life data and simulated data to compare the rekeying cost of LKH and SDR in different scenarios, which

particularly includes immediate rekeying, periodic batch rekeying and membership batch rekeying.

4.1 SDR rekeying cost with N and R

We assume a fixed N = 4096 and construct a balanced SDR key tree with 4096 leaf nodes. We then vary
the number of the remaining members (/V — R) and calculate the rekeying cost, which is equal to the number
(SubN) of resultant subsets of the N — R members. For a given N — R, we simulate 10 instances, in each
of which the remaining members are randomly assigned the leaf nodes independently. The average number
of SubN is then calculated on 10 instances for the corresponding N — R. Figure 4 shows the result. The
fi gure confi rms our conjecture that if either R or N — R is small, SubN is also small; SubN achieves the

highest value when N — R = R = N/2.

1400

1200 - .

1000
=N

400 /i / \

200 / \\

\
0 y

0 500 1000 1500 2000 2500 3000 3500 4000 4500
N-R

Average SubN

Figure 4: SDR rekeying cost with varying N — R given N=4096.

14

4.2 Real-life MBone simulation

The real-life data comes from Multicast Backbone (MBone) information collected by Almeroth et. al. [1],
including NASA STS-71, NASA STS-65, IMS, IPNG and UCB, total fi ve sessions. For a particular session,
the collected data includes the inter-arrival time between two consecutive members joining the session and
the duration time that a member staying in the session. Based on these data, we can obtain the membership.
We then simulate rekeying on the membership change using LKH and SDR separately. Simulation results

of the fi ve sessions were similar and we present the largest session, named STS-71.

According to [1], during the whole session, there are around 4000 unique hosts joined the STS-71 ses-
sion. We then choose N = 4096 as the number of all potential members for this particular secure multicast
session. When SDR is used, we construct a fi xed binary key tree with 4096 leaf nodes and randomly assign a
leaf node to a new joining member. If a joining member had been in the group?, the member is assigned the
same leaf node as the one assigned before. If LKH is the rekeying mechanism, we dynamically adjust the

binary key tree based on the algorithm in [4] to hold the currently active members in the multicast session.

We first apply the immediate rekeying on STS-71 session, using LKH and SDR separately. Figure 5
shows the result, from which one can see that immediate rekeying cost using LKH is much smaller than
the one usihg SDR. More specifi cally, the average LKH rekeying cost was 12.15 and the average height of
the LKH key tree was 7.78 because of the dynamic adjustment. This result is consistent with Table 2. The
average SDR rekeying cost was 138.98, which is comparable to the average number of the active members.
The curves of the membership (n) and the SDR rekeying cost coincide in the fi gure. This is because R is
very close to NV in this scenario. The N — R members staying in the group are dispersed in the key tree and

most of resultant subsets only cover one remaining member. In this case, SDR rekeying cost & N — R.

Table 3: Average metrics of SDR and LKH with periodic batch rekeying in NASA STS-71 Session (Tiynag =
329).

T (mins) | N— R | SubN | SubH | ADGN_r | ADGRr) Crxg | TreeH 7 r
20 93.90 | 92.65 | 1.02 1.03 2.07 99.74 | 31.17 7.56 5.85 | 5.81
40 93.88 | 92.64 | 1.02 1.03 2.07 105.59 | 45.15 7.68 | 11.69 [11.61
60 9377 | 9252 | 1.02 1.03 2.07 111.34 | 54.7 7.68 | 17.52 | 17.40
120 93.87 | 92.63 | 1.02 1.03 2.07 129.09 | 76.96 741 | 3495 | 34.72
240 93.58 92.28 1.02 1.03 2.07 164.35 | 98.65 7.68 69.88 | 69.37

2For privacy, the data we get does not have the identities of the hosts. We randomly assign each host an ID such that we can
recognize the rejoining according to the ID.

15

350

300

250

200

150
" A
100 U A\
SDR cost W '\‘
50 |- e
J~ y P

e e e A e ey

o Bt
0 50 100 150 200 250 300 350 400

Time (hours)

Membership(n) & Rekeying cost

Figure 5: Rekeying cost of LKH and SDR for immediate rekeying in NASA STS-71 Session.

350 T T

sf'=240m_n:; i]

+
A
T=120ming ~—x—
T=60mins ~-&--
250 T=40ming - ®e-e ey
3 T=20mins ---+---
200 %

150

300

Rekeying cost

100

50 |38

0 50 160 150 200 250 300 350 400
Time (hours)

Figure 6: SDR rekeying cost for periodic batch rekeying in NASA STS-71 Session.

Figures 6 and 7 show the rekeying cost of SDR and LKH in periodic batch rekeying. Each fi gure includes
the costs for fi ve different batch periods (T"). From the fi gures, we observe that SDR rekeying cost remains

almost the same in the fi ve different batch periods, while LKH rekeying cost increases as T increases.

Batch rekeying was proposed to reduce the rekeying cost [12]. To clear the confusion that in LKH, batch
rekeying cost (Figure 7) looks much higher than immediate rekeying cost (Figure 5), it should be noted that
the batch rekeying cost is the cost for the corresponding batch period, whereas, the immediate rekeying cost
is instantaneous. If we add up all the immediate rekeying cost associated in a batch period, the sum is higher

than the corresponding batch cost.

4.2.1 Explanation

To better understand the above results, we introduce the following metrics of the two schemes.

16

600 T

500 I T=240mins —a— -

T=120mj
i T=60mins -
T=40ming -~
@ 400 T=20mins ---+---
(=]
o |
= !
£ 300 K4
2 :
$
© 200 N |
4

100 bd 011 - ! LA

o) H b
0 50 100 150 200 250 300 350 400

Time (hours)

Figure 7: LKH rekeying cost for periodic batch rekeying in NASA STS-71 Session.

We use the height of node u in the key tree to represent the height of a subset S, ,,, denoted as SubH, 5.
Generally speaking, the higher a subset, the more members in N — R it covers. For example, a subset Sy,
with height 1 only includes one remaining member while excluding one member in R, asin S37 = {my} in
Figure 2(a). We use SubH to denote the average value of the heights of SubN resultant subsets for N — R
.in any rekeying instances. Thus, given a NV — R, a larger SubH generally implies a smaller SubN, and vice

versa.

We also defi ne adjacent degree to denote the adjacency of the leaf nodes. Consider the leaf nodes in
the SDR key tree in any rekeying instance. There are two kinds of leaf nodes, corresponding to members in
N — R and R respectively. Adjacent nodes of the same kind, corresponding to N — R or R, form a block.
The leaf nodes are thus composed of alternate blocks. A block is associated with an adjacent_degree, defi ned
as the length of the block, i.e., the number of nodes in the block. Note that for a block with a single node, the
corresponding adjacent_degree is 1. ADGN_R is then defi ned as the average adjacent degree of the blocks
consisting of nodes corresponding to members in N — R. Similarly, we have the definition of ADGR.
For example, the leaf nodes in the SDR key tree in Figure 8 form 4 blocks of N — R and 4 blocks of R,
incurring 5 resultant subset: 51,4, So,19, 510,21, 55,12 and S13 28. The adjacent_degrees of the four blocks of
N — R are 4, 1, 3 and 1, corresponding to blocks {my,ma, m3,m4s}, {me}, {ms, mg, m10} and {my3},
respectively, resulting in ADGN-g = 2.25. ADGR = 1.75 in this example as the four adjacent_degrees
of blocks of R are 1, 1, 2 and 3. Generally, a small ADGN_Rr implies that the remaining members are
dispersed in the key tree and normally, more subsets are generated to cover N — R.. On the other hand, a

larger ADGN-R indicates that the remaining members may be grouped, incurring fewer subsets.

Table 3 shows the average metrics of the periodic batch rekeying in NASA STS-71 Session. Both SubH

17

0: departing member

OO B: remaining member
/\,’_‘,:mcmber having left the group
o) 20 ‘

Figure 8: An SDR key tree.

and ADGN_g are close to 1, indicating that most subsets contain only one remaining member. This is
reasonable since around 300 remaining members are likely to be dispersed in the key tree with 4096 leaf
nodes. In Table 3, CLx g is the rekeying cost using LKH. T'reeH is the average value of the heights of the
LKH key tree conducting dynamic contraction. j and r are the number of joining members and departing
members during a batch period T, respectively. From the result in [6], LKH rekeying cost increases as j and

7 increase.

From Figures 5, 6, 7 and Table 3, we can see that LKH performs better in immediate rekeying (j = 1 or
r = 1) and small batch rekeying (7" is small), but as T increases, SDR rekeying begins to perform better than
LKH. When T=240 minutes, the average LKH rekeying cost is higher than that in SDR. Finally, we observe
that LKH rekeying cost is sensitive to T' while SDR cost is insensitive. Such results are more obvious if we

conduct membership batch rekeying shown next.

4.2.2 Cross-over point in membership batch rekeying

When membership batch rekeying is conducted in NASA STS-71 session, the GCKS performs rekeying
when it receives a predefi ned number of departing requests. The threshold is then equal to r, the number of
departing members since last rekeying. We vary the threshold 7 from 5 to 100. For a given r, membership
batch rekeying with the particular r is conducted throughout the whole STS-71 session, and then the average
rekeying cost is calculated for the corresponding r. Figure 9 presents the result. It is interesting to observe
from the fi gure that the LKH rekeying cost monotonously increases with r, whereas the SDR rekeying cost
keeps stable, demonstrating a cross-over point of LKH to SDR graphs. Thus it is clear from the result
that LKH performs better for immediate rekeying as well as small batch rekeying whereas SDR rekeying is
better for large batch rekeying. Note that the cross-over point of LKH degree=2 to SDR is for a batch size

r = 55, whereas the maximum group size was 329 and the average group size was 100. We also observe

18

from Figure 9 that LKH achieves least rekeying cost with degree=4. This has been reported earlier in the

literature [15].

200 T T T T T T T T T
180 |
160

140 |

B
S 420 |
(=]
£
@ 100
c
80 - SDR —+—
¥ . LKH(d=2) —a&—
60 - g LKH(d=3) @
? LKH{d=4) —v—
LKH(d=5) ---%---

20 |- § .

20 1 1 1 1 1 1 1 1 L
0 10 20 30 40 50 60 70 80 80 100

Threshold of membership-batch-rekeying (r)

Figure 9: LKH and SDR rekeying cost for membership batch rekeying in NASA STS-71 Session.

4.2.3 Actual key storage

Finally, we calculate the key storage requirements of LKH and SDR in STS-71 session. Considering 3DES
for encryption, we need 128-bit or 16B keys. Due to the fact that in LKH, key storage at the GCKS and
group members changes with n, we c.ompute the average values. Using the results in Table 1, the average
key storage is 90.83 bytes at member side and 3002.90 bytes at the GCKS side when the GCKS stores the
keys rather than the secret seed. In SDR, both GCKS and group members have fi xed size key storage, which
are 1572864 bytes and 1232 bytes respectively given that N = 4096. Thus we can see that stateless schemes

require much more key storage than in LKH, at both the GCKS and the group members.

4.3 DaSSF simulation

As we have seen in the NASA STS-71 session, the number of active members, n, is much smaller than the
number of potential members, N. It is also desirable to compare the performance of LKH and SDR in the

group where n is more signifi cant. In this subsection, we use DaSSF [5] to generate such groups.

By DaSSF, we can simulate members’ activities. Particularly, in the model we consider, the group is
empty initially. Each potential member waits for a randomly distributed waiting time, W, before he/she joins
the group, and consequently stays in the group for another randomly distributed duration time, D, before

he/she leaves the group. All potential members repeat this process till the end of the multicast session. By

19

specifying different distributions of W and D, we can obtain different group behaviors.

We fi rst use DaSSF to further explore the effect of the member adjacency to the SDR rekeying cost, and

then compare the rekeying cost of LKH and SDR in the simulated group with larger n comparing to N.

43.1 Effect of member adjacency

300

R ——
Rekeying cost
250 adj._d=1 ~

add=g -+ -
adj._d=3 ---»--
200 o0t

R & Rekeying cost & Number of blocks

5 10 15 20 25 30
Simulation Time

Figure 10: SDR rekeying cost and average adjacent_degree.

We simulate a group with N = 1024, where W is exponentially distributed with mean 1, i.e., each
member waits for an average time of 1 unit of simulation time before he/she joins the group, and D is a
distribution of Pareto(2,1.6). We then conduct SDR periodic batch rekeying on this group with ' = 0.25
unit of simulation time. Figure 10 shows that the SDR rekeying cost mostly coincides with K. This is
because R ~ 200, much smaller than N — R. At any rekeying instance, we also calculate the number of
the blocks of nodes corresponding to members in R with 4 different adjacent degrees: 1, 2, 3 and 43, which
is also shown in Figure 10. From the fi gure, we observe that rekeying cost reduces if the number of blocks
with large adjacent_degree increases. In particular, from simulation time O to 8, the number of blocks with
adjacent_degree 3 or 4 is relatively much larger than the ones in the rest of simulation period, and the number
of blocks with adjacent_degree 1 is relatively small. The larger number of blocks with adjacent degree 3
or 4 in this period indicates that revoked members are more adjacent, incurring smaller rekeying cost. In
the rest of the simulation period from time 8 to 30, blocks with adjacent_degree 1 dominates all the blocks,
indicating that members in R are mostly separate. As a consequence, each resultant subset only excludes

one member in R and the rekeying cost is very close to K.

Generally speaking, when members in N — R (or R) are more adjacent, the number of resultant subsets

3Blocks with adjacent.degree greater than 4 is rare and we do not include in the fi gure.

20

and then the SDR rekeying cost is reduced.

4.3.2 Large simulated group behavior

SDR is not effi cient at all in NASA STS-71 session as we have seen in the previous section if we consider the
ratio of the SDR rekeying cost (SubN) to the number of remaining members (N —R), i.e., SubN/(N—R) ~
1. In that case, SDR rekeying was as expensive as encrypting the updated group key separately for each
active member. That is mainly due to N — R being much smaller than N. We notice that in some real
applications, N — R can be much larger than R. For instance, consider the audience of pay-per-view events,
'of a football game. Most people join at some point during the game and many (around half the audience)
tune in from start to fi nish. During the session, many people join and leave, while most start leaving towards
the last quarter of the lifetime of the group. Such groups are larger in size, than the NASA STS-71 session.

This motivates us to simulate a larger group using DaSSF.

We assume a larger size of potential members, N = 64K. Then by adjusting members’ waiting time
W) and duration time (D) in DaSSF, we simulated a group with membership (r) shown as the top curve i;l
Figure 13. Notice that n is much larger compared to the STS-71 session, and more importantly it is closer
to NV than in that session. This membership has a peak (almost all the potential members are in thé group)
at simulation time 15 and the average number of active members through the whole session exceeds half of
N. This simulated membership provides us a group that behaves differently than the STS-71 session. We

investigate the relative advantages of LKH and SDR rekeying for this group.

o’ / son>7\/ -
\

@
& 1® ‘\
[=]
£
n
$ >
g 10
LKH-.
"
10’
10°
0 5 10 15 20 25 30

Simulation Time

Figure 11: Rekeying cost of SDR and LKH for immediate rekeying in simulated group with N = 64K.

Figure 11 shows the immediate rekeying cost of SDR and LKH in the simulated group. Compared to

the cost of SDR, LKH immediate rekeying is much less so we plot the rekeying cost in log-scale. Similar

21

to Figure 5, LKH rekeying cost for immediate rekeying is related with the height of the key tree. Whereas,
SDR rekeying cost is much different with the one in Figure 5. To be clear, we plot the SDR cost separately
in Figure 12, where we include the curve of R to show that SDR rekeying cost is related to N and R. It is
interesting to note that although N — R increases in period from simulation time 10 to 15, SDR rekeying
cost decreases. The reason is that R decreases in this period. A subset S, ,, not only needs to cover members
in N — R (descendants of node u but not of v), but also excludes some members in R (descendants of node
v). So fewer subsets are required when R decreases. This result also confi rms our conjecture that SDR

rekeying cost is determined by min(N — R, R).

70000

60000

. / cost =
N i
50000 (- / \ J
.'-. \ :
40000 A ool
30000 / kN - A
20000 |- } ; \\

10000 / /\ -

1]

N-R & R & Rekeying cost

0 5 10 15 20 25 30
Simulation Time

Figure 12: SDR rekeying cost for immediate rekeying in simulated group with N = 64K.

We plot the batch rekeying cost of LKH and SDR in the simulated session in Figure 13 and 14 respec-
tively, each of which includes the costs of fi ve different batch periods (T'). Again, while LKH rekeying cost
increases as 7' increases, SDR rekeying cost stays nearly the same for different 7', much less than N — R.
Numerically, SubN/(N — R) = 1/3. Thus compared to STS-71 session, SDR rekeyiﬂg is more effi cient in
the group with larger N — R. We also observe that in this simulated group, SDR rekeying cost for imme-
diate rekeying is almost the same as the one for batch rekeying, which is also observed in STS-71 session
(Figure 5 and 6). The reason is the stateless property of SDR. More specifi cally, the SDR rekeying cost at
a given point of time only depends on the positions of members in N — R in the SDR key tree at that time,
no matter what rekeying mechanism is used, e.g., immediate rekeying or batch rekeying. Thus in terms of
rekeying cost normalized by time, SDR performs iore effi cient as the batch size increases. However, the
larger batch size is, the more information exposed to unauthorized members. This issue is addressed in the

exposure-oriented rekeying [17].

Table 4 shows the average metrics for the two schemes, which allows us to take a closer look at how

these algorithms perform. There is also a cross over point where SDR begins to perform better than LKH,

22

70000 T

4 T=1 - =
60000 prg sy T=0.5 - :
e - T=0.25
K T=0.125 ermem

50000 ¥ 't 7-0.0625 —— |

40000

30000

20000 }-+7

Membership (n) & Rekeying cost

10000 -7

0 5 10 15 20 25 30
Simulation Time

Figure 13: LKH rekeying cost for batch rekeying in simulated group with N = 64K.

70000 T

R . T
T=1 -
- T=05 - *
60000 f: riose .
L T=0.125 e
R
5 ,
[=]
o
2 40000
o=
[
X
€ 30000
o3 ST L H
x n i
20000 4
10000 \ /”/
0
0 5 10 15 20 25 30

Simulation Time

Figure 14: SDR rekeying cost for batch rekeying in simulated group with N = 64K.

Table 4: Average metrics of SDR and LKH with periodic batch rekeying in DaSSF simulation with N =
64K (npaz = 61806).

T | N—R | SubN | ADGn_r | ADGr n Crxr | TreeH | j=rP
0.0625 | 34514.52 | 11226.77 4.13 1.28 [34929.22 | 3506.51 | 15.63 | 369.48
0.125 | 34441.98 | 11227.00 4.11 127 |35249.88 | 593227 | 15.65 | 738.97
025 | 34585.75 | 11256.74 4.13 127 |[36117.34 | 9548.78 | 15.66 | 1477.93
0.5 | 34003.56 | 11092.56 4.04 1.24 | 36800.26 | 14868.53 | 15.70 | 2955.87
1 | 34550.70 | 11243.27 4.10 1.24 | 39467.87 | 22008.26 | 15.73 | 5911.73

*[1]: Units of the batch period compared to the 30-unit of total simulation time.
[2]: The simulation starts with n = 0 and ends with n = 0, thus the total number of joining members
equals to the total number of departing members during the whole simulation.

23

in the simulated group. Note that for batch period T = 0.5, LKH rekeying cost is higher than that in SDR.

43.3 Actual key storage

Perhaps unsurprisingly, the large storage cost becomes more pronounced in the larger group. LKH key stor-
age required in the simulation scenario for GCKS and members are 1030K bytes and 228 bytes respectively.
Whereas, the key storage of GCKS and group members in SDR are fi xed to 32768 K bytes and 2176 bytes
respectively, given N = 64K.

4.4 Summary of the simulation

The simulation results based on both MBone STS-71 session and DaSSF simulated group show that SDR
rekeying cost is much higher than LXH cost in immediate rekeying and small batch rekeying, whereas SDR

outperforms LKH when the batch rekeying period increases.

Since each member in N-R is covered by one and exactly one subset, it is obvious that the number of
resultant subset SubN < N — R. However, SubN may exceed R when R < N — R. For example, consider
the subtree rooted at node 1 in Figure 8, where R = 2, N — R=6, and the number of subsets incurred by this

subtree is 3, e.g., 51,4, S9,19 and Sy 21. This is also the worst case of SubN where SubN = 2R — 1 [10].

Proposition 1. [f SubN > R, the SDR must include at least one subtree T, that satisfies the following

three conditions. Let u be the root of 7T,
(1) u has a child vi. All the members attached to the descendants of v, are in N-R;

(2) Among all the members attached to the descendants of the other child vy of u, at least two but not

all arein R;
(3) Any two members in R attached to the descendants of vy are NOT siblings.
Proof: Our proof applies the induction on the height of the SDR key tree.

Basic case: Consider an SDR key tree 7 with height of 3, it is not hard to enumerate that the only case
where SubN > Ris when R = 2 and SubN = 3. The subtree rooted at node 1 in Figure 8 shows this case.

The subtree in the fi gure satisfi es the three conditions.

Inductive case: Let us assume that all SDR key trees 7 with height < h satisfy proposition 1. Consider
atree 7 with height h + 1 and SubN > R in 7. Let u be the root of 7. Let v1 and vy be two children of .

Denote the subtree rooted with vy and vy as 77 and T; respectively.

24

If both 77 and 75 have some leaf nodes attached by members in R, the number of subsets in 7 is the
sum of the number of the subsets in 77 and 7. Only two possible subsets Sy, and Sy 4, are not in 7; nor
T>. But these two subsets can not be generated if both 77 and 75 have some leaf nodes in R. In this case,

we are done since the height of both 7; and 75 is h.

Otherwise, without loss of generality, let all leaf nodes of 7; be attached by members in N — R, then

all R members in R are in 7. There exist three cases:

(2) The number of subsets in 73, SubNz, < R. This is not true since a single subset Sy, », Will cover

all leaf nodes of 7;. The total number of subsets in 7 is then equal to SubN7, + 1 < R.

(b) SubNz, > R. According to the inductive assumption, 72 has height h and thus includes such

subtree 7.
(¢) SubNt, = R.

(i) If 73 has only one leaf node, denoted as v, attached by a member in R (i.e., R=1), a single

subset Sy, , then covers all members in N — R in T . In this case SubN = R = 1.

(i) It is not the case that T has all leaf nodes attached by members in R. Otherwise, a single

subset Sy, 4, is enough to cover all members in N — R, i.e., SubN < R.

(iii) Now 73 has at least two but not all leaf nodes in R. Assume that 73 has two leaf nodes:
wy and we, attached by members in R, and w; and ws are siblings. Since w; and wo are siblings, they are
excluded by one resultant subset or they are not excluded by any resultant subset*. In both of cases, the rest
of R — 2 members at least generate R — 1 subsets. Then there must be a subtree 75 of 7 which generates

more subsets than the numbers in R attaching to leaf nodes in 7.

(iv) The last case is that 75 has no leaf nodes attached by members in R which are siblings. In

this case, 7 itself is such a tree satisfying the three above conditions, which completes our induction.]

Note that in such a subtree 7, the number of subsets incurred by 7 is 1 more than the number of leaf

nodes of 7 corresponding to R.

In Figure 11, we can see that from simulation time 13 to 20, SubN is larger than R. We calculate the
number of the subtrees 7 satisfying the above conditions, denote as 7, and plot it in Figure 15. We can see

that 7 is much higher in the period from simulation time 13 to 20 than in other periods.

“Equations 1 and 2 only guarantee that all members in N — R are covered by resultant subsets, but some members in R may
not be excluded by any result subset, like the m1s, m16 in Figure 8.

25

20000 \
18000 A N\

cos'—?/" \ \‘—/ \
16000 \ A

14000 A

“) |
§ 12000 / \\\ / ‘-‘
g 10000 PR SR] .
-y \ /|
o« A\

6000 v y/
4000 / j \

2000 !

7

B s

0 Y -
¢ 5 10 15 20 25 30

Simulation Time

Figure 15: Relationship of R, rekeying cost and 7 in the simulated group with N = 64K.

Then we observe that SDR rekeying cost (number of subsets) approximately equals to

N—-R ;
m, lfN—RSR

5 . @
Abeg t T ifN—-R>R

From Equation (4), it follows that the adjacency of members in N — R or R directly affects rekeying
cost in SDR. In our simulation, we assigned members to positions in the key tree randomly. In real-world
deployments it may be more effi cient to assign members based on their join and departure behavior. For
example, note that members from a timezone may join and leave a conference call around the same time.
Therefore, SDR rekeying would be effi cient if all members within a timezone (or from an offi ce location)

are assigned to neighboring positions within the key tree.

Finally, the SDR rekeying cost at a given point of time is independent on the rekeying mechanisms, e.g.,
immediate rekeying or batch rekeying. It only depends on the positions of members in N — R. in the SDR
key tree at that time. The positions of members in N — R in the SDR key tree in a rekeying instance affect

the SDR rekeying cost through the adjacency, as Equation (4) states.

5 Conclusion and future work

In this paper, we use simulation to verify analytical comparison between logic key hierarchy based group
rekeying scheme and a stateless scheme, SDR. Our simulation shows that LKH outperforms SDR in
immediate rekeying and small batch rekeying. We also observed that LKH is preferred in the scenarios

where the number of current members n < NN, and membership variance is low. In groups where n =~ N

’

26

SDR performs better for batch rekeying. If n < R, subset rekeying cost coincides with n, i.e., each of the
remaining members belongs to a different subset. Although the average SDR rekeying cost is 1.3R in [10],

it may be much Jess than R in most cases, because of the member adjacency factor.

We did not address packet loss in this paper, which might affect the performance of the rekeying algo-
rithms. Our next course of work is to consider this issue. Furthermore, the result shown in Equation (4)

comes from our simulations. Mathematics analysis of this result might be another future work.

References

[1] K. C. Almeroth and M. H. Ammar. “Collecting and modeling the join/leave behavior of multicast
group members in the MBone”. In Proceedings of the Symposium on High Performance Distributed

Computing, pp-209-16,Syracuse, NY, August 1996.

[2] 1. Chang, R. Engel, D. Kandlur, D. Pendrakis, and D. Saha. “Key management for secure Internet
multicast using boolean function minimization techniques”. In IEEE INFOCOM’99, volume 2, pp.

689-698, New York, March 1999.

[3] W. Chen and L. R. Dondeti. “Performance comparison of stateful and stateless group rekeying algo-
rithms”. Technical Report 03-xx, Dept. of Computer Science, University of Massachusetts, Amherst,
2003.

[4] L. R. Dondeti, S. Mukherjee, and A. Samal. “DISEC: A distributed framework for scalable se-
cure many-to-many communication”. In Fifth IEEE Symposium on Computers and Communications,

Antibes-Juan les Pins, France, July 3-6, 2000.
[5] Dartmouth Scalable Simulation Framework. http: //www.cs.dartmouth.edu/~jasonliu /projects/ss

[6] X. Li, Y. Yang, M. Gouda, and S. Lam. “Batch rekeying for secure group communications”. In
Proceedings of World Wide Web Conference 10 (WWW10), Hong Kong, May 2001.

[7]1 D. A. McGrew, and A. T. Sherman. “Key establishment in large dynamic groups using one-way
function trees”. Technical Report No. 0755, TIS Labs at Network Associates, Inc., Glenwood, MD,
May, 1998.

[8] S.Mittra. “Iolus : A framework for scalable secure multicasting”. In ACM SIGCOMM’97, pp.277-288,

Cannes, France, September 1997.

27

[9] M. J. Moyer, J. R. Rao and P. Rohatgi. “A survey of security issues in multicast communications”.

IEEE Network Magazine November/December 1999.

[10] D. Naor, M. Naor and J. Lotspiech. “Revocation and tracing schemes for stateless receivers”. In
Advances in cryptology - CRYPTO’01, Lecture Notes in Computer Science, volume 2139, pp-41-62,
2001

[11] S. Rafaeli. “A decentralised architecture for group key management”. PhD appraisal, Computing

Department, Lancaster University, Lancaster, UK, January 2000.

[12] S. Setia, S. Koussiah, S. Jajodia, and E. Harder. “Kronos: A scalable rekeying approach for secure
multicast”. In Proceedings of IEEE Symposium on Security and Privacy, Berkeley, CA, May 2000.

[13] J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin, and D. Dean. “Self-healing key distribution
with revocation”. In Proceedings of IEEE Symposium on Security and Privacy, The Claremont Resort

Oakland, CA, May 2002.

[14] D. Wallner, E. Harder, and R. Agee. “Key management for multicast: Issues and architectures”, IETF

Informational RFC, June 1999. http: //www. fags.org/rfcs/rfc2627 . html.

[15] C. K. Wong, M. G. Gouda, and S. S. Lam. “Secure group communications using key graphs”. In
IEEE/ACM Transactions on Networking, vol. 8, no. 1, pp. 16-30, Feburary 2000.

[16] Y. R. Yang, X. S. Li, X. R. Zhang, and S. S. Lam. “Reliable Group Rekeying: A Performance Analy-
sis”. In ACM SIGCOMM’01, pp. 27-38, San Diego, CA, August 2001.

(171 Q. Zhang and K. L. Calvert. “On rekey policies for secure group appli-
cations”. Presented to IRTF GSEC meeting at Vienna, Austria, July 2003,

http://protocols.netlab.uky.edu/~calvert/private/icccn03- submit .pdf.

28

