DYNAMIC CACHE RECONFIGURATION STRATEGIES
FOR A CLUSTER-BASED STREAMING PROXY *

Yang Guo, Zihui Ge, Bhuvan Urgaonkar, Prashant Shenoy, and Don Towsley
Department of Computer Science

University of Massachusetts at Amherst

Amherst, MA 01002

{yguo,gezihui,bhuvan,shenoy,towsley} @cs.umass.edu

Abstract The high bandwidth and the relatively long-lived characteristics of digital video
are key limiting factors in the wide-spread usage of streaming content over the
Internet. The problem is further complicated by the fact that video popularity
changes over time. In this paper, we study caching issues for a cluster-based
streaming proxy in the face of changing video popularity. We show that the
cache placement problem for a given video popularity is NP-complete, and
propose the dynamic first fit (DFF) algorithm that give the results close to the
optimal cache placement. We then propose minimum weight perfect match-
ing(MWPM) and swapping-based techniques that can dynamically reconfigure
the cache placement to adapt to changing video popularity with minimum copy-
ing overhead. Our simulation results show that MWPM reconfiguration can re-
duce the copying overhead by a factor of more than two, and that swapping-
based reconfiguration can further reduce the copying overhead compared to
MWPM, and allow for the tradeoffs between the reconfiguration copying over-
head and the proxy bandwidth utilization.

Keywords: Streaming proxy, Cache reconfiguration, Cluster-based

1. Introduction

The high bandwidth and the relatively long-lived characteristics of digital
video are key limiting factors in the wide-spread usage of streaming content
over the Internet. The problem is further complicated by the fact that video
popularity changes over time. The use of a content distribution network (CDN)
is one technique to alleviate these problems. CDNs cache partial or entire

*This research was supported in part by the National Science Foundation under NSF grants EIA-0080119,
ANI-0085848, CCR-9984030, ANI-9973092, ANI9977635, ANI-9977555, and CDA-9502639. Any opin-
ions, findings, and conclusions or recomendations expressed in this material are those of the authors and do
not necessarily reflect the views of the funding agencies.

2

videos at proxies deployed close to clients, and thereby reduce network and
server load and provide better quality of service to end-clients [1-3]. Due to
the relatively large storage space and bandwidth needs of streaming media, a
streaming CDN typically employs a cluster of proxies at each physical loca-
tion. Each such cluster can collectively cache a larger number of objects and
also serve clients with larger aggregate bandwidth needs. In this paper, we
study caching issues for such a streaming proxy cluster in the face of changing
video popularity.

Each proxy within the cluster contains two important resources: storage
(cache) space and bandwidth. Each video file requires a certain amount of
storage and bandwidth determined by its popularity. Assuming that video files
are divided into objects, we study the cache placement problem, i.e., whether
to cache an object, and if we do, which component proxy to place it on so that
the aggregate bandwidth requirement posed on the servers and the network is
minimized. Furthermore, since video popularities vary over time (e.g., many
people wanted to watch the movie The Matrix again in preparation of the re-
lease of its sequel The Matrix Reloaded causing it to be very popular for a few
weeks), the optimal cache placement also changes with time. The proxy must
be able to deal with dynamically varying popularities of videos and reconfigure
the placement accordingly.

In this paper, we first consider the offline version of the cache placement
problem. We show that it is an NP-complete problem and draw parallels with
a closely related packing problem, the 2-dimensional multiple knapsack prob-
lem (2-MKP) [4]. Taking inspiration from heuristics for 2-MKP, we propose
two heuristics —static first-fit (SFF) and dynamic first-fit (DFF)—to map ob-
jects to proxies based on their storage and bandwidth needs. We then propose
two techniques to dynamically adjust the placement to accommodate changing
video popularities. Our techniques attempt to minimize the copying overheads
incurred when adjusting the placement. The minimum weight perfect match
(MWPM) reconfiguration method minimize the copying overhead associated
with such a placement reconfiguration by solving a bipartite matching problem.
In order to further reduce the copying overhead, we propose swapping-based
reconfiguration, which mimics the hill climbing approach [5] used in solving
optimization problems. The swapping-based reconfiguration also naturally al-
lows us to trade off proxy bandwidth utilization against copying overhead.

We evaluate our techniques using simulation. We find that DFF gives a
placement that is very close to the optimal cache placement, and that both DFF
and SFF outperform a placement method that does not take bandwidth and stor-
age requirements into account. We then examine the performance of MWPM
reconfiguration, and show that it can reduce the copying overhead by a factor
of more than two. Finally, we show that swapping-based reconfiguration can
further reduce copying overhead relative to MWPM, and that further copying

Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy 13

overhead reduction can be achieved by decreasing the proxy bandwidth utiliza-
tion.

In summary, we study the dynamic cache reconfiguration problem for a
cluster-based streaming proxy in the face of changing video popularities. Our
contributions are twofold:

= We show that the cache placement problem is NP-complete, and propose
DFF algorithm that is found to give the results close to the optimal cache
placement.

= We propose MWPM and swapping-based techniques that can reconfig-
ure the cache placement dynamically to adapt to changing video popu-
larity with minimum copying overhead.

The remainder of the paper is organized as follows. In Section 1.2, we de-
scribe the architecture of a cluster-based streaming proxy. We formulate the
optimal cache placement problem and present the baseline strategies in Sec-
tion 1.3. The techniques for dynamic reconfiguration of cache placement are
presented in Section 1.4. Section 1.5 is dedicated to performance evaluation.
Section 1.6 includes the related work, and Section 1.7 concludes the paper.

2. Architecture of cluster-based streaming proxy

A cluster-based streaming proxy consists of a set of component proxies as
shown in Fig. 1. These individual proxies are connected through a LAN or
SAN, and are controlled by a coordinator residing on one of the machines.

The coordinator provides an interface for clients and servers so that the
cluster-based streaming proxy acts as a single machine proxy from the perspec-
tive of clients and servers. In addition, the coordinator provides the following
functionalities to the component proxies inside a cluster-based proxy.

m Coordinate component proxies to serve client requests. A client request
may require multiple cached objects from different component proxies
with a certain timing relationship. The coordinator needs to orchestrate
the component proxies to serve these requests.

= Monitor and estimate the popularity (access frequency) of multimedia
objects.

= Compute the optimal cache placement based on the current content pop-
ularity, and conduct dynamic cache reconfiguration if the degree of the
popularity change demands cache reconfiguration.

In this paper we focus on the dynamic cache reconfiguration issues for such
a cluster-based streaming proxy. We assume perfect knowledge of client access
information. Accurately monitoring the popularity of streaming objects and

P A P Py

P, | Component proxy P, Storage space

% Coordinator Si

Figure 1. A cluster-based streaming proxy

efficiently coordinating component proxies to provide requested service are
significant problems in their own right, and lie beyond the scope of this paper.

3. Optimal Cache Placement

In this section, we investigate the optimal cache placement problem for a
cluster-based streaming proxy for a given video popularity. We formulate this
problem as an integer linear programming problem, and show that the problem
is NP-complete. We then present two baseline heuristics for it. In Section 1.4,
we will show how these baseline heuristics can be enhanced to realize dynamic
cache reconfiguration with minimum copying overhead.

Optimal Cache Placement: Problem Formulation

Consider a cluster-based proxy with M component proxies. Let S; and ®;
denote the available storage space and bandwidth at the j-th component proxy.
Suppose that the cluster-based proxy services a set of videos that are divided
into K distinct objects. Let x; and b; denote the storage space and bandwidth
requirement of object ¢. The proxy caches a subset of the K objects to reduce
the network bandwidth consumption on the path from remote servers to the
proxy cluster. We focus on the problem of which objects to cache and where.

Let c;; be a selection parameter that denotes whether object ¢ is cached at
proxy j—c;; equals 1 if proxy j holds a copy of object ¢ and is zero otherwise.
Further, let p;; denote the amount of bandwidth reserved for object 7 at proxy
J (pij indicates how much of the aggregate demand for the object is handled
by component proxy j). The objective of caching objects at the proxy is to
minimize the bandwidth consumption on the network path from the remote
servers to the proxy, or equivalently, to maximize the share of the aggregate

Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy zs

client requests that can be serviced using cached videos. The resulting optimal
cache placement (O.C.P.) problem can be formulated as follows:

max B(p,c) = Z Z PijCij (1)
i
subject to: inczj <S5 (2)
Zpijcij <9 (3)
Zcijpij < b 4)

J

where ¢;; € {0,1}, 7 € {1,...,M},and j € {1,...,K}. B(-) denotes the
allocated proxy bandwidth.

The solution to this problem yields values of G; and p;; that completely
describe the placement of objects and the bandwidth reserved for that object at
a proxy. The solution may involve object replication across component proxies
to meet bandwidth needs. Further, some objects may not be cached at any
proxy, if it is not advantageous to do so.

PROPOSITION 3.1 The optimal cache placement (O.C.P) problem is NP-complete.
The problem is NP-complete even if all objects are of the same size.

The proof is included in the Appendix.

Cache Placement Heuristics

We note that O.C.P. is similar to the 2-dimensional multiple knapsack prob-
lem (2-MKP) [4]. 2-MKP has one or more knapsacks that have capacities
along two dimensions, and a number of ifems that have requirements along
two dimensions. Each item has a profit associated with it. The goal is to pack
items into the knapsacks so as to maximize the profit yielded by the packed
items, while the capacity constraints along both dimensions are maintained.
The component proxies and video objects in O.C.P. may be viewed as akin to
the knapsacks and the items in 2-MKP respectively; the profits associated with
the video objects are their bandwidth requirements. However there is an impor-
tant difference between the two problems—the requirements of an item along
both directions in 2-MKP are indivisible meaning the item may be packed in
exactly one knapsack; the bandwidth requirement of a video object in O.C.P.
is divisible and may be met by replicating the object on multiple component
proxies.

Heuristics based on per-unit weight are frequently used for knapsack prob-
lems. Consequently, we define the bandwidth-space ratio of object ¢ to be

6

b;/z; (the ratio of the required bandwidth and the object size), and the bandwidth-
space ratio of proxy j to be ®;/S.

o Static First-fit algorithm (SFF). Static first-fit sorts proxies and objects in
descending order of their bandwidth-space ratios. Each object (in descending
order) is assigned to the first proxy (also in descending order) that has sufficient
space to cache this object. If this proxy has sufficient bandwidth to service this
object, the corresponding amount of bandwidth is reserved at the proxy, and
the object is removed from the uncached object pool. On the other hand, if the
proxy does not have sufficient bandwidth to service the object, the available
bandwidth at the proxy is reserved for this object. The object is returned back
into the un-cached object pool with the reserved bandwidth subtracted from its
required bandwidth. The proxy is removed from the proxy pool since all of its
bandwidth has been consumed. The algorithm is illustrated in Fig. 2.

e Dynamic first-fit algorithm (DFF). DFF is similar to SFF, except that the
bandwidth-space ratio of a component proxy is recomputed after an object is
placed onto that proxy and proxies are resorted by their new bandwidth-space
ratios (in SFF, the ratio is computed only once, at the beginning). The intuition
behind DFF is that the effective bandwidth-space ratio of a proxy changes after
an object is cached, and recomputing this ratio may result in a better overall
placement. In fact, as we will see in Section 1.5, DFF does perform better than
SFF, and gives results close to the optimal cache placement.

So far we have focused on the optimal cache placement with fixed storage
and bandwidth needs of a set of objects. In practice, bandwidth needs of ob-
jects vary over time due to changes in object popularities. The cache placement
needs to be dynamically reconfigured in order to adapt to the changing popu-
larities, e.g., newly popular objects may need to brought in from the servers,
and cold objects may need to be ejected. We denote the number of objects that
need to be transmitted among component proxies and from servers to proxy
as the copying overhead of cache reconfiguration. In the following section,
we study how to realize the cache reconfiguration with the minimum copying
overhead.

4. Dynamic Cache Reconfiguration

A straightforward technique for dynamic cache reconfiguration is to recom-
pute the entire placement from scratch using DFF or SFF based on the newly
measured popularities, and bring in the objects from neighboring component
proxies or remote servers. We denote such cache reconfiguration approaches as
simple DFF reconfiguration or simple SFF reconfiguration. These approaches
may yield close-to-optimal bandwidth utilization. However, they may cause
many objects to be moved across proxies, resulting in excessive copying over-
head as indicated by the simulation experiments in Section 1.5.

Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy 37

STATIC-FIRST-FIT (P, O)
1. sort P in descending order of bandwidth-space
ratio

2. while (O is not empty) {

3. ¢ = object with highest bandwidth-space ratio
4. for (proxy j € P in the sorted order) {

5. if (zi < 55){
6
7
8

ci;j =1; // cache object ¢
S; =8; —xi;
. if (b < ;)
9. Pij = bi
10. P; =&; —b;
11. remove object i from O
12. else
13. Pij = (Pj
14. remove proxy j from P
15. bi = bi — (Pj;
16. return modified obj. 4 into O
17. break;

18. } /lend of if
19. } /lend of for loop
20. } //end of while loop

Figure 2. Static First-fit Placement Algorithm. Denote by P the collection of proxies that
have bandwidth and space resources to provide caching service, and by O the collection of
objects that have not been cached, or need additional bandwidth.

In the following, we propose two cache reconfiguration techniques that
can reduce the copying overhead by exploring the existing cache placement.
We first present the minimum weight perfect matching reconfiguration method
(MWPM reconfiguration) by formulating the minimum copying overhead re-
configuration problem as a minimum weight perfect matching on a bipartite
graph. We then describe the swapping-based reconfiguration method that
mimics the hill-climbing approach [5] used in solving optimization problems.
The swapping-based reconfiguration naturally allows us to trade the proxy
bandwidth utilization for the copying overhead.

MWPM cache reconfiguration

Let Py, Py, ... Py denote the M proxies in the cluster. Let ¥ denote the
current placement of objects onto the proxy cluster and let ¥,.,, denote the
new placement that is desired. There can be as many as M! ways to reconfigure
the placement. Ideally, we would like to reconfigure the placement such that
the cost of moving (copying) objects from one proxy to another or from the
server to a proxy is minimized.

The above problem is identical to the problem of computing the minimum
weight perfect matching on a bipartite graph. To see why, we model the recon-
figuration problem using a bipartite graph with two sets of M vertices. The
first set of of M vertices represents the current placement W. The second set
of vertices represent the new placement V,,.,,. We add an edge between ver-
tex P, of the first set and vertex P, of the second set if P, has enough space
and bandwidth to accommodate all the objects placed on B, in ¥,,,. The
weight of an edge represents the cost of transforming the current placement on
the proxy represented by P, to the new placement represented by E, (the cost
is governed by the number of new objects that must be fetched from another
proxy or a remote server to obtain the new placement).

To illustrate this process, consider the example in Figure 3 with two identi-
cal proxies and five objects. In the current placement ¥, the first three objects
are placed on P, and the remaining two objects on I%. The new placement
U e involves placing {1,2,3} on one proxy and {1,5} on the other proxy.
Since the two proxies are identical, we add edges between both pairs of vertices
in the bipartite graph. This is because either proxy can accommodate all the
objects placed on the other proxy by the new placement. The weights on the
edges indicate the cost of transforming each proxy’s cache to one of these sets
(e.g., transforming P’s cache from {4, 5} to {1, 5} involves one copy whereas
transforming it to {1,2, 3} involves three copies; deletions are assumed to in-
cur zero overhead). It can be shown that finding a minimum weight perfect
match (MWPM) for this bipartite graph yields a transformation with minimum
copying cost. A perfect match is one where there is a one-to-one mapping

Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy 49

from vertices in the former set to the latter; a minimum weight perfect match
minimizes the weights on the edges for this one-one mapping! Thus, in Fig.
3, leaving P;’s cache as is, and transforming P’s cache from {4,5} to {1,5}
is the minimum weight perfect matching with a copying cost of 1.

Figure 3. An example of using the minimum weight perfect matching to find the placement
which minimizes object movement in a 2 node proxy.

Swapping-based cache reconfiguration

MWPM cache reconfiguration can significantly reduce the copying over-
head, as indicated by the simulation experiments in Section 1.5. In this section,
we describe a swapping-based reconfiguration technique that can further re-
duce the reconfiguration overhead. The swapping-based reconfiguration takes
the current placement as the initial point, and use the well-known hill-climbing
method [5] to solve the optimal cache placement (O.C.P.) problem. The recon-
figuration cost incurred in MWPM is used as a control parameter to limit the
overhead incurred by the swapping-based technique.

The hill-climbing method is characterized by an iterative algorithm that
makes a small modification to the current solution at each step to come closer
to the optimal solution. To apply the hill-climbing method to the cache re-
configuration problem, two issues need to be properly addressed: (1) how to
modify the existing cache placement at each step to improve the proxy band-
width utilization, and (2) when to stop. In the following, we address the above
two issues.

Object swapping. We propose to swap the position of two objects at each
step to modify the current placement. Our approach is to select a pair of ob-
jects such that the utilized proxy bandwidth increases after swapping. In fact,
we select the pair that maximally increases the bandwidth utilization so as to
minimize the copying overhead of reconfiguration.

Proxies are classified into two categories: overloaded proxies and under-
loaded proxies, as shown in Fig. 4. A proxy is said to be overloaded if the
total bandwidth needs of objects currently stored at the proxy exceed capacity;

10

under-loaded proxies have spare bandwidth. All objects not currently stored on
any proxy are assumed to be stored on a virtual proxy with bandwidth capacity
zero (thus, the virtual proxy is also overloaded). The abstraction of a virtual
proxy enables us to treat cached and uncached objects in a uniform manner. In-
tuitively, a “cold” object from an under-loaded proxy is selected and swapped
with a “hot” object on an overloaded proxy, so that the total bandwidth utiliza-
tion increases. We apply the following rules in selecting object:

m Cold object selection: Randomly select an underloaded component proxy
with probability proportional to the amount of spare bandwidth, and then
choose the least frequently accessed object in this proxy.

m Hot object selection: Select the object with the highest bandwidth re-
quirement cached in the overloaded proxies or the virtual proxy.

These two objects are then swapped, and the corresponding proxies are re-
labeled as under-loaded or overloaded based on the new cache contents. 2
Randomization is introduced to overcome thrashing observed in experiments
where two proxies repeatedly swap the same pair of objects, causing the algo-
rithm to be stuck in a local minimum with no further improvement.

required bandwidth

. I spare bandwidth

virtual proxy overloaded proxies underloaded proxies

Figure 4. Selection of swapping objects in swapping-based reconfiguration

Termination condition. = We now examine the termination condition of the
swapping-based reconfiguration algorithm. Let utilprr denote the bandwidth
utilization achieved by DFF and costprr denote the copying overhead of
achieving this placement as computed by the MWPM reconfiguration. The
swapping-based reconfiguration uses (1 — 0) X utilppp as its bandwidth uti-
lization target, where § (0 < § < 1) is a design parameter set by the proxy
coordinator. Next, it runs the swapping-based heuristic to search for a place-
ment that has a bandwidth utilization larger than (1 — ¢) X utilppp but at a
lower copying cost. The heuristic then chooses this placement, or reverts to
the MWPM reconfiguration computed placement if the search yields no better
placement. Thus, the swapping-based heuristic is run until one of the following
occurs:

Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy 311

» The bandwidth utilization reaches the target (1 — §) x utilppr at a
cost lower than costppp. Since a lower cost placement that closely
approximates DFF is found, we pick this placement over MWPM DFF.

m The cost of the swapping-based heuristic reaches costprr but its band-
width utilization is below (1 — ¢) x wutilppp. No better placement is
found, so we revert to the one computed using MWPM DFFE.

By adjusting §, we can trade the bandwidth utilization for the copying over-
head. We will evaluate this in Section 1.5.0.0.

util DFF
utilprr * (1 — 4)
swapping-based
reconfiguration
lltilo RIG R
costswapPING costprr

Amount of object movement

Figure 5. Swapping-based cache reconfiguration

5. Performance Evaluation

In this section, we conduct simulation experiments to evaluate the perfor-
mance of MWPM and swapping-based reconfiguration algorithms. We start
by evaluating the cache placement algorithms, DFF and SFF. We find that DFF
yields a placement very close to the optimal cache placement, and both DFF
and SFF outperform a placement method that does not take the bandwidth
and storage requirement of objects into account. We then examine the perfor-
mance of MWPM reconfiguration, and show that it reduces copying overhead
by a factor of more than two. Finally, we show that the swapping-based recon-
figuration can further reduce copying overhead in comparison to MWPM, and
further copying overhead reduction can be achieved by decreasing the proxy
bandwidth utilization.

12

Simulation setting

Assume that clients access a collection of 100 videos whose lengths are uni-
formly distributed from 60 minutes to 120 minutes. The playback rate of these
videos is 1.5 Mbps (CBR), and their popularity obeys the Zipf distribution, i.e.,
the ¢-th most popular video attracts a fraction of requests that is proportional
to 1/3“, where « is the Zipf skew parameter. Each video is divided into equal
sized segments and each segment is an independent cachable object. We con-
sider a streaming proxy that consists of 5 component proxies. The bandwidth
available at component proxy j, ®;, is 100 Mbps for 1 < 5 < 5. We denote
by S; the storage space at the j-th proxy. We set S;/S;;1 to be a constant for
1 < ¢ < 4, and denote it as the space skew parameter, ps. The bandwidth-
space ratios of component proxies can be tuned by adjusting p;.

Evaluation of cache placement algorithms

We use the Ip_solve [6] linear programming package to solve the optimal
cache placement problem exactly. We also use space oriented placement, SOP,
as the baseline algorithm. Space oriented placement uses storage space as the
only constraint. It places the objects in descending order of access frequency,
into proxies that are sorted in descending order of storage space.

We choose the aggregate storage space of 5 proxies to be 40 Gbytes. The
proxy configuration is chosen in such a way that the bottleneck varies between
proxy storage space and bandwidth based on the the proxy space skew param-
eter and clients’ access behavior. In practice, the number of videos are much
greater than 100 videos, so we assume that the storage space much larger than
40 Gbytes is required. The object size is set to be that of a one minute video
segment. We will investigate the impact of object size later. The aggregate
client request rate is 4 request/min.

DFF outperforms SFF and SOP consistently and achieves a proxy band-
width utilization comparable to that of the optimal cache placement. Note that
the computation time for obtaining an optimal cache placement using Ip solve
is more than two hours on a 1GHz CPU, 1GB memory Linux box, while it
takes a couple of seconds for DFF and SFF. Fig. 6 depicts the allocated band-
width and used storage space as a function of Zipf skew parameter. Here we set
the component proxy space skew parameter, ps, to one, i.e., the storage space is
evenly distributed among the proxies. We observe that DFF, SFF, and SOC all
achieve the optimal bandwidth utilization when the Zipf skew parameter is less
than 0.5. Intuitively, when the Zipf skew parameter is small, the client requests
are evenly distributed among different videos. The number of client requests
for different videos are comparable, and the required bandwidth is therefore
nearly equal for all objects. The storage space at the proxy is the bottleneck

Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy 613

A o
[=]
S o

N
S
S

Allocated bandwidth (Mbps)

200

—— DFF s
-e- SFF ‘=
o Space oriented placement
-¢- Optimal placement

0.5 1 15
Skew parameter in zipf distribution

IS
o

ol

o

=]

o

4 = N @ WA
S

Allocated storage space (GB)
3

o

—— DFF
-e- SFF

= Space oriented placement
-¢- Optimal placement

2

0.5 1 1.5
Skew parameter in zipf distribution

(a) Allocated bandwidth (b) Allocated storage space

Figure 6. Effect of Zipf distribution skew parameter

resource, and the maximum proxy bandwidth utilization is achievable as long
as the proxy caches the “hot” objects and uses up the entire storage space.

DFF outperforms SFF and SOC as the Zipf skew parameter increases fur-
ther. As the Zipf skew parameter increases, the discrepancy between the band-
width required by “hot” and “cold” objects increases. As in the multi-knapsack
problem, a right set of objects needs to be cached at each component proxy
to fully utilize every component proxy’s bandwidth. SOC uses the storage
space as the only resource constraint, and caches the hot objects on the com-
ponent proxy with the largest storage space. Since the first component proxy
consumes the hottest objects, the aggregate required bandwidth of these ob-
ject surpasses this component proxy’s available bandwidth. Meanwhile, other
component proxy’s bandwidth is wasted since only “lukewarm” or “cold” ob-
jects are available. The aggregate utilized bandwidth decreases as the Zipf
skew parameter increases further. SFF does a better job since it considers the
bandwidth as another resource constraint and stops caching the objects into
a component proxy once its bandwidth has been fully utilized. However, SFF
fails to balance the bandwidth and storage space utilization at component prox-
ies. For instance, when the Zipf skew parameter is 0.7, two of the component
proxies use up the bandwidth while having free storage space in SFF. On the
other hand, the storage space is used up on the other three component proxies
while bandwidth remains free. This is shown in Fig. 6(b), where SFF doesn’t
fully utilize the storage space. In contrast, DFF distributes the hot objects
among component proxies, and fully utilizes the storage space (which is the
bottleneck resource compared to bandwidth for Zipf skew parameter equal to
0.7) and maximizes the utilization of proxy bandwidth.

14

Zipf distribution skew parameter 0.7

~
)

Zipf distribution skew parameter 0.7

400 41

D -8 EE - . P +

§- S ° o4 e R—

=) 3509 839 N

< g Lo

k] @ 38 .

'S 3004 IS s

© o .

° - w36

© 250 a kel

o o

2 a 535

S —— DFF a S ./ —— DFF

X 200f| - o- SFF ° z 349 -o- SFF
o Space oriented placement 33 o Space oriented placement
-¢ Optimal placement -¢ Optimal placement

1.2 14 16 1.8
Space skew parameter

(a) Allocated bandwidth

)
o

1.2 14

. 16 18
Space skew parameter

(b) Allocated storage space

Figure 7. Effect of proxy space skew parameter (zipf skew parameter = 0.7)

Effect of space skew parameter. We further evaluate the performance of
DFF and SFF in the case of a large space skew parameter. The space skew
parameter, p;, changes the storage space distribution among machines. For
instance, when p; = 2, the smallest storage space is 1.29 Gbytes. Hence the
bandwidth-space ratios of proxies are widely skewed.

Again, DFF outperforms SFF and SOC, and achieves a proxy bandwidth
utilization close to the optimal cache placement. Fig. 7 depicts the allocated
bandwidth and allocated space as a function of the space skew parameters
when the Zipf skew parameter is 0.7. We observe from Fig. 7(a) that the
bandwidth is not fully utilized by SFF when p, < 1.6. Notice that the stor-
age space is also not fully utilized by SFF, as shown in Fig. 7(b). The failure
of balancing the bandwidth and storage space utilization causes this behavior.
However, as the space skew parameter increases, the performance of SFF im-
proves. This is because the component proxy with large bandwidth-space ratio
should cache more hot objects in order to achieve maximum proxy bandwidth
utilization, and SFF happens to do that.

Fig. 8 depicts the performance of DFF, SFF, and SOC with respect to the
proxy bandwidth utilization with different space and Zipf skew parameter. We
observe that the utilized proxy bandwidth of DFF is consistently larger than
that of SFF and SOC. We will use DFF in the following subsections.

Effect of object size. The object size may affect the utilization of proxy
storage space; we investigate its impact in this section. In the results reported
in the previous experiments, the object size is that of a one minute video seg-
ment. When we increase the object size while fixing the aggregate proxy stor-
age space at 40Gbytes, the proxy bandwidth utilization gradually decreases as
shown in Fig. 9(a) because the component proxy storage space is much larger

Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy 715

‘Space oriented placement

Allocated bandwicth (Mops)
Alocated bandwidih (Mops)

o

Space skew parameter Zipt skew parameter

(a) Performance of DFF (b) Performance of SFF (¢c) Performance of SOC

Zipf skew parameter ot ‘Space skew parameter Zipt skew parameter Space skew parameter

Figure 8. Effect of zipf skew parameter and proxy space skew parameter on allocated band-
width

Zipf distribution skew parameter 0.7 Zipf distribution skew parameter 0.7

IS
S
S
N
o

@
®
k=]

n

=3

(=1

@
S
S

[

r

S
©
=]

3
=]

Allocated bandwidth
S
o
Allocated bandwidth
>
o

N
@
S

—— Dynamic FF
-e- Static FF -e- Static FF
2407 = Space oriented placement = Space oriented placement

260 —— Dynamic FF

=)
S

a
=]
=)

10° 10' ° 10
Segment size Segment size

(a) Storage space = 40 Gbytes (b) Storage space = 10 Gbytes

Figure 9. Effect of object size (zipf skew parameter = 0.7)

than the object size (the space skew parameter is selected to be one and Zipf
skew parameter is 0.7).

However, when the proxy storage space is relatively small, the impact of
object size on performance becomes significant. Fig. 9(b) plots the proxy
bandwidth utilization vs. the object size when the aggregate storage space
is 10 Gbytes. The bandwidth utilization degrades dramatically as the object
size increases beyond that of a 10 minute segment. The smaller object size
helps better utilize the storage space and thus better utilize the bandwidth. We
suggest that the object size be chosen sufficiently small compared to the com-
ponent proxy storage space. In the following experiments we use an object
size of one minute.

Evaluation of cache reconfiguration algorithms

The optimal cache placement changes over time as the video popularity
varies. Hence the cache placement needs to be dynamically reconfigured. Dur-
ing the cache reconfiguration process, the objects have to be moved between
the component proxies, or be brought in from remote servers in order to max-

16

Zipf distribution skew parameter 0.7

Zipf distribution skew parameter 0.7 25
4000,

< DFF
3500f ,l.= mwemDFF

"ex %y
3000 A
x %

2500 * %

1500} ga 5

#
100018 W T &ﬁ 7y Bﬁh
500& '-.F- l_.-l .{‘h ;-‘ﬁg:"q 3 __RT

% 100 200 300 400 500 1 1.2 1.4 1.6 1.8 2
Time (space skew parameter 1) Space skew parameter

Copying overhead
8
8

Copying overhead improvement ratio

(a) Copying overhead (b) Improvement ratio

Figure 10. Performance of MWPM cache reconfiguration

imize the proxy bandwidth utilization. The number of objects that need to be
transmitted among the component proxies and from the servers is defined to be
copying overhead. In the following, we evaluate the MWPM and swapping-
based cache reconfiguration algorithm. We assume that the cache reconfigu-
ration algorithm is executed periodically, and denote each period a round. We
assume that 10% of the videos change their popularity ranks at the end of each
round. DSS is used to generate the new cache placement according to the new
video popularity.

Performance of MWPM cache reconfiguration. MWPM can significantly
reduce the reconfiguration cost and is most effective when all component prox-
ies have the same amount of storage space. Fig. 10(a) depicts the copying
overhead with and without MWPM. The Zipf skew parameter is selected to be
0.7 and the space skew parameter is 1. MWPM can reduce the copying over-
head by a factor of 2.3. On average, about 520 objects (about 7 to 8 videos)
need to be transmitted to adapt to the new video popularity.

We further investigate how MWPM performs as the space skew parameter
changes. Intuitively, as the space skew parameter increases, the storage space
at component proxies become increasingly more skewed. Hence fewer edges
exist between the old and new placements in the bipartite graph. This reduces
the effectiveness of MWPM algorithm. Define copying overhead improvement
ratio to be the ratio of average copying overhead without using MWPM to that
using MWPM. Fig. 10(b) depicts the copying overhead improvement ratio
vs. the space skew parameter. The effectiveness of MWPM decreases quickly
as space skew parameter increases, and MWPM can not improve the copying
overhead when the space skew parameter is larger than 1.4.

Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy 817

Zipf distribution skew parameter 0.7

Zipf distribution skew parameter 0.7
4000,

= MWPM DFF
3500 = Swapping DFF

3000

~

o

2500

Copying overhead
g g

8 8

S (%

=)

IS)

S
()

N

Copying overhead improvement ratio

500,

300 12 14 16 18 2
Time (space skew parameter 1) Space skew parameter

(a) Copying overhead (b) Improvement ratio

Figure 11. Performance of dynamic cache reconfiguration

Performance of Swapping-based reconfiguration. = Swapping-based re-
configuration can further reduce the reconfiguration cost compared to MWPM.
Fig. 11(a) depicts the copying overhead of swapping-based cache reconfigura-
tion and MWPM with the Zipf skew parameter set to 0.7 and the space skew pa-
rameter set to 1. Here we choose 4 to be 0.02, i.e., the swapping process stops
once the allocated proxy bandwidth is within 98% of the allocated bandwidth
computed by DFF. Swapping-based reconfiguration on average only needs to
transfer 147 objects to adapt to the new video popularity. Fig. 11(b) depicts the
copying overhead improvement ratio versus the space skew parameter. With
the exception of space skew parameter of 1.1, the improvement ratio decreases
as the space skew parameter increases, which suggests that we should config-
ure the component proxy as homogeneous as possible.

o Tradeoffs between reconfiguration cost and target proxy bandwidth
utilization. Fig. 12 depicts the reconfiguration copying overhead versus the
target bandwidth utilization with 95% confidence interval. This curve is con-
cave, where the copying overhead decreases quickly as the target bandwidth
utilization decreases. This suggests that the swapping-based cache reconfigu-
ration algorithm offers good tradeoffs between reconfiguration cost and target
bandwidth utilization.

¢ Sensitivity to changes in video popularity. Swapping-based reconfigura-
tion is more robust to a change in video popularity than MWPM. To investigate
the sensitivity of a change in video popularity on the performance of swapping-
based reconfiguration and MWPM, we vary the percentage of videos whose
ranks change at each round. Fig. 13 depicts the average copying overhead vs.
the video popularity change in terms of the percentage of videos (with 95%
confidence interval). We first notice that for both MWPM and swapping-based
reconfiguration, the copying overhead increases as video popularity change in-

18

Copying overhead (no. of objects)

-
[o2]
o

Zipf distribution skew parameter 0.7, proxy skew parameter 1

-
N
o

-
n
o

-
o
o

@©
o

[o2]
o

N
o

n
o

8.55

Figure 12.

0.7 0.75 0.8 0.85
Target bandwidth utilization (%)

0.6 0.65

0.95 1

Tradeoffs of bandwidth utilization and copying overhead

tensifies. However, the copying overhead of MWPM is much larger than that of
swapping-based reconfiguration, and the difference increases as the percentage
of popularity change increases.

Copying overhead

2500

2000

—_
o))
o
o

iy
o
o
o

500

MWPM DFF ——
Swapping DFF -+~

0.2 0.3 0.4 0.5 0.6

0.7 0.8

Video popularity rank change (%)
Figure 13. Sensitivity to the popularity change

e Time-of-Day Effect. The client request rate also varies over time. In
the following, we examine the performance of MWPM and swapping-based
reconfiguration under changing request rate. Suppose that the request rate is
10 requests/min during the peak hours (from 10am to 4pm), and 1 request/min
during the off-peak hours. From 7am to 10am and 4pm to 7pm are two transi-
tion periods, during which the request rate linearly increases (decreases) from
off-peak rate to peak rate. We assume that 10% of the videos change their

Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy 219

ranks every 5 minutes. We use 5 minutes as the time period of a round. Fig.
14 depicts the copying overhead incurred by MWPM and the swapping-based
reconfiguration, respectively, during a 24-hours time period.

3000 ‘
*~ MWPM DFF
= Swapping-based DFF %
2500+ m g
x
'c x xx
& 20001 .
£ * I
g . \
O 1500t F g
2 x
> x %
8 1000f Yo *m]
(@) ’;‘ %% * %
* * E AL 3 # 3 * ° x® x xx
x* % x %y x% Xy, X % x ® %
500;”"”*&,‘“,‘ u: e g xaw %X % :{*";"&,xx,

Time (hour)

Figure 14. Impact of time-of-day effect and changing video popularity

The copying overhead of MWPM reconfiguration increases dramatically
during the transition periods. Both the client request rate and the video popu-
larity can affect the optimal cache placement. During the transition periods, the
optimal cache placement changes more drastically since both video popularity
and access rate are changing, leading to the high MWPM reconfiguration cost.
In contrast, swapping-based reconfiguration continues to perform well even
during in the transition periods. In off-peak hours, the swapping-based recon-
figuration incurs less copying overhead than MWPM reconfiguration. During
the peak hour, the copying overhead is even lower since now the proxy band-
width is the bottleneck resource. There are more “hot” objects hence a lot of
swapping is not necessary.

6. Related Work

In general, two bodies of work are related to streaming cache design, namely
web caching for regular objects and distributed video server design.

The web caching systems such as CERN httpd [7], Harvest [8], and Squid
[9] are designed for classical web objects and do not offer any support for
streaming media. Our work is closest to [1, 3] where placement and replace-
ment of streaming media were studied for proxy clusters. The Middleman
proxy architecture described in [1] consists of collection of proxies coordi-
nated by a centralized coordinator. Middleman caches only one copy of each

20

segment in the proxy cluster, and uses demand-driven data fetch and a mod-
ified version of LRU-K local cache replacement policy called HistLRUpick.
The work presented in [3] considers a loosely coupled caching system without
a centralized coordinator. The system caches multiple copies of segments for
the purpose of fault tolerance and load balancing. However, the above efforts
focused on optimizing storage space at proxies; our results show that optimiz-
ing storage space alone is sub-optimal and that significant additional gains can
accrue by considering both bandwidth and storage space constraints.

The effectiveness of using bandwidth and storage space-based metrics was
demonstrated for single proxy environments in [10, 11] where a central non-
cooperating architecture is assumed. Our techniques extend these works and
other studies of single proxy cache placement [12, 2], and are specifically de-
signed for proxy clusters that are typical in today’s content distribution net-
works.

There are other related work in the area of multimedia servers [13—19]. In
[20], a dynamic policy was proposed that creates and deletes replicas of videos,
and mixes hot and cold versions so as to make the best use of bandwidth and
space of a storage device. While the work in [20] focused on balancing the
load on multiple storage devices, our focus is on maximizing the utilization of
proxy bandwidth and the dynamic reconfiguration with minimum reconfigura-
tion cost.

7. Conclusions and future work

In this paper, we considered the problem of caching popular videos at a
proxy cluster so as to minimize the bandwidth consumption on the proxy-
server path. We proposed heuristics for mapping objects onto proxies based
on bandwidth and storage space constraints, and showed how these heuris-
tics give the comparable results to the optimal cache placement. We further
propose MWPM and the swapping-based reconfiguration schemes that handle
dynamically changing popularities with minimum copying overhead. Our sim-
ulation results demonstrated the benefits of our approach, and showed that the
swapping-based reconfiguration would allow the tradeoffs between the recon-
figuration copying overhead and the proxy bandwidth utilization.

Future research can proceed along several avenues. We would like to further
refine the cache reconfiguration techniques. For instance, we currently do not
take into consideration the distance that an object is moved in the cache recon-
figuration. How to compute the copying overhead reflecting the actual over-
head consumed over the network remains an interesting problem. We would
also like to reduce the switching overhead when servicing a client request that
requires multiple objects residing in different component proxies. The cache
placement should take this into account and try to place the objects of the same

Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy 1091

video in the same component proxy if possible. Finally, accurate estimate of
the client request rate is an important and interesting research problem.

Appendix: Proof of Proposition 3.1:

O.C.P. problem € NP, since given an allocation, {p;; } and {c;; }, validating them and com-
pute objective function B(p, c) E Z pijcij can be done in polynomial time.

To show that it is NP-hard, we prove that Equal-Size Partition(ESP) is polynomially re-
ducible to BSCP problem, i.e., ESP <p BSCP problem. The Equal-Size Partition described
below is an NP-complete problem [21]:

m INSTANCE: Finite set A, function f : A — Z7T.

m QUESTION: Can A be partitioned into 2 disjoint sets A1, Az, ie., A = A; U Ay and
A1 N Ay =0, such that |[A;| = |[Az|and Y fla) = > f(a)

a€Aq a€Ao
Given an instance of ESP with A and f, we can formulate an instance of the BSCP problem:
m LetX =AandVie X,letb(i) = f(4) and z(i) = 1.

>

® Let the number of proxies M = 2,and S; = S = |—§‘, P =P, = iEAz

By solving the BSCP problem, we can obtain an optimal allocation, {p;; } and {c;; }. Now we
establish B(p,c) = > f(i) if and only if an equal size partition exists for the ESP problem
i€X
instance.
(i) If an equal size partition exists for A = A; U As, it is easy to verify that the following
allocation ¢ = {c;; } and p={p;; } gives an optimal allocation: B(p,c) = > f(4)

1EX
o= 1 i € A]'
Y1 0 i ¢ A
_) @) cij =1
Pij 0 Cij = 0
where j =1 ,2.
(ii) If there exists p and ¢ such that B(p,c E f(@), we construct A; = {ilci1 = 1}
1€X

and As = {i|ci2 = 1}. We need to establish that A; and A, equally partition A.

First, we show by contradiction that A; U A, = A.
Assume there existsa € A = X, howevera € Ay and a € A», ie., ci1 = cia = 0.

Then,
c) = ZpilCil + pizciz < Z b(i) < Zf(l)

icA i€A/{a} iex
Therefore, a does not exist: 41 U Ay = A.

We now show that |A;| = |Az| = |A‘ and A; N A; = 0.
This is true since |A1| + |A2| > |A| and by allocation constraint

lec”—ch—|A|<S |A| j=12.

1€EX i€X

22

Last, since, by allocation constraint,

> f@)

> pijei <P = 16A2 ; J=12
iex
and
>N pijeis = Blp,o) =Y f(3),
j=1,2i€X i€A
we have

2 f(@)
Zpilcil = Zpucu = leAZ

1EX i€X

= Z fla) = Z piicii = Z pizCiz = Z f(a).

a€Aq ci1=1 cio=1 a€As

Thus, A; and A» equally partition A.

This completes the proof. [|

Notes

1.

The bipartite graph can be constructed in O(K + M) time and the minimum weight perfect matching

is polynomial-time solvable with complexity O(M?).
2. No objects are physically moved at this time. Actual movement occurs after the algorithm is
terminated.

References

(1]

(2]

(3]

(4]
(5]
(6]
(7]
(8]
(9]
(10]

(1]

S. Acharya and B. Smith, “Middle man: A video caching proxy server,” in Proc. NOSSDAV
2000, June 2000.

R. Rejaie, H. Yu, M. Handley, and D. Estrin, “Multimedia proxy caching mechanism for
quality adaptive streaming applications in the internet,” in Proc. IEEE INFOCOM, April
2000.

Y. Chae, K. Guo, M. Buddhikot, S. Suri, and E. Zegura, “Silo, rainbow, and caching token:
Schemes for scalable fault tolerant stream caching,” in IEEE Journal on Selected Areas in
Communications on Internet Proxy Services, September 2002.

P. Crescenzi and V. Kann(Eds.), A compendium of NP optimization problems.
http://www.nada.kth.se/ viggo/problemlist/compendium.html.

A. Bryson and Y. Ho, Applied Optimal Control. Taylor & Francis, 1975.

“Lp_solve: Linear programming code.” ftp://ftp.es.ele.tue.nl/pub/lp_solve/.

T. Berners-Lee, A. Lutonen, and H. Nielsen, Cern httpd.
http://www3.org/Daemon/Status.html, 1996.

A. Chankhunthod, P. Danzig, C. Neerdaels, M. Scwartz, and K. Worrell, “A hierarchical
internet object cache,” Proceedings of the 1996 Usenix Technical Conference, 1996.

D. Wessels, Icp and the squid cache. National Laboratory for Applied Netowrk Research,
1999.

R. Tewari, H. M. Vin, A. Dan, and D. Sitaram, “Resource-based caching for Web servers,”
in Proc. SPIE/ACM Conference on Multimedia Computing and Networking, January 1998.
J. Almeida, D. Eager, and M. Vernon, “A hybrid caching strategy for streaming media
files,” in Proc. SPIE/ACM Conference on Multimedia Computing and Networking, January
2001.

Dynamic Cache Reconfiguration Strategies for A Cluster-Based Streaming Proxy 1123

[12]

(13]

[14]
[15]

(16]

(17]

(18]

(19]

[20]

(21]

S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for multimedia streams,” in
Proc. IEEE INFOCOM, April 1999.

M. Buddhikot, G. Parulkar, and J. R. C. Jr., “Design of a large scale multimedia storage
server,” Journal of Computer Netowrks and ISDN Systems, 1994.

W. Bolosky and et al., “The tiger video file-server,” Proceedings of NOSSDAV 96, 1996.
C. Bernhardt and E. Biersack, The Server Array: A Scalable Video Server Architecture.
Kluwer Academic Press, 1996.

P. Chen and et al., “Raid: High-performance, reliable secondary storage,” ACM Computing
Surveys, 1994.

P. Shenoy, “Symphony: An integrated multimedia file system,” Doctoral Dissertation,
Dept. of Computer Science, University of Texas at Austin, 1994.

R. Tewari, R. Mukherjee, D. Dias, and M. Vin, “Design and performance tradeoffs in
clustered video servers,” proceedings of the IEEE ICMCS’96, 1996.

P. Lie, J. Lui, and L. Golubchik, “Threshold-based dynamic replication in large-scale
video-on-demand systems,” Multimedia Tools and Applications, 2000.

A. Dan and D. Sitaram, “An online video placement policy based on bandwidth to space
ratio (bsr),” Proceedings of the 1995 SIGMOD, 1995.

M. R. Garey and D. S. Johnson, Computers and Intractability A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

