
Decentralized Control of Cooperative Agents

Claudia V. Goldman clag@cs.umass.edu
Shlomo Zilberstein shlomo@cs.umass.edu
Department of Computer Science,
University of Massachusetts Amherst, MA 01003 USA

UMass Computer Science Technical Report #03-36

Abstract

Decentralized control of a cooperative system is the problem faced by a group of decision
makers who share a single global objective function. The difficulty in solving optimally such
problems arises when the agents lack full observability of the global state of the system at
execution time. The general problem has been shown to be NEXP-complete. In this paper,
we identify classes of decentralized control problems whose complexity ranges between
NEXP and P. In particular, we study problems characterized by independent transitions,
independent observations, and goal-oriented objective functions. Two algorithms are shown
to solve optimally useful classes of goal-oriented decentralized processes in polynomial time.

The second part of the paper focuses on information sharing among the decision-makers,
which can improve their performance. We distinguish between three ways in which agents
can exchange information: indirect communication, direct communication and sharing com-
mon features that are uncontrollable by the agents. Our analysis shows that for every class
of problems we consider, introducing direct or indirect communication does not change
the worst-case complexity. Finally, a general approximation scheme is introduced to solve
decentralized control problems with direct communication. The approach is illustrated
and evaluated using two polynomial algorithms (myopic-greedy and backward induction).
These results offer one of the first practical approaches to address the complexity of decen-
tralized control with communication.

1. Introduction

Markov decision processes have been widely studied as a mathematical framework for se-
quential decision making in stochastic domains. In particular, single-agent planning prob-
lems in stochastic domains were modeled as partially observable Markov decision processes
(POMDPs) or fully-observable MDPs (Dean, Kaelbling, Kirman, & Nicholson, 1995; Kael-
bling, Littman, & Cassandra, 1998; Boutilier, Dearden, & Goldszmidt, 1995). Borrowing
from Operations Research techniques, optimal plans can be computed by solving the cor-
responding Markov decision problem. There has been a vast amount of progress in solv-
ing individual MDPs by exploiting domain structure (e.g., (Boutilier et al., 1995; Feng &
Hansen., 2002)). Approximations of MDPs have also been studied, for example, Guestrin
et al. (Guestrin, Koller, Parr, & Venkataraman, 2003) assuming that the reward of the
system can be decomposed into local reward functions each depending on only a small set
of variables.

1

We are interested in a single Markov decision process that is collaboratively controlled
by multiple decision-makers. The group of agents cooperate in the sense that they all want
to maximize a global objective (or minimize the cost of achieving it). Nevertheless, the
decision-makers do not have full observability of the whole system at the time of execution.
These processes can be found in many practical applications such as multi-robot problems,
flexible manufacturing and information gathering. These robots or software agents need to
compute the sequence of actions that when performed will optimize some global objective.
For example, a set of robots like the rovers sent by NASA to Mars1 may be assigned a list
of experiments to carry out on the planet before meeting, as soon as possible. The robots,
then, need to decide what experiments to perform and how much time they should invest
on each one given the constraints of their battery’s life and the time remaining to meet.
Another example is found in information gathering systems. Assume a user submits a query,
and several software agents have access to different servers that may provide answers. These
agents’ global objective is to give the user the answer with the highest quality as early as
possible, given the load on their servers, and maybe preferences given by the user. These
decisions are not trivial since these agents face uncertainty of the environment (e.g., the
load on the communication connection between the servers in the information gathering
example may behave stochastically), of their actions’ outcomes (e.g., the rovers in Mars may
encounter inaccuracies in their movements or hardware), and of the other agents’ actions
and observations. All these types of uncertainty are taken into account when solving such
decentralized problem.

These processes are called decentralized partially-observable Markov decision processes
(Dec-POMDPs) or decentralized Markov decision processes (Dec-MDPs)2. The complex-
ity of solving these problems has been studied recently (Bernstein, Givan, Immerman, &
Zilberstein, 2002; Pynadath & Tambe, 2002). Bernstein et al. showed that solving opti-
mally a Dec-MDP is NEXP-complete by reducing the control problem to the tiling problem.
Rabinovich et al. (Rabinovich, Goldman, & Rosenschein, 2003) have shown that even ap-
proximating the off-line optimal solution of a Dec-MDP remains NEXP. Researchers have
attempted to approximate the coordination problem by proposing on-line learning proce-
dures. Peshkin et al. (Peshkin, Kim, Meuleau, & Kaelbling, 2000) have studied how to
approximate the decentralized solution based on a gradient descent approach for on-line
learning (when the model is not known by the agents). Schneider et al. (Schneider, Wong,
Moore, & Riedmiller, 1999) assume that each decision maker is assigned a local optimization
problem. Their analysis is how to approximate the global optimal value function. Agents
may exchange information about their local values at no cost. Neither convergence nor
bounds are given. Wolpert et al. (Wolpert, Wheeler, & Tumer, 1999) assume that each
agent runs a predetermined reinforcement learning algorithm, and transform the coordina-
tion problem into how to update the local reward functions to maximize the global reward
function. Again, this algorithm is for on-line learning, it is an approximation, agents may
communicate at no cost, and no convergence or bounds are given. Studies of off-line approx-
imations were done by Guestrin et al. (a centralized approach (Guestrin, Koller, & Parr,
2001), and a distributed approach (Guestrin & Gordon, 2002)), where a known structure
of the agents’ action dependencies is assumed that induces a message passing structure (at

1. mars.jpl.nasa.gov/mer/
2. These problems will be accurately defined in Section 2 and Definition 4.

2

no cost). They assume that the value function of the system can be represented by a set
of compact basis functions, which they approximate. The complexity of the algorithm is
exponential in the width of the coordination graph. The order of elimination is needed
beforehand because it has a great effect on the result. The agents choose their actions in
turns.

These works have departed from the assumption that each agent has a known local
reward function. The questions that they attempt to answer, hence, take the form of how
to design or manipulate these local functions to approximate the actual system reward
function.

We are interested in solving the decentralized control problem off-line without assuming
any particular assumptions on the rewards of each agent, i.e., the problem is analyzed from
a decentralized perspective. We have developed a theoretical formal model for decentralized
control extending current models based on Markov Decision Processes. We refer to the most
general problem where information sharing between the agents can result from indirect
communication (i.e., via observations), by direct communication (i.e., via messages) or
by sharing common uncontrollable features (that will be precisely defined in Section 2.2).
When direct communication is possible, we assume that communication incurs a cost. On
the one hand, communication can assist the agents to better control the process; on the
other hand, communication may not be possible or desirable at every moment. Exchanging
information may incur a cost associated with the required bandwidth, the risk of revealing
it to competing agents or the complexity of solving an additional problem related to the
communication (e.g., computing the messages). Assuming that communication may not be
reliable adds another dimension of complexity to the problem.

Becker et al. (Becker, Zilberstein, Lesser, & Goldman, 2003) presented the first algorithm
for optimal off-line decentralized control when a certain structure of the joint reward was
assumed. There is no known efficient algorithm (short of evaluating all policies) to date that
can solve the problem of control and communication optimally. Pynadath and Tambe (Py-
nadath & Tambe, 2002) studied a similar model to ours, although they did not propose
an algorithm for solving the decentralized control problem. Claus and Boutilier (Claus &
Boutilier, 1998) studied a simple case of decentralized control where agents share informa-
tion about each other’s actions during the off-line planning stage. The solution presented
in their example includes a joint policy of a single action for each agent to be followed in
a stateless environment. The agents learn which equilibrium to play. In our model, partial
observability is assumed and the scenarios studied are more complex and include multiple
states. Centralized multi-agent systems (MAS) were also studied in the framework of MDPs
(e.g., (Boutilier, 1999)), where both the off-line planning stage and the on-line stage are
controlled by a central entity, or by all the agents in the system, who have full observability.

Our work focuses on decentralized cooperative MAS. Agents in most cooperative MAS
are limited by not being able to fully communicate during execution (due to the distributed
nature of the system). Due to the cooperative nature of the MAS, in many situations these
constraints do not apply to the pre-execution stage. Thus, cooperative agents are able to
share information at the off-line planning stage as if they were centrally controlled. But
unlike the centralized approach, these agents will be acting in real-time in a decentralized
manner. The agents must take this into account while planning off-line. We do not as-

3

sume the existence of local processes or local rewards; we analyze the problems from the
decentralized perspective.

Sub-classes of Dec-POMDPs can be characterized based on how the global states, tran-
sition function, observation function, and reward function relate to the partial view of each
of the controlling agents. In the simplest case, the global states can be factored, the proba-
bility of transitions and observations are independent, the observations combined determine
the global state, and the reward function can be easily defined as the sum of local reward
functions. In this extreme case we can say that the Dec-POMDP is equivalent to the com-
bination of n independent MDPs. This simple case is solvable by combining all the optimal
solutions of the independent MDPs. We are interested in more complex Dec-POMDPs, in
which some or all of these assumptions are violated. In particular, in the first part of this
paper, we characterize Dec-POMDPs, which may be jointly fully-observable, may have inde-
pendent transitions and observations and may result in goal-oriented behavior. We analyze
the complexity of solving these classes off-line and optimally, and reveal interesting results
on the complexities of the different classes which ranges from NEXP to P. We also identify
different forms of information sharing. In particular, we prove, that when direct communi-
cation is possible, exchanging local observations is sufficient to attain optimal decentralized
control.

In the second part of this paper, we study decentralized control with direct commu-
nication. We develop a practical approximation technique based on meta-level control of
communication, motivated by a similar decision-theoretic approach to meta-level reasoning
that was developed by Russell and Wefald (Russell & Wefald, 1991). We assume that the
designer of the system also designs a mechanism for communication. This mechanism stipu-
lates how to decompose the global problem into local (single-agent) and temporary problems
(e.g., each agent is assigned an individual Markov decision problem). Each decision-maker
computes its policy of communication that when executed, will lead to the synchronization
of the agents’ information, i.e., the global state of the system becomes fully observable as
a result of communication. Each time the global information is known, the mechanism
is applied to allow the agents to work independently, until the policy of communication
instructs them to synchronize their information again.

The contributions of the paper are as follows: formalizing the decentralized control prob-
lem with information sharing (Section 2), identifying classes of decentralized control that
are critical in decreasing the NEXP complexity (Section 3), designing algorithms for con-
trolling optimally a decentralized process with goal-oriented behavior (Section 4), designing
an algorithm for optimizing the control and the exchange of information in a decentralized
problem (Section 5), developing a practical approximation scheme to solve this problem by
decomposing it into temporary smaller problems, which each decision-maker can solve inde-
pendently and optimally (Section 6). Overall, these results offer a comprehensive approach
to cooperative systems that are composed of communicative agents.

2. The Dec-POMDP model

We are interested in a stochastic process that is cooperatively controlled by a group of
decision-makers who lack a central view of the global state. Nevertheless, these agents
share a set of objectives and all of them are interested in maximizing the utility of the

4

system. The process is decentralized because none of the agents can control the whole
process, and neither of the agents has a full view of the global state. The formal framework
in which we study such decentrally controlled processes, named Dec-POMDP is presented
below (originally presented in (Bernstein et al., 2002)). For simplicity of exposition, the
formal model is presented for two agents, although it can be extended to any number of
agents.

M =< S,A1, A2, P,R, Ω1, Ω2, O, T > where:

• S is a finite set of world states, i.e., the global states of the decentralized process. s0

is the initial state of the system.

• A1 and A2 are finite sets of control actions. ai denotes the action performed by agent
i.

• P is the transition probability function. P (s′|s, a1, a2) is the probability of moving
from state s ∈ S to state s′ ∈ S when agents 1 and 2 perform actions a1 and a2

respectively.

• R is the global reward function. R(s, a1, a2, s′) represents the reward obtained by the
system as a whole, when agent 1 executes action a1 and agent 2 executes action a2 in
state s resulting in a transition to state s′.

• Ω1 and Ω2 are finite sets of observations.

• O is the observation function. O(o1, o2|s, a1, a2, s′) is the probability of observing o1

and o2 (respectively by the two agents) when in state s agent 1 takes action a1 and
agent 2 takes action a2, resulting is state s′.

• If the Dec-POMDP has a finite horizon, it is represented by a positive integer T .

We will illustrate our definitions and results through the Meeting under Uncertainty
example. In this scenario, we assume for simplicity that there are two robots acting in a
two-dimensional grid. The state of the system is given by the locations of each one of the
robots, s = [(x1, y1)(x2, y2)]. The robots cannot recognize each other, and the movement
actions they can perform have uncertain outcomes (e.g., with probability P the robot will
successfully move to the next location, and with probability 1 − P the robot will remain
at the same location where it took the action). The robots’ objective is to minimize the
time to meet. The observation of robot i corresponds to i’s x and y coordinates. Solving
optimally such a decentralized problem means to find the sequence of moves for each agent
such that they meet as soon as possible.

Given the Dec-POMDP model, a local policy of action for a single agent is given by a
mapping from sequences of observations to actions. In our example, a robot’s local policy
instructs it to take a certain movement action given the sequence of locations it has observed
so far. A joint policy is a tuple composed of these local policies, one for each agent. To
solve a decentralized POMDP problem is, then, to find the optimal joint policy, that is, the
one with maximum value (for example given by the maximum expected accumulated global
reward). Notice that the agents’ observations can be dependent on each other allowing
the agents to know what other agents are observing and in some sense enabling the agents

5

to obtain full observability of the system state. That is, even though the agents may not
communicate directly, when the observations are dependent, agents may be able to obtain
information about the others’ without receiving direct messages. For example, assume that
in our scenario there are certain locations which can host only one robot at a time. If one
robot observes that it is located at anyone of these sites then it knows that the other robot
cannot be located there even though this robot does not actually see the other nor receive
any information from it.

In the next section, we characterize certain properties that a decentralized process may
have. These properties will play an important role when analyzing the complexity of solving
different classes of decentrally controlled cooperative problems.

2.1 Classes of Dec-POMDPs

It is known that solving optimally general decentralized problems is very hard (Bernstein et
al. (Bernstein et al., 2002) showed that these problems are NEXP-complete). We are inter-
ested in classifying the general problem into classes of decentralized problems with certain
characteristics. As we show in Section 3, this classification reveals interesting complexity
results that correspond to easier problems. The first two categories that we define involve
independency of the transitions or the observations of the agents. These are figuratively
shown in Figure 1. Notice that there are no arrows connecting s′1 to s′2 nor o1 to o2.

a1

s1 s’1

o1

a2

s2 s’2

o2

Figure 1: Independent Transitions and observations.

The formal definitions for decentralized processes with independent transitions and ob-
servations follow.

Definition 1 (A Dec-POMDP with Independent Transitions) A Dec-POMDP has
independent transitions if the set S of states can be factored into two components S1 and
S2 such that:

∀s1, s
′
1∈S1,∀s2, s

′
2∈S2,∀a1∈A1,∀a2∈A2,

P r(s′1|(s1, s2), a1, a2, s
′
2) = Pr(s′1|s1, a1)∧

∀s2, s
′
2∈S2,∀s1, s

′
1∈S1,∀a1∈A1,∀a2∈A2,

P r(s′2|(s1, s2), a1, a2, s
′
1) = Pr(s′2|s2, a2).

In other words, the transition probability P of the Dec-POMDP can be represented as
P = P1 × P2, where P1 = Pr(s′1|s1, a1) and P2 = Pr(s′2|s2, a2).

6

In the Meeting under Uncertainty example, if both robots are tied up to the one rope
(e.g., connecting them to the spaceship) then each movement performed by a robot may
pull the other robot, eventually affecting the next location of the other robot. In this case,
the transitions are dependent. On the other hand, if each robot’s location is affected only
by its own movement action and previous location, then the transitions are independent.

Moreover, the observations of the agents can be independent, i.e., each agent’s own
observations are independent of the other agents’ actions.

Definition 2 (A Dec-POMDP with Independent Observations) A Dec-POMDP has
independent observations if the set S of states can be factored into two components S1 and
S2 such that:

∀o1∈Ω1,∀s=(s1, s2), s′=(s′1, s
′
2) ∈ S,∀a1∈A1,∀a2∈A2,∀o2∈Ω2,

P r(o1|(s1, s2), a1, a2, (s′1, s
′
2), o2) = Pr(o1|s1, a1, s

′
1)∧

∀o2∈Ω2,∀s=(s1, s2), s′=(s′1, s
′
2) ∈ S,∀a1∈A1,∀a2∈A2,∀o1∈Ω1,

P r(o2|(s1, s2), a1, a2, (s′1, s
′
2), o1) = Pr(o2|s2, a2, s

′
2)

O(o1, o2|(s1, s2), a1, a2, (s′1, s
′
2)) = Pr(o1|(s1, s2), a1, a2, (s′1, s

′
2), o2)×Pr(o2|(s1, s2), a1, a2, (s′1, s

′
2), o1).

In other words, the observation probability O of the Dec-POMDP can be decomposed into
two observation probabilities O1 and O2, such that O1 = Pr(o1|(s1, s2), a1, a2, (s′1, s′2), o2)
and O2 = Pr(o2|(s1, s2), a1, a2, (s′1, s′2), o1).

In the Meeting under Uncertainty example, if the robot’s observation of its current
location depends only on its transition from its previous location and on the action it
performed then the observations are independent. But, more complex problems can arise if
each agent’s observation depends also on the other agent’s location, or action. For example,
assume a 3D version of the Meeting scenario where the robots can jump in addition to
moving. Assume that performing a jumping action causes vibrations on the floor that may
eventually change the location of the other agent. In such a case, the observation of one
robot’s location depends also on the effects of the jumping action performed by the other
robot.

Throughout the paper, when we refer to a Dec-POMDP with independent transitions
and observations we assume the same decomposition of the global states into S1 and S2.
We refer to Si as the partial view of agent i.

There are cases where agents may observe some common features of the global state,
leading to dependent observations, although the information may be irrelevant to the agents,
i.e., information that does not have any effect on the outcomes of the agents’ actions and on
the reward that the system obtains. Then, such problems can be reformulated to satisfy the
property of independent observations. Assuming that only relevant information is handled
by the agents, reduces the complexity of the problem as will be shown in Section 3.

One of the main difficulties in solving optimally Dec-POMDPs results from the fact that
in such a model neither of the agents may have full observability of the complete global
state. An agent has full-observability if it can determine with certainty the global state of
the world from its local observation. For example, each time a robot observes where it is
located, it also observes the other robot’s location. Knowing both locations enables both
agents to make the optimal decision as to where to move next to eventually meet earlier.

7

Definition 3 A Dec-POMDP is fully-observable if there exists a mapping for each agent
i, Fi : Ωi → S such that whenever O(o1, o2|s, a1, a2, s′) is non-zero then Fi(oi) = s′.

This paper analyzes decentralized problems where full-observability is not possible. In-
stead, we distinguish between two classes of problems in which we are able to restrict the
total lack of observability of the system: 1) when combining both agents’ partial views leads
to the complete global state, and 2) when each agent’s own partial view is fully observable.
In the first case, even though neither of the agents has information about the other agent’s
partial view, each agent can assume that whatever it does not know about the global state
is necessarily known by the other agent. We denote a Dec-POMDP with such property, a
Dec-POMDP that is jointly fully-observable.

Definition 4 A Dec-POMDP is jointly fully-observable (also referred to as Dec-MDP) if
there exists a mapping J : Ω1×Ω2 → S such that whenever O(o1, o2|s, a1, a2, s′) is non-zero
then J(o1, o2) = s′.

Notice that both definitions 1 and 2 apply to Dec-MDPs as well as to Dec-POMDPs.
The Meeting under Uncertainty scenario as we presented in Section 2 is actually a Dec-

MDP. The global state is given by the two pairs of coordinates. There is no other feature in
the system state that is hidden from the agents. Notice, that even though the combination
of the agents’ observations result in the global state, each agent may still be uncertain about
its own current partial view, it may have a belief where it is located. We define another
class of problems where each agent is certain about its observations. These Dec-MDPs
are referred as locally fully-observable. General Dec-MDPs consider only the combination
of the agents’ observations, but the definition does not say anything about each agent’s
observation.

Definition 5 A Dec-POMDP with independent transitions is locally fully-observable if
there exists a mapping for each agent i (i = {1, 2}), Li : Ωi → Si such that whenever
O(o1, o2|s, a1, a2, s′) is non-zero then L1(o1) = s′1 and L2(o2) = s′2, where si, s′i ∈ Si are the
partial views of agent i.

The Meeting under Uncertainty example is locally fully-observable, each robot knows
with certainty where it is located. We may think of more realistic robots where due to
hardware inaccuracies, there may be some error with respect to the robot’s actual location.

Notice that a jointly fully-observable process which is also locally fully-observable is not
necessarily fully-observable. In decentralized control problems, as studied in this paper,
we do not have full observability of the system, at most the agents’ observations combined
determine with certainty the global state, and each such observation determines with cer-
tainty the partial view of each agent. The Meeting scenario is jointly fully-observable and
locally fully-observable, but none of the agents know the complete state of the system.

Our next lemmas show interesting results concerning the relations between the classes
identified so far. These lemmas will serve as the basis for reducing the complexity of
solving certain Dec-POMDPs as shown in Section 3. The classes distinguished so far cor-
respond to practical real-world scenarios, as multi-rover scenarios, multi-agent mapping,

8

and manufacturing where loosely-coupled robots can act in order to achieve a global objec-
tive. These problems may include dependencies in the reward structure, and they are not
fully-observable.

Lemma 1 If a Dec-POMDP is jointly fully-observable and it has independent observations
and transitions then the Dec-POMDP is locally fully-observable.

Proof. First, we show that in a Dec-MDP with independent transitions and observations,
the following holds:

∀s1, s
′
1 ∈ S1, s2, s

′
2 ∈ S2, a1 ∈ A1, a2 ∈ A2, o1 ∈ Ω1, o2 ∈ Ω2

Pr(s′1|s1, s2, a1, a2, s
′
2, o1, o2) = Pr(s′1|s1, a1, o1)

Applying Bayes rule to Pr(s′1|s1, a1, o1) (assuming all the parameters are quantified),
we obtain:

Pr(s′1|s1, a1, o1) = Pr(o1|s1, a1, s
′
1)Pr(s′1|s1, a1)/Pr(o1|s1, a1)

For any set of values for s1, a1 and o1, the denominator is a constant, which we will refer as
a normalizing factor α. Due to the independent transitions characteristic of the Dec-MDP:

Pr(s′1|s1, a1, o1) = αPr(o1|s1, a1, s
′
1)Pr(s′1|s1, s2, a1, a2, s

′
2)

Due to the independent observations characteristic of the Dec-MDP:

Pr(s′1|s1, a1, o1) = αPr(o1|s1, s2, a1, a2, s
′
1, s

′
2, o2)Pr(s′1|s1, s2, a1, a2, s

′
2)

We also know that s′1 is independent of s2, a2 and s′2, given s1, a1 and s′1 because the
Dec-MDP has independent transitions. The observation o2 depends only on s2, a2 and s′2
because the Dec-MDP has independent observations. Therefore, s′1 cannot depend on o2,
given s1, a1 and s′1. It follows that Pr(s′1|s1, s2, a1, a2, s′2) = Pr(s′1|s1, s2, a1, a2, s′2, o2).

So, after applying Bayes rule again, we obtain:

Pr(s′1|s1, a1, o1) = αPr(o1|s1, s2, a1, a2, s
′
1, s

′
2, o2)Pr(s′1|s1, s2, a1, a2, s

′
2, o2) =

= αPr(s′1|s1, s2, a1, a2, s
′
2, o1, o2)

The lemma assumes a Dec-MDP, that is: Pr(s′|o1, o2) = 1. Since this probability is one,
it is also true that Pr(s′|o1, o2, s, a1, a2) = 1. The lemma assumes independent transitions
and observations, therefore the set of states is factored. Following conditional probabilities
rules, we obtain:

1 = Pr(s′1, s
′
2|o1, o2, s1, s2, a1, a2) = Pr(s′1|o1, o2, s1, s2, a1, a2, s

′
2)Pr(s′2|o1, o2, s1, s2, a1, a2)

Following our first result shown in this proof:

1 = Pr(s′1, s
′
2|o1, o2, s1, s2, a1, a2) = Pr(s′1|o1, s1, a1)Pr(s′2|o2, s2, a2)

So, each agent’s partial view is determined with certainty by its observation and own tran-
sition, i.e., the Dec-MDP is locally fully-observable.

9

!

From this lemma, we obtain that a local policy for agent i in a locally fully-observable
Dec-MDP is a mapping from sequences of states in agent i’s partial view to actions, as
opposed to a mapping from sequences of observations to actions as in the general Dec-MDP
case. Formally, δi : S∗

i → Ai where Si corresponds to the decomposition of global states
assumed in definitions 1 and 2 for Dec-MDPs with independent transitions and observations.

Moreover, we can show that an agent does not need to map a sequence of partial views
to actions, but it is sufficient to remember only the current partial view. This is shown in
the next lemma.

Lemma 2 The current partial view of a state s observed by agent i (si) is a sufficient
statistic for the past history of observations (oi) of a locally fully-observable Dec-MDP with
independent transitions and observations.

Proof. Without loss of generality we do all the computations for agent 1. We define
I1
t as all the information available to agent 1 about the Dec-MDP process at the end

of the control interval t similarly to Smallwood and Sondik’s original proof for classical
POMDPs (Smallwood & Sondik, 1973). I1

t is given by the action a1t that agent 1 chose
to perform at time t, the current resulting state s1t , which is fully-observable by agent 1
(s1t = i1) and the previous information I1

t−1. We assume a certain policy for agent 2, π2 is
known and fixed. π2(st) is the action taken by agent 2 at the end of control interval t.

We compute the belief-state of agent 1, that is the probability that the system is at
global state j assuming only the information available to agent 1 (I1

t).This computation
tells us how to build a belief-state MDP for agent 1. Agent 1’s optimal local policy is the
solution that obtains the highest value over all the solutions resulting from solving all the
belief-state MDPs built for each possible policy for agent 2.

We compute the probability that the system is in state st =j=(j1, j2) at time t, given the
information available to agent 1:Pr(st = j|I1

t) = Pr(st = (j1, j2)| < a1t , s1t ,π2(st), I1
t−1 >).

Applying Bayes rule leads to the following result:

Pr(st = (j1, j2)| < a1t , s1t ,π2(st), I1
t−1 >) =

Pr(st = (j1, j2), s1t = i1|a1t ,π2(st), I1
t−1)

Pr(st = i1|a1t ,π2(st), I1
t−1)

Since the Dec-MDP is locally fully-observable, the denominator equals one. We expand the
numerator by summing all the possible states that could have lead to the current state j.

Pr(st = (j1, j2), s1t = i1|a1t ,π2(st), I1
t−1) =

ΣkPr(st−1 =k|a1t ,π2(st), I1
t−1)Pr(st =j|st−1 =k, a1t ,π2(st), I1

t−1)Pr(s1t = i1|st =j, st−1 =k, a1t ,π2(st), I1
t−1)

The actions taken by the agents at time t do not affect the state of the system at time
t−1, therefore the first probability term is not conditioned on the values of the actions.
The second probability term is exactly the transition probability of the Dec-MDP. Since the
Dec-MDP has independent transitions, we can decompose the system transition probability
into two corresponding probabilities P1 and P2, following Definition 1. The last term is
equal to one because the Dec-MDP is locally fully observable. Therefore, we obtain:

Pr(st = j|I1
t) = ΣkPr(st−1 = k|I1

t−1)P (st = j|st−1 = k, a1t ,π2(st) =

10

ΣkPr(st−1 = k|I1
t−1)P1(s1t = j1|s1t−1 = k1, a1t)P2(s2t = j2|s2t−1 = k2,π2(st))

Since agent 1 fully observes s1 = i1 at time t, then the probability that the system is at
state j and its first component j1 is not i1 is zero.

Pr(st = (j1 '= i1, j2)|I1
t) = 0

Pr(st = (i1, j2)|I1
t) = ΣkPr(st−1 = k|I1

t−1)P1(s1t = i1|s1t−1 = k1, a1t)P2(s2t = j2|s2t−1 = k2,π2(st))

Agent 1 can compute the last term for the fixed policy for agent 2. We obtained that
the probability of the system being at state j at time t depends on the belief-state at time
t−1. !

Following this lemma, si, the current partial view of agent i is a statistic sufficient for the
history of observations, so an agent does not need to remember sequences of observations
in order to decide which actions to perform.

Corollary 1 Agent i’s local policy in a Dec-MDP with independent transitions and obser-
vations is a mapping from agent i’s current partial view to actions:

δi : Si → Ai

The Meeting under Uncertainty scenario as described corresponds to a Dec-MDP with
independent transitions and observations, therefore it is locally-fully observable. In such a
case, for every possible location, a robot needs to find what is the optimal movement action
it should take. This decision is not affected by the previous locations where the robot moved
through.

We continue our classification of decentralized problems considering two additional di-
mensions: one is whether agents can share information and the other whether the agents’
behavior is goal-oriented. These classes are further described in the next two sections.

2.2 Information Sharing

We distinguish among three possible ways in which agents can share information:

1. Indirect Communication — In the most general view, an action (ai ∈ Ai) per-
formed by an agent can result in three different consequences, and thus it serves any
of these three purposes:

(a) Information Gathering — Information about a state can be gathered by an
agent that observes that state as a result of performing an action. For example, a
robot in a three-dimensional scenario similar to our Meeting scenario may obtain
information about the height of a certain location if it is capable of performing
such a measure action.

(b) Change in Environment — An agent can cause a direct change in the agent’s
environment by performing an action. For example, assume a modified version
of our Meeting scenario where some of the locations are wells, and therefore can
not be traversed by the robots. If the agent is able of covering a well, this action
will change the topology of the environment.

11

(c) Indirect Communication — Agent i’s actions can affect the observations
that agent j observes, i.e., these observations can be captured as the messages
that agent i wants to transmit to agent j. Assume, for example that a robot
determines its location relatively to the other robot’s location, which it observes.
Then, the agents may have agreed on a meeting location based on their locations.
If robot 1 sees robot 2 in location A, then they will meet at meeting place
MA otherwise they will meet at meeting place MB. Even though the agents do
not communicate directly, the dependencies between the observations can carry
information that is shared by these agents.

Assuming no particular independency in the Dec-POMDP model, the general decen-
tralized control problem includes also the problem of what to communicate and when,
given that this communication is established as a consequence of an action performed
by an agent, and the resulting observations in the other agents’ partial views. In-
dependent of the policy, this type of communication is limited to transferring only
information about the features of the state. But in a more general context, the mean-
ing of the communication can be embedded in the policy. That is, each time that an
observation is made by agent i, this agent can infer what was meant by the communi-
cation in the domain and in the policy. This type of communication is assuming that
the observations of the agents are indeed dependent, and this dependency is actually
the means that enables each agent to transmit information.

2. Direct Communication — Information can be shared by the agents if they can send
messages directly to each other. In this case, the observations can be either dependent
or independent. We study decentralized processes with direct communication further
in Section 5. For example, robot 1 sends a message to robot 2:”Bring tool T to
location (x,y)”.

3. Common Uncontrollable Knowledge — This is knowledge that can be acquired
by both agents but does not result from any of these agents’ actions. This common
knowledge exists if there are features in the system state that are affected by the
environment independently of the agents’ actions. An example of such feature is the
weather (assuming that neither of the agents can have any effect on whether it rains
or it shines). Then, information about the weather can be made available to both
agents if they share the same feature. Agents can then act upon the conditions of the
weather, and thus coordinate their actions without direct exchanging messages. They
may have already decided that when the sun shines they meet at location MA, and
otherwise at location MB.

Given that the global set of states S is factored, a common feature Sk is a feature of
the global state that is included in the partial views of both agents.

Definition 6 (Common Uncontrollable Knowledge) A common feature is un-
controllable if:

∀a, b∈A1, a '=b, Pr(Sk|a, S)=P (Sk|b, S) and ∀c, d∈A2, c '=d, Pr(Sk|c, S)=P (Sk |d, S).

12

In this paper, we focus on either indirect communication or direct communication when
we allow information sharing. We exclude from the discussion uncontrollable state features
because this knowledge could provide a form of dependency between the agents that we
do not handle in this paper. A decentralized process that has independent transitions
does not prevent agents from acquiring common uncontrollable knowledge and consequently
becoming dependent.

Assumption 1 We assume that all the changes in the system result necessarily from the
agents’ actions.3

Finally, the next section presents our last classification of decentralized problems which
have goal-oriented behavior. This classification is practical in many areas where the agents
may incur some cost while trying to achieve a goal and may attain a global reward only
when the goal is reached. This is different from most of the works done on single-agent
MDPs where a reward is obtained for every action performed.

2.3 Goal-oriented Behavior

We characterize decentralized processes in which the agents’ aim is to reach specific global
goal-states. The Meeting under Uncertainty as we described has this feature, the agents’
goal is to meet at some location. Other practical scenarios may include, assembling a
machine, transferring containers from one location to a final destination, and providing a
final answer to a query.

Definition 7 (Goal-Oriented Dec-POMDPs) A Dec-POMDP is goal-oriented if the
following two conditions hold:

1. There exists a special subset G of the global states that are global goal-states. The
process ends when the agents reach any of these goal-states, i.e., no transitions are
possible upon reaching a state in G (∀g∈G⊆S,∀a1∈A1,∀a2∈A2, P (g|g, a1, a2)=1).

2. The global reward is R(s, a1, a2, s′)=C(a1)+C(a2)+JR(s′), where:

• C(ai) < 0 is the cost incurred by agent i when it performs action ai. For sim-
plicity, we assume in this paper that the cost of an action depends only on the
action. In general, this cost may also depend on the state.

• JR(s′) ∈) is an arbitrary reward associated with each global goal-state and
JR(s′) = 0 for non-goal states (s′ '∈ G).

The problem of solving a goal-oriented Dec-POMDP is the problem of maximizing the
expected global reward. This definition is about global goal behavior, that is, it does not
imply that each agent separately has certain goals to achieve.

In the next section, we analyze the complexity of interesting classes of Dec-POMDPs
based on the characterization we have presented.

3. Deterministic features that never change their values, or change their values in a deterministic way (such
as time that increases in each step) are allowed.

13

Process Class Observations Needed by Agent i Reference
Dec-POMDP The local sequence of observations: oi (Bernstein et al., 2002)
IT, IO Dec-POMDP The local sequence of observations: oi Claim 1
IT Dec-MDP (no IO) The local sequence of observations: oi Claim 1
IT, IO Dec-MDP The last local observation: oi = si Lemma 2

Table 1: A summary of the information on which an optimal local policy is conditioned.
IT stands for independent transitions and IO for independent observations.

3. A Taxonomy of Decentralized POMDPs: Complexity Results

We have distinguished between Dec-POMDPs and Dec-MDPs (where joint full-observability
is assumed). In neither of these cases, the agents have full observability of the global state
(at most they have joint full-observability and local full-observability, which is different
from full observability). Therefore, each one of the agents has a belief about the global
state of the system. This is the probability believed by each one of the agents that the
system is at some global state s. Table 1 presents the information that each agent needs in
order to update its belief about the global state of the system. Since each agent can solve
its belief-state MDP assuming a fixed and known policy for the other agent, resulting in the
optimal local policy that comprises the optimal joint policy, the information required by
an agent to update each belief-state sheds light on the complexity of solving each class of
corresponding decentralized control problems. All the complexity results presented in this
section apply for decentralized processes controlled by n agents.

Claim 1 The belief-state update that an agent will be required to perform in the first three
cases that appear in Table 1 depends on (at most) the sequence of the agent’s own observa-
tions.

In the first two cases, this is true because there is no joint full-observability. In the
third case, this is true because the agents’ observations are dependent, so even though the
decentralized process is jointly fully-observable, each agent does not have full observability
of the global state. Notice that only for the last case in the table we have shown that si is a
sufficient statistic (see Lemma 2). It is still an open question what is the least information
that each agent needs to remember in each one of the first three cases, i.e., how the different
independency assumptions affect the sufficient statistic for each case.

This section studies to what extent the classes characterized in the previous section
represent different complexity classes. In all the results below we refer to the complexity
of finding an optimal joint policy for the decentralized control problems handled in the
lemmas. The lemmas are stated for the corresponding decision problems (i.e., given the
decentralized process assumed in each one of the lemmas, the decision problem is to decide
whether there is a joint policy whose value is equal or larger than a given constant K), but
finding a solution cannot be easier than deciding the same problem.

All the results in this section correspond to problems given with a finite horizon T .
We know from Bernstein et al.’s complexity result (Bernstein et al., 2002), that deciding a
finite-horizon decentralized MDP is NEXP-Complete. In Section 2.2, we described indirect

14

communication, i.e., situations in which information can be shared when the observations
are dependent. Therefore, the same complexity result applies for the decentralized control
problem with indirect-communication as stated in the next Corollary.

Corollary 2 Deciding a Dec-MDP or a Dec-POMDP with indirect communication (i.e.,
allowing the agents to communicate by acting and observing, when the observations are
dependent) is NEXP-complete.

We show in the next lemma, than adding only goal-oriented behavior to a general
decentralized process does not change the complexity of the problem. In other words, a
goal-oriented decentralized problem is not easier than a non goal-oriented decentralized
problem.

Lemma 3 Deciding a goal-oriented Dec-MDP is NEXP-complete.

Proof. This case can be proved through the same reduction applied in Bernstein et
al. (Bernstein et al., 2002). We can reduce the general goal-oriented Dec-MDP problem to
the tiling problem by adding a goal-state to the last state of the Dec-MDP defined in the
reduction. The agents reach this new goal-state and receive a reward of zero if the tiling
was consistent. Otherwise the agents obtain a reward of -1 and do not reach the goal-state
(but they do reach a terminal state and the process ends).

The main reason for this complexity result relies on the fact that each agent needs to
remember a sequence of observations that it has observed (see Table 1). Adding only goal-
states to the decentralized process (without assuming any further assumptions) does not
make the control problem any easier. !

Since a Dec-POMDP is more general than a Dec-MDP, the same lower bound for the
Dec-MDP is valid for an even harder problem.

Corollary 3 Deciding a goal-oriented Dec-POMDP is NEXP-complete.

The next lemma shows that by assuming that the transitions and observations are
independent and that the agents have joint full-observability, the problem of solving a
decentralized cooperative system, then becomes easier (the lemma does not assume goal-
oriented behavior).

Lemma 4 Deciding a Dec-MDP with independent transitions and observations is NP-
complete.

Proof. Since the Dec-MDP is jointly fully-observable and it has independent transitions
and observations, it is also locally fully-observable (see Lemma 1). We have shown in
Lemma 2 that for such Dec-MDPs, the current partial view of an agent is a sufficient
statistic. Therefore, a local policy of an agent i is of size polynomial in |Si|. There are
|Ai||Si| policies (mappings from Si to Ai). Each agent i needs to build a belief-state MDP
with a number of states that is polynomial in |Si| (for a fixed and known policy for the
other agent). Evaluating one such local policy can be done in polynomial time (by running
dynamic programming on the belief-state MDP), but there are exponentially many such

15

policies for which this should be done. Therefore, the upper bound for the decision problem
stated in this lemma is NP.

Figure 2 shows schematically the differences in the policies, which lead to the difference
in the complexity classes of the control problems when independent transitions and obser-
vations are assumed. When no assumptions are made (as in the leftmost figure), a local
policy is represented by a tree, where each node corresponds to a possible action to be taken
and each edge corresponds to a possible observation (i.e., a possible transition). Each local
policy needs to remember a sequence of observation as opposed to just the last observation
as in the rightmost figure. In the belief-state MDP that each agent builds, there is an
exponential number of states, that correspond to all the possible sequences of observations
(this number is |Ωi|T when T is the finite horizon). Each such policy (of exponential size)
can be evaluated with dynamic programming. There are a total of |Ai||Ωi|T local policies.4

. . .

s
1
1 s

1
2 . . . s

1
n

1
1 1

2
1
na a a

o1
1

o1
o1

o1
o1

1
o1o1

o1o1
1

2 k

k 1 k k

T

a

a a

a a a aa a

a

Agent 1’s local policy, when the process is
locally fully observable.

Agent 1’s local policy when a sequence of observations
should be remembered.

Figure 2: Exponential vs. polynomial sized policies.

We know already from Papadimitriou and Tsisiklis (Papadimitriou & Tsitsiklis, 1982,
1986) that a simple decentralized decision making problem for two agents is NP-hard (where
|Ai| ≥ 2 and |Aj | ≥ 3). Therefore, the lower bound for the problem class stated in the lemma
is also NP. !

It is an open question whether a Dec-POMDP with independent transitions and obser-
vations (without joint full-observability) results in a complexity class lower than NEXP.

The next lemmas show that by restricting the classes of goal-oriented decentralized prob-
lems, not to include any type of information sharing, while maintaining the independency
assumptions, we may obtain easier problems that can be solved in polynomial time.

Lemma 5 Deciding a goal-oriented Dec-MDP with independent transitions and observa-
tions, and a single global goal-state is P-complete.

Proof. We denote the single global goal-state by g = (g1, g2). The agents cannot ob-
tain additional information about each other after they plan optimally towards g1 and g2

4. Assuming that T is similar in size to |S|, we obtain that the complexity of the brute-force search algorithm
is double exponential in |S|. If T << |S| the complexity can be NP.

16

respectively: Indirect communication is impossible since the observations are independent,
direct communication is not allowed and no common uncontrollable knowledge is available.
If the system has a single global goal-state, it is reasonable to assume that the model in-
cludes an action that allows the agents to make no transitions at no cost once they reached
their corresponding component of the global goal-state. Due to the independent transi-
tions, neither of the agents need to build a belief-state MDP, but a single-agent MDP
is enough to solve optimally such a Dec-MDP. Each agent’s MDP Mi is built as follows:
Mi =< Si, Ai, Pi, Ri >. Si, Ai and Pi correspond to the partial view, actions and transition
probability already defined by the Dec-MDP with independent transitions. Ri is defined
as follows: Ri = Ri(si, ai, s′i) = Cost(ai) + GR(s′i), where GR(s′i) ∈) if s′i = gi and zero
otherwise. !

We show the algorithm that solves this problem in the next section. The same complexity
result applies when there are many global goal-states, but no new information can be made
available to the agents whose transitions and observations are independent.

Lemma 6 Deciding a goal-oriented Dec-MDP with independent transitions and observa-
tions with at least one global goal-state is P-complete.

Proof. Due to the independent transitions and observations, each agent can be assigned
a single agent MDP for its corresponding component of each global goal-state. All the
states of the system, including the goal-states are factored because of the independency
assumptions. Each agent can solve these MDPs optimally. We also assume that there is at
least one way to reach a global goal-state with probability one.

In the cases studied in this paper, there is a finite horizon T . The agents will be penalized
if they did not reach a global goal-state by time T . This penalty can be determined so that
agents will always prefer to reach the same global goal-state over not reaching it. Any
policy that is not committed to the shortest path has a lower likelihood to reach the same
global goal-state. In problems with finite-horizon as analyzed here, the penalty received by
the system when the goal is not reached is a large negative number such that taking the
risk of not reaching the same goal-state is not worthwhile. Agents will not prefer to switch
goals, but will prefer to pursue the shortest paths to each one of the possible components
of global goal-states.

Since we assume that no information sharing is possible, then solving each one of these
possible MDPs (aimed at each one of the possible goal components) and choosing the global
goal-state with the highest value solves optimally this problem. Any other solution that
involves moving to any state that is not on the shortest path towards a single goal component
will not be optimal because it has a positive probability of ending in a component of a global
goal-state which was not reached by the other agents. The problem is an iterative version
of the decentralized control problem with independent transitions and observations and a
single global goal-state. Following Lemma 5, this problem can be solved in polynomial time.
!

Assume that the Meeting scenario is given with a single meeting location (e.g., the
spaceship in the rovers’ case). Then, given the other independency assumptions, we can
solve optimally this problem by building single-agent MDPs, each planning to achieve its
component of the goal-state (in the example, each robot needs to reach the spaceship). If
there is a larger set of global goal-states, for example, if there is a finite number of possible

17

meeting sites (e.g., the spaceship, the space station on the planet and some other particular
site) then following the lemma, we can let each agent find its local optimal policy to each
one of its corresponding component in these goal states. The optimal joint policy is the
joint policy among those pairs of local policies with the highest value.

Notice that this result applies when the agents arrive at a component of a global goal
and cannot move out of it, and also when moving between global goal-components is indeed
possible. For example, in the basic Meeting under Uncertainty scenario, where two robots
are trying to meet as soon as possible in a 2D grid, every grid location is a possible meeting
place, but also these locations can be squares that the agents go through when moving to
another target.

As we state in the next corollary, if any type of information sharing is indeed possible,
then, a goal-oriented decentralized problem may not necessarily decompose into single agent
processes with goal-oriented behavior. For example, agents may need to act towards a state
which is not defined as a component of a goal state in order to achieve a global goal-state

Corollary 4 If some type of information sharing is allowed while solving a goal-oriented
Dec-MDP with many global goal-states then goal-oriented behavior does not necessarily in-
duce individual goal-oriented behavior. The single-agent process resulting from the Dec-MDP
has a clear set of states, given by the partial view of the agent (Si), a transition probability
Pi (due to the independent transitions), a set of actions Ai (as in the Dec-MDP) but the
single-agent reward function Ri is not defined.

The results presented so far for goal-oriented behavior assumed that the system state
is jointly fully-observable. If this is not the case, then the resulting Dec-POMDP can be
decomposed into single-agent POMDPs when the process is goal-oriented and information
sharing is not possible. Similarly to the previous results, but assuming a Dec-POMDP
process, we obtain that the complexity of deciding these corresponding Dec-POMDPs is
equivalent to the complexity of deciding a single-agent POMDP, i.e., P-space (Papadimitriou
& Tsitsiklis, 1987). This is stated in Corollaries 5 and 6.

Corollary 5 Deciding a goal-oriented Dec-POMDP with independent transitions and ob-
servations with a single global goal-state is P-space.

Corollary 6 Deciding a goal-oriented Dec-POMDP with independent transitions and ob-
servations with at least one global goal-state is P-space.

A summary of the complexity results presented in this Section appears in Table 2.

4. Algorithms for Decentralized Control

So far, the only known algorithm for controlling optimally Dec-MDPs with independent
transitions and observations is the coverage-set algorithm described in (Becker et al., 2003).
This algorithm assumes that the agents’ actions could result in super-additive or sub-
additive joint rewards. In the first case, the reward obtained by the system from agents
doing certain actions is larger than the sum of each agent’s local reward for those actions.
In the second case, sub-additive joint rewards will be attained when the agents are penal-
ized for doing redundant actions. As an example, we can look at a modified version of the

18

Process Class Complexity Class Reference
Dec-POMDP NEXP-complete (Bernstein et al., 2002)
Dec-MDP NEXP-complete (Bernstein et al., 2002)
Approximate Dec-POMDP NEXP-complete (Rabinovich et al., 2003)
Approximate Dec-MDP NEXP-complete (Rabinovich et al., 2003)
GO Dec-POMDP NEXP-complete Corollary 3
GO Dec-MDP NEXP-complete Lemma 3
IT,IO Dec-POMDP NEXP Section 3
GO,IT,IO, |G| = 1 Dec-POMDP P-space Corollary 5
GO,IT,IO, |G| ≥ 1 Dec-POMDP,No info. Sharing P-space Corollary 6
IT,IO Dec-MDP NP-complete Lemma 4
GO,IT,IO,|G| = 1 Dec-MDP P-complete Lemma 5
GO,IT,IO,|G| ≥ 1 Dec-MDP,No Info. Sharing P-complete Lemma 6
GO,IT,IO,|G| ≥ 1 Dec-MDP, with Direct Comm. NP Lemma 10
GO,IT,IO,|G| ≥ 1 Dec-MDP, with Direct Comm. P Lemma 11
Myopic-greedy Approximation
GO,IT,IO,|G| ≥ 1 Dec-MDP, with Direct Comm. P Lemma 13
Approximation to Monotonic Dec-MDPs

Table 2: A summary of the complexity analysis for classes of decentralized control pro-
cesses. We use the notation GO to denote a goal-oriented process, IT and IO for
independent transitions and observations respectively.

19

Process Class Optimal Algorithm Reference
IT, IO Dec-MDP, No Information Sharing Coverage-set (Becker et al., 2003)
IT, IO Dec-MDP, with Direct Communication Not Known Yet5 Section 5
IT, IO, GO Dec-MDP (|G| = 1) Opt1Goal Section 4.1
IT, IO GO Dec-MDP (|G| ≥ 1), No Information Sharing OptNGoals Section 4.2
IT, IO GO Dec-MDP (|G| ≥ 1), with Direct Comm. Not Known Yet5 Section 5

Table 3: A summary of the algorithms known for controlling optimally decentralized MDPs.

Meeting scenario, where robots can move and can also run experiments at different sites.
Then, a process may lead to sub-additive rewards if both agents run the same experiment,
wasting their battery instead of doing non-overlapping tasks. Sometimes, the system is
better off when both robots perform the same tasks, for example both agents run the same
experiment at different times in the day, collecting eventually results with better quality.
The class of problems handled by the coverage-set algorithm does not include necessarily
goal-oriented decentralized processes. In this section, we present two tractable algorithms
for controlling optimally Dec-MDPs with independent transitions and observations, which
are also goal-oriented. A summary of the algorithms known to solve optimally decentralized
control problems is presented in Table 3.

4.1 Single Goal, Goal-Oriented Dec-MDPs

The single global goal-state of the Dec-MDP is g = (g1, g2). We have assumed that there
exists at least one joint policy that reaches this goal, otherwise the agents are penalized
with a negative large amount. Opt1Goal (see Figure 3) is the algorithm that finds the
optimal decentralized joint policy for such a Dec-MDP. The correctness of this algorithm
is easily obtained from Lemma 5. Each agent i solves its corresponding single-agent MDPi

with a single goal-state given by gi. MDPi is given by the tuple < Si, Ai, Pi, Ri >. For
i = {1, 2}, the set of states Si, the set of actions Ai and the transition probability Pi

correspond to agent i’s partial view, control actions and transitions resulting from the Dec-
MDP as defined in Section 2.1. The local reward function Ri is defined as the reward that
the agent will receive when taking an action ai and moving from state si to s′i. Similarly
to the definition of the joint reward in a goal-oriented Dec-MDP (Definition 7), we define
Ri(si, ai, s′i) = C(ai) + GR(s′i), where:

• C(ai) < 0 is the cost incurred by agent i when it performs action ai.

• The local goal reward, GR(s′i) ∈) is an arbitrary reward associated with each local
goal-state and it is zero when the s′i is a non-goal state.

4.2 Goal-Oriented Dec-MDPs with No Information Sharing

Due to the uncertainty of the outcomes of the agents’ actions, an agent may decide to
change its intention with respect to the global goal-state it is planning to. In this paper,
5. No algorithm was proposed short of full search with complexity NP as shown in Lemma 10.

20

function Opt1Goal(Dec-MDP)
returns the optimal joint policy δ∗,
inputs: Dec-MDP=<S,A1, A2, P,R>

G /* the set of global goal-states, |G| = 1, g = (g1, g2) ∈ G ⊆ S*/
/ ∗ Transition independence ⇒ S =S1×S2, P =P1×P2 */
/ ∗ R(s, a1, a2, s′) = Cost(a1) + Cost(a2) + JR(s′) ∗ /
/*ComputeLocalR computes the local rewards as follows:*/
/ ∗ R1(s1, a1, s′1) = Cost(a1) + GR(s′1) ∗ /
/ ∗ R2(s2, a2, s′2) = Cost(a2) + GR(s′2) ∗ /
/ ∗ GR(s′i) ∈) if s′i = gi, else 0 ∗ /

R1 ← ComputeLocalR(S1, A1, P1, g1)
MDP1 =< S1, A1, P1, R1 >
R2 ← ComputeLocalR(S2, A2, P2, g2)
MDP2 =< S2, A2, P2, R2 >
δ∗1 ← SOLV E(MDP1)
δ∗2 ← SOLV E(MDP2)
δ∗ ← (δ∗1 , δ∗2)
return δ∗

Figure 3: The Opt1Goal algorithm.

we avoid this type of behavior because the agents prefer to reach the same global goal-state
and otherwise will obtain a large negative penalty. There is no reason for an agent to take
a longer path (through several visits to goal-states’ components) instead of moving directly
to each one of the goal-state’s components.

The algorithm that optimally and decentrally solves a goal-oriented Dec-MDP problem
with many global goal-states is OptNGoals which is presented in Figure 4. The correctness
of this algorithm is obtained from Lemma 6, each agent, iteratively, solves its induced MDP
towards each one of the possible components of each one of the global goal-states of the
system. Finally, the optimal joint policy is the one with the highest value.

Lemma 7 OptNGoals returns the optimal joint decentralized policy for a goal-oriented
Dec-MDP with independent transitions and observations when no new information can be
acquired by any agent.

Proof. We assume that the process continues for T time steps.6 The proof is by induction
on the steps of the policy: At the basis of the induction, time is T ; the agents cannot perform
any more moves. Obviously, moving to an intermediate state is not beneficial.

6. If the process could stop before time T given that the agents reached an absorbing state, then there is
a special kind of communication different from the ones we already mentioned. If an agent reaches a
goal-state and the system did not stop, then this agent is actually getting new information, because it
knows that the other agent did not reach the same goal-state.

21

function OptNGoals(Dec-MDP)
returns the optimal joint policy δ∗,
inputs: Dec-MDP=<S,A1, A2, P,R>

G /* the set of global goal-states, |G| = N, gi = (gi
1, g

i
2) ∈ G, 1≤ i≤N ∗ /

/ ∗ Transition independence ⇒ S =S1×S2, P =P1×P2*/
/ ∗ R(s, a1, a2, s′) = Cost(a1) + Cost(a2) + JR(s′) ∗ /
/ ∗ R1(s1, a1, s′1) = Cost(a1) + GR(s′1) ∗ /
/ ∗ R2(s2, a2, s′2) = Cost(a2) + GR(s′2) ∗ /
/ ∗ GR(s′i) ∈) if s′i = gi, else0 ∗ /

Dec−MDP 1 =<S,A1, A2, P,R>
δ∗1 ← Opt1Goal(Dec−MDP 1, (g1

1 , g1
2))

CurrOptJointδ ← δ∗1

CurrMaxV al ← ComputeV (Dec−MDP 1, CurrOptJointδ, s0)
for i ← 2 to N

Dec−MDP i =<S,A1, A2, P,R>
δ∗i ← Opt1Goal(Dec−MDP i, (gi

1, g
i
2))

CurrV al ← ComputeV (Dec−MDP i, δ∗i, s0)
if (CurrV al > CurrMaxV al) then

CurrOptJointδ ← δ∗i

CurrMaxV al ← CurrV al
return CurrOptJointδ

function ComputeV (Dec-MDP,δ, s0)
returns the value of state s0 following joint policy δ, Vδ(s0)
inputs: Dec-MDP, the current Dec-MDP being evaluated.

δ = (δ1, δ2), the joint policy found so far .
s0, the initial state of the Dec-MDP.

if s0 ∈ G then
return JR(s0)

else
V ← Σs′=(s′1,s′2)

P1(s′1|δ1(s0), s0)P2(s′2|δ2(s0), s0)(R(s0, δ1(s0), δ2(s0), s′) + ComputeV (Dec−MDP, δ, s′))

Figure 4: The OptNGoals algorithm.

22

We assume that if there are k <T steps left, it is not beneficial for the agents to move
towards an intermediate state instead of moving directly towards a goal-state. We show
that if there are k+1 steps left, then the expected cost of a policy that instructs the agent to
move to an intermediate state is larger than the cost of the policy that instructs the agent
to move directly to the corresponding component of a goal-state if possible.

Denote by δ a local policy that instructs an agent to move directly towards a goal-state
component g. δ finds the shortest path towards g. Now, assume another policy δ′, which
is different from δ at one state along the shortest path. δ(s1) = a1 and δ′(s1) = a′1. We
assume that at state s1 the agent cannot obtain any new information, therefore the agent
should have preferred the shortest path and δ′ cannot be more beneficial than δ. We know
from the induction assumption that when the agent is at state s1 it has less than k steps
to the final T , and from s1 it is not beneficial to move to intermediate states. !

5. Decentralized Control with Communication

Direct communication can be beneficial in decentralized control (i.e., the value of the optimal
joint policy that allows communication may be larger than the value of the optimal joint
policy without communication) because the agents lack full observability of the global state.
We are interested in solving a decentralized control problem off-line taking into account
that possible new information could be acquired on-line. Agents will consider this expected
information while computing their optimal joint policy, thus deriving a policy for when and
what to communicate.

If we assume that direct communication leads to full observability of the system state,
that direct communication is free and that the observations are independent then obviously
the agents will benefit most by constantly communicating, and thus having a fully observable
decentralized process, which is equivalent to an MMDP (Boutilier, 1999). This problem is
known to be P-complete (Papadimitriou & Tsitsiklis, 1987).

In real-world scenarios, it is reasonable to assume that direct communication has indeed
an additional cost associated with it, given by the risk of revealing information to compet-
itive agents, given by the bandwidth necessary for the transmission or even given by the
complexity of computing the information to be transferred. Therefore, communication may
not be possible or even desirable at all times.

We extend the model of decentralized partially-observable Markov decision process to
include an explicit language of communication with an associated cost. We call this model
Dec-POMDP-Com. It is given by the following tuple: < S,A1, A2, Σ, CΣ, P,R, Ω1, Ω2, O, T >.

Σ is the alphabet of messages. σi ∈ Σ denotes an atomic message sent by agent i (i.e., a
letter in the language). σi denotes a sequence of atomic messages. A special message that
belongs to Σ is the null message, which is denoted by εσ. This message is sent by an agent
that does not want to transmit anything to the other agents. We omitted in this paper the
details of the communication network that may be necessary to implement the transmission
of the messages.

CΣ is the cost of transmitting an atomic message: CΣ : Σ →). The cost of transmitting
a null message is zero. Communication cost models determine the flow of the information
exchange and the cost of this communication. These models may include, for example,
one-way communication models in which the cost CΣ is incurred each time that one agent

23

sends information to another agent; two-way communication models where agents exchange
messages each time at least one of them initiates communication, and the cost is incurred
only once, each time. Other models may require additional messages like acknowledgments
that may incur additional costs. We restrict ourselves in this paper to communication cost
models based on joint exchange of messages and where communication leads to full observ-
ability of the global state. Note that when the observations are independent, and assuming
that there is no common uncontrollable knowledge (Assumption 1), direct communication
is the only means of achieving full-observability.

We define a Dec-MDP-Com as a Dec-POMDP-Com with joint full-observability, as we
did with Dec-POMDPs and Dec-MDPs in Section 2.1. The Dec-POMDP-Com model can
have independent transitions, independent observations, be locally fully-observable, and
goal-oriented as the basic model presented in Section 2.

We describe the interaction among the agents as a process in which agents perform an
action, then they observe their environment, and then send a message that is instantaneously
received by the other agent.7 Then, we can define the local policies of the controlling agents
as well as the resulting joint policy whose value we are interested in optimizing. A local
policy δ is composed of two policies, δA that determines the actions of the agents, and δΣ

that states the communication policy. Notice that δA allows indirect communication if the
observations of the agents are dependent, and that δΣ allows direct communication even
if the observations are dependent. With direct communication, the agents’ designer can
enrich the agents’ performance with additional messages.

Definition 8 A local policy for action for agent i, δA
i , is a mapping from local histories of

observations oi = oi1 , . . . , oit over Ωi and histories of messages σj = σj1, . . . ,σjt received
(j '= i) since the last time the agents were synchronized to actions in Ai.8

δA
i : S × Ω∗ × Σ∗ → Ai

Definition 9 A local policy for communication for agent i, δΣ
i , is a mapping from local his-

tories of observations oi = oi1 , . . . , oit and o, the last observation perceived after performing
the last local action, over Ωi and histories of messages σj = σj1 , . . . ,σjt received (j '= i)
since the last time the agents were synchronized to messages in Σ.

δΣ
i : S × Ω∗o × Σ∗ → Σ

More complex cases result if the agents could communicate partial information about
their partial views. This is left for future work.

Definition 10 A joint policy δ = (δ1, δ2) is defined as a pair of local policies, one for each
agent, where each δi is composed of the communication and the action policy for agent i.

The complexity results we obtained in Section 3 apply also for the same classes of
problems when direct communication is possible. Although agents achieve full observability

7. When agents exchange information there is a question whether information is obtained instantaneously
or there are delays. For simplicity of exposition we assume no delays in the system.

8. In this paper, we study finite horizon processes, therefore time is included in the state representation.

24

each time they exchange information, the problem of finding the policy of communication
off-line (when there is a cost associated with each communication act) remains as hard as
the general problem with no communication. In the worst case, transmitting the messages
can be prohibitively expensive. Therefore, adding direct communication does not simplify
the problem. For all the cases shown to be in NEXP, adding direct communication cannot
make them more difficult. The complexity of deciding a Dec-MDP when observations
are independent and direct communication is allowed remains the same as when direct
communication is not assumed, as shown in Lemma 10. The impact of direct communication
on the classes of Dec-POMDPs with independent transitions and observations and with
possible goal-oriented behavior remains an open question.

It is interesting to note that the decentralized control problem with direct communica-
tion can be reduced to the same problem with indirect communication when the observations
are dependent. We assume that transmitting messages incur the same cost and that the
language of messages is the language of observations. If the language of communication is
different then the reduction does not apply.

Lemma 8 A Dec-MDP with direct communication is polynomially-reducible to a Dec-MDP
with indirect communication.

Proof. We denote the Dec-MDP with direct communication Dec-D, and the Dec-MDP
with indirect communication Dec-I. The reduction from Dec-D to Dec-I requires the addition
of a single bit b to the global states of Dec-I. When b takes the value 1, the agents are in the
communication mode. When b takes the value 0, the agents are performing control actions.
A communication action ac performed by agent i is agent i’s local observation oi. The
transition probability of Dec-I, PI is given as follows: PI([s, 1], o1, o2, [s, 0]) = 1, no change
is caused to the global state of the system besides flipping the value of b back to 0 each
time the agents exchange information. The probability of observing o1 and o2 (respectively
by the two agents) after performing communication acts when b equals 1 is one as long as
o1 is agent’s 2 last observation, and o2 is agent’s 1 last observation. This probability is zero
for any other action taken at [s, 1]. O(o2, o1|[s, 1], o1, o2, [s, 0]) = 1. !

5.1 The Analytical Expression of the Optimal Solution to Dec-POMDP-Com

The agents send messages in a broadcast manner, and only one message is sent at each time.
The agents in the system share the same language of communication. In a separate line of
research, we are addressing the question of agents controlling a decentralized process where
the agents develop a mutual understanding of the messages exchanged along the process.

Following the model presented in Section 5, we express the value of a state in the Dec-
POMDP-Com model when no particular assumptions are made on the class of the problem.
The optimal joint policy that stipulates for each decision-maker how it should behave and
when it should communicate with other agents is the policy that maximizes the value of the
initial state of the Dec-POMDP-Com. We will then study certain classes of this problem
as we did with the case without communication.

In order to refer to a sequence of messages sent by an agent, two auxiliary functions are
defined: f l

1 is the first l messages sent by agent 1. Similarly, f l
2 is defined for agent 2. f l

1 is
a function of 1) the state in which the last message is sent, 2) the sequence of observations

25

seen by agent 1 (when |o1| = l, it is denoted by o1
l), and 3) the sequence of messages

received from agent 2. These functions can be recursively defined: (· is the concatenation
operator)

f0
1 = δΣ

1 (s, ε, ε) f0
2 = δΣ

2 (s, ε, ε)
f l
1 = δΣ

1 (s, o1
l−1, f l−1

2) · f l−1
1

f l
2 = δΣ

2 (s, o2
l−1, f l−1

1) · f l−1
2

Definition 11 The probability of transitioning from a state s to a state s’ following the
joint policy δ = (δ1, δ2) while agent 1 sees observation sequence o1o1 and receives se-
quences of messages σ2, and agent 2 sees o2o2 and receives σ1 of the same length, written
Pδ(s′|s, o1o1,σ2, o2o2,σ1) can be defined recursively:9

1. Pδ(s|s, ε, ε, ε, ε) = 1

2. Pδ(s′|s, o1o1,σ2σ2, o2o2,σ1σ1) =
∑

q∈S Pδ(q|s, o1,σ2, o2,σ1)∗

P (s′|q, δA
1 (s, o1,σ2), δA

2 (s, o2,σ1)) ∗ O(o1, o2|q, δA
1 (s, o1,σ2), δA

2 (s, o2,σ1), s′)

such that δΣ
1 (s, o1o1,σ2) = σ1 and δΣ

2 (s, o2o2,σ1) = σ2.

Then, the value of the initial state given by s0 in the Dec-POMDP-Com after following
a joint policy δ for T steps can be defined as follows:

Definition 12 The value V T
δ (s0) after following policy δ = (δ1, δ2) from state s0 for T

steps is given by:

V T
δ (s0) =

∑

(o1o1,o2o2)

∑

q∈S

∑

s′∈S

Pδ(q|s0, o1, f
l
2, o2, f

l
1) ∗ P (s′|q, δA

1 (s0, o1, f
l
2), δ

A
2 (s0, o2, f

l
1))∗

R(q, δA
1 (s0, o1, f

l
2), δ

Σ
1 (s0, o1o1, f

l
2), δ

A
2 (s0, o2, f

l
1), δ

Σ
2 (s0, o2o2, f

l
1), s

′)

where the observation and the message sequences are of length at most T −1, and both
sequences of observations are of the same length l. The sequences of messages are of length
l + 1 because they considered the last observation resulting from the control action prior to
communicating.

The problem of decentralized control with direct communication is to find an optimal
joint policy δ∗ for action and for communication such that δ∗ = argmaxδV T

δ (s0).

5.2 Languages of Communication

We start showing that under some circumstances the language of observations is as good as
any other communication language. In the Meeting scenario, no matter what are the tasks
assigned to the system, agents that exchange their current coordinates are guaranteed to
find the optimal solution to the decentralized problem.

9. The notation o = o1, . . . , ot and oo represents the sequence o1, . . . , oto. Similarly, the notation for
sequences of messages: σiσ represents the sequence σi1 , . . . , σitσ.

26

Theorem 1 Given a Dec-MDP-Com with independent transitions and observations and
constant message cost, the value of the optimal joint policy δ∗ with respect to any Σ, V T

δ∗,Σ(s0)
is not greater than the value of the optimal joint policy with respect to the language of
observations (Σ = Ω). That is:

∀Σ V T
δ∗,Σ(s0) ≤ V T

δ′∗,Σ=Ω
(s0).

Proof. A Dec-MDP with independent transitions and observations is also locally fully-
observable (see Lemma 1). Lemma 2 states that each agent’s current partial view is a
sufficient statistic for the history of observations needed to compute the optimal decen-
tralized joint policy. Therefore, it is not beneficial for the agents to send any information
in addition to their fully observable current partial view because the decentralized process
is jointly fully-observable, so combining both agents’ partial views (which each is fully-
observable) results in the complete global state. Moreover, the theorem assumes a constant
cost for every message, that is all non-null messages incur the same cost, there are not any
messages that are either more expensive or cheaper to transmit than others. Therefore, the
agents cannot benefit from exchanging information that is a strict subset of their partial
views because we assume that the cost of sending any message is equal. !

Note that the theorem does not hold when different messages may incur different costs.
In this case, sending less information might be cheaper, but equally valuable. For example,
when agents observe their respective x and y coordinates, they may benefit from sending
only one coordinate if it costs less than sending the complete location. Agents may also
benefit from sending functions of their observations if this incurs a smaller cost. For example,
agents may benefit from exchanging information about the Manhattan distance between
their current location and some mutually-known location.

In general, it seems reasonable to introduce a language of communication to reduce
complexity, but as the theorem shows, this cannot guarantee optimality when the language
is comprised of messages different from the agents’ observations. Messages different from
observations may be exchanged to approximate the optimal decentralized solution at a lower
complexity. Examples of such messages include: 1) commitments, which are constraints on
the future behavior of the message sender, 2) instructions, which are constraints on the fu-
ture behavior of the message hearer, 3) feedback which is an encouraging or punishing signal
that is sent to another agent. The study of Dec-POMDP-Com problems with languages of
communication different from observations is left for future work. Similarly, certain proto-
cols of communication can restrict the optimal value of the policy of communication but
may be easier to implement.

Moreover, the next lemma shows that an optimal policy of communication does not
need to send sequences of observations, but it will instruct the agent to transmit its current
observation or the null message.

Lemma 9 Given a Dec-MDP-Com with independent transitions and observations, there is
an optimal policy of communication such that whenever a non-null message is sent, it must
be the agent’s last observation.

Proof. Since the Dec-MDP-Com is by definition jointly fully-observable and it has in-
dependent transitions and observations, then the Dec-MDP-Com is locally fully-observable

27

(see Lemma 1). Lemma 2 showed that the current locally fully-observable partial view is
a sufficient statistic. Therefore, sending a non-null message that is an observation different
from the last one cannot provide more information about the current state of the process
than the last observation does. !

Since the current global state becomes fully observable each time that the agents com-
municate, all the necessary information is stored in the synchronized state s; the agents do
not need to remember all the messages received so far when the Dec-MDP has independent
observations and transitions. Thus, the local policies of action and communication for such
a Dec-MDP-Com can be formalized as follows:

Corollary 7 An optimal local policy of action for this problem, δA, can be represented as
a mapping from synchronized states and current partial views to actions.

δA : S × Si → Ai

Similarly, an optimal local policy of communication δΣ can be represented as a mapping
from synchronized states and current partial views to two possible messages: either the
current partial view or the null message.

δΣ : S × Si → Si ∪ {εσ}

such that if δΣ(s, si) '= εσ then δΣ(s, si) = si.

Agents need to remember only their current partial view and the last synchronized
information to decide on their next action. This is a primary observation that affects the
complexity of deciding Dec-MDP-Com with independent transitions and observations as
shown in the next lemma.

Lemma 10 Deciding a Dec-MDP-Com with independent transitions and observations is in
NP.

Proof. Following Corollary 7, each agent’s policy is of size polynomial in |S|, and the
number of possible policies is 2|S|2 × |A||S|2. In the worst case, a brute force algorithm
can go through all the possible policies for agent 1 and for each one of them compute the
optimal policy for agent 2. Agent 2 builds its belief-state MDP, where each node is the
agent’s belief that the global state is a state s. There is an edge for any possible action
and message that the agents can choose. Agent 2 can choose any action a2 ∈ A2 and it can
either send a null message, or a message with its last observation (s2). For any possible
policy of action and communication of agent 1, agent 2 can build such a belief-state MDP
and solve it. This can also be done in time polynomial in the number of the belief-states.
Whenever an agent sends a non-null message, then the belief-state MDP has a transition to
a state that is fully observable with probability one. In any case, each agent needs only to
remember its last current partial view, so the complexity of solving a Dec-MDP-Com with
independent observations and transitions is in the NP class. !

We have seen so far that if the Dec-POMDP induces single-agent MDPs then the com-
plexity drops to polynomial. In general, this is not the case. Assuming a Dec-MDP with
independent transitions and observations results in a clear decomposition of the global states

28

set into two sets S1 and S2 and in a well-defined decomposition of the transition probability
P into P1 and P2. If the observations are independent then O has a well-defined decompo-
sition into O1 and O2. Each agent i has a set of actions Ai. Nevertheless, the problem of
decomposing the global reward function is not trivial. For the set of problems already shown
to belong to the P class, we can talk about the natural decomposition of the problem into
single-agent local problems. In general, decomposing a decentralized process into single-
agent processes is not a trivial task. The next section shows an approximation scheme to
solve a Dec-MDP-Com by implementing a policy of communication and decomposing the
decentralized problem into single-agent problems in-between communications.

6. Mechanism Design for Communication

We introduce the notion of mechanisms for communication as a practical approach for
approximating the optimal joint policy for decentralized control with direct communica-
tion. We borrow from game theory and economics the notion of mechanism design (Moore,
1992). Mechanism design was originally studied in Game Theory to design games that yield
outcomes with certain characteristics. Later, research in Computer Science has looked at
adapting this approach to achieve social coordination and optimization of social welfare in
distributed systems. We are interested in mechanisms that result in near-term behaviors
that produce good approximations to the optimal control of a decentralized cooperative
system.

Mechanism design or implementation theory is studied in Game Theory (Osborne &
Rubinstein, 1994) in order to find rules for a game with certain characteristics. The players
in this game, have each a preference function over the outcomes of the game. Given a
choice rule from profiles of preferences to a subset of feasible outcomes, the question is
whether a game can implement this choice rule in a such a way that a certain solution
concept is attained. The players are self-interested and therefore information about their
own preferences is kept private. A designer of the game looks for a mechanism that will
produce the desired outcome (e.g., a Nash equilibrium) when the players reveal some part
of their information as input to the designer. An algorithmic view to mechanism design is
found in (Nisan & Ronen, 1999). The mechanism designer sets the algorithm for interaction
among the agents and a payment structure that motivates the agents to participate in the
interaction. This literature is concerned with agents that are self-interested and may hold
privately known information about their preferences. We are interested in cooperative-
systems.

In order to reduce the complexity of solving optimally the general decentralized con-
trol problem, we propose to design mechanisms for decentralizing the control, allowing the
agents to synchronize their partial views from time to time through communication. That
is, a mechanism reduces the optimization problem to two decision problems: 1) when to
communicate and 2) what actions to choose between these communications. The local poli-
cies of action will be the solutions to each single-agent problem, induced by the mechanism.
The local policy of communication will be obtained at the meta-level of control: i.e., the
agents decide when to communicate and synchronize their partial views, once they know
their policies of control. These mechanisms enable the agents to operate separately for
certain periods of time. The question, then, is how to design mechanisms that will approx-

29

imate best the optimal joint policy of the decentralized problem. Notice that following our
approach, each time that the agents apply the mechanism, they are faced with a problem
to solve. In the economic approach the mechanism itself solves the problem.

Our Dec-POMDP-Com framework and mechanisms are general enough to capture mod-
els with discounted infinite horizon where the agents’ objective is to maximize their joint re-
ward. It can also capture scenarios with goal-oriented agents. When designing mechanisms
for communication, we should also consider the relation between temporary goals adopted
by each agent or the short-term accumulated rewards and the global goal or optimization
function of the system. The goal-oriented Dec-POMDPs with possible information sharing
are a special and difficult case. In these problems, a mechanism can serve as a method to
impose local goal-states on the agents that are adopted from the global goal-states.

A decentralizing control mechanism (DCM) is a function from a decentralized process to
two10 single-agent problems. In the general case, the solution to each single-agent problem
can be represented by a finite-state controller. The finite-state controller’s transitions are
over the agents’ observations. In such case, the problem of finding a mechanism is not only
how to decompose the joint reward functions into two local reward functions, but it also
includes the problem of decomposing the set of global states into two sets of states, and
the transition probability into two local transition probabilities on these local states. We
represent the general mapping as follows:

DCM :< S,A1, A2, Σ, CΣ, P,R, Ω1, Ω2, O >→ [(SA1 , A1, PA1 , ΩA1, R1), (SA2 , A2, PA2 , ΩA2 , R2)]

In this paper, we restrict ourselves to single-agent problems that are represented by a
Markov Decision Process. A Dec-POMDP-Com can be decomposed into two single-agent
MDPs when it is jointly fully-observable. Assuming that the states S can be decomposed
into two sets S1 and S2 when the transitions and observations are independent results in
SA1 = S1 = ΩA1, SA2 = S2 = ΩA2, PA1 = P1 and PA2 = P2. In the simplest case, the
Dec-MDP-Com is reward independent where R1 and R2 are clearly summed up to output
R. In the general case, the Dec-MDP-Com is not reward independent, and R is given by
a function of the local rewards that may add in a non-additive way (e.g., sub-additive or
super-additive) that depends on both agents doing complementary or redundant actions.

The cost of communication CΣ may include, in addition to the actual cost incurred by
the communication, the cost resulting from the complexity of computing the decomposition
(i.e., by applying the mechanism) as well as the cost resulting from the complexity of
computing the agents’ local policies.

The mechanism is applied each time the agents exchange information and thus, obtain
full observability of the global state (we assume that the agents have full observability of the
initial state s0). Therefore, different approximations can be obtained for different policies
of communication. Since we assume that the policy of communication of each agent is at
the meta-level of control, any agent may initiate communication while solving its assigned
local problem. These policies of communication trade-off the cost of communication with
the value of the information obtained.

Figure 5 shows how both policies of action and communication are computed and ex-
ecuted given a mechanism for communication DCM . The optimal policy of action, δA∗

i ,
10. In general, a mechanism can be applied to systems with n agents, in which case the decomposition of

the Dec-POMDP-Com will be into n single-agent problems.

30

Off-line
SolveDec(Dec-MDP-Com,Agenti ,DCM){

δΣ
i ← SolveComm(P,R, Σ, CΣ,DCM)

}

On-line
Execute(Dec-MDP-Com,DCM){

Do{
MDPi = DCM(Dec-MDP-Com)
δA∗
i ← Solve(MDPi)

While (δΣ
i = εσ){

Execute δA∗
i

}
Communicate si

Until Done
}

Figure 5: Mechanism design for communication-based control of decentralized cooperative
processes

is found by solving the MDP induced by the mechanism. This computation considers the
local reward function Ri (induced by the mechanism and the resulting single-agent prob-
lem). SolveComm is a function that computes the policy of communication δΣ

i (either an
approximation or an optimal policy). The communication policy is computed based on the
mechanism and the model of the decentralized problem, evaluated with the joint reward
of the system. The mechanism is applied each time the agents communicate, allowing the
agents to compute each its optimal policy of action that will be executed until the next time
the agents’ policies of communication instruct them to exchange information. In Sections 6.3
and 6.4, we study two algorithms for computing the policy of communication assuming a
mechanism is given: one algorithm is based on a myopic-greedy approach and the other
finds the optimal communication policy for a special class of monotonic Dec-MDPs.

6.1 Mechanism Characteristics

Following the economic approach, a good mechanism should have the following character-
istics: strategy-proof , efficient and budget-balanced (Kfir-Dahav, Monderer, & Tenenholtz,
2000). A mechanism is strategy-proof if the agents are motivated to participate in it and
will reveal their true preferences. A mechanism is efficient if its output state maximizes the
utility of the system (i.e., the social-welfare is optimized taking into account the individ-
ual selfish utilities of the agents). A mechanism is budget-balanced if the total monetary
transfer from the agents to the center (the system designer) is non-negative.

In our case, we are concerned with the design of mechanisms for communication in
cooperative decentralized systems. Thus, the characterization of mechanisms is different.

31

Intuitively, agents exchange information to synchronize their knowledge and obtain full
observability of the global state. Since communication has a cost associated with it, agents
could only be synchronized from time to time. In between these periods agents work in a
local manner on problems set by a mechanism such that eventually the agents approximate
the actual global objective. Each local solution is computed optimally, and the policy of
communication is an approximate or an optimal solution given a mechanism. In other
words, the mechanism for communication is a means to interpret messages received and
translate them into near-term problems that can be optimally solved locally.

A complete solution to a decentralized control problem comprises a mechanism (includ-
ing the agents’ optimal local policies of actions that solve the single-agent problems induced
by the mechanism) and the policy of communication. In this section, we characterize the
possible mechanisms for communication.

• Stationary — A mechanism is stationary if applying it on any two states that differ
only in their time stamp, results always in the same decomposition of sub-problems.

• Computational complexity — The computation of the DCM mapping should be
practical in the sense that the two single-agent problems will have complexity that is
lower than the complexity of the decentralized problem with communication at free
cost. There is a trade-off between the complexity of computing a mechanism and the
global reward of the system. There may not be a simple way to split the Dec-POMDP
into two separate processes. The whole motivation behind this approach is based on
the idea that the mechanism itself has low computational complexity. In this paper,
we assume that the mechanism can be implemented in constant time.

• One-Pass — A mechanism is, in general, a way to decompose one problem into
two local problems. If this decomposition is ambiguous then the mechanism is not
a one-pass mechanism. A one-pass mechanism does not require from the agents any
additional information to fully determine their local MDPs, once information is ex-
changed and consequently the mechanism is applied. For example, if each resulting
MDP has a single local goal, then the mechanism is indeed one-pass. Otherwise,
agents may need to negotiate over which MDPs they should solve.

• Complete — If the Dec-POMDP-Com has a set of goal-states, then a mechanism
is complete if there exists a communication policy such that it guarantees that the
agents reach one of these goals whenever it is possible.

• Efficient — A mechanism DCM1 is more efficient than another mechanism DCM2 if
the global reward attained by DCM1 with some policy of communication is larger than
the global reward attained by DCM2 with any communication policy. A mechanism
is optimal for a certain problem if it is at least as efficient as any other mechanism.

In the next section, we present more details about the meeting scenario that we studied
to exemplify the practical approach to approximating the optimal solution of a decentralized
cooperative process. In particular, we show how a mechanism is applied to that example.
In this paper, we identify sufficient conditions under which an optimal mechanism exist
in goal-oriented Dec-MDPs, when no information sharing is possible. In Sections 6.3 and

32

6.4, we present tractable (polynomial) algorithms that are aimed at approximating goal-
oriented Dec-MDPs when direct communication is indeed feasible. Lemma 10 showed that
the optimal solution for these problems is in NP.

6.2 Meeting under Uncertainty Example

We examine in more detail the Meeting under Uncertainty example used previously to
illustrate our definitions and results so far. We consider the case that is modeled by a
goal-oriented Dec-MDP-Com involving two agents that have to meet at some location as
early as possible. The environment is represented by a 2D grid with discrete locations.
The observations and the transitions are independent. The set of control actions includes
moving North, South, East and West, and staying at the same location. The agents can
initiate direct communication. Each agent’s partial view (which is locally fully-observable)
comprises the agent’s location coordinates. There is uncertainty regarding the outcomes
of the agents’ actions. That is, with probability Pi, agent i arrives at the desired location
after having taken a move action, but with probability 1−Pi the agent remains at the same
location. Due to this uncertainty in the effects of the agents’ actions, it is not clear that
setting a predetermined meeting point to which the agents will optimally move is the best
strategy for designing these agents. Agents may be able to meet faster if they change their
meeting place after realizing their actual locations. This can be achieved by exchanging
information on the locations of the agents, that otherwise are not observable.

Adding direct communication to this setting allows the agents to attain full observability
of the global state of the system. Each time the agents exchange information, a mechanism
is applied to the decentralized process resulting in two single-agent goal-oriented MDPs
that can be solved optimally. We have implemented the mechanism that leads the agents to
adopt a single local goal: reach the location in the middle of the shortest Manhattan path
between the agents’ locations (this distance is revealed when information was exchanged).
This mechanism is stationary, has low computational complexity (i.e., O(1) since each agent
computes the location in the middle of the Manhattan path with the information acquired
by communication), and it is a one-pass mechanism. Once this goal location is determined,
each agent can solve its own MDP and reach that location. Section 6.3 presents a myopic-
greedy policy of communication for which this mechanism is complete, each agent indeed
can reach its local goal.

Intuitively, it is desirable for a mechanism to set a meeting place in the middle of the
shortest Manhattan path that connects the two agents because in the absence of commu-
nication, the cost to meet at that point is minimal. This can be shown by computing the
joint expected time to meet, Θnc, for any pair of possible distances between the two agents
and any location in the grid, when no communication is possible. The minimal value is
attained when these distances are equal. To simplify the exposition we use a function that
takes advantage of the specific characteristics of the example. In Section 6.3, we return to
the notation of the general case. The notation is as follows: agent 1 is at distance d1 from
the meeting location, agent 2 is at distance d2 from that location, the system incurs a cost
of one at each time period if the agents have not met yet (i.e., this cost is the negative
reward R(s, a1, a2, s′) attained from moving from state s to state s′ where s′ occurs at one
time unit later than s) and P is the transition probability of the Dec-MDP-Com. If both

33

agents are at the meeting location, the joint expected time to meet is zero, Θnc(0, 0) = 0.
If only agent 2 is at the meeting location, but agent 1 has not reached that location yet,
then the joint expected time to meet is given by

Θnc(d1, 0) = P1(−1 + Θnc(d1−1, 0)) + (1−P1)(−1 + Θnc(d1, 0))

i.e., with probability P1 agent 1 succeeds in decreasing its distance to the meeting location
by one, and with probability 1 − P1 it fails and remains at the same location. Recursively,
we can compute the remaining joint expected time to meet with the updated parameters.
Similarly for agent 2: Θnc(0, d2) = P2(−1 + Θnc(0, d2−1)) + (1−P2)(−1 + Θnc(0, d2)). If
none of the agents has reached the meeting place yet, then there are four different cases in
which either both, only one, or none succeeded in moving in the right direction and either
or not decreased their distances to the meeting location respectively:

Θnc(d1, d2) = P1P2(−1 + Θnc(d1−1, d2−1)) + P1(1−P2)(−1 + Θnc(d1−1, d2))+

+(1−P1)P2(−1 + Θnc(d1, d2−1)) + (1−P1)(1−P2)(−1 + Θnc(d1, d2))

We computed Θnc(d1, d2) for all possible distances d1 and d2 in a 2D grid of size 10×10.
the minimal expected time to meet was obtained when d1 = d2 = 9 and the expected cost
was −12.16.

In summary, approximating the optimal solution to the Meeting under Uncertainty
example when direct communication is possible and the mechanism applied is the one de-
scribed above will unfold as follows: At time t0, the initial state of the system s0 is fully
observable by both agents. The agents set a meeting point in the middle of a Manhat-
tan path that connects them. Denote by d0 the distance between the agents at t0 and
gt0 = (g1

t0 , g
2
t0) the goal-state set at t0. Each one of the agents can move optimally towards

its corresponding component of gt0 following the optimal policy of action each can compute.
Each agent moves independently in the environment because the transitions and observa-
tions are independent. Each time t, when the policy of communication instructs an agent
to initiate exchange of information, the current Manhattan distance between the agents dt

is revealed to both. Then, the mechanism is applied, setting a possibly new goal-state gt,
which decomposes into two components one for each agent. This goal-state gt is in the
middle of the Manhattan path that connects the agents with length dt revealed through
communication.

In the following two sections, we present two approaches to computing the policy of
communication δΣ assuming a mechanism is given. One approach is the myopic-greedy
approach and the other finds the optimal δΣ for monotonic Dec-MDPs that will be defined
in the corresponding section. We first present these approaches in general (assuming some
mechanism is given) and then present empirical results obtained for the Meeting under
Uncertainty scenario and for the mechanism described in this section.

6.3 A Myopic-greedy Approach to Direct Communication

We consider a goal-oriented Dec-POMDP, which is jointly fully-observable and whose tran-
sitions and observations are independent. The global reward function is not constrained
in any way. The first approximation that we present to the optimal decentralized control

34

problem with direct communication is myopic-greedy, i.e., each time an agent makes a de-
cision, it chooses the action with maximum expected accumulated reward assuming that
agents are only able to communicate once along the whole process. We denote the optimal
policies induced by the mechanism applied δA∗

1 and δA∗
2 respectively. The complexity of

computing these policies for action is in the P class (dynamic programming).
The expected global reward of the system, given that the agents do not communicate at

all and each follows its corresponding optimal policy δA∗
i is given by the value of the initial

state s0: Θδ
nc(s0, δA∗

1 , δA∗
2). This value can be computed by summing over all possible next

states and computing the probability of each agent reaching it, the reward obtained then
and the recursive value computed for the next states.

Θδ
nc(s

0, δA∗
1 , δA∗

2) = Σ(s′1,s′2)
P1(s′1|s0

1, δ
A∗
1 (s0

1))P2(s′2|s0
2, δ

A∗
2 (s0

2))

(R(s′|s0, δA∗
1 (s0

1), δ
A∗
2 (s0

2)) + Θδ
nc(s

′, δA∗
1 , δA∗

2))

At each state, each agent decides whether to communicate its partial view or not based
on whether the expected cost from following the policies of action, and having communicated
is larger or smaller than the expected cost from following these policies of action and not
having communicated. We denote the expected cost of the system computed by agent i,
when the the last synchronized state is s0, and when the agents communicate once at state
s and continue without any communication, Θc(s0, si, δA∗

1 , δA∗
2):

Θc(s0, s1, δ
A∗
1 , δA∗

2) = Σs2P (s2|s0
2, δ

A
2)

(R((s1, s2)|s0, δA∗
1 (s0

1), δ
A∗
2 (s0

2)) + Θδ
nc((s1, s2), δA∗

1 , δA∗
2) + CΣ ∗ Flag)

Flag is zero if the agents reached the global goal-state before they reached state s. We
denote by t(s) the time stamp in state s. P (s|, s0, δA

1 , δA
2) is the probability of reaching

state s from state s0, following the given policies of action.

P (s′|s, δA
1 , δA

2) =

1 if s = s′

P (s′|s, δA
1 (s1), δA

2 (s2)) if t(s′) = t(s) + 1
0 if t(s′) < t(s) + 1
Σs′′P (s′|s′′

, δA
1 , δA

2)P (s′′ |s, δA
1 , δA

2) else

Similarly, P1 (P2) can be defined for the probability of reaching s′1 (s′2), given agent 1 (2)’s
current partial view s1 (s2) and its policy of action δA

1 (δA
2).

The accumulated reward attained while the agents move from state s0 to state s is given
as follows:

R(s0, δA
1 , δA

2 , s) =

R(s0, δA
1 (s1), δA

2 (s2), s) if t(s) = t(s0) + 1
Σs′′P (s′′ |δA

1 , δA
2 , s0)P (s|δA

1 , δA
2 , s

′′)
(R(s0, δA

1 , δA
2 , s

′′) + R(s′′
, δA

1 (s′′
1), δA

2 (s′′
2), s)) if t(s) > t(s0) + 1

Lemma 11 Deciding a Dec-MDP-Com with the myopic-greedy approach to direct commu-
nication is in the P class.

35

Proof. Each time the agreed-upon mechanism is applied each agent faces a single-agent
MDP, which can be solved optimally in polynomial time. The complexity of finding the
communication policy is the same as dynamic programming (based on the formulas above),
therefore computing the policy of communication is also in P. There are |S| states for which
Θδ

nc and Θc need to be computed, and each one of these formulas can be solved in time
polynomial in |S|. !

Lemma 12 Θδ
nc(s0, δA∗

1 , δA∗
2) ≤ Θc(s0, si, δA∗

1 , δA∗
2)

Proof. Θδ
nc is the expected joint cost (negative) incurred by the joint policy assuming that

the agents set a meeting location at time 0, and they do not communicate until they meet
at such location. If the world were deterministic then the value of a joint policy computed
by Θδ

nc will be equal to the value of a joint policy computed by Θc. In our case, there exists
uncertainty in the outcome of the actions, i.e., the transition probability of the Dec-MDP
can be larger than zero. Myopic-greedy agents may synchronize their information from
time to time. Thus, they can correct their meeting location based on their actual locations
revealed by the communication. When the agents do not communicate they do not have
the chance to correct their policy with respect to another meeting location that may be
closer to them, had they known their actual current locations. Therefore, the value of a
joint policy computed with the myopic-greedy approach is at least as large as the value of
the joint policy computed without any communication. !

6.3.1 Experiments - Myopic-greedy Approach

We present empirical results obtained when the myopic-greedy approach was implemented
for the Meeting under Uncertainty example (explained in Section 6.2)11 The messages in
the language of communication Σ are the agents’ own observations, i.e., their location
coordinates. In all the experiments run, we assumed that P1 = P2 and we refer to these
uncertainties as Pu. The mechanism that is applied whenever the agents communicate at
time t results in each agent adopting a local goal-state, that is set at the location in the
middle of the Manhattan path connecting the agents (the Manhattan distance between the
agents is revealed at time t). We compare the joint utility attained by the system in the
following four different scenarios:

1. No-Communication — The meeting point is fixed at time t0 and remains fixed along
the simulation. It is located in the middle of the Manhattan path that connects
between the agents, known at time t0. Each agent follows its optimal policy of action
without communication to this location.

2. Ideal — This case assumes that CΣ is zero, and that the agents communicate at
every time step, this is the highest global utility that both agents can attain. Notice,
though, that this is not the optimal solution we are looking for, because we do assume
that communication is not free. Nevertheless, the difference in the utility obtained in
these first two cases shed light on the trade-off that can be achieved by implementing
non-free communication policies.

11. These results appeared also in (Goldman & Zilberstein, 2003).

36

3. Communicate SubGoals — A heuristic solution to the problem, which assumes that
the agents have a notion of sub-goals. They notify each other when these sub-goals
are achieved, eventually leading the agents to meet.

4. Myopic-greedy Approach — Agents act myopically optimizing the choice of when to
send a message, assuming no additional communication is possible. For each possible
distance between the agents, a policy of communication is computed such that it
stipulates when it is the best time to send that message. By iterating on this policy
agents are able to communicate more than once and thus approximate the optimal
solution to the decentralized control with direct communication problem. The agents
continue moving until they meet.

The solution to the No-Communication case is similar to the single global goal-oriented
Dec-MDP case we analyzed in Lemma 5. This case can be solved analytically for the Meeting
under Uncertainty example, by computing the expected cost12 Θnc(d1, d2) incurred by two
agents located at distances d1 and d2 respectively from the goal-state at time t0 as computed
in Section 6.2.

In the Ideal case, a set of 1000 experiments was run in which the cost of communication
was assumed to be zero. Agents communicate their locations at every time instance, and
update the location of the meeting place accordingly. Agents move optimally to the last
synchronized meeting location.

For the third case tested (Communicate SubGoals) a sub-goal was defined by the cells
of the grid with distance equal to p ∗ d/2 from the fixed current meeting point. p is a
parameter of the problem that determines the radius of the circle that will be considered a
sub-goal. Each time an agent reaches a cell inside the area defined as a sub-goal, it initiates
exchange of information (therefore, p induces the communication strategy). d expresses the
Manhattan distance between the two agents, this value is accurate only when the agents
synchronize their knowledge. That is at time t0 the agents determine the first sub-goal
as the area bounded by a radius of p ∗ d0/2 and, which center is located at d0/2 from
each one of the agents. Each time t that the agents synchronize their information through
communication, a new sub-goal is determined at p∗dt/2. Figure 6 shows how new sub-goals
are set when the agents transmit their actual location once they reached a sub-goal area.
The meeting point is dynamically set at the center of the sub-goal area.

Experiments were run for the Communicate SubGoals case for different uncertainty
values, values of the parameter p and costs of communication. These results show that
agents can obtain higher utility by adjusting the meeting point dynamically rather than
having set one fixed meeting point. Agents can synchronize their knowledge and thus
they can set a new meeting location instead of acting as two independent MDPs that do
not communicate and move towards a fixed meeting point (see Figure 7. Each data point
represents the average over 1000 runs). Nevertheless, for certain values of p, the joint utility
of the agents is actually smaller than the joint utility achieved in the No-Communication
case (2 MDPs in the figure). This points out the need to empirically tune up the parameters
needed in the implemented heuristic, as opposed to a formal approach to approximating
the solution to the problem as is shown in the Myopic-greedy case.
12. Cost and utility are used interchangeably as appropriate meaning cost is minimized and utility is

maximized.

37

A1

A2

A1

A2

Time t A new subgoal is set after agent 2 arrived
at the subgoal set at time t.

Figure 6: Goal decomposition into sub-goal areas.

-21.122

-20.768 -20.808 -20.824
-20.726 -20.758 -20.742

-20.804

-21.132
-21.038

-20.852 -20.8586

-21.0433
-20.9302

-21.0255

-21.26
-21.3405

-21.2-21.15 -21.132 -21.0888

-21.2636

-21.4254

-21.7747

-21.9794

-22.581

-21.3

-21.13

-21.284
-21.3665

-21.5715

-21.9355

-22.308

-22.771

-23.739

-21.582

-22.414

-24

-23.5

-23

-22.5

-22

-21.5

-21

-20.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p ratio

A
vg

. J
oi

nt
 U

til
ity Pu=0.8 Cc=0.0

Pu=0.8 Cc=0.1
Pu=0.8 Cc=0.3
Pu=0.8 Cc=0.5
2 MDPs Pu=0.8

Figure 7: The average joint utility obtained when sub-goals are communicated.

38

In the Myopic-greedy case, we design the agents to optimize the time when a message
will be sent assuming that they can communicate only once. At the off-line planning
stage, the agents compute their expected joint cost, Θc(s0, si, δA∗

1 , δA∗
2) for every possible

synchronized distance that can occur between the two agents (s0) and for every time t
(in each agent’s partial view si, up to some maximal constant). The local policies are the
optimal local policies to the goals adopted after applying the mechanism each time the
agents get synchronized. In the Meeting under Uncertainty scenario we study, Θc is the
expected joint cost from taking control actions during t time steps, communicating at time
t + 1 if the agents have not met so far, and following the optimal policy of control actions
towards the expected goal-state without communicating (at an expected cost of Θnc(d1, d2)
as computed for the No-Communication case). In the case that the agents met before the t
time steps, then the expected cost considers the relevant expected joint cost that the agents
incur until they met, i.e., less than t.

At each time t, each one of the agents knows a meeting location, that is the goal location
computed from the last exchange of information. Consequently, each agent moves optimally
towards this goal-state. In addition, the myopic-greedy policy of communication is found by
computing the earliest time t, for which Θc(d1 +d2, s1, δA∗

1 , δA∗
2) < Θnc(d1, d2), that is, what

is the best time to communicate such that the expected cost is the least. The myopic-greedy
policy of communication is a vector where each entry corresponding to a possible distance
between the agents, specifies the time to communicate.

We found the myopic-greedy communication policies for the Meeting under Uncer-
tainty problem where Pu takes any of the following values: {0.2, 0.4, 0.6, 0.8}, the cost
of taking a control action is Ra = −1.0 and the costs of communicating CΣ tested were
{−0.1,−1.0,−10.0}. The resulting policies of communication are presented in Appendix A.
For the smallest cost tested, it is always beneficial to communicate rather early, no matter
the uncertainty in the environment, and almost no matter what d0 is (the differences in
time are between 2 and 4). For larger costs of communication and a given Pu, the larger the
distance between the agents, the later they will communicate (e.g., when Pu = 0.4,CΣ = −1
and d = 5, agents should communicate at time 4, but if CΣ = −10, they should commu-
nicate at time 9). For a given CΣ, the larger the distance between the agents is, the later
the agents will communicate (e.g., when Pu = 0.4,CΣ = −10 and d = 5, agents should
communicate at time 9, but if d = 12, they should communicate at time 16). The results
from averaging over 1000 runs show that for a given cost CΣ as long as Pu decreases (the
agent is more uncertain about its actions’ outcomes), the agents communicate more times.

In the 1000 experiments run, the agents exchange information about their actual loca-
tions at the best time that was myopically found for d0 (known to both at time t0). After
they communicate, they know the actual distance dt, between them. The agents follow
the same myopic-greedy communication policy to find the next time when they should
communicate if they did not meet. This time is the best time found by the myopic-greedy
algorithm given that the distance between the agents was dt. Iteratively, the agents approx-
imate the optimal solution to the decentralized control problem with direct communication
by following their independent optimal policies of action, and the myopic-greedy policy
for communication. Results obtained from averaging the global utility attained after 1000
experiments show that these myopic-greedy agents can perform better than agents who
communicate sub-goals (that is a more efficient approach than no communicating at all).

39

The results for CΣ = 0.1 are presented in Tables 4 and 5. Additional results obtained for
other costs of communication appear in Appendix B.

Average Joint Utility
Pu No-Comm. Ideal SubGoals13 Myopic-Greedy
0.2 -104.925 -62.872 -64.7399 -63.76
0.4 -51.4522 -37.33 -38.172 -37.338
0.6 -33.4955 -26.444 -27.232 -26.666
0.8 -24.3202 -20.584 -20.852 -20.704

Table 4: CΣ = −0.10,Ra = −1.0.

The Myopic-greedy approach attained utilities statistically significantly greater than
those obtained by the heuristic case when CΣ = −0.1.14 Ideal always attained higher
utilities than Myopic-greedy, but when CΣ = −0.1 and Pu = 0.4 both values were not
significantly different with probability 98%. When CΣ = −1 the utilities attained for the
Myopic-greedy approach when Pu < 0.8 are significantly greater than the results obtained
in the heuristic case and for Pu = 0.8, the heuristic case for the best p was found to be
better than Myopic-greedy (Myopic-greedy obtained -21.3, and the SubGoals with p = 0.1
attained -21.05 (variance=2.18)). The utilities attained by the Myopic-greedy agents, when
CΣ = −10 and Pu in {0.2, 0.4}, were not significantly different from the SubGoals case for
the best p with probabilities 61% and 82%, respectively. However, the heuristic case yielded
smaller costs for the other values of Pu = 0.6, 0.8. One important point to notice is that
these results consider the best p found for the heuristic, but in general a designer may not
know this value. In all the settings tested, Myopic-greedy always attain utilities higher than
the results attained in the SubGoals case with the worst p.

Average Communication Acts Performed
Pu No-Comm. Ideal CΣ = 0 SubGoals Myopic-greedy
0.2 0 31.436 5.4 21.096
0.4 0 18.665 1 11.962
0.6 0 13.426 1 8.323
0.8 0 10.292 1 4.579

Table 5: CΣ = −0.10,Ra = −1.0.

For the same parameters tested so far, experiments were run with two deadlines, T in
{8, 15}. Examples of the communication policies computed when the cost of communication
was set to −10 are presented in Appendix C. In general, the myopic-greedy policy found
may instruct the agent not to communicate if Θnc < Θc, i.e., had the agents communicated,
unnecessary information had been exchanged. On the other hand, this policy may instruct
an agent not to communicate, if given a deadline, the agent is not going to be able to
reach the goal. In the first case, limiting the deadline to be earlier, results in policies of
communication that stipulate that the agent should communicate earlier than in the case

13. The results are presented for the best p, found empirically.
14. Statistical significance has been established with t-test.

40

when no deadlines are added (for large values of d0 with low uncertainties Pu). When no
deadlines are assumed, the agents may benefit from exchanging information later. When a
short deadline is assumed, if the agents have the chance to meet without communication
given a later deadline, they will need to communicate earlier if the time stipulated in the
policy with no deadlines is larger than the deadline. If the deadline is large enough for these
agents to meet, they do not need to communicate at all. For shorter d values if the policy
with no deadline allows the agent to communicate at a time smaller than the deadline the
same policy holds.

In the second case, the agents may not communicate if they may not meet at all by
the stipulated deadline. The empirical results show that by extending the deadline, agents
benefit from communicating at a time that is later than the time found by the myopic-
greedy policy when no deadlines were assumed. Since, in this case there is a chance of not
meeting at all, agents need to wait more time until it becomes beneficial to communicate.

6.4 An Optimal Communication Policy

We characterize the set of monotonic goal-oriented Dec-MDPs for which we provide an
algorithm that finds the optimal policy of communication given a mechanism. First, we
define the rank of a global state to be a function ρ : S → N such that when s is in G,
ρ(s) = 0. For example, the rank can express the expected cost of the optimal policy to
reach the global goal-state.

Definition 13 (Monotonic GO-Dec-MDPs) A goal-oriented Dec-MDP is monotonic
with respect to a given mechanism if there exists a ranking function ρ such that for all
global states s and all global states s′ reachable from s (s′ '= s), following the joint policy
induced by the mechanism, ρ(s′) < ρ(s).

Although the transitions are between states with non-increasing rank, the uncertainty
about the outcomes of the agents’ actions does exist, i.e., the agents’ actions can fail.

Following our approach to decentralized control with mechanisms for communication,
each agent can compute an optimal control policy, δA∗

i , given a local goal-state, induced
by the mechanism. The algorithm presented in this section finds the optimal policy of
communication at the meta-level of control. This policy instructs the agents to synchronize
the information in their partial views at the most beneficial time.

We assume a goal-oriented Dec-MDP with independent transitions and observations and
a finite horizon T (time is discrete). Each agent i can choose an action aj

i , 1≤ j≤m, from
its set of actions Ai. The notation we use in the algorithm is as follows: aj∗

i denotes the
optimal action that agent i chooses given its partial view, its underlying MDPi and δA∗

i .
After successfully performing the optimal control action aj∗

i , agent i moves to a state s′i
that is denoted by aj∗

i (si, 1). aj∗
i (si, 0) represents the resulting state when agent i fails to

perform action aj∗
i . EU i(s, si, t) denotes the expected joint utility of the multi-agent sys-

tem, computed by agent i at time t, when the synchronized global-state is s and agent i’s
partial view is si. The set of global-states are ordered by the rank assumed for monotonic
Dec-MDPs. The states with rank k are represented by Sk (K is the largest rank that a state
can have). For example, if the agents’ goal is to meet, then the state of the Dec-MDP-Com
may be given by the Manhattan distance between the agents, and the goal-state is reached

41

when this distance is zero. The rank is given, then, by the possible Manhattan distances
between the agents given a 2D grid. The algorithm for computing the optimal policy of
communication is based on backward induction. It is shown in Figure 8. EUC and EUNC

are two temporary variables that denote the expected joint utility when agent i decides to
communicate or when it does not. Penalty is the reward obtained when the agents do not
achieve their goal by the time limit of the problem. ΦC(P1, P2, R,CΣ, s0, si, t) computes the
expected joint utility when agent i communicates its partial view si at time t+1, and the
current synchronized global-state is s0. This function computes the possible synchronized
global-states in which the system could be in (given that agent i communicates), the ex-
pected costs incurred to arrive at these states, and the joint expected utility of these new
states. Notice that since we deal with monotonic Dec-MDPs, the ranks of these new states
are at most as high as the rank of the last synchronized state.

Theorem 2 OptCom computes the optimal communication policy for a given monotonic
goal-oriented Dec-MDP-Com with independent transitions and observations and a given
mechanism.

Proof. The correctness proof of the algorithm is given by induction. The induction is
both on the time t that elapses and on the rank k of the global states.

Basis: If the synchronized state that is known by all the agents is a goal-state (Sk = S0)
then all agents are aware of having achieved this global goal-state. Therefore, it is optimal
not to communicate then. It is also optimal not to communicate at time t = T−1. Based
on the Dec-MDP-Com model, the agents decide to communicate at time t, but the actual
communication act occurs at time t+1. If the time limit is T then it is not beneficial to
decide to communicate at time T−1.

We assume that the algorithm OptCom computes the optimal time to communicate for
any state s ∈ Sk for any 0 ≤ k ≤ K ′ (for some K ′ < K, K is the largest rank of a global
state), and for any time 0 ≤ t < T .

By induction on k and t, we prove that the OptCom algorithm presented in Figure 8
finds the optimal time to communicate for any state s ∈ SK ′+1 and time t. Following the
algorithm, when the agent decides whether to communicate or not in state s ∈ SK ′+1, it
compares its utility when it does not communicate (EUNC) with its utility when it does
communicate (EUC). If the agent does not communicate, then it chooses the optimal control
action aj∗

i based on its underlying Markov decision process induced by the given mechanism.
The outcome of this action is given by the transition probability Pi, i.e., with probability
Pi agent i moves to state s′i = aj∗

i (si, 1) and with probability 1 − Pi it moves to a state
s
′′
i = aj∗

i (si, 0). Therefore, EUNC = (1 − Pi)EU i(s, s′′
i , t + 1) + PiEU i(s, s′i, t + 1). Since

we assume that the Dec-MDP is monotonic, we know that s
′′
i 0 si and s′i 0 si, therefore

s
′′
i ∧ s′i ∈ Sk for some k < K ′ + 1. Based on the assumption of the induction, these values

are optimal and have taken into account the optimal decision when to communicate.
The expected utility if the agent decides to communicate is EUC = EU(s′′′

, 0). A
communication act always succeeds because we assume messages are reliable. Time becomes
0 because after communicating the agents become synchronized (thus they are reset). Since
the Dec-MDP is monotonic, s

′′′ 0 s. Therefore, the expected utility of this state at time 0
is known and has been computed optimally. Therefore, the algorithm presented finds the

42

function OptCom(DCM, MDPi, Dec-MDP-Com)
returns the optimal communication policy,

Policy(s, si, t) ← 0 if agent i should not
communicate at time t+1, when s is the last
synchronized state, and si is its current partial view,
otherwise i communicates at the time indicated by Policy().

inputs: DCM is the mechanism for communication.
MDPi is the underlying MDP for agent i
resulting from applying DCM on Dec-MDP-Com.
Dec-MDP-Com=<S,A1, A2, Σ, CΣ, P,R, T >

For each state s ∈ Sk (for k ← 0 to K)
For time t ← T−1 to 0

For each si ∈ Si

if (k = 0) then /*agents reached the global goal-state*/
Policy(s, si, t) ← 0
EU i(s, si, t) ← 0

else if (t = T−1) then /*time is over*/
Policy(s, si, t) ← 0
EU i(s, si, t) ← Penalty/*agents did not reach the global goal-state*/

else if (t = 0) then /*agents are synchronized*/
Policy(s, si, t) ← 0
EU i(s, si, t) ← ComputeEUNC(MDPi, s, si, R, t)

else
EUNC ← ComputeEUNC(MDPi, s, si, R, t)
EUC ← ΦC(P,R,CΣ, s0, si, t)
if (EUNC > EUC) then

Policy(s, si, t) ← 0
EU i(s, si, t) ← EUNC

else /*communicate at t+1*/
Policy(s, si, t) ← t + 1
EU i(s, si, t) ← EUC

return Policy

function ComputeEUNC(MDPi, s, si, R, t)
returns the expected joint utility given that

the agent does not communicate.
inputs: MDPi, underlying MDP for agent i.

s, the last Dec-MDP-Com synchronized state.
si, the current partial view of agent i
R, the Dec-MDP-Com reward function.
t, the current time.

EUSucc ← EU i(s, aj∗
i (si, 1), t + 1)

EUFail ← EU i(s, aj∗
i (si, 0), t + 1)

return (1−Pi)(R + EUFail)+Pi(R + EUSucc)

Figure 8: The OptCom algorithm for monotonic Dec-MDP-Com with independent transi-
tions.

43

optimal policy of communication given a monotonic Dec-MDP with independent transitions.
!

Lemma 13 Deciding a monotonic Dec-MDP-Com with OptCom is in P.

Proof. Each time the agreed-upon mechanism is applied each agent faces a single-agent
MDP, which can be solved optimally in polynomial time. The complexity of finding the
optimal communication policy by running the OptCom algorithm is the same as dynamic
programming, therefore computing the resulting policy of communication is also in P. !

6.4.1 Experiments - Monotonic Goal-oriented Dec-MDPs

The performance of the OptCom algorithm is exemplified on the Meeting under Uncer-
tainty example presented in Section 6.2. We compare here the OptCom results to the
No-Communication, Ideal and Myopic-greedy cases.

The results from experimenting with different communication costs (and averaging over
1000 runs) appear in Table 6 and in Appendix D. The cost of taking a moving action was
set to -1.0. In the Ideal case, CΣ is zero. Note that the setup in this setting of experiments
differs from the setting we studied in Section 6.3.1 because here the agents are penalized if
they do not meet by the time limit.15

Average Joint Utility
P No-Comm. Ideal Myopic-greedy OptCom
0.2 -71.138 -62.968 -62.834 -63.226
0.4 -42.112 -37.372 -37.778 -37.734
0.6 -29.078 -26.518 -26.782 -26.642
0.8 -22.344 -20.52 -20.714 -20.574

Table 6: CΣ = −0.10.

The results obtained by OptCom in Table 6 for P = 0.2 are not significantly different
neither from Ideal (with probability 65%) nor from Myopic-greedy (with probability 48%).
Table 7 shows the average number of messages exchanged in each one of the tested cases
when the cost of communication was −0.1.

Average Communication Acts Performed
P No-Comm. Ideal Myopic-greedy OptCom
0.2 0 31.484 20.778 30.613
0.4 0 18.686 12.171 17.867
0.6 0 13.259 8.252 12.321
0.8 0 10.26 4.588 9.287

Table 7: CΣ = −0.10.

15. Although we do have a program that can precisely compute the solution for the No-Communication
case, the results presented were obtained from averaging over 1000 empirical tests, which result less time
consuming than the analytical solution for the finite-horizon case.

44

7. Discussion

Decentralized control problems are very intriguing from a theoretical point of view as well
as from a practical point of view. From a theoretical perspective, decentralized partially-
observable Markov decision processes serve as a formal framework to study the foundations
of multi-agent systems. A more solid formal footing is given to multi-agent systems’ re-
search (e.g., (Guestrin & Gordon, 2002), (Peshkin et al., 2000), (Pynadath & Tambe, 2002),
(Claus & Boutilier, 1998)). Our study focuses on computing off-line decentralized policies
of control for cooperative systems. The first part of this paper analyzes the complexity of
solving these problems optimally for certain classes of decentralized control that are for-
mally identified. We found critical transitions in complexity between classes of problems
that range from NEXP to P. In the second part of the paper, we extend the decentralized
process with the possibility of direct communication among the agents that incurs a certain
cost. Communication allows the agents to synchronize their knowledge and thus eliminate
the uncertainty about the global state of the world (at least at certain times).

From a practical perspective, decentralized control problems appear frequently in real-
world applications where the decision-makers may be robots placed at separate geographical
locations or computational processes distributed in information space. While the classes
of Dec-POMDPs that we identify constrain the problems we can solve, the different cate-
gories seem to match many practical applications. Independent transitions and observations
arise in examples such as multi-agent mapping, flexible manufacturing and multiple-rovers
working on data-collection in uncertain terrains, when the agents’ actions are not strongly
coupled. Goal-oriented behavior is relevant in these examples when the agents’ behavior
is aimed at reaching specific states. Monotonic goal-oriented Dec-MDPs are also very in-
teresting, and include many real-world applications such as: information-gathering, which
are monotonic because information is always being added to what has previously been
acquired. Another example involves a system that allocates tasks to agents, which is mono-
tonic because previously completed tasks cannot be undone. Similarly, robots involved in a
manufacturing process can be represented by a monotonic Dec-MDP as long as their actions
cannot break any previously manufactured part in the production line. Actions may still
fail, for example a robot may fail in assembling some hardware, but in such a case it remains
in the same state that it was before it started to perform the action.

We analyzed the notion of information sharing in decentralized systems by distinguishing
among three possible sources for information: indirect communication attained by agents
observing dependent observations, direct communication achieved by adding an external
language of communication, and common uncontrollable features, which are not affected
by any of the agents’ actions but can be observed by all the agents in the system. The
typical distinction previously made in the literature is between systems with no communi-
cation and systems with a predefined language of communication, which typically does not
incur any costs, overlooking the fact that dependent observations offer yet another form of
communication (Pynadath & Tambe, 2002; Decker & Lesser, 1992; Grosz & Kraus, 1996;
Durfee, 1988; Roth, Vail, & Veloso, 2003). Xuan et al.(Xuan, Lesser, & Zilberstein, 2001)
address the problem of combining communication acts into the decision problem of a group
of cooperative agents. Their framework is similar to ours but their approach is heuristic.
We proved that the language of the observations is sufficient in order to reach an optimal

45

decentralized solution (assuming all the messages incur the same cost). This leads to the
understanding that any other type of communication can serve as an approximation to the
optimal solution, which may be easier to obtain. We study the trade-off between the cost
of sharing information (in the agent’s partial views) and the value of this information and
its effect on the joint utility of the system.

In addition to presenting a formal framework of decentralized control, we introduced
tractable algorithms for solving optimally certain classes of Dec-MDPs. The first algorithm
to solve optimally decentralized MDPs with a certain reward structure appeared in (Becker
et al., 2003). Here, we add two optimal algorithms aimed at goal-oriented decentralized
control. We also suggested mechanism design as a tool to approximate optimal intractable
decentralized solutions. Based on such mechanisms, we study two approximation algorithms
to compute the policy of communication when direct communication is feasible: the myopic-
greedy approach, and the optimal approach for monotonic Dec-MDPs. Both approximations
have polynomial complexity.

The contribution of this paper is in framing and categorizing fundamental issues in
decentralized control of cooperative systems. In particular, we characterize and study the
complexity of goal-oriented behavior, jointly fully-observable processes and independent
transitions and observations, which result in interesting and practical classes of control
problems. We also study three sources for information sharing in such decentralized systems
and provide algorithms that compute optimal solutions as well as tractable approximations
for these problems. Future research will look at algorithms for decentralized control with
direct communication achieved by implementing languages of communication different from
the language of observations. We will study more general models of communication that
allow exchanging partial information and handle unreliable communication.

Acknowledgments

The authors wish to thank Dan Bernstein for interesting discussions on the complexity of
Dec-MDPs. This work was supported in part by the National Science Foundation under
grants IIS-9907331, by the Air Force Office of Scientific Research under grant F49620-03-
1-0090 and by NASA under grant NCC 2-1311. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not reflect the
views of the NSF, AFOSR or NASA.

46

Appendix A. Policies of Communication - Myopic-greedy Approach

Tables 8, 9, and 10 present the complete policies of communication for agents acting in
the Meeting under Uncertainty scenario (see Section 6.2). Each row corresponds to a
different tested value for the transition probability of the process. Each column is a possible
synchronized state given by the Manhattan distance between the agents moving in a 2D
grid of size 10x10. Given a certain value for Pu and a certain distance, the entry in the table
should be interpreted as the time when an agent should communicate its position. Each
time that the agents reveal their actual distance, they can each check this table to figure
out when is the next time to communicate. Time is reset to zero each time that the agents
exchange information.

d0=distance between agents when last synchronized, g located at d0/2
Pu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
0.4 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
0.6 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
0.8 2 2 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4

Table 8: Myopic-greedy policy of communication, where CΣ = −0.1,Ra = −1.0.

d0=distance between agents when last synchronized, g located at d0/2
Pu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2 3 4 3 5 3 6 4 7 4 7 5 7 5 8 5 8 6 9
0.4 2 3 3 4 4 5 4 6 5 7 5 7 6 8 6 8 7 9
0.6 2 2 3 4 4 5 5 6 6 7 6 8 7 8 7 9 8 10
0.8 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

Table 9: Myopic-greedy policy of communication, where CΣ = −1.0,Ra = −1.0.

d0=distance between agents when last synchronized, g located at d0/2
Pu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2 9 9 11 13 14 17 18 20 21 23 25 27 28 30 32 34 35 37
0.4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0.6 4 4 5 6 6 7 8 9 9 10 11 12 12 13 14 15 15 16
0.8 3 3 4 4 5 5 6 7 7 8 8 9 10 10 11 11 12 12

Table 10: Myopic-greedy policy of communication, where CΣ = −10.0,Ra = −1.0.

47

Appendix B. The Average Performance of the Myopic-greedy Approach

Tables 11 and 13 present the results obtained after running 1000 experiments when the cost
of communication was zero, when sub-goals could be communicated and when the myopic-
greedy approach was taken to compute the policy of communication. The analytical results
computed following the formulas in Section 6.2 are presented when no communication was
allowed (a meeting point was set in the middle of the grid at time 0). Tables 12 and 14
present the average number of communication acts performed in each one of these cases.

Average Joint Utility
Pu No-Comm. Ideal CΣ = 0 Comm. SubGoals – Best p Myopic-greedy
0.2 -104.925 -62.872 -65.906 0.3 -63.84
0.4 -51.4522 -37.33 -39.558 0.2 -37.774
0.6 -33.4955 -26.444 -27.996 0.2 -27.156
0.8 -24.3202 -20.584 -21.05 0.1 -21.3

Table 11: CΣ = −1.0 in SubGoals and Myopic-greedy,Ra = −1.0.

Average Communication Acts Performed
Pu No-Comm. Ideal CΣ = 0 Comm. SubGoals Myopic-greedy
0.2 0 31.436 1.194 6.717
0.4 0 18.665 1 3.904
0.6 0 13.426 1 2.036
0.8 0 10.292 0 1.296

Table 12: CΣ = −1.0 in Myopic-greedy and SubGoals,Ra = −1.0.

Average Joint Utility
Pu No-Comm. Ideal CΣ = 0 Comm. SubGoals – Best p Myopic-greedy
0.2 -104.925 -62.872 -69.286 0.1 -68.948
0.4 -51.4522 -37.33 -40.516 0.1 -40.594
0.6 -33.4955 -26.444 -28.192 0.1 -28.908
0.8 -24.3202 -20.584 -21.118 0.1 -22.166

Table 13: CΣ = −10.0 in SubGoals and Myopic-greedy,Ra = −1.0.

48

Average Communication Acts Performed
Pu No-Comm. Ideal CΣ = 0 Comm. SubGoals Myopic-greedy
0.2 0 31.436 0 0.416
0.4 0 18.665 0 0.417
0.6 0 13.426 0 0.338
0.8 0 10.292 0 0.329

Table 14: CΣ = −10.0 in Myopic-greedy and SubGoals,Ra = −1.0.

Appendix C. Myopic-greedy Policies of Communication with Deadlines

Table 15 presents the policy of communication computed following the myopic-greedy ap-
proach when the agents continue acting until they meet (no deadlines). Tables 16 and 17
show how this policy changes if different deadlines are added to the system with correspond-
ing penalties for not having met by these deadlines.

d0=distance between agents when last synchronized, g located at d0/2
Pu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2 9 9 11 13 14 17 18 20 21 23 25 27 28 30 32 34 35 37
0.4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0.6 4 4 5 6 6 7 8 9 9 10 11 12 12 13 14 15 15 16
0.8 3 3 4 4 5 5 6 7 7 8 8 9 10 10 11 11 12 12

Table 15: Myopic-greedy policy of communication, where CΣ = −10.0,Ra = −1.0, No
Deadline.

d0=distance between agents when last synchronized, g located at d0/2
Pu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2 0 0 0 0 0 0 0 0 0 0 0 0 5 5 4 4 4 4
0.4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.6 4 4 5 6 6 7 0 0 0 0 0 0 0 0 0 0 0 0
0.8 3 3 4 4 5 5 6 7 7 8 0 0 0 0 0 0 0 0

Table 16: Myopic-greedy policy of communication, where CΣ = −10.0,Ra = −1.0, Deadline
at T=8, Penalty=-100.0.

49

d0=distance between agents when last synchronized, g located at d0/2
Pu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.2 9 9 11 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.4 5 6 7 8 9 10 11 12 13 0 0 0 0 0 0 0 0 0
0.6 4 4 5 6 6 7 8 9 9 10 11 12 12 13 0 0 0 0
0.8 3 3 4 4 5 5 6 7 7 8 8 9 10 10 11 11 12 12

Table 17: Myopic-greedy policy of communication, where CΣ = −10.0,Ra = −1.0, Deadline
at T=15, Penalty=-100.0.

Appendix D. The Average Performance of the OptCom Algorithm

Tables 18 and 20 present the joint utilities attained by monotonic goal-oriented Dec-MDPs
implemented in the Meeting under Uncertainty example when CΣ took the values −1 and
−10. We compare between the No-Communication case (where the meeting point is fixed
at time 0 in the middle of the grid), the Ideal case with communication cost zero, the
myopic-greedy case that punishes the agents if they did not meet by the finite-horizon, and
the results obtained from running the OptCom algorithm (see Section 6.4). Tables 19 and
21 present the corresponding average number of communication acts in each case.

Average Joint Utility
P No-Comm. Ideal Myopic-greedy OptCom
0.2 -71.138 -62.55 -63.298 -62.776
0.4 -42.112 -37.292 -38.014 -37.622
0.6 -29.078 -26.716 -27.178 -26.692
0.8 -22.344 -20.57 -21.23 -20.622

Table 18: CΣ = −1.0.

Average Communication Acts Performed
P No-Comm. Ideal Myopic-greedy OptCom
0.2 0 31.275 6.687 30.388
0.4 0 18.646 3.99 17.811
0.6 0 13.358 2.115 12.346
0.8 0 10.285 1.233 9.311

Table 19: CΣ = −1.0.

50

Average Joint Utility
P No-Comm. Ideal Myopic-greedy OptCom
0.2 -71.138 -62.7 -69.516 -63.4
0.4 -42.112 -37.788 -40.994 -37.678
0.6 -29.078 -26.644 -28.974 -26.89
0.8 -22.344 -20.606 -22.09 -20.59

Table 20: CΣ = −10.0.

Average Communication Acts Performed
P No-Comm. Ideal Myopic-greedy OptCom
0.2 0 31.35 0.444 28.957
0.4 0 18.894 0.428 16.032
0.6 0 13.322 0.33 11.474
0.8 0 10.303 0.301 9.2

Table 21: CΣ = −10.0.

References

Becker, R., Zilberstein, S., Lesser, V., & Goldman, C. V. (2003). Transition-independent
decentralized Markov decision processes. In Proceedings of the Second International
Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 41—48, Mel-
bourne, Australia.

Bernstein, D., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of decen-
tralized control of Markov decision processes. Mathematics of Operations Research,
27 (4), 819—840.

Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,
pp. 478–485, Stockholm, Sweden.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Exploiting structure in policy con-
struction. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pp. 1104–1111, Montreal, Canada.

Claus, C., & Boutilier, C. (1998). The dynamics of reinforcement learning in cooperative
multiagent systems. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence, pp. 746–752, Madison, WI.

Dean, T., Kaelbling, L. P., Kirman, J., & Nicholson, A. (1995). Planning under time
constraints in stochastic domains. Artificial Intelligence, 76, 35–74.

Decker, K. S., & Lesser, V. R. (1992). Generalizing the partial global planning algorithm.
International Journal of Intelligent Cooperative Information Systems, 1(2), 319–346.

Durfee, E. H. (1988). Coordination of Distributed Problem Solvers. Kluwer Academic
Publishers, Boston.

51

Feng, Z., & Hansen., E. A. (2002). Symbolic heuristic search for factored Markov deci-
sion processes. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence (AAAI-02), Edmonton, Alberta, Canada.

Goldman, C. V., & Zilberstein, S. (2003). Optimizing information exchange in cooperative
multi-agent systems. In Proceedings of the Second International Joint Conference on
Autonomous Agents and Multi-Agent Systems, pp. 137—144, Melbourne, Australia.

Grosz, B. J., & Kraus, S. (1996). Collaborative plans for complex group action. Artificial
Intelligence, 86 (2), 269—357.

Guestrin, C., & Gordon, G. (2002). Distributed planning in hierarchical factored MDPs.
In Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence,
Edmonton, Canada.

Guestrin, C., Koller, D., & Parr, R. (2001). Multiagent planning with factored MDPs. In
Advances in Neural Information Processing Systems (NIPS-14), Vancouver, British
Columbia.

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003). Efficient solution algorithms
for factored MDPs. Journal of Artificial Intelligence Research, 19, 399—468.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101.

Kfir-Dahav, N., Monderer, D., & Tenenholtz, M. (2000). Mechanism design for resource-
bounded agents. In Proceedings of the Fourth International Conference on Multi-Agent
Systems.

Moore, J. (1992). Implementation, contracts, and renegotiation in environments with com-
plete information. In Laffont, J.-J. (Ed.), Advances in economic theory Sixth World
Congress Volume 1, pp. 182–282. Cambridge University Press.

Nisan, N., & Ronen, A. (1999). Algorithmic mechanism design. In Proceedings of the Thirty
First Annual ACM Symposium in Theory of Computing (STOC).

Osborne, M. J., & Rubinstein, A. (1994). A Course in Game Theory. MIT Press.

Papadimitriou, C. H., & Tsitsiklis, J. (1982). On the complexity of designing distributed
protocols. Information and Control, 53, 211–218.

Papadimitriou, C. H., & Tsitsiklis, J. (1986). Intractable problems in control theory. SIAM
Journal on Control and Optimization, 24 (4), 639–654.

Papadimitriou, C. H., & Tsitsiklis, J. (1987). The complexity of Markov decision processes.
Mathematics of Operations Research, 12 (3), 441–450.

Peshkin, L., Kim, K.-E., Meuleau, N., & Kaelbling, L. P. (2000). Learning to cooperate via
policy search. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence (UAI00), pp. 489–496, Stanford, CA.

Pynadath, D. V., & Tambe, M. (2002). The communicative multiagent team decision
problem: Analyzing teamwork theories and models. Journal of Artificial Intelligence
Research, 16, 389–423.

52

Rabinovich, Z., Goldman, C. V., & Rosenschein, J. S. (2003). The complexity of multiagent
systems: The price of silence. In Proceedings of the Second International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems, pp. 1102—1103, Melbourne,
Australia.

Roth, M., Vail, D., & Veloso, M. (2003). A world model for multi-robot teams with com-
munication. In Proceedings of IROS.

Russell, S., & Wefald, E. (1991). Principles of metareasoning. Artificial Intelligence, 49,
361–395.

Schneider, J., Wong, W.-K., Moore, A., & Riedmiller, M. (1999). Distributed value func-
tions. In Proceedings of the Sixteenth International Conference on Machine Learning,
pp. 371—378.

Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of partially observable
Markov processes over a finite horizon. Operations Research, 21 (5), 1071—1088.

Wolpert, D. H., Wheeler, K. R., & Tumer, K. (1999). General principles of learning-based
multi-agent systems. In Proceedings of the Third International Conference on Au-
tonomous Agents (Agents ’99), pp. 77—83, Seattle, Washington.

Xuan, P., Lesser, V., & Zilberstein, S. (2001). Communication decisions in multi-agent coop-
eration: Model and experiments. In Proceedings of the Fifth International Conference
on Autonomous Agents, pp. 616–623, Montreal, Canada.

53

