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Abstract
Internet data centers host multiple Web applications on shared hardware resources. These data centers are

typically provisioned to meet the expected peak demands of the hosted applications based on normal time-of-day
effects. Such an over-provisioning approach is not robust to flash crowd scenarios, where the load increase of
some hosted applications is much higher than their expected peak loads. In such scenarios, data centers can utilize
their resources better by employing dynamic resource allocation. In this paper, we present a prototype data center
implementation that we use to study the effectiveness of dynamic resource allocation for handling flash crowds
with different characteristics. This prototype implements a multi-tiered server architecture along with mechanisms
for monitoring, load detection, load balancing and dynamic allocation. Our experiments with this prototype show
that a carefully designed dynamic allocation scheme can be effective for handling flash crowds. We show that in
order to handle very sharp growth in loads, a dynamic allocation scheme must be either extremely responsive or
employ low overhead mechanisms such as using hot spare servers. On the other hand, gradually increasing flash
crowds can be handled equally well with larger overheads and slower reaction times. We also show that even in the
presence of large allocation overhead, it is possible to achieve the same application performance by either allocating
multiple servers simultaneously or allocating a few servers often. Using our results, we conclude that even without
large-scale over-provisioning, it is possible to effectively handle flash crowd conditions using a dynamic allocation
scheme that responds quickly to workload changes, and that can mask large allocation overheads either by deploying
a few ready servers or by allocating multiple servers simultaneously.

1 Introduction

Internet data centers host multiple Web applications on a common hardware platform. The workloads of the hosted
applications vary over time due to long-term periodic trends such as time-of-day effects (e.g., more people surfing
the web during lunch hours), and also due to flash crowds (e.g., “Slashdot effect” or a breaking news story). Several
techniques have been proposed to predict long-term time-of-day kind of workload variations [12, 26, 32] and most
data centers are well-provisioned to handle such variations. However, flash crowds are generally unpredictable and
have characteristics different from typical time-of-day load fluctuations. For instance, on September 11, 2001, the load
on the CNN website doubled every 7 minutes to reach a peak of almost 20 times the normal load [18]. In particular,
the transient load and the duration of flash crowds is difficult to predict for long-term provisioning, and the system has
to be largely reactive to the arrival of a flash crowd relying on extremely short-term predictions [17].
To handle flash crowds, data centers can either resort to high levels of over-provisioning, or employ dynamic re-

source allocation, wherein resources can be borrowed from unused servers or underutilized applications to service flash
crowds. While over-provisioning of resources is a simple approach, it has two main drawbacks. First of all, by their
very definition, flash crowds are unpredictable and it is not easy to predict their peak load, so any imperfectly provi-
sioned system is likely to fail under sustained overload conditions. The other alternative of massive over-provisioning
can lead to severe under-utilization of resources and excessive power usage during the normal operational period.
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Recent studies have shown the statistical multiplexing benefits of dynamic resource allocation over over-provisioning
in a data center [3, 7]. These drawbacks of over-provisioning make it lucrative to use dynamic resource allocation to
handle the relatively uncommon events of flash crowd conditions. As a result, several dynamic resource allocation
schemes have been proposed to better utilize the resources in such scenarios [5, 6, 8, 20, 24]. These dynamic alloca-
tion schemes react to changing application loads by reallocating resources to overloaded applications, borrowing these
resources from other under-utilized applications if necessary.
While most of the recent studies have focused on the resource utilization and provisioning gains of dynamic alloca-

tion, there has been little investigation of the effect of dynamic allocation on application performance in the presence
of flash crowd conditions. There has been no definitive study of how much the application performance suffers due to
the overheads and reaction time of dynamic allocation.
In particular, the following questions need to be answered.

• How effective is dynamic allocation in maintaining application performance under flash crowd conditions?

• What characteristics and parameters must a dynamic allocation scheme employ to meet application performance
needs?

In this paper, we make the following contributions. First of all, we present a prototype data center that we have
implemented to conduct an experimental study for answering these questions. In this prototype, we have implemented
a multi-tiered server architecture along with mechanisms for online monitoring, load detection, load balancing and
dynamic allocation. This infrastructure provides us with the ability to systematically vary the parameters of an online
dynamic allocation scheme. In addition, it enables us to generate real Internet application workloads and provides us
with the ability to study application performance metrics under different load conditions.
As our experimental methodology, we generate flash crowd conditions for an Internet application benchmark and

perform online reallocation of server resources. In our experiments, we systematically vary the parameters and over-
heads of dynamic allocation to study their impact on application performance. Based on our experimental results, we
show that dynamic resource allocation is effective in handling flash crowds if it uses appropriate allocation parameters.
These parameters include fast responsiveness to workload changes, and an ability to mask large allocation overheads
by allocating a few ready servers or multiple servers simultaneously.
The remainder of this paper is organized as follows. In Section 2, we provide background on data centers and

dynamic resource allocation, and define the characterization of flash crowd scenarios. We then describe our prototype
data center implementation in Section 3 followed by our experimental results in Section 4. We discuss related work in
Section 5 and finally present our conclusions and future work in Section 6.

2 Background

In this section, we first provide background on Internet data centers, followed by a description of the parameters used
for dynamic resource allocation in such data centers. Finally, we formally define a characterization of flash crowds.

2.1 Dynamic Resource Allocation in Data Centers

Since data centers host multiple applications on a common server platform, they can dynamically reallocate resources
among different applications. Several allocation schemes have been proposed [5, 6, 8, 20, 26] that perform reallocation
on such platforms. Most of these schemes use a measure-detect-allocate cycle for reallocation, wherein they monitor
the application workloads, detect any overload conditions, and then allocate resources to overloaded applications.
However, different schemes vary in their underlying architecture, resulting in a difference in the allocation mechanisms
they employ. For instance, Oceano [5] allocates whole server machines among applications, while MUSE [8] allows
multiple applications to be co-hosted on the same server. Cluster-On-Demand [20] is a hybrid scheme that allows
clusters to be allocated to virtual data centers that further share the servers among multiple applications.
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In this paper, we focus on dedicated data center architectures like Oceano where whole server machines are allo-
cated to individual applications, These architectures exhibit the widest choice of values for the allocation parameters
that we investigate in this paper (described below) to answer the questions raised in the previous section1. Dedicated
architectures partition their servers into different server pools, so that at any given time, these servers are in use by
multiple hosted applications in the following manner.

• Private pool: Each application has its own set of pre-provisioned servers, that are statically allocated to it.
These servers guarantee a minimum level of application performance and ensure performance isolation from
other overloaded applications.

• Borrowed pool: Each application can add some servers to its pool dynamically based on its load. These servers
are not guaranteed to stay in a single application pool, and can move between different application pools. These
servers are useful for meeting overload conditions.

• Free pool: This is a set of server machines that are not currently allocated to any application. These can be
dynamically allocated to any application when the need arises.

In what follows, we refer to an application to which a server is allocated as the recipient, while an application from
which a server is deallocated is referred to as the donor. A dynamic allocation algorithm reallocates resources by
moving servers between the free pool and the borrowed pools of different applications, or between borrowed pools of
applications if the free pool is empty.A server allocated to the borrowed pool of a recipient application can be classified
to be in one of the following states based on which pool it comes from.

• Hot spare: A hot spare is a server that already has the recipient application running and ready to receive requests.
Such servers can be allocated by simply redirecting load to them, and hence can be brought online quickly. A
hot spare could be a server already in the recipient’s borrowed pool2, or a recently freed machine from the
recipient borrowed pool that still has the application running.

• Clean spare: A clean spare is an unused server in the free pool, but it is not ready to run a specific application.
Such servers could be powered off to save power, or they might be up and running, waiting to be assigned to an
overloaded application. To allocate a clean spare to an application, we need to install the recipient application
on the server and bring it to a running status before load could be redirected to it.

• Dirty spare: A dirty spare is a server that is currently serving requests from another application. It thus resides
in the borrowed pool of a donor application at the time of reallocation. A dirty spare is typically used only when
the free pool is empty and the donor application is sufficiently under-utilized. Reallocation of such a server
involves gracefully shutting down the currently running application on the server, clearing its application state
(which might involve actions such as disk scrubbing), rebooting, installation of the new application and getting
the new application to a ready state.

As we will see, the server state at the time of allocation plays an important role in determining the effectiveness
of an allocation scheme. Next, we describe a set of parameters that can be used to characterize dynamic allocation
schemes within the above framework.

2.2 Characterizing a Dynamic Resource Allocation Scheme

The effectiveness of a dynamic resource allocation scheme depends on a large number of factors, such as the re-
source allocation algorithm, the granularity of allocation, the allocation overheads, etc. [7]. In our study, we take an
algorithm-independent approach in describing a dynamic allocation scheme. We define a set of orthogonal parameters
to characterize an allocation scheme, which we describe next. These parameters are illustrated in Figure 1.

1Shared and hybrid architectures exhibit several other interesting features that are beyond the scope of this paper.
2The hot spare allocation is implicit in this case. Here, the recipient server pool would be able to absorb some of the flash crowd load before

getting overloaded.

3



  Allocated
Resources

Time
Re
so
ur
ce
s

Workload

Allocation
Point

Figure 1: Characteristics of a dynamic allocation scheme

Figure 2: Flash Crowd Characteristics

Responsiveness (R)

Responsiveness is defined as the duration it takes for the allocation scheme to detect a load change and determine
the new allocation. The responsiveness of an allocation scheme could depend on several factors – the frequency of
monitoring the resources, the overhead of collecting monitoring statistics and load detection, and the runtime of the
allocation algorithm. For instance, a simple threshold-based load detection scheme would have much smaller overhead
compared to a scheme that uses a complex function of multiple load metrics to determine load changes. In a periodic
allocation scheme, responsiveness would correspond to the reallocation interval.

Allocation Overhead (A)

This is the amount of time it takes to actually bring the new resources online once the allocation decision has been
taken. This overhead could include such costs as de-allocating another application’s server (in case of dirty spares),
redirecting new requests to the new server, etc.
Based on our definition of the server states in Section 2.1, we see that the allocation overhead differs for various

server states. For instance, the overhead of allocating a hot spare is of the order of a few milliseconds. On the other
hand, allocation overhead for a clean spare is of the order of several seconds, while that for a dirty spare can be in the
order of several minutes.

2.3 Characterizing Flash Crowd Scenarios

Having described parameters of dynamic allocation in a data center, we now describe how to characterize flash crowd
conditions. Flash crowds are characterized by an atypical increase in load. Further, these loads last for relatively short
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Machine Hardware Operating Application
type configuration System
Client 1 GHz/512 MB Linux Redhat 7.2 httperf

kernel v2.4.20
Load Balancer 2.8 GHz/1 GB Linux Redhat 7.3 ktcpvs

kernel v2.4.20 v0.0.14
Web Server 864 MHz/256 MB Linux Redhat 7.2 Apache

kernel v2.4.7 v1.3.28
Database Server 2.8 GHz/512 MB Linux Redhat 7.3 Mysql

kernel v2.4.20 v max-3.23.57

Table 1: Cluster Configuration

durations of time (compared to the normal operational period of an application). However, flash crowds can differ
from each other in several respects. For instance, some flash crowds exhibit very sharp growth rates, while some
are comparatively long-lived and some have very high magnitude peaks. We characterize a flash crowd based on the
following defining characteristics, that are illustrated in Figure 2.

• Load growth rate (λ): This is the rate at which the load increases before the flash crowd condition either subsides
or stabilizes. An abnormal increase in the rate of workload arrival for an application might be used to detect the
arrival of the flash crowd. This parameter relates to the speed at which the data center needs to detect and react
to the flash crowd. λ could be measured using units such as user-sessions/second or requests/second.

• Peak load (P ): This is the maximum load imposed by the flash crowd. It can be expressed in workload units
(such as number of user sessions), or in terms of server resources (for instance, number of servers) required to
service it. It relates to the maximum resource capacity required to successfully handle the flash crowd.

• Flash crowd duration (T ): This is the duration for which the flash crowd condition lasts. This is the length of
the time period from the arrival of the crowd till the load goes down to normal. This would correspond to the
duration of “abnormality” for the application. A very large value of T (for example, of the order of days, or
several hours) could indicate a basic shift in the application workload levels, and might necessitate long-term
re-provisioning of resources.

Having provided background on data centers and characterized various allocation parameters and flash crowd con-
ditions, we now present our prototype data center implementation.

3 Prototype Data Center Implementation

In this section, we describe the implementation of our prototype data center on a testbed cluster. The cluster consists
of 16 Pentium machines connected by a 1Gbps ethernet switch. We divide the cluster into two sets — a client set to
generate Web workloads, and a data center that hosts Internet applications servicing these workloads. We have im-
plemented a multi-tiered server architecture in our data center prototype along with online monitoring, load balancing
and dynamic allocation mechanisms. Table 1 shows the hardware and software configuration of the machines in the
cluster. Next, we describe these components in more detail.

3.1 Multi-tiered Server Architecture

Figure 3 shows the server architecture of our prototype data center that enables it to host multi-tiered Internet applica-
tions. Our data center employs the following component servers:

• Load balancer: The load balancer in a data center environment is typically a layer-4 (IP layer) or a layer-
7 (application layer) switch. It is responsible for redirecting incoming requests to different back-end servers
based on criteria such as the back-end server loads, the requested URL, the client IP address, etc.
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Figure 3: Multi-tiered Server Architecture

In our implementation, we use Kernel TCP Virtual Server (ktcpvs) version 0.0.14 [16] as the front-end load
balancer. Ktcpvs is an open-source layer-7 load balancer that forwards incoming user connections to back-end
servers using separate TCP connections.

• Web Server: The load balancer hands off requests to Web servers that handle functions such as http processing
and serve up static content such as images and static web pages.
In our implementation, we used Apache version 1.3.28 [4] as our Web server. Apache was enabled with SSL
and PHP support and had a MaxClient limit set to 256.

• Application Server: Application servers run behind the Web server tier and execute dynamic scripts serving up
dynamic content. These servers could be running small scripts or large enterprise application server programs.
In our experiments, we used a PHP-enabled Internet application (described later) that ran dynamic PHP scripts
on the Apache server machines. In this scenario, the Web and the application servers ran on the same ma-
chines, and there was no physical separation of the two tiers. In the rest of the paper, we refer to the combined
Web/application servers simply as Web servers.

• Database Server: The last tier in the architecture consists of database servers that store most of the application
data and process queries from the application servers for the execution of dynamic scripts. We used MySQL
version max-3.23.57 [22] — a popular open-source database server — as the back-end database server in our
prototype.

Dynamic resource allocation can be performed within each of these tiers individually, because of their functional
differences and also because their bottleneck resources can be different. For instance, the network bandwidth or
number of connections is more likely to become the bottleneck on the Web servers, while the disk bandwidth might
be the bottleneck for the database servers. Also, the degree of replication and reallocation mechanisms differ between
different tiers. In our experimental study, we employ dynamic resource allocation on the Web server tier. Through
experimental evaluation, we confirm the Web server tier to be the bottleneck tier. We next describe the implementation
of dynamic resource allocation in our data center.

3.2 Dynamic Resource Allocation

In this section, we describe our implementation of dynamic resource allocation on the data center configuration we
described above. Dynamic resource allocation requires monitoring of server resources, overload detection and reallo-
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cation. We describe each of these in detail below.

3.2.1 Monitoring and Load detection

We installed a Linux-based monitoring software – sar version 4.0.1 [27] – on all the cluster machines. Sar is part of
an open-source system monitoring package called sysstat, that can periodically measure various system metrics like
CPU usage, run queue length, memory usage, number of open sockets, network traffic, etc. We used a monitoring
period of 10 seconds in our experiments.
We used a reactive allocation scheme that relies on the current workload arrival rate to detect overload conditions.

Note that such a scheme is different from a proactive allocation scheme, as there is no active prediction being done
for future time intervals. A reactive scheme is essential to handle flash crowds, because their long-term prediction
is difficult. We measured the incoming workload rate by monitoring the number of user connections being opened
at the front-end load balancer. Using a sequence of workload measurements, we did overload/underload detection
periodically and performed reallocation accordingly. We emulated the allocation parameter of responsiveness R (as
defined in Section 2.2) by varying the frequency with which this overload detection was done. Thus, the higher the
overload detection frequency, the more responsive our system was to changing workload levels.
To detect overloads and underloads in the system, we used a threshold-based scheme that was used to trigger

dynamic allocation. The goal of this scheme was to maintain the average load on the allocated Web servers under
a threshold value. The way this load detection worked was as follows. Based on the current load, the load detector
computed the minimum number of servers required to maintain the average load on these servers under the threshold.
If the number of currently allocated servers was less than this value, then the requisite number of additional servers
was allocated. On the other hand, if the currently allocated servers exceeded the requirement, then the extra servers
were deallocated. In our experiments, we used a threshold value of 50%. Thus, for instance, if the load on the system
was 200%, it implied a system requirement of 4 servers for handling the load at an average load of 50% each. If the
actual number of allocated servers was 2, then we allocated 2 extra servers, while if the actual number was 6, we
deallocated 2 servers. Note that by using different values for the overload and underload thresholds, it is easy to build
hysteresis in server allocation to avoid oscillations under rapid load fluctuations.

3.2.2 Resource Allocation and Load Balancing

We implemented a centralized allocation scheme at the load balancer. The load balancing software ktcpvs allows
adding and removing servers to a list of available servers using user commands. The load balancer then forwards
incoming user sessions and requests only to the servers on its available list. We used this facility for performing
dynamic resource allocation. We maintained a list of currently allocated and free servers. Whenever the load detector
signaled an overload condition, the allocation scheme added the requisite number of servers from the free server list
to the load balancer’s list of available servers. Similarly, in an underloaded condition, deallocation was performed by
removing servers from the load balancer’s available server list and adding them back to the free list. To emulate the
allocation overhead parameter∆, we introduced a wait time before adding or removing a server from the available list
of the load balancer.
For balancing the load on the Web servers, we used a least-loaded load balancing scheme, where load was defined

as the number of connections open to each Web server. We used such a load balancing scheme as opposed to locality-
aware schemes such as LARD [23], because our workload consisted predominantly of dynamic requests and was thus
less sensitive to caching effects. In addition to distributing incoming sessions equally among the back-end servers,
the least-loaded scheme has the additional advantage of quickly diverting load to a newly allocated Web server, thus
bringing it online fast. We show experimentally that this indeed was the case and the load balancer did not affect the
reallocation results adversely (for instance, by causing hot spots among the allocated servers).
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3.3 Hosted Application and Workload generator

Having described the components of the data center prototype, we now describe the application we hosted on the data
center and the workload generator we used on the clients to generate the Web workload.
As our hosted application, we used RUBiS [2] — an open-source Web application benchmark that emulates an

auctioning website like Ebay [11]. RUBiS is a multi-tiered application that uses aWeb server, an application server and
a database server tier (as described in Section 3.1), and hence, is fairly representative of common Internet applications.
We used the PHP version of RUBiS that implicitly combines the Web server and the application server physically on
the same machine. RUBiS has the notion of user sessions, where each user session emulates the actions of a user
accessing an auctioning website. These actions include accessing the home page, registering as a user, placing a bid
on an item, selling an item, etc. Each session consists of a sequence of requests separated by user think-times. These
requests are a combination of static as well as dynamic requests that are serviced using the RUBiS application data
maintained on a back-end database.
In our experiments, we first generated offline traces of RUBiS user sessions. The user think-times were generated

using a negative exponential distribution with a mean of 2 seconds. This think-time distribution is specified in the TPC-
W specifications [29] (We employed this distribution as TPC-W is a popular e-commerce benchmark specification and
emulates closely the user behavior for e-commerce applications).
Finally, we replayed these traces using httperf [21] — an open-source Web workload generator — running on the

client machines, to generate the workload during the experiments. Httperf allows varying various workload parameters
such as the rate of session generation, number of requests per session, the request timeout values, etc. With httperf,
we were able to generate different kinds of flash crowd conditions using the RUBiS session traces.

4 Experimental Study

In this section, we present the results of our experimental study to measure the effectiveness of various dynamic alloca-
tion parameters on flash crowds with varying characteristics. We begin by describing our experimental methodology,
followed by the results from our study.

4.1 Experimental Methodology

As described in the previous section, we use a set of client machines running httperf to generate the workload for
RUBiS application. This application is hosted on a multi-tiered data center which employs online monitoring, load
detection and reallocation mechanisms.
In our experiments, we vary the flash crowd characteristics by controlling httperf parameters such as the total

number of user sessions and the rate of session generation. Since we are investigating the effect of dynamic allocation
on application performance, we study only a single hosted application, but the same scenario could be recreated for
multiple applications. The most important flash crowd characteristic for studying the effect on a single application is
the load growth rate (λ) described in Section 2.3. This parameter determines the effectiveness of allocation parameters
such as responsiveness and allocation overhead. We use λ values of 20 and 60 sessions/minute in our experiments to
measure the effect on these allocation parameters. On the other hand, the peak load P only plays a role in determining
the maximum number of servers that need to be allocated, and the duration T is important in determining the amount
of overlap with other co-hosted applications in the data center. In our experiments, we use a peak load value of 500
sessions that corresponds to an ideal requirement of 4 servers in our data center implementation. Finally, we keep the
total time T of the flash crowd fixed at one hour.
To study the effectiveness of different allocation schemes, we vary the parameters of responsiveness (R) and allo-

cation overhead (A). for each flash crowd, as described in the previous section. The values of responsiveness were
varied between 10 seconds (representing a highly responsive allocation scheme) and 15 minutes (representing a slowly
responding scheme). Similarly, the values of allocation overhead were varied between 0 and 15 minutes, where a value
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Figure 4: Flash crowds generated with varying rates of workload increase.
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Figure 5: Application performance with varying responsiveness and allocation overhead, flash crowd λ=60 ses-
sions/min

of 0 represents a hot spare allocation, a value of 1-5 minutes represents allocation overhead of a clean spare, while that
of 5-15 minutes was used for a dirty spare allocation.
Using these varying parameter values, we then measure various application performance metrics in our experiments.

The performance metrics we use are session lengths, reply rates and number of connection timeouts. While the number
of connection timeouts and reply rates represent the performance of the application in terms of admitting clients,
session lengths measure the performance in terms of the service received by the admitted clients. We use these metrics
to measure the application performance under different allocation schemes.

4.2 Experimental Results

4.2.1 Effect of responsiveness and allocation overhead

Figures 4 (a) and (b) show the workload of two flash crowds with mean peak growth rates of 60 and 20 sessions/min
respectively. Each of these flash crowds has a total duration of 1 hour, and a peak load of 500 sessions.
In Figure 5, we plot the effect of varying the allocation scheme’s responsiveness (R) and allocation overhead (A) on
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Figure 6: Application performance with varying responsiveness and allocation overhead, flash crowd λ=20 ses-
sions/min

the application performance metrics. Figure 5 (a) shows the number of session timeouts per session as we vary respon-
siveness on the x-axis. Different curves on the graph correspond to different values of allocation overhead. The value
of session timeouts corresponds to the number of user sessions rejected by the application. This figure shows that as
the value of responsiveness increases from 0 to 15 minutes, the timeout rate steadily increases by about 0.1-0.15 time-
outs/session for each value of allocation overhead. Figure 5 (b) plots another application performance metric, namely,
the 95th-percentile value of session length. The session lengths are computed only over the successful connections,
hence this metric corresponds to the performance of the serviced requests. As the plot shows, the 95th-percentile value
of session length remains nearly steady between 120 and 160 seconds (with some fluctuations), and there is only a
small relative increase in its value as we increase the value of either responsiveness or allocation overhead. These
results together imply that while the admission rate of user sessions decreases as we make the allocation scheme less
responsive or increase the overhead of allocation mechanisms, the performance of the successfully serviced sessions
is largely unaffected.
Figure 6 shows similar results for the flash crowd with λ=20 sessions/minute. However, the values of timeout rates

are smaller for the corresponding values of responsiveness and allocation overhead in this case compared to those
for the flash crowd with λ=60 sessions/min. In fact, as can be seen from Figure 6 (a), the number of timeouts is 0
for responsiveness values as large as 10 minutes when allocation overhead=0, and similarly for allocation overhead
values as large as 5 minutes for responsiveness=10 sec. This implies that with a more slowly growing flash crowd, an
allocation scheme that is not very responsive or uses large overhead mechanisms can also perform well. However, we
still need to ensure that at least one of the two parameters of responsiveness and allocation overhead is small.

4.2.2 Variation in application performance with time

To understand our results better, we also look at the variation in the application performance with time for given
combinations of allocation parameters. Figures 7(a) and (b) plot time series showing the data center server allocation
and the application performance for different values of responsiveness. This figure shows the results for the flash
crowd with λ=60 requests/min. We keep the allocation overhead value fixed at 0 (that corresponds to a hot spare
allocation), and compare the allocation schemes with responsiveness values of 10 seconds and 5 minutes.
Figure 7(a) shows the number of servers allocated for each responsiveness value, while Figure 7(b) shows the reply

rates for the corresponding responsiveness values at corresponding times. As can be seen from the figures, the more
responsive scheme (responsiveness=10 sec) is able to allocate the requisite number of servers quickly, and is able to
match the workload requirements. On the other hand, the slower responding scheme (responsiveness=5 min) lags in
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Figure 7: Time series of server allocation and application performance with different allocation schemes

the allocation of servers. For instance, at time 500 seconds, while the faster scheme is able to allocate 4 servers, the
slower scheme is able to allocate only 2 servers. As a result, the slower scheme shows a degradation in the application
performance during the transient stage of the flash crowd. For instance, the slower scheme is able to service only 400
requests/second between time 500 and 700 seconds as compared to 500 requests/second for the faster scheme during
the same period.
Another interesting region in the figures is the time period between 750 and 1250 seconds. Here, the less responsive

scheme ends up over-allocating resources by 2 servers and its reply rate also increases upto 600 requests/sec briefly.
This happens due to the user session backlog that accumulates in the transient period. This illustrates that the less
responsive scheme is also more unstable than the faster responding scheme in terms of the application performance.
Finally, both schemes perform equally well once the fluctuations die down and the flash crowd settles down in a steady
state.
These results imply that faster responding and low overhead allocation schemes can respond better to the transient

periods of flash crowd load increases as compared to slower schemes. Moreover, the less responsive schemes are
less stable in application performance due to the backlog created during the transient period resulting in temporary
overallocation of resources.

4.2.3 Variation in server load with time

Having looked at the application performance as the workload and the server allocation change with time, we now
examine the load on the servers as a function of time. In Figure 8, we plot the load variation on the various data center
servers for the flash crowd with λ=60 sessions/minute. The responsiveness and allocation overhead of the allocation
scheme were each set to 5 minutes in this experiment (corresponding to the dotted curve in Figures 7(a) and (b)).
Figure 8(a) plots the CPU usage of Web servers in the system as they are allocated one-by-one with the load variation,
while Figure 8(b) plots the CPU usage on the load balancer and the database server.
As can be seen from Figure 8(a), the load on the initially allocated Web servers grows to almost 100% by time

750 seconds. This is due to the lag in allocation of new servers. However, 3 new servers are started at time 700
seconds, which quickly brings down the load on the individual servers to about 40%, and finally, in the steady state,
all servers maintain a load of about 50%. Note that 2 servers were deallocated at time about 1500 seconds, as the
servers had become underloaded. The interesting point to be noted from this figure is the effectiveness of the load
balancing. Recall from Section 3.2.2 that we used a least-loaded load balancing strategy. This figure confirms the
effectiveness of this strategy in the presence of dynamic workload when caching effects are not very important. Also,
Figure 8(b) shows that the load on the load balancer and the database server are negligible. This confirms our assertion
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Figure 8: Variation in the load on various data center servers with change in allocation
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Figure 9: Comparison of a slow proactive and a fast reactive allocation scheme in the presence of high allocation
overhead.

in Section 3.1 that Web server tier is the bottleneck tier for our experimental workload.

4.2.4 Comparison of Slow Pro-active and Fast Reactive Allocation

Another aspect of resource allocation we consider is the ability to allocate servers pro-actively as against allocating
them reactively. In the case of a proactive scheme, there is an early allocation of servers in anticipation of load increase.
This could be based on some kind of short-term prediction using recently observed workload metrics. On the other
hand, a reactive scheme would allocate resources solely on the basis of current load on the system. The advantage of
using a pro-active allocation scheme would be most pronounced when the allocation overhead of new servers is high.
In that case, multiple servers can be pre-allocated and would be expected to be ready to handle the load by the time
it increases to higher levels. Here, we conduct an experiment to study the conditions under which a reactive scheme
might be able to emulate the performance of a pro-active scheme.
To study this aspect, we generated a flash crowd with peak growth rate of 120 sessions/minute and peak load of

about 1800 sessions. The duration of the flash crowd was 30 minutes. These parameters emulated a fast-growing flash
crowd requiring large number of servers to handle the peak load.
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In Figure 9(a) and (b), we plot the server allocation and the application performance using two allocation schemes.
One is a pro-active allocation scheme with a responsiveness of 5 minutes. It accurately predicts the expected load
during this time period and allocates enough servers to handle this load. On the other hand, the second scheme
allocates individual servers as the load increases based on the current load. This scheme is more responsive, with a
responsiveness of 10 seconds. In this experiment, the allocation overhead is 5 minutes for each scheme, so that the
servers take 5 minutes to get ready. As shown in Figure 9(a), the server allocation of the pro-active scheme is more
aggressive in that it is able to allocate multiple servers at the same time. On the other hand, the reactive scheme reacts
in a more incremental manner allocating 1 server at a time. Despite this difference, their server allocations match
closely, and their client reply rates also match closely with a few fluctuations, as shown in Figure 9(b).
These results imply that in case of rapidly increasing loads, a highly responsive reactive scheme can perform as

well as a less responsive pro-active scheme, so that it is possible to meet similar application performance by either
allocating multiple servers simultaneously or a few servers frequently.

4.3 Implications of our results

In this section, to summarize the experimental results we presented in Section 4.2. Our results indicate that

1. Using a more responsive allocation scheme, or using less overhead allocation mechanisms such as using hot
spares or clean spares is preferable.

2. Slower allocation mechanisms and schemes are susceptible to instability in application performance and can
result in temporary over-allocation.

3. Even with slower mechanisms, the application performance is degraded only during the transient period of flash
crowd load growth, and in steady state, the performance is comparable to that of faster mechanisms.

4. A highly responsive reactive allocation scheme can match the performance of a less responsive pro-active
scheme in the presence of fast-increasing workloads.

5. A simple least-loaded load balancing strategy can work well when the workload is primarily dynamic and
caching effects are not predominant.

The above results (particularly result 3) indicate that it is possible to use slower mechanisms such as dirty spares in
flash crowd conditions, if the scheme can maintain a few hot spares to service the load during the transient period of
server preparation. This is an important observation, because in many flash crowd conditions, the allocation scheme
might have to fall back on clean and dirty spares after a while, if the flash crowd is large in magnitude or duration.
Under such conditions, it is possible to pro-actively start allocating the slower spares, and press the more readily
available servers into service for the intervening duration. Further, result 4 implies that for a purely reactive scheme, it
is important to be highly responsive, in which case it is able to emulate a less responsive pro-active scheme. Moreover,
what this result indicates is that even with large allocation overhead, it is possible to meet application requirements by
either allocating multiple servers simultaneously (as done by a slow pro-active scheme) or by allocating servers often
(as done by a fast reactive scheme).

5 Related Work

A dynamic allocation technique to handle unexpected workload surges has been proposed in a recent work [17]. This
technique performs dynamic allocation using short-term load prediction coupled with early pre-allocation of resources.
Our work differs from this work in the following aspects. First of all, we examine not just a single allocation technique,
but a range of allocation parameters to understand their utility under different scenarios. Also, this technique assumes
fixed server allocation overheads of about 30 seconds, while we consider a range of values ranging from very small
(0) to large (15 minutes) for the allocation overhead that correspond to servers being in different states at the time
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of allocation. This is an important parameter, as flash crowds, by their very definition, can have large magnitudes
necessitating the need to allocate servers with high allocation overheads.
There have been several proposals for managing overload in Web workloads. Many of these approaches employ

different forms of admission control [9, 13, 15, 31], traffic shaping [14, 30] and scheduling [28]. These approaches
use the techniques of workload shaping and service differentiation to meet the application performance needs. Our
approach of using dynamic allocation under overload scenarios is complementary to these approaches, and can be
used in conjunction with them to achieve good application performance while admitting large number of requests. For
instance, techniques like admission control or service differentiation could be employed during the transient allocation
period, and they can be relaxed once the requisite number of servers become available for service.
Recent studies [3, 7] have examined the effect of allocation parameters on resource provisioning gains in data

center environments. These studies are different from our work in several respects. First of all, our work focuses on
the impact of dynamic allocation on application performance as opposed to resource savings that was the main focus
of these studies. Secondly, these studies obtain their results by performing data analysis of real data center traces.
On the other hand, we use an experimental methodology, wherein we employ a prototype data center implementation
with a real Internet application benchmark to conduct an experimental study. Such a methodology provides us with
the ability to monitor server resources and application performance under varying allocation parameters, while also
allowing us to systematically vary the workload parameters.
In this paper, we focused on dedicated data center architectures [5, 24]. However, several other data center archi-

tectures have been proposed. These include shared architectures such as MUSE [8] that can host multiple applications
on shared servers, and hybrid architectures like Cluster-on-Demand [20] that hierarchically allocate virtual clusters
to a group of applications. Another architecture makes use of virtual clusters to allocate resources across globally
distributed data centers [25]. Some of these architectures like the hybrid one share some aspects of dedicated archi-
tectures (for instance, with respect to allocating servers across virtual clusters), and hence, some results of our study
are directly applicable to them. Shared architectures allow very fast re-provisioning of resources withing servers and
thus display a high degree of responsiveness and low allocation overhead. However, other aspects of allocation in such
architectures, such as work-conserving nature of server resource schedulers, server capacity, etc., need to be examined
in greater detail.
Several research efforts have also proposed prediction and workload characterization techniques that work well

for long-term seasonal trends such as time-of-day-effects [12, 26, 32]. However, these techniques are not directly
applicable for flash crowd scenarios, as flash crowds are inherently unpredictable, and these techniques also require
access to a large data record to make their predictions.
Several dynamic resource allocation techniques have been proposed for data centers that use modeling techniques to

achieve resource guarantees [1, 6, 10, 19]. These techniques use measurement and prediction techniques to reallocate
resources among applications based on their varying workload. Such techniques are complementary to our work and
can be employed on a data center implemented with appropriate allocation mechanisms.

6 Conclusions

In this paper, we presented a prototype data center implementation that we uses to study the effectiveness of dynamic
resource allocation for handling flash crowds with different characteristics. This prototype implements a multi-tiered
server architecture along with mechanisms for monitoring, load detection, load balancing and dynamic allocation.
Our experiments with this prototype showed that a carefully designed dynamic allocation scheme can be effective for
handling flash crowds. We showed that in order to handle very sharp growth in loads, a dynamic allocation scheme
must be either extremely responsive or employ low overhead mechanisms such as using hot spare servers. On the other
hand, gradually increasing flash crowds can be handled equally well with larger overheads and slower reaction times.
We also showed that even in the presence of large allocation overhead, it is possible to achieve the same application
performance by either allocating multiple servers simultaneously or allocating a few servers often. Using our results,
we conclude that even without large-scale over-provisioning, it is possible to effectively handle flash crowd conditions
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using a dynamic allocation scheme that responds quickly to workload changes, and that can mask large allocation
overheads either by deploying a few ready servers or by allocating multiple servers simultaneously.
As part of future work, we would like to examine application performance in a multiple application setting. In such

a scenario, it would be interesting to investigate the effect that the time duration and peak magnitude of flash crowds
have on the amount of correlation between multiple application demands. This investigation would also shed a light
on how successfully a dynamic allocation scheme can be in preparing servers for re-allocation when the need arises.
In addition, we would like to examine more carefully the effects of reallocation algorithms and prediction techniques
on the various allocation parameters and the effectiveness of dynamic allocation under flash crowd conditions.
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