
Evaluation of Object Placement Techniques in a
Policy-Managed Storage System

Vijay Sundaram, Pawan Goyal , Peter Radkov and Prashant Shenoy

Department of Computer Science Storage Systems Department
University of Massachusetts IBM Almaden Research Center

vijay,pradkov,shenoy @cs.umass.edu goyalp@us.ibm.com

Abstract

In this paper, we consider a policy-managed storage
system—a system that automates various management
tasks—and focus on the problem of the storage allo-
cation techniques that should be employed by such a
system. We study two fundamentally different stor-
age allocation techniques: narrow and wide striping.
Whereas wide striping stripes each object across all
the disks in the system and needs very little workload
information for making placement decisions, narrow
striping techniques stripe an object across a subset of
the disks and employs detailed workload information
to optimize the placement. We systematically evaluate
this trade-off between “information” and performance
using a combination of simulations and experiments on
a storage system testbed. Our results show that an ide-
alized narrow striped system can outperform a com-
parable wide-striped system for small requests. How-
ever, wide striping outperforms narrow striped systems
in the presence of workload skews that occur in real
I/O workloads; the two systems perform comparably
for a variety of other real-world scenarios. Our exper-
iments show that the additional workload information
needed by narrow placement techniques may not nec-
essarily translate to significantly better performance.
We identify the stripe unit size to be a critical param-
eter in the performance of wide striped systems, and
based on our experimental results, recommend that (i)
policy-managed systems use wide striping for object
placement, and (ii) sufficient information be specified
at storage allocation time to enable appropriate selec-
tion of the stripe unit size.

1 Introduction

Enterprise storage systems are complex systems consisting of
tens or hundreds of RAID arrays. The sheer size of these sys-
tems, coupled with the diversity of the applications which ac-
cess them, makes their administration a complex task. The

complexity of the administration tasks in turn significantly in-
creases the cost of ownership of the entire system; not surpris-
ingly, management costs are now a significant fraction (75-
90%) of the total cost of ownership of such systems [3, 11].
Since many administration tasks are amenable to software au-
tomation, we propose to address these problems by designing
a policy-managed system; a policy-managed storage system
is one that automatically allocates storage based on a policy
and manages it so that the specified performance objectives
are met.

In a policy managed storage system, the management ob-
jectives are encoded in a set of policies; specific actions to
meet these objectives are then determined and executed auto-
matically by the system. For example, requests for allocating
storage may specify desired performance constraints on the
throughput and the response times. Automation of these and
other tasks can significantly reduce the cost and complexity
of storage management. The primary research challenge in
the design of a policy-managed storage system is to ensure
that the system provides performance that is comparable to a
human-managed system, but at a lower cost. Consequently,
the storage allocation algorithms that determine object place-
ment, and thus the performance, are crucial to the success of a
policy-managed storage system.

Object placement techniques for large storage systems have
been extensively studied in the last decade, most notably in the
context of disks arrays such as RAID [5, 8, 9, 10, 16]. Most of
these approaches are based on striping—a technique that inter-
leaves the placement of objects onto disks—and can be clas-
sified into two fundamentally different categories. Techniques
in the first category require a priori knowledge of the work-
load and use either analytical or empirically derived models
to determine an optimal placement of objects onto the storage
system [5, 8, 16]. An optimal placement is one that balances
the load across disks, minimizes the response time of indi-
vidual requests and maximizes the throughput of the system.
Since requests accessing independent stores can interfere with
one another, these placement techniques often employ narrow
striping—where each object is interleaved across a subset of
the disks in the storage system—to minimize such interfer-

1



ence and provide isolation. An alternate approach is to as-
sume that detailed knowledge of the workload is difficult to
obtain a priori and to use wide striping—where all objects are
interleaved across all disks in the storage system. The premise
behind these techniques is that storage workloads vary at mul-
tiple time-scales and often in an unpredictable fashion, making
the task of characterizing these workloads complex. In the ab-
sence of precise knowledge, striping all objects across all disks
yields good load balancing properties. A potential limitation
though is the interference between independent requests that
access the same set of disks.

Although narrow striping is advocated both by the research
literature and widely used in practice, at least one major
database vendor has recently advocated the use of wide strip-
ing to simplify storage administration [1, 13]. However, no
systematic study of the two techniques exists in the literature.

From the perspective of a policy-managed system, these
two techniques have fundamentally different implications. A
policy-managed system that employs narrow striping will re-
quire each allocation request to specify detailed workload pa-
rameters so that the system can determine an optimal place-
ment for the allocated store. In contrast, systems employing
wide striping will require little, if any, knowledge about the
workload for making storage allocation decisions. Thus, wide
striped policy-managed systems are easier to design and use,
while narrow-striped policy-managed systems can potentially
make better storage decisions. This results in a simplicity
versus performance tradeoff— wide striped systems advocate
simplicity by requiring less workload information, which can
potentially result in worse performance. The opposite is true
for a narrow striped system. Narrow striping can extract per-
formance gains only if the workload specification is precise. It
is not a priori evident if narrow striping can make better stor-
age decisions when the workload specification is imprecise or
incorrect (the accuracy of the workload information is not an
issue in wide striping, since no such information is required for
placement decisions). Although placement of objects in large
storage systems have been extensively studied [4, 5, 6, 16],
surprisingly, no systematic study of these tradeoffs of wide
and narrow striping exists in the literature. Our work seeks to
address this issue by answering the following questions:

Is narrow or wide striping better suited for policy-
managed storage systems? Specifically, does the addi-
tional workload information required by narrow striping
translate into significant performance gains?
From a performance standpoint, how do narrow and wide
striping compare against one another? What is the impact
of interference between requests accessing the same set
of disks in wide striping? Similarly, what is the impact
of imprecise workload knowledge and the resulting load
skews in narrow striping?

We answer these questions using (i) simulations driven by
OLTP traces and synthetic workloads and (ii) experiments on
a storage system testbed. We find that an idealized narrow
striped system can outperform a comparable wide-striped sys-
tem for small requests. However, wide striping outperforms

Store 2

Store 1

Array 1 Array 2 Array N

Store K

Array 1

Store 1
Store 2
Store 3

Store K

Disk

Array NArray 2

Store 3
Narrow Striping

Wide Striping

Figure 1: Narrow and wide striping in an enterprise storage
system.
narrow striped systems in the presence of workload skews that
occur in real I/O workloads. Our experiments show that the
additional workload information needed by narrow placement
techniques may not necessarily translate to a significant per-
formance advantage. Consequently, we advocate the use of
narrow striping only when (i) the workload can be character-
ized precisely a priori, and (ii) it is feasible to use data migra-
tion to handle workload skews and workload interference. In
general, we argue for simplicity and recommend that policy-
managed systems use wide striping for object placement. We
identify the stripe unit size to be a critical parameter in the per-
formance of wide striped systems, and recommend that suf-
ficient information be specified at storage allocation time to
enable appropriate selection of the stripe unit size.

The rest of the paper is organized as follows. Section 2
formulates the problem addressed in this paper and presents
some relevant background. Our experimental methodology
and experimental results are presented in Section 3. Section
4 presents related work. Finally, Section 5 summarizes the
results of the paper.

2 Background and Problem Description
An enterprise storage system consists of a large number of disk
arrays. A disk array is essentially a collection of physical disks
that presents an abstraction of one or more logical disks to the
rest of the system. Disk arrays map objects onto disks by in-
terleaving data from each object (e.g., a file) onto successive
disks in a round-robin manner—a process referred to as strip-
ing. The unit of interleaving, referred to as a stripe unit, de-
notes the maximum amount of logically contiguous data stored
on a single disk; the number of disks across which each data
object is striped is referred to as its stripe width. As a result of
striping, each read or write request potentially accesses multi-
ple disks, which enables applications to extract I/O parallelism
across disks, and to an extent, prevents hot spots by dispersing
the application load across multiple disks. Disk arrays can also
provide fault tolerance by guarding against data loss due to a
disk failure. Depending on the the exact fault tolerance tech-
nique employed, disk arrays are classified into different RAID
levels [15]. A RAID level 0 (or simply, RAID-0) array is

2



non-redundant and can not tolerate disk failures; it does, how-
ever, employ striping to enhance I/O throughput. A RAID-1
array employs mirroring, where data on a disk is replicated
on another disk for fault-tolerance purposes. A RAID-1+0 ar-
ray combines mirroring with striping, essentially by mirroring
an entire RAID-0 array. A RAID-5 array uses parity blocks
for redundancy—each parity block guards a certain number of
data blocks—and distributes parity blocks across disks in the
array.

With the above background, let us now consider the de-
sign of a policy-managed storage system. Consider a stor-
age system that consists of a certain number of RAID ar-
rays. In general, RAID arrays in large storage systems may be
heterogeneous—they may consist of different number of disks
and may be configured using different RAID levels. For sim-
plicity, in this paper, we will assume that all arrays in the sys-
tem are homogeneous. The primary task of the policy manager
in such systems is to allocate storage to applications such that
their performance needs are met. Thus, we assume that stor-
age applications make allocation requests to the policy man-
ager, which in turn allocates storage on one or more arrays.
For example, a decision support system application may re-
quest 15GB of storage space optimized for I/O throughput;
similarly, an OLTP application may request a certain amount
of storage space and specify a certain response time require-
ment. We will refer to the storage allocated in response to
such requests as a store [4]; the data on a store is collectively
referred to as a data object (e.g., a tablespace, a file system).
The sequence of requests accessing a store is referred to as a
request stream. Thus, we are concerned with the storage al-
location problem at the granularity of stores and data objects;
we are less concerned about how each application manages its
allocated store to map individual data items such as files and
database tables to disks.

A policy manger needs to make two decisions when al-
locating a store to a data object: (1) RAID level selection:
The RAID level chosen for the store depends on the fault-
tolerance needs of the application and the workload charac-
teristics. From the workload perspective, RAID-1+0 (mirror-
ing combined with striping) may be appropriate for workloads
with small writes, while RAID-5 is appropriate for workloads
with large writes.1 (2) Mapping of stores onto arrays: The
policy manager can map each store onto one or more disk ar-
rays. If narrow striping is employed, each store is mapped onto
a single array (and the data object is striped across disks in
that array). Alternatively, the policy manager may construct a
store by logically concatenating storage from multiple disk ar-
rays and stripe the object across these arrays (a logical volume
manager can be used to construct such a store). In the extreme
case where wide striping is used, each store spans all arrays in
the system and the corresponding data object is striped across
all arrays (Figure 1 pictorially depicts narrow and wide strip-
ing). Since the RAID-level selection problem has been studied
in the literature [7, 18], in this paper, we will focus only on the

1Small writes in RAID-5 require a read-modify-write process, making
them inefficient. In contrast, large (full stripe) writes are efficient since no
reads are necessary prior to a write.

problem of mapping stores onto arrays.
The choice of narrow or wide striping for mapping stores

onto arrays results in different tradeoffs for the policy-
managed system. Wide striping can result in interference
when streams accessing different stores have correlated access
patterns. Such interference occurs when a request arrives at
the disk array and sees requests accessing other stores queued
up at the array; this increases queuing delays and can affect
store throughput. Observe that, such interference is possible
even in narrow striping when multiple stores are mapped onto
a single array. However, the policy manager can reduce the im-
pact of interference in narrow striping by mapping stores with
anti-correlated access patterns on to a single array. The effec-
tiveness of such optimizations depends on the degree to which
the workload can be characterized precisely at storage alloca-
tion time, and the degree to which request streams are actually
anti-correlated. No such optimizations can be performed in
wide striping, since all stores are mapped onto all arrays. An
orthogonal issue is the inability of wide striping to exploit the
sequentiality of I/O requests. In wide striping, sequential re-
quests from an application get mapped to data blocks on con-
secutive arrays. Consequently, sequentiality at the application
level is not preserved at the storage system level. In contrast,
large sequential accesses in narrow striped systems result in
sequential block accesses at the disk level, enabling these ar-
rays to reduce disk overhead and improve throughput.

Despite the above advantages, a potential limitation of nar-
row striping is its susceptibility to load imbalances. Recall
that, narrow striping requires a priori information about the
application workload to map stores onto arrays such that the
arrays are load-balanced. In the event that the actual workload
deviates from the expected workload, load imbalances will re-
sult in the system. Such load skews may require reorganiza-
tion of data across arrays to re-balance the load, which can be
expensive. In contrast, wide striping is more resilient to load
imbalances, since all stores are striped across all arrays, caus-
ing load increases to be dispersed across arrays in the system.

Finally, narrow and wide striping require varying amounts
of information to be specified at storage allocation time. In
particular, narrow striping requires detailed workload informa-
tion for load balancing purposes and to minimize interference
from overlapping request streams. In contrast, wide striping
requires only minimal workload information to determine pa-
rameters such as the stripe unit size and the RAID level.

The objective of our study is to quantify the above tradeoffs
and to determine the suitability of narrow and wide striping for
policy-managed systems.

3 Experimental Evaluation

We evaluate the tradeoffs of narrow and wide striping using
simulations and experiments on a storage system testbed.

Our storage system simulator simulates a system with mul-
tiple RAID-5 arrays; each RAID-5 array is assumed to con-
sist of five disks (four disks and a parity disk, referred to as a
4+p configuration). The data layout in RAID-5 arrays is left-
symmetric. Each disk in the system is modeled as an 18 GB

3



Minimum Seek 0.6 ms
Average Seek 4.7 ms
Maximum Seek 11.0 ms
Rotational Latency 5.98 ms
Rotational speed 10,000 RPM
Maximum Transfer Rate 39.16 MB/s

Table 1: Characteristics of the Fujitsu Disk
Fujitsu MAJ3182MC disk; the characteristics of this disk are
shown in Table 1. The disk head movement is modeled as in
[9]. We also incorporate a write-back LRU cache to capture
the effect of the storage controller cache. The cache size is
varied linearly with the number of arrays in the storage sys-
tem, with 64 MB of cache per array. The cache also employs
an early destage policy to evict dirty buffers.

Our storage system testbed consists of a IBM TotalStor-
age FAStT-700 storage subsystem equipped with 40 18 GB
disks. The storage subsystem is connected to a 1.6 GHz Pen-
tium 4 server with 512 MB RAM running Linux 2.4.18 over
Fibre Channel. The specific RAID configurations used in our
experiments are described in the corresponding experimental
sections.

Depending on whether narrow or wide striping is used,
each object (and the corresponding store) is either placed on
a single array or striped across all arrays in the system. We
assume each store is allocated a contiguous amount of space
on each disk. Each data object in the system is accessed by a
request stream; a request stream is essentially an aggregation
of requests sent by different applications to the same store. For
example, a request stream for an OLTP application is the ag-
gregation of I/O requests triggered by various transactions. We
use a combination of synthetic and trace-driven workloads to
generate request streams in our simulations; the characteristics
of these workloads are described in the next section. Assum-
ing the above system model, we first present our experimental
methodology and then our results.

3.1 Experimental Methodology
Recall that, narrow striping algorithms optimize storage sys-
tem throughput by (i) collocating objects that are not accessed
together, (i.e., collocating objects with low or zero access cor-
relation so as to reduce interference), and (ii) balancing the
load on various arrays. The actual system performance de-
pends on the degree to which the system can exploit each di-
mension. Consequently, we compare narrow and wide striping
by systematically studying each dimension—we first vary the
interference between request streams and then the load imbal-
ance.

Our baseline experiment compares a perfect narrow striped
system with the corresponding wide striped system. In case of
narrow striping, we assume that all arrays are load balanced
(have the same average load) and that there is no interference
between streams accessing an array. However, these streams
will interfere when wide striped and our experiment quanti-
fies the resulting performance degradation. Observe that, the
difference between narrow and wide striping in this case repre-
sents the upper bound on the performance gains that can be ac-

crued due to intelligent narrow striping. Our experiment also
quantifies how this bound varies with system parameters such
as request rates, request size, system size, stripe unit size, and
the fraction of read and write requests.

Next, we compare a narrow striped system with varying
degrees of interference to a wide striped system with the same
workload. To introduce interference in narrow striping, we
assume that each array stores two independent objects. We
keep the arrays load balanced and vary the degree of correla-
tion between streams accessing the two objects (and thereby
introduce varying amounts of interference). We compare this
system to a wide striped system that sees an identical work-
load. The objective of our experiment is to quantify the per-
formance gains due to narrow striping, if any, in the presence
of inter-stream interference. Note that, narrow striped systems
will encounter such interference in practice, since (i) it is diffi-
cult to find perfectly anti-correlated streams when collocating
stores, or (ii) imprecise workload information at storage allo-
cation time may result in inter-stream interference at run-time.

We then study the impact of load imbalances on the rel-
ative performance of wide and narrow striping. Specifically,
we consider a narrow striped system where the load on arrays
is balanced using the the average load of each stream. We then
study how dynamic variations in the workload can cause load
skews even when the arrays are load balanced based on the
mean load. We also study the effectiveness of wide striping in
countering such load skews due to its ability to disperse load
across all arrays in the system.

Our final set of experiments compare the performance of
narrow and wide striping using two well-known database
benchmarks—TPC-C and TPC-H. We also study the effects
of interference and load variations on the two systems.

Together, these scenarios enable us to quantify the trade-
offs of the two approaches along various dimensions. We now
discuss the characteristics of the workloads used in our study.

Workload characteristics: We use a combination of syn-
thetic workloads, real-world traces and database benchmarks
to generate the request streams in our study. Whereas trace
workloads are useful for understanding the behavior of wide
and narrow striping in real-world scenarios, synthetic work-
loads allow us to systematically explore the parameter space
and quantify the behavior of the two techniques over a wide
range of system parameters. Database benchmarks, on the
other hand, allow for comparisons based on “standardized”
workloads. Consequently, we use a combination of these
workloads for our study.

Our synthetic workloads are generated using two types of
processes: (1) Poisson ON-OFF process: The on and off pe-
riods of such a process are exponentially distributed. Request
arrivals during the ON period are assumed to be Poisson. Suc-
cessive requests are assumed to access random locations on
the store. The use of an ON-OFF process allows us to care-
fully control the amount of interference between streams. Two
streams are anti-correlated when they have mutually exclusive
ON periods; they are perfectly correlated when their ON peri-
ods are synchronized. The degree of correlation can be varied
by varying the amount of overlap in the ON periods of streams.

4



Name Read req. Write req. Mean req. Request
rate rate size Streams

(IOPS) (IOPS) (bytes/req)
OLTP 1 28.27 93.79 3466 24
OLTP 2 74.31 15.93 2449 19

Web Search 1 334.91 0.07 15509 6
Web Search 2 297.48 0.06 15432 6
Web Search 3 188.01 0.06 15772 6

Table 2: Summary of the Traces. IOPS denotes the number
of I/O operations per second.
(2) Closed-loop process: A closed-loop process with concur-
rency consists of concurrent clients that issue requests
continuously, i.e., each client issues a new request as soon as
the previous request completes. The request sizes are assumed
to be exponentially distributed and successive requests access
random locations on the store.

Both the Poisson ON-OFF and closed-loop processes can
generate two types of request streams—those that issue small
requests and those that issue large requests. Streams with large
requests are representative of decision support systems (DSS),
while those with small requests represent OLTP applications.
Since DSS workloads access large amounts of data, we as-
sume a mean request size of 1MB for large requests. On the
other hand, since OLTP applications generate small requests,
we use 4KB for small requests; the request sizes are assumed
to be exponentially distributed. Prior studies have used sim-
ilar parameters [4]. The stripe unit sizes of the stores being
accessed by large and small requests was set to be 512KB and
4KB, respectively.

We also use a collection of block-level I/O trace workloads
for our study; the characteristics of these traces are listed in
Table 2. Traces labeled OLTP 1 and OLTP 2 are I/O workloads
from OLTP applications of two large financial institutions and
have different mixes of read and write requests. Traces labeled
Web Search 1 through 3 are I/O traces from a popular web
search engine and consists of mostly read requests. Thus, the
traces represent different storage environments and, as shown
in Table 2, have different characteristics.

3.2 Ideal NarrowStriping versusWide Striping
We first compare a load-balanced, interference-free narrow
striped system with a wide striped system using homogeneous
and heterogeneous workloads. In case of homogeneous work-
load, all streams generate requests of similar sizes. In case of
heterogeneous workload, streams generate requests of differ-
ent sizes.

3.2.1 Comparison using Homogeneous Workloads

We compare narrow and wide striping, first for small request
sizes and then for large requests. Our simulations assume that
each narrow striped array consists of a single store (and a sin-
gle request stream), while all stores are striped across all ar-
rays in wide striping. We use closed-loop workloads to gen-
erate requests streams; the concurrency factor for each large
and small closed-loop workload was assumed to be 2 and 4,

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

System Size (# of arrays)

Large Requests

Homogeneous Workload

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

System Size (# of arrays)

Small Requests

Homogeneous Workload

(a) Large Requests (b) Small Requests

Figure 2: Effect of system size for homogeneous closed-loop
workloads. System size of 1 depicts narrow striping.
respectively. We vary the number of arrays in the system, i.e.,
the system size, and measure the average response time in the
two systems. Figures 2(a) and 2(b) depict the response times
for large and small request sizes, respectively, in the two sys-
tems. When the system size is 1 (i.e., a single array accessed
by a single stream), narrow and wide striping are identical.
Further, since each request stream accesses a different array in
narrow striping, the system size has no impact on the response
time. In other words, the performance of narrow striping is
represented by the system size of 1 (and remains unchanged).
In contrast, the response time of wide striping degrades with
increasing system sizes. This is primarily due to increased
interference between request streams. However, as shown in
Figure 2, the impact of such interference increases slowly with
system size. Overall, we find that wide striping sees response
times that are 10-20% worse than narrow striping.

We validate the results of the above simulation experiment
using our FAStT-700 storage testbed. We configure the FAStT
with two RAID-5 arrays (4+p configuration). We create two
stores, each 2 GB in size, on the storage system. For large
requests, the stripe unit size of the store is 256 KB and for
small requests it is configured to be 8 KB. We used the Linux
Logical Volume Manager (LVM) for wide striping the stores.
The mean request size for large and small requests is chosen
to be 512 KB and 8 KB, respectively. We compare narrow
and wide striping using closed-loop workloads with different
concurrency factors (see Figure 3). As Figure 3 demonstrates,
the response time in the wide-striped system is about
higher than in the narrow-striped system which is consistent
with the results of our simulations.

In addition to the above experiments, we compared narrow
and wide striping by varying a variety of system parameters
such as the stripe unit size, the request size, the utilization
level, and the percentage of write requests. Our experiments
were carried out for both closed-loop and the open-loop Pois-
son OF-OFF workloads. In each case, we found that, if the
stripe unit size is chosen carefully, the performance of narrow
and wide striped systems is comparable and within
of one another. Due to lack of space, we omit the results from
these experiments, which can be found in Appendix A.

3.2.2 Comparison using Heterogeneous Workloads

To introduce heterogeneity into the system, we assume that
each narrow striped array consists of two stores, one accessed

5



0

5

10

15

20

25

30

0 1 2 3

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Client Concurrency Factor

Large Requests

Narrow
Wide

0

2

4

6

8

10

12

1 2 3 4 5

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Client Concurrency Factor

Small Requests

Narrow
Wide

(a) Large Requests (b) Small Requests

Figure 3: Homogeneous Workload: Closed-loop Testbed Ex-
periments
by large requests and the other by small requests (we denote
these request streams as and , respectively, where de-
notes the array in the system). In case of narrow strip-
ing, we ensure that only one of these streams is active at any
given time. This is achieved by assuming that and are
anti-correlated (have mutually exclusive ON periods). We do
not assume any correlations between streams accessing in-
dependent arrays (i.e, between streams and or and

). Consequently, like before, the narrow striped system is
load-balanced and free of inter-stream interference. The wide
striped system, however, sees a heterogeneous workload due
the simultaneous presence of small and large requests.

We use Poisson On-Off processes to understand the effect
of various parameters such as system size, stripe unit size, uti-
lization level, etc. As before, we assume a mean request size
of 1MB for large requests and 4KB for small requests. The
default stripe unit size is chosen to be 512KB and 4KB for the
corresponding stores. Unless specified otherwise, we chose
request rates that yield utilization of around 60-65%; this cor-
responds to a mean inter-arrival (IA) time of 17 ms for large
requests and 4 ms for small requests, respectively.

Effect of System Size: We vary the number of arrays in the
system from 1 to 10 and measure the average response time of
the requests for wide and narrow striping. Since each array
is independent in narrow striping, the system size has no im-
pact on the performance of an individual array. Hence, like
before, the performance of narrow striping is represented by
a system size of 1 (and remains unchanged, regardless of the
system size). Figures 4(a) and 4(b) show the response times
on large and small requests, respectively, for varying system
sizes. The figure shows that while large requests see compara-
ble response times in wide striping, small requests see worse
performance. To understand this behavior, we note that two
counteracting effects come into play in a wide-striped system.
First, since stores span all arrays, there is better load balanc-
ing across arrays, yielding smaller response time. Second, re-
quests see additional queues that they would not have seen in
a narrow striped system, which increases the response time.
This is because wide-striped streams access all arrays and in-
terfere with one another. Hence, a small request might see

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

System Size (# of arrays)

Large Requests

Heterogeneous Workload

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

System Size (# of arrays)

Small Requests

Heterogeneous Workload

(a) Large Requests (b) Small Requests

Figure 4: Effect of system size for heterogeneous Poisson
workloads. System size of 1 depicts narrow striping.
another large request ahead of it, or a large request might see
another large request from an independent stream, neither of
which can happen in a narrow striped system. Our experiment
shows that, for large requests, as one increases the system size,
the benefits of better load-balancing balance the slight degra-
dation due to the interference; this is primarily due to the large
size of the requests. For small requests, the interference effect
dominates (since a large request can substantially slow down a
small request), leading to a higher response time in wide strip-
ing. Observe that response time is higher by approximately
the transfer time of a stripe unit of large request.

Effect of Stripe Unit Size: In this experiment, we evaluate
the impact of the stripe unit size in wide and narrow striping.
We vary the stripe unit size from 64KB to 2MB for large re-
quests, and fix the stripe unit size for small requests at 4KB.
Since the stripe-unit size of small requests did not have much
impact on performance, we omit these results.

First, consider the impact of varying the large stripe unit
size on large requests (see Figure 5(a)). When the large stripe
unit is 64KB, a request of 1MB size causes an average of 16
blocks to be accessed per request. In case of narrow strip-
ing, since each stream is striped across a 4+p array, multiple
blocks are accessed from each disk by a request. Since these
blocks are stored contiguously, the disks benefit from sequen-
tial accesses to large chunks of data, which reduces disk over-
heads. In wide striping, each 1MB request accesses a larger
number of disks, which reduces the number of sequential ac-
cesses on a disk and also increases the queue interference for
both large and small requests. Consequently, narrow striping
outperforms wide striping for a 64KB stripe unit size. As we
increase the stripe unit size to 512 KB and beyond, the impact
of loss in sequential access goes down. This coupled with the
larger number of disk heads that are available for each request
in wide striping leads to better performance for wide strip-
ing. Since stripe unit is not varied for small requests, it is im-
pacted mainly by the utilization levels resulting from the dif-
ferent stripe unit choices for large requests (see Figure 5(b)).
For small requests, due to the interference from large requests,
wide striping leads to higher response time. Since disk over-
head, and consequently utilization, is higher in wide striping
at smaller stripe unit sizes, small requests see worse response
times. As stripe unit size is increased the disk overhead de-
creases and hence the relative response time performance of
wide striping improves. But, beyond 512 KB, the transfer
times of the large stripe units becomes significant, and the re-

6



0

20

40

60

80

100

120

140

160

64 128 256 512 1024 2048

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Stripe-unit Size (KB)

Large Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

0

10

20

30

40

50

60

64 128 256 512 1024 2048

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Stripe-unit Size (KB)

Small Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

(a) Large Requests (b) Small Requests

Figure 5: Effect of varying the stripe unit size of large requests. System size of 1 depicts narrow striping.
sponse times of the small requests increases in wide striping.

Effect of the Utilization Level: In this experiment, we
study the impact of the utilization level on the response times
of wide and narrow striping. We vary the utilization level by
varying the inter-arrival (IA) times of requests. We first vary
the IA times of large requests from 11ms to 20ms with the
IA time of small requests fixed at 4ms (see Figure 6). We
then vary the IA times of small requests from 2ms to 7ms
with the IA time for large requests fixed at 17ms (see Figure
7). The various combinations of inter-arrival times and back-
ground loads result in utilizations ranging from 40% to 80%.

Figure 6(a) shows that, for large requests, wide striping
outperforms narrow striping at high utilization levels and has
slightly worse performance at low utilization levels. This is
because, at higher utilization levels, the effects of striping
across a larger number of arrays dominate the effects of inter-
ference, yielding better response times in wide striping (i.e.,
the larger number of arrays yield better statistical multiplex-
ing gains and better load balancing in wide striping). Small
requests, on the other hand, see uniformly worse performance
due to the interference from large requests (see Figure 6(b)).
The interference decreases at lower request rates and reduces
the performance gap between the two systems.

The behavior is reversed when we vary the IA time of small
requests (see Figure 7). At low inter-arrival times, large re-
quests see maximum interference from small requests, and
wide striping yields worse response times as a result. As the
IA time is increased, the interference decreases, and the load
balancing effect dominates leading to better response time in
wide striping. For small requests, the response time difference
in narrow and wide striping is always in the range of the trans-
fer time for one stripe unit of a large request.

Effect of Request Size: In this experiment, we study the
impact of the request size of large requests on the performance
of wide and narrow striping. Varying the request size of small
requests (in the range 2KB-16KB) did not have much impact,
so we omit the results. We vary the average request size for
large requests from 64KB to 2 MB (see Figure 8). The stripe
unit size was chosen to be half the average request size for
large requests; the average request size as well as the stripe
unit size was fixed at 4 KB for small requests.

Figure 8(a) demonstrates that for large streams, initially

(i.e., at small request sizes), queue interference results in
slightly higher (approximately average seek time) response
time in wide-striping. However, as the request size increases,
the utilization increases and wide-striping leads to lower re-
sponse times due to better load balancing. On the other
hand, for small requests, wide-striping leads to larger response
times, and the performance difference increases as we increase
the large request size due to the increased transfer times of the
large requests.

Effect of Writes: The above experiments have focused
solely on read requests. In this experiment, we study the im-
pact of write requests by varying the fraction of write requests
in the workload. We vary the fraction of write requests from
10% to 90% and measure their impact on the response times in
the wide and narrow striped systems. Recall that we simulate
a write-back LRU cache.

We first vary the percentage of writes of the large requests
with the small requests set to be read only (see Figure 9).
Due to the write-back nature of the cache, all write requests
return immediately after updating the cache. Consequently,
the response times of write requests is identical in both nar-
row and wide striping. Hence, the overall response times (for
both reads and writes) is governed mostly by read response
times and the relative fraction of reads. In general, increas-
ing the percentage of write requests increases the background
load due to dirty cache flushes as well as the effective uti-
lization (since the parity block also needs to be updated on a
write2). Both of these factors interfere with read requests. For
large requests, the increased interference is offset by the bet-
ter load dispersion capability of wide striping, causing wide
striping to outperform narrow striping—this performance ad-
vantage improves for larger system sizes (see Figure 9(a)). For
small requests, on the other hand, the interference effect dom-
inates at low utilization, causing wide striping to yield worse
response times (see Figure 9(b)). As the percentage of writes
is increased beyond 70%, wide striping outperforms narrow
striping. This is because the interference from background

2Instead of reading the rest of the parity group, an intelligent array con-
troller can read just the data block(s) being overwritten and the parity block
to reconstruct the parity for the remaining data blocks. We assume that the ar-
ray dynamically chooses between a read-modify write and this reconstruction
write strategy depending on which of the two requires fewer reads.

7



0

20

40

60

80

100

11 12 13 14 15 16 17 18 19 20

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Mean Inter-arrival Time (ms)

Large Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

0

5

10

15

20

25

30

35

40

11 12 13 14 15 16 17 18 19 20

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Mean Inter-arrival Time (ms)

Small Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

(a) Large Requests (b) Small Requests

Figure 6: Effect of the inter-arrival times of large requests. System size of 1 depicts narrow striping.

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Mean Inter-arrival Time (ms)

Large Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

0

5

10

15

20

25

30

35

2 3 4 5 6 7

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Mean Inter-arrival Time (ms)

Small Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

(a) Large Requests (b) Small Requests

Figure 7: Effect of inter-arrival times of small requests. System size of 1 depicts narrow striping.
cache flushes and parity updates becomes dominant in write-
intensive workloads, and wide striping yields better load bal-
ancing properties in the presence of such interference.

Next we vary the percentage of writes for the small re-
quests (see Figure 10). The large request streams issue only
read requests. As we increase the percentage of small write
requests we see that large requests see queue interference in a
wide-striped system; consequently narrow striping gives bet-
ter performance. For small requests, as the write percentage is
increased and the utilization goes up, the role of load balanc-
ing becomes significant and the performance of wide-striping
improves, giving comparable performance at high write per-
centages.

3.2.3 Summary
The above experiments compared a load-balanced,
interference-free narrow striped system with a wide striped
system using homogeneous and heterogeneous workloads.
Our experiments demonstrate that, in the case of homoge-
neous workloads, narrow striping yields better
response times for some scenarios, while the two systems
yield comparable performance for most other scenarios. In
case of heterogeneous workloads, our experiments demon-
strated that if the stripe unit size is chosen appropriately, then
wide striping yields better response times for large requests
in most scenarios. In some cases, wide striping yields higher

response times (in the range of an average seek time). For
small requests, on the other hand, wide striping yields worse
performance in most scenarios (the performance difference is
in range of transfer time of a large stripe unit). In general, we
find that as utilization increases (for instance, by increasing
write percentage), wide-striping leads to better performance.

3.3 Impact of Inter-Stream Interference
While our experiments thus far have assumed an ideal
(interference-free, load-balanced) narrow-striped system, in
practice, storage systems are neither perfectly load balanced
nor interference-free. In this section, we examine the impact
of one of these dimensions—inter-stream interference—on the
performance of narrow and wide striping.

To introduce interference systematically into the system,
we assume a narrow striped system with two request streams,

and , on each array. Each stream is an ON-OFF Poisson
process and we vary the amount of overlap in the ON periods
of each pair. Doing so introduces different amounts
of correlations (and interference) into the workload accessing
each array. Initially, streams accessing different arrays are as-
sumed to be uncorrelated (thus, and as well as and
are uncorrelated for all .). Like before, all streams access
all arrays in wide striping. We vary the correlation between
each pair from 0 to 1 and measure its impact on the
response times of large and small requests (correlation of 0

8



0

50

100

150

200

250

16 32 64 128 256 512 1024 2048

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Mean Request Size (KB)

Large Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

0
5

10
15
20
25
30
35
40
45
50

16 32 64 128 256 512 1024 2048

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Mean Request Size (KB)

Small Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

(a) Large Requests (b) Small Requests

Figure 8: Effect of request size of large requests. System size of 1 depicts narrow striping.

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50 60 70 80 90

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Percentage of Write Requests

Large Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Percentage of Write Requests

Small Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

(a) Large Requests (b) Small Requests

Figure 9: Effect of percentage of large write requests. System size of 1 depicts narrow striping.
implies that and are never on simultaneously while 1 im-
plies that they are always on simultaneously). We control the
correlation by varying the overlap fraction i.e., mean time for
which the two streams are ON simultaneously. For simplicity
we assume that the correlated streams have the same ON peri-
ods; also we assume the OFF period to have the same duration
as the ON period. This gives us a high degree of control on
stream correlations. For a correlation of x, , the
overlap fraction is uniformly distributed between 0 and 2*x.
For correlations between 0.5 and 1, the overlap fraction is uni-
formly distributed between 2*x-1 and 1.0.

Figure 11 plots the impact of correlation on response time
in narrow and wide striped systems. As the figure demon-
strates, the performance of wide-striping improves with in-
crease in correlation, with wide-striping performing better for
both small and large request sizes for correlation values higher
than . Observe that as correlation increases, the probabil-
ity of temporary load-imbalance in the narrow striped system
increases. Since wide-striping yields better load-balancing, it
leads to better performance as correlation increases.

3.4 Impact of Load Skews: Trace-driven Simu-
lations

We use the trace workloads listed in Table 2 to evaluate the
impact of load imbalance on the performance of narrow and
wide striping. The traces have a mix of read and write I/Os

and small and large I/Os. To illustrate, the OLTP-1 trace has
a large fraction of small writes (mean request size is 2.5KB),
while the Web-Search-1 trace consists of large reads (mean
request size is 15.5KB). Our simulation setup is same as the
previous sections, except that each request stream is driven by
traces instead of a synthetic ON-OFF process. Due to the high
percentage of writes in the OLTP streams, a cache of sufficient
size, resulted in similar performance for both narrow and wide
striping, when in the write back mode; so in the following, we
have the cache in the write through mode.

To compare the performance of narrow and wide-striping
using these traces, we separate each independent stream from
the trace (each stream consists of all requests accessing a vol-
ume). This pre-processing step yields 61 streams. We then
eliminate 9 streams from the search engine traces, since these
collectively contained less that 1000 requests (and are effec-
tively inactive). We further eliminate 4 streams from the OLTP
traces as these were found to be capacity bound. We then parti-
tion the remaining 48 streams into four sets such that each set
is load-balanced. We use the write-weighted average IOPS3

of each stream as our load balancing metric—in this metric,
each write request is counted as four I/Os (since each write
could, in the worst case, trigger a read-modify-write operation
involving four I/O operations). Since the size of each I/O oper-
ation is relatively small, we did not consider stream bandwidth

3I/O Operations Per Second

9



0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Percentage of Writes

Large Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Percentage of Writes

Small Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

(a) Large Requests (b) Small Requests

Figure 10: Effect of percentage of small write requests. System size of 1 depicts narrow striping.

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Mean Overlap Fraction (Correlation)

Large Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Mean Overlap Fraction (Correlation)

Small Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

(a) Large Requests (b) Small Requests

Figure 11: Impact of inter-stream interference. System size of 1 depicts narrow striping.
as a criteria for load balancing.

We employ a greedy algorithm for partitioning the streams.
The algorithm creates a random permutation of the streams
and assigns them to partitions one at a time, so that each stream
is mapped to the partition that results in the least imbalance
(the imbalance is defined to the difference between the load
of the most heavily-loaded and the least lightly-loaded parti-
tions). We repeat the process (by starting with another random
permutation) until we find a partitioning that yields an imbal-
ance of less than 1%.

Assuming a system with four RAID-5 arrays, each config-
ured with disks, we map each partition to an array in nar-
row striping. All partitions are striped across all four arrays in
wide striping. We computed the average response time as well
as the percentile of the response times for each stream
in two systems. Figure 12 plots the average response time
and the percentile of the response time, for the various
streams (the X axis is the stream id). As shown in the figure,
wide striping yields average response times that are compara-
ble to that of a narrow striped system. Figure 12(c) shows the
mean disk utilizations for the disks in the system (the X axis
is the disk id). Observe that variance in the mean disk utiliza-
tions across the disks in the system is is lower in a wide-striped
system due to better load balancing. Also, even for the case of
narrow striping the variance in disk utilizations is low since
the partitions are load balanced (a partition comprises of five

consecutive disks).
Next we introduce load imbalance across the partitions and

compare the performance of narrow and wide striping. To
introduce imbalance we simply scale the inter-arrival times
for all streams on the first two partitions by a factor of 0.75
(streams 0-25). In the narrow striped system this increases
the load on the first two partitions (disks 0-9) and the load on
the other two partitions remains unchanged; for a wide striped
system however the load across all the partitions goes up. Fig-
ure 13 plots the results. As can be seen in Figure 13 (c) the
mean utilization across the first two partitions (first ten disks)
has gone up in narrow striping, and the utilization across all
the partitions had gone up for wide striping (compare with
Figure 12 (c)). A look at the plots for the average response
time as well as the plot for the percentile of the response
time shows that wide striping outperforms narrow striping for
streams on the first two partitions, and their performance on
the remaining two partitions is similar. Thus we see that,
due to better load balancing, wide striping outperforms nar-
row striping in the presence of load imbalances.

3.5 Experiments on a Storage System Testbed
In this section, we compare the performance of narrow and
wide striping on our storage testbed using a synthetic work-
load and two database benchmark workloads—TPC-C and
TPC-H. system. For the synthetic and TPC-H workloads, we

10



0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

Stream Id

Mean Response Time

Narrow
Wide

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

Stream Id

95th Percentile of Response Time

Narrow
Wide

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18

M
ea

n 
Di

sk
 U

tili
za

tio
n

Disk No.

Disk Utilizations

Narrow
Wide

(a) Mean Response Time (b) Percentile of the Response Time (c) Mean Disk Utilizations

Figure 12: Trace Driven Simulations

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

Stream Id

Mean Response Time

Narrow
Wide

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

Stream Id

95th Percentile of Response Time

Narrow
Wide

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18

M
ea

n 
Di

sk
 U

tili
za

tio
n

Disk No.

Disk Utilizations

Narrow
Wide

(a) Mean Response Time (b) Percentile of the Response Time (c) Mean Disk Utilizations

Figure 13: Trace Driven Simulations with Load Imbalance
use a FAStT-700 storage subsystem, and for the TPC-C work-
load, we use a SSA-based RAID subsystem.

3.5.1 Synthetic Workload
The workload consists of two closed-loop streams, one large
and one small, accessing two independent stores on a RAID-
5 array simultaneously. Each store was of size 2GB and was
created on a RAID-5 array on FAStT. For large requests
the stripe unit size of the store was 256 KB and for small re-
quests it was configured to be 8 KB. We used the Linux Logi-
cal Volume Manager (LVM) for wide striping the stores. The
mean request size for large and small requests was chosen
to be 512 KB and 8 KB, respectively. Figure 14 shows the
response time performance of narrow and wide-striping, for
various combinations of concurrency factors of the clients ac-
cessing the large and small stores, respectively. As the experi-
ments demonstrate, the performance of wide striping is within

of the narrow striped system.

3.5.2 TPC-H Workload
TPC-H is a decision support benchmark. It was used in [2] to
illustrate the benefit of narrow striping. We use a setup similar
to the one in [2] with IBM DB2 UDB instead of MS SQL
server. We setup the TPC-H database on a 1.6 GHz Pentium 4
with 512 MB RAM running Linux 2.4.18. This was connected
to the FAStT-700 storage system using Fibre Channel. The
page size and the extent size for the database were chosen to
be 4 KB and 32 KB, respectively. The scale factor for the
database was set to 1 (a 1 GB database).

0

5

10

15

20

25

30

35

40

(1,2) (1,3) (1,4) (2,2)

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

Client Concurrency Factor (large, small)

Large Requests

Narrow
Wide

0

5

10

15

20

25

(1,2) (1,3) (1,4) (2,2)

M
ea

n 
Re

sp
on

se
 T

im
e 

(m
s)

Client Concurrency Factor (large, small)

Small Requests

Narrow
Wide

(a) Large Requests (b) Small Requests

Figure 14: Heterogeneous Workload: Closed-loop Testbed
Experiments

11



For narrow striping, we used the placement described in
[2]. The table lineitem was spread uniformly over 5 disk
drives, orders was spread uniformly over three other disk
drives, and all the other tables and indexes (including the in-
dexes for the tables lineitem and order) were placed in a third
logical volume (called rest) which was striped across all the
8 disk drives. In the wide-striped case the tables lineitem and
orders were striped across all the 8 disk drives, as was the log-
ical volume rest. In both cases the system temporary tables
were placed on a ninth disk drive, also on the FAStT-700. The
stripe unit size was chosen to be 32 KB in all cases.

Figure 15(a) shows the query execution times for narrow
and wide striping for a single stream run (power run) of TPC-
H. Since this is an unaudited run; the query execution times are
normalized. As the figure demonstrates, most of the queries
have similar execution times. Only for queries 20 and 21 do
we see a performance difference; narrow striping out-
performs wide striping for query 20, and vice versa for query
21.

Figures 15(b) and 15(c) plot the I/O profile for the lineitem,
orders, and rest volumes for narrow and wide striping, respec-
tively. The figure demonstrates that the I/O profile are indeed
very similar in both cases. It also demonstrates that lineitem
and orders are indeed the two important tables and the narrow
placement algorithm suggested in [2] appear to be valid for
DB2 as well. Overall, we find that when the tables are care-
fully mapped to arrays in narrow striping, the two systems per-
form comparably (note that, no placement optimizations are
necessary for wide striping).

3.5.3 TPC-C Workload
Our final experiment involves a comparison of narrow and
wide striping using TPC-C workload. Our testbed consists of
a four-processor IBM RS6000 machine with 512 MB RAM
and AIX 4.3.3. The machine contains a SSA RAID adapter
card with two channels (also called SSA loops) and 16 9GB
disks on each channel (total of 32 disks). We configured four
RAID-5 arrays, two arrays per channel, each in a config-
uration. Whereas two of these arrays are used for our narrow
striping experiment, the other two are used for wide striping
(thus, each experiment uses 16 disks in the system). The SSA
RAID card uses a stripe unit size of 64 KB on all arrays; the
value is chosen by the array controller and can not be changed
by the system. However, as explained below, we use large re-
quests to emulate the behavior of larger stripe unit sizes in the
system. We use two workloads in our experiments:

TPC-C benchmark: The TPC-C benchmark is an On-
Line Transaction Processing (OLTP) benchmark and re-
sults in mostly small size random I/Os. The benchmark
consists of a mix of reads and writes (approximately two-
thirds reads and one-third writes [4]). We use a TPC-C
setup with warehouses and clients.
Large sequential: This is an application that reads a raw
volume sequentially using large requests. The process
has an I/O loop that issues requests using the sys-
tem call. Since we can not control the array stripe unit

Striping Sequential Sequential Normalized TPC-C
I/O Size Throughput Throughput

Narrow 896 KB 25.43 MB/s N TpmC
Wide 896 KB 20.09 MB/s 1.33 N TpmC

Narrow 7 MB 29.45 MB/s N TpmC
Wide 7 MB 36.86 MB/s 0.82 N TpmC

Table 3: TPC-C and Sequential Workload Throughput in Nar-
row and Wide Striping

size, we emulate the effect of large stripe units by issuing
large read requests. We use two request sizes in our ex-
periments. To emulate a 128KB stripe unit size, we issue
896KB requests (since , a
898 KB request will access two 64 KB chunks on each
disk). We also find experimentally that the throughput of
the array is maximized when requests of

MB are issued in a single call. Hence, we use
as the second request size (which effectively re-

quests 16 64KB blocks from each disk).

We first experiment with a narrow striped system by run-
ning the TPC-C benchmark on one array and the sequential
application on the other array. We find the TPC-C through-
put to be TpmC (the exact number withheld since this is an
unaudited run), while the throughput of the sequential appli-
cation is MB/s for 896 KB requests and MB/s for
7MB requests (see Table 3).

We then experiment with a wide striped system. To do so,
we create three logical volumes on the two arrays using the
AIX volume manager. Two of these volumes are used for the
TPC-C data, index, and temp space, while the third volume is
used for the sequential workload. As shown in Table 3, the
TPC-C throughput is 1.33N TpmC when the sequential work-
load uses 896 KB requests and is 0.82N TpmC for 7MB re-
quests. The corresponding sequential workload throughput is
20.09 MB/s and 36.86 Mb/s, respectively.

Thus, we find that for the sequential workload, small re-
quests favor narrow striping, while large requests favor wide
striping. For TPC-C workload, the reverse is true, i.e., small
requests favor wide striping and large requests favor narrow
striping. This is because the performance of TPC-C is gov-
erned by the interference from the sequential workload. The
interference is greater when the sequential application issues
large 7MB requests, resulting in lower throughput for TPC-C.
There is less interference when the sequential application is-
sues 898 KB (small) requests; further, TPC-C benefits from
the larger number of arrays in the wide striped system, result-
ing in a higher throughput. This behavior is consistent with the
experiments presented in previous sections. Furthermore, the
performance difference (i.e., improvement/degradation) be-
tween the two systems is around 20%, which is again con-
sistent with the results presented earlier.

3.6 Summary and Implications of our Experi-
mental Results

Our experiments show that narrow striping yields better per-
formance for small requests when the streams can be ideally

12



20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22

No
rm

al
ize

d 
Q

ue
ry

 T
im

es

Query ID

Query Times

Narrow
Wide

0

20

40

60

80

100

0 50 100 150 200 250 300

No
rm

al
ize

d 
I/O

 R
at

e

Time (secs)

Narrow Striping

Lineitem
Orders

Rest

0

20

40

60

80

100

0 50 100 150 200 250 300

No
rm

al
ize

d 
I/O

 R
at

e

Time (secs)

Wide Striping

Lineitem
Orders

Rest

(a) Query Times (b) Narrow Striping: I/O Profile (c) Wide Striping: I/O Profile

Figure 15: Comparison using the TPC-H Benchmark
partitioned such that the partitions are load-balanced and there
is very little interference between streams within a partition.
However, in the presence of workload skews that occur in real
I/O workloads wide striping outperforms narrow striping. In
our trace-driven experiments, we found that when the the av-
erage load was balanced, wide-striping performed comparably
to narrow-striping. However, when we introduced load imbal-
ance by increasing the load on some partitions, wide striping
outperformed narrow striping for the streams on the heavily
loaded partitions while performing comparably for the remain-
ing streams. With a TPC-C workload, we found that if the
stripe unit is chosen appropriately, then narrow and wide strip-
ing have comparable performance even though there are no
workload skews due to the “constant-on” nature of the bench-
mark. In our closed-loop testbed experiments and the TPC-H
experiments we found the performance of narrow and wide
striping to be comparable.

In situations where it is beneficial to do narrow striping, sig-
nificant efforts are required to extract those benefits. First, the
workload has to be determined either by specification in the
policy or by system measurement. Since narrow placement
derives benefits from exploiting the correlation structure be-
tween streams, the characteristics of the streams as well as the
correlations between the streams needs to be determined. It is
not known whether stream characteristics or the inter-stream
correlations are stable over time. Hence, if the assumptions
made by the narrow placement technique change, then load
imbalances and hot-spots may occur. These hot-spots have to
be detected and the system re-optimized using techniques such
as [5]. This entails moving stores between arrays to achieve
a new layout [14]. The process of data movement itself has
overheads that can effect the performance. Furthermore, data
migration techniques are only useful for long-term or persis-
tent workload changes; short-time scale hot-spots that occur
in modern systems can not be effectively resolved by such
techniques. Thus, it is not apparent it is possible to extract
the benefits of narrow-striping for dynamically changing (non-
stationary) workloads. Policy-managed systems that employ
narrow striping [4, 5] have only compared performance with
manually-tuned narrow striped systems. While these stud-
ies have shown that such systems can perform comparably or
outperform human-managed narrow striped systems, no com-
prehensive comparison with wide striping was undertaken in
these efforts.

In contrast to narrow striping, which requires detailed
workload knowledge, the only critical parameter in wide strip-
ing seems to be the stripe unit size. Our experiments highlight
the importance of choosing an appropriate stripe unit for each
store in a wide striping system (for example, large stripe units
for streams with large requests). While an optimal stripe unit
size may itself depend on several workload parameters, our
preliminary experiments indicate that choosing the stripe unit
size based on the average request size is a good rule of thumb.
For example, in our experiments, we chose the stripe unit to
be half the average request size. Detailed analytical and em-
pirical models for determining the optimal stripe unit size also
exist in the literature [8, 9, 16].

A policy-based storage management system must also con-
sider issues unrelated to performance when choosing an ap-
propriate object placement technique. For example, system
growth has different consequences for narrow and wide strip-
ing. In case of narrow striping, when additional storage is
added, data does not have to be necessarily moved; data needs
to move only to ensure optimal placement. In case of wide-
striping, data on all stores needs to be reorganized to accom-
modate the new storage. Although this functionality can be au-
tomated and implemented in the file system, volume manager,
or raid controllers without requiring application down-time,
the impact of this issue depends on the frequency of system
growth. In enterprises environments, system growth is usu-
ally governed by purchasing cycles that are long. Hence, we
expect this to be an infrequent event and not be a significant
issue for wide-striping. In environments where system growth
is frequent, however, such data reorganizations can impose a
large overhead.

A policy based storage management system may also be re-
quired to provide different response time or throughput guar-
antees to different applications. The choice between narrow
and wide striping in such a case would depend on the Quality
of Service (QoS) control mechanisms that are available in the
storage system. For example, if appropriate QoS-aware disk
scheduling mechanisms exist in the storage system [17], then it
may be desirable to do wide striping. If no QoS control mech-
anisms exist, a system can either isolate stores using narrow
striping, or group stores with similar QoS requirements, parti-
tion the system based on storage requirements of each group,
and wide-stripe each group within the partition.

A final issue is system reliability. In narrow striping, when

13



multiple disks fails on a RAID array, only stores mapped onto
that array are rendered unavailable. In contrast, all stores are
impacted by the failure of any one RAID array in wide strip-
ing. The overall choice between wide and narrow striping will
be dictated by a combination of the above factors.

4 Related Work

The design of policy-managed storage systems was pioneered
by [4, 6, 5, 14], where techniques for automatically determin-
ing storage system configuration were studied. This work de-
termines: (1) the number and types of storage systems that are
necessary to support a given workload, (2) the RAID levels
for the various objects, and (3) the placement of the objects on
the various arrays. The placement technique is based on nar-
row striping. It exploits access correlation between streams,
and collocates bandwidth-bound and space-bound objects to
determine an efficient placement. The focus of our work is
different; we assume that the number of storage arrays as well
as the RAID levels are predetermined and study the suitability
of wide and narrow striping for policy-managed systems.

Analytical and empirical techniques for determining file-
specific stripe unit, placing files on disk arrays, and cooling
hot-spots have been studied in [8, 9, 12, 16]. Our work ad-
dresses a related but largely orthogonal question of the ben-
efits of wide and narrow striping for policy-managed storage
systems.

While much of the research literature has implicitly as-
sumed narrow striping, at least one database vendor has re-
cently advocated wide striping due to its inherent simplicity
[13]. A cursory evaluation of wide striping combined with
mirroring, referred to as Stripe and Mirror Everything Every-
where (SAME), has been presented in [1]; the work uses a
simple storage system configuration to demonstrate that wide
striping can perform comparably to narrow striping. To the
best of our knowledge, ours is the first work that systemati-
cally evaluates the tradeoffs of wide and narrow striping.

5 Concluding Remarks

Storage management cost is a significant fraction of the to-
tal cost of ownership of large database applications. Con-
sequently, software automation of common storage manage-
ment tasks so as to reduce the total cost of ownership is an
active area of research. In this paper, we considered a policy-
managed storage system—a system that automates various
management tasks—and focused on the problem of the stor-
age allocation techniques for database workloads. We studied
two fundamentally different storage allocation techniques for
policy-managed systems: narrow and wide striping. Whereas
wide striping techniques need very little workload information
for making placement decisions, narrow striping techniques
employ detailed information about the workload to optimize
the placement and achieve better performance. We systemat-
ically evaluated this trade-off between simplicity and perfor-
mance. Using synthetic and real I/O workloads, we found that
an idealized narrow striped system can outperform a compa-

rable wide-striped system for small requests. However, wide
striping outperforms narrow striped systems in the presence of
workload skews that occur in real systems; the two systems
perform comparably for a variety of other real-world scenar-
ios. Our experiments demonstrate that the additional workload
information needed by narrow placement techniques may not
necessarily translate to better performance. Based on our re-
sults, we advocate narrow striping only when (i) the workload
can be characterized precisely a priori, and (ii) it is feasible
to use data migration to handle workload skews and workload
interference. In general, we argue for simplicity and recom-
mend that (i) policy-managed systems use wide striping for
object placement, and (ii) sufficient information be specified
at storage allocation time to enable appropriate selection of
the stripe unit size.

References
[1] Configuring the oracle database with veritas software and emc

storage. Technical report, Oracle Corporation. Available from
http://otn.oracle.com/deploy/availability/pdf/ora cbook1.pdf.

[2] S. Agrawal, S. Chaudhuri, A. Das, and V. Narasayya. Automating lay-
out of relational databases. In Proceedings of the 19th International
Conference on Data Engineering, Bangalore, India, 2003.

[3] N. Allen. Don’t waste your storage dollars. Research Report, Gartner
Group, March 2001.

[4] G. Alvarez, E. Borowsky, S. Go, T. Romer, R. Becker-Szendy, R. Gold-
ing, A. Merchant, M. Spasojevic, A. Veitch, and J. Wilkes. Minerva:
An automated resource provisioning tool for large-scale storage sys-
tems. ACM Transactions on Computer Systems, 2002.

[5] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch.
Hippodrome: Running circles around storage administration. In Pro-
ceedings of the Usenix Conference on File and Storage Technology
(FAST’02), Monterey, CA, pages 175–188, January 2002.

[6] E. Anderson, M. Kallahalla, S. Spence, R. Swaminathan, and Q. Wang.
Ergastulum: An approach to solving the workload and device configu-
ration problem. Technical Report HPL-SSP-2001-05, HP Laboratories
SSP, May 2001.

[7] E. Anderson, R. Swaminathan, A. Veitch, G. Alvarez, and J. Wilkes.
Selecting raid levels for disk arrays. In Proceedings of the Conference
on File and Storage Technology (FAST’02), Monterey, CA, pages 189–
201, January 2002.

[8] P. Chen and D. Patterson. Maximizing performance in a striped disk
array. In Proceedings of ACM SIGARCH Conference on Computer Ar-
chitecture, Seattle, WA, pages 322–331, May 1990.

[9] P. M. Chen and E. K. Lee. Striping in a raid level 5 disk array. In Pro-
ceedings of the 1995 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, May 1995.

[10] R. Flynn and W. H. Tetzlaff. Disk striping and block replication al-
gorithms for video file servers. In Proceedings of IEEE International
Conference on Multimedia Computing Systems (ICMCS), pages 590–
597, 1996.

[11] E. Lamb. Hardware spending matters. Red Herring, pages 32–22, June
2001.

[12] E.K. Lee and R.H. Katz. An analytic performance model for disk arrays.
In Proceedings of the 1993 ACM SIGMETRICS, pages 98–109, May
1993.

[13] J. Loaiza. Optimal storage configuration made easy.
Technical report, Oracle Corporation. Available from
http://otn.oracle.com/deploy/performance/pdf/opt storage conf.pdf.

[14] C. Lu, G. Alvarez, and J. Wilkes. Aqueduct: Online data migration with
performance guarantees. In Proceedings of the Usenix Conference on
File and Storage Technology (FAST’02), Monterey, CA, pages 219–230,
January 2002.

[15] D. Patterson, G. Gibson, and R. Katz. A case for redundant array of
inexpensive disks (raid). In Proceedings of ACM SIGMOD’88, pages
109–116, June 1988.

14



[16] P. Scheuermann, G. Weikum, and P. Zabback. Data partitioning and
load balancing in parallel disk systems. VLDB Journal, 7(1):48–66,
1998.

[17] P Shenoy and H M. Vin. Cello: A disk scheduling framework for next
generation operating systems. In Proceedings of ACM SIGMETRICS
Conference, Madison, WI, pages 44–55, June 1998.

[18] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The hp autoraid
hierarchical storage system. In Proceedings of the Fifteenth ACM Sym-
posium on Operating System Principles, Copper Mountain Resort, Col-
orado, pages 96–108, Decmember 1995.

15



A Comparison using Homogeneous Work-
loads

In this appendix we present the detailed results of our homo-
geneous workload simulations experiments. We experiment
with large requests that have a mean request size of 1 MB and
a stripe unit size of 512KB. We repeat each experiment with
small requests that have a mean size of 4KB and a stripe unit
size of 4KB. Unless specified otherwise, we choose request
rates that yield a utilization of around 60-65%; this corre-
sponds to a mean inter-arrival time of 17 ms for large requests
and 4 ms for small requests, respectively.

Effect of System Size: We vary the number of arrays in
the system from 1 to 10 and measure the response times of
requests in the narrow and wide striped system. Each array in
the system is accessed by a single stream in narrow striping
and all streams access all arrays in wide striping. Figure 16
plots the results.

The figure shows that the performance of the two systems
is similar over a range of system sizes for both large and small
requests. Increasing the system size results in interference be-
tween streams in wide striping since all stores span all arrays.
However, since all stores span all arrays, this also leads to bet-
ter load balancing across arrays. As we increase the system
size, the benefits of load balancing balance the impact of in-
terference, and the response times remain almost unchanged.

Effect of Stripe Unit Size: In this experiment we study the
impact of changing the stripe unit size. Varying the stripe unit
size of small requests did not have much impact, so we omit
the results. The stripe unit size of large requests was varied
from 128 KB to 2 MB. The average request size of the large
requests was kept fixed at 1 MB. Figure 17 plots the results.

For large requests, when the stripe unit size is smaller
as compared to the average request size, wide-striping gives
higher response times as compared to narrow striping. This is
because, although a smaller stripe unit size results in increased
parallelism, it also increases the sequentiality breakdown and
the probability of interference with requests from streams ac-
cessing other stores. To wit, an average request size of 1 MB
would result in 8 disk accesses for a stripe unit size of 128
KB, as compared to 2 disk accesses for a stripe unit size of
512 KB. The sequentiality of access is maintained in narrow-
striping since all requests for a store access the same array. An
increase in the stripe unit size reduces the extent of sequential-
ity breakdown, and narrow and wide striping give comparable
performance.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

System Size (# of arrays)

Large Requests

Homogeneous Workload

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

System Size (# of arrays)

Small Requests

Homogeneous Workload

(a) Large Requests (b) Small Requests

Figure 16: Homogeneous Workload: Effect of System Size

0

50

100

150

200

128 256 512 1024 2048

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

Stripe-unit Size (KB)

Large Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

Figure 17: Homogeneous Workload: Effect of Stripe-unit
Size

0

50

100

150

200

250

300

350

64 128 256 512 1024 2048

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

Mean Request Size (KB)

Large Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

Figure 19: Homogeneous Workload: Effect of Request Size
Effect of Utilization Level: In this experiment, we study

the impact of utilization level by varying the mean inter-arrival
times (IA) of requests. The IA time for large (small) requests
is varied from 14 ms to 20 ms (3ms to 7ms) in steps of 1 ms.
Figure 18 shows the results for the large and the small case,
respectively.

Figure 18 (a) shows that for large requests, as one decreases
the IA times the relative performance of narrow striping im-
proves slightly. This is because, at low IA times the request
rate is higher, and streams see increased interference from
other streams in wide striping. For larger IA times narrow
and wide striping give comparable performance. Varying the
IA times for smaller requests results in similar behavior (see
Figure 18 (b)); the difference in response times between nar-
row and wide striping in this case however, are smaller than
that observed for large requests, because of the smaller trans-
fer time of small requests.

Effect of Request Size: Next we study the effect of chang-
ing the request size. Varying the request size of small requests
did not have much impact so we omit the results. The request
size of large requests is varied from 64 KB to 128 KB. The
stripe unit size was chosen to be half the average request size.
Figure 19 plots the results. Narrow and wide striping give sim-
ilar performance for most request sizes. For very large request
sizes (2 MB), the interference between request streams results
in wide striping giving slightly larger response times.

Effect of Percentage of Writes: In this experiment we

16



0

20

40

60

80

100

120

11 12 13 14 15 16 17 18 19 20

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

Mean Inter-arrival Time (ms)

Large Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

0

5

10

15

20

25

3 3.5 4 4.5 5 5.5 6 6.5 7

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

Mean Inter-arrival Time (ms)

Small Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

(a) Large Requests (b) Small Requests

Figure 18: Homogeneous Workload: Effect of Utilization Level

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

Percentage of Write Requests

Large Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90

M
ea

n 
Re

sp
on

se
 T

im
e 

 (m
s)

Percentage of Write Requests

Small Requests

System Size 1
System Size 2
System Size 3
System Size 5

System Size 10
System Size 15

(a) Large Requests (b) Small Requests

Figure 20: Homogeneous Workload: Effect of Percentage of Writes
study the effect of varying the percentage of writes. The per-
centage of writes was varied from 0 % to 90 %. We chose
inter-arrival times of 20 ms and 6 ms for large and small re-
quests, respectively. Figure 20 plots the results.

For large requests (see Figure 20 (a)) we observe that as
we increase the percentage of writes the performance differ-
ence between narrow and wide striping increases, with wide-
striping giving higher response times. This is because, increas-
ing the percentage of writes, increases the background load
due to dirty cache flushes, which increases the interference
seen by request streams in wide striping. Small requests (see
Figure 20 (b)) observe similar behavior; the impact of interfer-
ence from background load due to dirty cache flushes however,
is less pronounced, due to the smaller size of requests.

17


